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Abstract

In this paper, we explore the effects of government spending in the real business cycle model where agents use

a learning mechanism to form expectations. In contrast to most of the learning literature, we study learning

behaviour in the original non-linear model. Following the learning interpretation of the parameterized expect-

ations method, agents’ forecast rules are approximations of the conditional expectations appearing in the Euler

equation. We show that variation in agents’ beliefs about the coefficients of these rules, generates time variation

in the transmission of government spending shocks to the economy. Hence, our modelling approach provides

an endogenous mechanism for time-varying government spending multipliers in the standard real business cycle

model.

Keywords: Non-linear learning, Parameterized expectations, Fiscal policy, Time-varying multipliers

JEL Classification: E62, D83, D84, E32.

1 Introduction

The macroeconomic impact of fiscal policy depends crucially on the behavioural response of households to these
policies. An important determinant of this behavioural response is the approach households apply to form expect-
ations regarding the evolution of different endogenous, macroeconomic variables. The dominant paradigm used to
model expectations in macroeconomics is the rational expectations (RE) hypothesis. According to this hypothesis,
households have perfect knowledge about the structure of the model and understand the full complexities of the
macro-economy. An alternative to the rational expectations hypothesis is provided by the learning literature (see
e.g. Evans and Honkapohja, 2001).1 In this literature, agents form expectations using a perceived law of motion.
Over time, as new information becomes available, agents update the coefficients of their perceived law of motion.

This observation raises the question of whether the effects of government spending and the transmission thereof
in the macro-economy are different in the basic Real Business Cycle (RBC) model using respectively rational ex-
pectations and a learning set-up. Indeed, it is well known that government spending multipliers generated by
standard RBC and Dynamic Stochastic General Equilibrium (DSGE) models using rational expectations are typic-
ally constant. This theoretical finding is, however, not in accordance with the findings of several empirical studies.
Auerbach and Gorodnichenko (2012) and Owyang et al. (2013), among others, show that the government spending
multiplier is time-varying. In this paper, we start from these empirical findings and show that the introduction of
a learning set-up in the standard RBC model can generate substantial time variation in the government spending
multiplier.

∗Ghent University, Department of Social Economics and Study Hive for Economic Research and Public Policy Analysis (SHERPPA).
Correspondence to Brecht.Boone@UGent.be or Ewoud.Quaghebeur@UGent.be. Sint-Pietersplein 6, B-9000 Ghent, Belgium. Phone: +32 9
264.34.87.

1In this paper we consider Euler equation learning as put forward by Evans and Honkapohja (2001). In this approach, agents make one-step
ahead forecasts. By contrast, the infinite horizon approach of Preston (2005) assumes that at each date agents make forecasts about variables
into the infinite future. For a discussion of these two approaches see Honkapohja et al. (2013).
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Several papers have already explored the effects of fiscal policy using a learning framework within an RBC or
DSGE model. Evans et al. (2009), for example, study the effects of anticipated fiscal policy changes both within
an endowment economy and the Ramsey model. Their assumption is that agents fully understand and anticipate
the evolution of taxes but have to forecast future factor prices using a linear learning mechanism. Building on
this framework, Mitra et al. (2013) generalise the analysis of Evans et al. (2009) to a stochastic environment with
elastic labour supply. Gasteiger and Zhang (2014) extend the model even further by introducing distortionary
taxes. Following a similar learning approach, Benhabib et al. (2014) investigate the effects of fiscal stimulus in a
new Keynesian model with a zero lower bound on the nominal interest rate.

All the aforementioned papers have enriched our knowledge on the macroeconomic effects of fiscal policy.
They show that these effects can be substantially different when using the learning approach instead of the rational
expectations approach. However, none of these studies explicitly focuses on the evolution and level of the govern-
ment spending multiplier. Furthermore, they all study learning in the linearised counterpart of the non-linear model
they are using. Indeed, it is common in the learning literature that non-linear models are first linearised around
the rational expectations solution before studying their dynamics under learning. Exploring learning and the link
with fiscal policy in the original non-linear model has several advantages, though. First, there is no longer the need
to linearise the RE model around its steady state. Furthermore, contrary to linearised models, which necessarily
lead to a local stability analysis, the context of the original non-linear system allows one to provide a more global
stability analysis. Last, due to the non-linearity of the system, it is more natural to use non-linear forecasting rules
compared to linearised models. This way, the usefulness of non-linear forecasting rules can be studied as well. As
such, one can allow for the possibility of non-linear responses from households.

In this paper, we explore the transitional effects of government spending and the behaviour of the government
spending multiplier by introducing learning in the in the original non-linear RBC model. More specifically, we
adopt the learning interpretation of the parameterized expectations algorithm (PEA). This algorithm was initially
developed as a solution method for non-linear, stochastic models with rational expectations (see for example den
Haan and Marcet, 1990; Marcet and Lorenzoni, 1999; Marcet and Marshall, 1994). The idea behind the PEA is to
replace the conditional expectations in the equilibrium conditions of the model with flexible functional forms with
a finite number of arguments, e.g. polynomials. However, in Marcet and Marshall (1994), the authors also give an
alternative, learning interpretation to the solution of the PEA.

We find that learning in the non-linear model leads to substantial time variation in the transmission of structural
shocks in the model economy. As such, this result stands in sharp contrast with the RE and PEA solutions of the
model. Our set-up thus leads to time-varying government spending multipliers. Furthermore, the time variation
in our set-up itself is endogenously determined. As the economic agents update their beliefs, their response to a
change in government spending changes as well, leading to a different impact on the economy.

The remainder of this paper is structured as follows. Section 2 describes the model. In Section 3, the learning
mechanism is outlined in detail and compared with the rational expectations solution and the PEA solution of the
model. Section 4 shows how learning behaviour in our model leads to time variation in the government spending
multipliers. Finally, Section 5 concludes.

2 Model

To study the transitional dynamics of fiscal policy changes, we use the standard RBC model with elastic labour
supply. In this section, we briefly introduce the different components of the model.
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2.1 Households

The maximization problem of the representative household consists in maximizing

E0

∞

∑
t=0

β
t
[

c1−σ
t

1−σ
+b

(1−nt)
1−θ

1−θ

]
(1)

subject to its budget constraint:
ct + kt+1 = wtnt +(1+ rt)kt −Tt . (2)

In these equations, ct represents the household’s consumption, kt+1 denotes the capital stock, nt is its labour supply,
and wt and rt are the real wage and the real interest rate. The latter is equal to the rental charge on capital after
depreciation (rt = rk

t −δ ). Furthermore, b is the taste for leisure, β the discount factor, σ the coefficient of relative
risk aversion, and θ the inverse of the inter-temporal elasticity of substitution in leisure. Tt is the lump sum tax in
period t.

The optimality conditions of the household with respect to labour and consumption are respectively given by

c−σ
t =

b(1−nt)
−θ

wt
(3)

and
βEt

{
c−σ

t+1

[
rk

t+1 +1−δ

]}
= c−σ

t . (4)

2.2 Firms

The representative firm produces the final good according to

yt = ztkα
t n1−α

t (5)

where zt evolves according to
zt = zρz

t−1 exp(εZ
t ). (6)

with ρz ∈ (0,1). In these equations, εZ
t ∼N (0,σ2

Z) is an innovation in technology. Profits are given by

L = ztkα
t n1−α

t −wtnt − rk
t kt (7)

and the corresponding first-order conditions with respect to labour and capital respectively are:

wt = (1−α)ztkα
t n−α

t , (8)

rk
t = αztkα−1

t n1−α
t . (9)

2.3 Government

The fiscal government finances its expenditures on goods by levying lump sum taxes. Formally, we have

gt = Tt . (10)

Government spending gt evolves according to

gt = gρg
t−1 exp(εG

t ), (11)

with ρg ∈ (0,1) and where εG
t ∼N (0,σ2

G) is a government spending shock.
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3 Real-time non-linear learning

3.1 Set-up

We assume that agents, instead of having rational expectations, form forecasts by means of a non-linear learning
mechanism. In particular, agents in our model approximate the conditional expectational function in the consump-
tion Euler equation

Etφ (st+1) = Et
[
c−σ

t+1
(
1−δ +αzt+1kα−1

t+1 n1−α

t+1
)]
, (12)

where st = [ct , kt , zt ], by a parametric function ψ
(
xt , γ t−1

)
of the state variables xt = [1,kt , zt , gt ], and update the

parameters γ t−1 using a constant-gain variant of recursive least squares. We follow the parameterized expectations
literature and use an exponentiated polynomial to approximate the expectational function. More precisely, we
consider the following first-order polynomial in the state variables of the model

Etφ (st+1)' ψ
(
xt ,γ t−1

)
= exp [γ0 + γ1 logkt + γ2 logzt + γ3 loggt ] . (13)

Agents update the vector of belief parameters γ t in real time according to this learning rule:

γ t = γ t−1 +κS−1
t xt−1

[
log(φ (st))− log

(
ψ
(
xt−1,γ t−2

))]
, (14)

St = St−1 +κ

[
xt−1x

′
t−1−St−1

]
, (15)

where St is the moment matrix for xt and κ ∈ (0,1) is the gain parameter. If the gain parameter κ would be
equal to t−1, equations (14)–(15) are the recursive formulas of the ordinary least squares (OLS) estimator for the
coefficients γ in the log-linear specification of equation (13), i.e. log(φ (st))' log(ψ (xt−1,γ)). The update for γ

in equation (14) uses the most recent forecast errorlog(φ (st))− log
(
ψ
(
xt−1,γ t−2

))
.

Instead of adopting the (decreasing-gain) OLS algorithm, where κ = t−1, we set the gain κ to a small constant.
The constant-gain case is the most relevant one for our analysis and is widely used in the adaptive learning literature
(see Eusepi and Preston, 2011; Milani, 2007; Slobodyan and Wouters, 2012, for example). As argued by, for
example, Sargent (1999), Cho et al. (2002), Branch and Evans (2007), Milani (2007), and Orphanides and Williams
(2007), it is a natural way of accomplishing “perpetual learning” as it places a greater weight on more recent
observations. Hence, the constant gain makes sure that the variation in the agents’ beliefs does not die out over
time.

We are now able to formulate the dynamics of our model under non-linear learning. For some initial beliefs γ0

and an initial state vector x0 = [1, k0, z0, g0], substituting the approximating function ψ
(
xt ,γ t−1

)
for the expecta-

tion function in equation (4) gives consumption ct = β
[
ψ
(
xt ,γ t−1

)]−1/σ , equation (3) determines labour supply
nt , and kt+1 follows from the resource constraint (2). The procedure is detailed in Appendix B.

3.2 Discussion

Originally, the parameterized expectations approach was used as a method to approximate the rational expectations
equilibrium of non-linear stochastic dynamic models. The original parameterized expectations algorithm (PEA)
starts from a large sequence of shocks {zt ,gt}T

t=0, computes the corresponding endogenous variables consistent
with the parameterized expectations, and iterates on the vector of parameters γ until the approximation becomes
sufficiently accurate. A detailed step-by-step description of the algorithm is given in Appendix A.

In this paper, we follow the suggestion of Marcet and Marshall (1994) and interpret the parameterized expecta-
tions approach as a real-time learning mechanism. Instead of holding the parameters γ constant over the stochastic
simulation of the model, we let agents update them according to the learning rule above each time new information
becomes available. In doing so we build on Berardi and Duffy (2015), who applied a similar learning mechanism
to an optimal growth model.
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Parameter Description Value

α Output elasticity of capital 1/3
β Discount factor 0.98
σ Coefficient of risk aversion 1
δ Depreciation rate 0.025
b Taste for leisure 1.44
θ Preference parameter 1
ḡ/ȳ Steady state government expenditure to output ratio 0.2
ρZ Technology shock AR(1) coefficient 0.9
ρG Government spending AR(1) coefficient 0.9
σZ Standard deviation of the technology disturbance εZ 0.01
σG Standard deviation of the fiscal disturbance εG 0.01
κ Gain parameter in the learning mechanism 0.02

Table 1: Calibration.

3.3 Non-linear learning simulation

Before turning to the effects of government spending shocks, we compare the non-linear learning solution of
the model with two conventional alternatives: the rational expectations solution and the solution provided by
the original parameterized expectations algorithm (PEA).2 Recall that in the latter case, the parameters of the
approximating function are held fixed whereas in the non-linear learning model the parameters are updated over
time. Given a sequence of 10,000 structural shocks, we generate a series of endogenous variables for these three
different solutions.

Our assumptions on the parameter values are listed in Table 2 and are in line with the literature. The baseline
value for the gain parameter, κ , is set to 0.02.3 Given that this is a crucial parameter for the learning dynamics, we
discuss the implications of different choices for κ in Section 4. The other parameters are set to values commonly
used in the literature. The output elasticity of capital α is set to 1/3. According to Rogerson (2007), a reasonable
range for θ in models with a macro focus is [1,3]. We set θ equal to 1. The coefficient of risk aversion σ equals 1
and the discount factor β is set to 0.98. The depreciation rate δ equals 0.025. The AR(1) coefficients of technology,
ρZ , and government spending, ρG, are set to 0.9. The share of government spending in GDP, ḡ/ȳ, is set to 0.2.
For the standard deviations of the technology and fiscal disturbances, σZ and σG, the value 0.01 is chosen. The
parameter capturing the taste for leisure, b, is determined such that individuals work on average 1/3 of their time
endowment.

It is clear from Figure 1 that the simulated series of both the learning model and the parameterized expectations
algorithm are close to the rational expectations series. The figure shows the evolution of consumption, output,
labour, and investment for 500 periods of the full sample.4 The relatively small differences between the rational
expectations and parameterized expectations solution, indicate that the latter is a reasonably good approximation
of the former. This comforts us in the choice of the functional form of the approximating function. The simulation
results also illustrate the local stability of the non-linear learning mechanism.5 Over our long simulation horizon,
the recursive estimation of the belief parameters does not drive the economy towards diverging paths. This stability
is also reflected in the evolution of the belief parameters over time, depicted in Figure 2. Although the parameters
can deviate from their PEA values for a sustained period of time, they remain in the neighbourhood of those

2We use the deterministic extended path method to find the rational expectations solution of the model.
3This is a value well within the range of estimates reported in the literature. According to Orphanides and Williams (2005, 2007) a gain

parameter in the range 0.01–0.04 provides the best fit between the agents’ forecasts in the model and the expectations data from the Survey
of Forecasters. Using a similar strategy, Branch and Evans (2006) obtain a value of 0.0345. The estimate of Milani (2007) equals 0.0183 and
hence lies within the same range. The estimated gain in Eusepi and Preston (2011) is 0.0029. The Bayesian estimation results from Slobodyan
and Wouters (2012) provide values for κ going from 0.001 to 0.06 depending on the particular learning scheme.

4Investment is defined as it = yt − ct −gt .
5Since our analysis is numerical, establishing analytical convergence results is beyond the scope of this paper. Stability results for constant-

gain algorithms can be found in (inter alia) Evans and Honkapohja (2001). Loosely speaking, constant-gain learning mechanisms are locally
stable only if the gain parameter is sufficiently small. We discuss the sensitivity of our results with respect to this parameter in Section 4.
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Figure 1: Simulated series of model variables under different assumptions regarding the formation of expectations.
The series are measured in percentage deviations from the steady state. The horizontal axis measures time in
quarters.

values.6

4 The effects of government spending under non-linear learning

In sharp contrast with the rational expectations and PEA solutions of the model, the non-linear learning solution
generates time-variation in the transmission of structural shocks in the model economy. In this section we illustrate
how this feature provides an attractive mechanism for generating variation in the government spending multipliers
over time.

In standard rational expectations models, variation in the transmission mechanism of shocks is typically ob-
tained by allowing structural parameters to vary over time. One common strategy is to estimate a fixed-parameter
model on different samples and test for breaks. A downside of this strategy is that the time variation is by as-
sumption infrequent, whereas our approach allows for time variation at a much higher frequency. Another pop-
ular strategy is to use stochastic time-varying coefficient models. In this approach, (some) model parameters
are assumed to follow a stochastic process.7 Both strategies have the disadvantage that the time variation is not
endogenously determined by the model.

By contrast, our approach allows for endogenous time variation of the government spending multipliers at a
relatively high frequency. Figure 3 shows the impact multipliers that correspond to the series in Figure 1. The
transmission mechanism that underlies the multipliers changes as agents recursively update their beliefs over time.
It is well understood that expectations play a crucial role in the impact of fiscal policies, and our modelling approach
highlights this expectations channel for the transmission government spending shocks.

6Constant gain learning implies that the parameters do not converge to a point estimate but only to a distribution around the rational
expectations beliefs.

7Examples of the first strategy are Benati (2008) and Canova (2009); examples of the second strategy include Cogley and Sbordone (2008)

6



0 2000 4000 6000 8000 10000
1

1.5

2

2.5
γ

0

0 2000 4000 6000 8000 10000
-0.8

-0.6

-0.4

-0.2
γ

1

0 2000 4000 6000 8000 10000
-1

-0.8

-0.6

-0.4

-0.2
γ

2

0 2000 4000 6000 8000 10000
-0.2

0

0.2

0.4
γ

3

Figure 2: Evolution of the belief coefficients in the non-linear learning model. The series of solid lines correspond
to the coefficients of the approximating function given by equation (13). The dashed lines represent the coefficients
provided by the parameterized expectations algorithm.
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Figure 3: Evolution of the impact multipliers in the non-linear learning model. The series represent the impact
multipliers in non-linear learning simulation for the same 500 periods as in Figure 1.
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Figure 4: Distribution of impact multipliers based on 10 simulations of the non-linear learning model over 10,000
periods. The histograms represent the government spending multipliers for output, consumption, and investment in
the non-linear learning model for different values of the gain parameter (κ). The purple lines represent the rational
expectations multipliers. The vertical axis measures relative frequencies.

Figure 4 illustrates the time variation of the government spending multipliers generated by learning behaviour
in our model. It reports the distribution of the impact multipliers for output, consumption, and investment.8 In
the rational expectations equilibrium, the multipliers are time-invariant. The multipliers for output, consumption,
and investment are, respectively, 0.33, −0.27 and −0.30. The relatively small output multiplier, mainly driven by
a significant crowding out of private consumption, is a standard result of the real business cycle model. Under
non-linear learning behaviour, however, the multipliers vary significantly around their rational expectations values.
The degree of time variation is governed by the gain parameter κ in the recursive learning rule (14) since that
parameter determines the volatility of the belief parameters. Overall, learning behaviour in our model generates
substantial time variation in the multipliers and a higher gain increases this variation considerably. Figure 5, on
the other hand, describes the evolution of the government spending multiplier in a sample of 160 periods. This
figure illustrates once more that a higher value for κ leads to more time variation. If κ is equal to 0.01, the time
variation is very small. This changes drastically when κ is equal to 0.03. Even within the simple RBC model, the
government spending multiplier increases from 0.15 to nearly 0.35 over a period of 40 years.

4.1 Discussion

The previous paragraph showed that our set-up leads to time-variation in the government spending multiplier. This
result implies that the effectiveness of an increase in government spending varies over time. For this reason, this
paragraph provides some insights into the drivers of the government spending multiplier. These determinants are of
particular interest for fiscal policymakers. It allows them to assess the effectiveness of fiscal policy in the economy.

The evolution of the government spending multipliers is mainly driven by the evolution of γ3, the coefficient
for government spending in the approximating function 13. If γ3 is high (low), the government spending multiplier
for output is high (low) as well. Intuitively, this result makes sense. If individuals attach a higher weight to
government spending in their approximating function, the impact of an increase in government spending on the
decision variables will also be stronger. Figure 6 illustrates this relationship for the output, consumption, and
investment multipliers. If γ3 is high, the crowding out of private consumption after the government spending shock

and Justiniano and Primiceri (2008). A more extensive overview of the existing literature goes beyond the scope of this paper.
8The results are based on 10 simulations of the non-linear learning model over 10,000 periods. For each simulation, the initial parameter

vector is the vector provided by the parameterized expectations algorithm.
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Figure 5: Evolution of the impact multipliers in a sample of 160 periods for different values of κ .

will be more severe. Hence, the consumption multiplier will be larger. Note, however, that in the context of an
RBC model, a small multiplier for private consumption leads to a large multiplier for output. The output multiplier
is driven by labour supply and a higher level of consumption leads, ceteris paribus, to a lower level of labour
supply.

As the evolution of γ3 is the most important driver of the government spending multiplier, the next step is to
explore the drivers of γ3. Looking at Equation (14), two important channels can be identified. The first one is the
forecasting error

[
log(φ (st))− log

(
ψ
(
xt−1,γ t−2

))]
. A positive (negative) forecasting error leads to an increase

(decrease) in γ3, everything else equal. The forecasting error itself is determined by the evolution of the technology
shocks. More specifically, if zt > zt−1, the forecasting error is negative, whereas if zt < zt−1 it is positive. So,
everything else equal, after a period of technological growth, the government spending multiplier is low and after
a period of decreasing technology, the government spending multiplier is high. This result is, however, dependent
on the level of government spending, which is the second channel. If government spending is above its steady state
level, γ3 will increase for a given level of technology, if it is below its steady state level, γ3 will decrease for a given
level of technology. Furthermore, the further government spending is from its steady state level, the stronger its
influence on the evolution of γ3 and thus the government spending multiplier.

Combined, these results lead to the following insights. The government spending multiplier is likely to be high
if technology and government spending relative to its steady state level evolve in opposite direction. More specific-
ally, the multiplier is high (increases) after (i) a considerable period of increasing technology and low government
spending on the one hand, and (ii) after a considerable period of decreasing technology and high government
spending on the other hand. The multiplier is low (i) after a considerable period of increasing technology and high
government spending on the one hand and (ii) after a considerable period of decreasing technology and a low level
of government spending on the other hand9.

We illustrate the aforementioned results using Figure 7. In this Figure, we highlight three different episodes
during which the government spending multiplier strongly changes. The corresponding levels of technology and
government spending are displayed in respectively the middle and bottom panel. Furthermore, the red line in
the bottom panel denotes the steady state level of government spending. Here, we discuss the evolution of the

9Recent contributions to the literature investigate the relationship between the size of the multiplier and the state of the business cycle – see
e.g. Auerbach and Gorodnichenko (2012, 2013) and Owyang et al. (2013). We have investigated this relationship using different measures for
the business cycle and found that this stylized RBC model is not adequate to uncover a structural relation. Investigating this issue in a more
elaborate (more demand-driven) non-linear learning model is a promising direction for future research.
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Figure 6: Distribution of impact multipliers for high and low values of belief parameter γ3 . The histograms are
based on a simulation of 10,000 periods of the non-linear learning model and represent the government spending
multipliers for output, consumption, and investment. The high (low) γ3 sub-sample contains the multipliers when
γ3 is above (below) its median value. The vertical axis measures relative frequencies.

government spending multiplier between periods 176 and 204. The other ones follow the same reasoning. At first,
technology strongly increases while the level of government spending is below its steady state level. We know that
this combination leads to an increase in γ3. This increase almost directly leads to an increase in the government
spending multiplier. After some time, however, technology starts to decrease. At that point, government spending
is higher than the steady state level. This combination pushes the government spending multiplier upwards.

4.2 Choice of the approximating function: linear versus non-linear learning

In the baseline simulation, we assume that agents approximate the expectation in the consumption Euler equation
(cf. equation (12)) by the following non-linear function

ψ
(
xt ,γ t−1

)
= exp [γ0 + γ1 logkt + γ2 logzt + γ3 loggt ] .

In this section, we compare this “non-linear” learning approach with “linear learning” where agents use the fol-
lowing linear approximating function

ψ
(
xt ,γ t−1

)
= γ0 + γ1kt + γ2zt + γ3gt .

As for the “non-linear” learning case, the parameters γ t−1 are updated using the constant-gain recursive least
squares formulas (14)–(15) but the updating term between square brackets in equation (14) now becomes [φ (st)

−ψ
(
xt−1,γ t−2

)]
.

When comparing the linear with the non-linear learning approach, two interesting observations can be made.
First, non-linear learning outperforms linear learning in terms of forecasting performance, especially when (large)
shocks drive the economy far away from its steady state. To illustrate this, Table 2 reports the root-mean square
error (RMSE) of the forecasts under linear and non-linear learning. In a “high volatility” simulation, when struc-
tural shocks to the economy are larger than in the baseline simulation, non-linear learning improves the forecasting
performance relative to linear learning. In the baseline simulation, however – when the structural shocks are relat-
ively small – the forecasting performance of non-linear learning is (approximately) equal to linear learning. Hence,
when shocks are relatively large, non-linear learning leads to better forecasting. To provide some intuition for this
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Learning scheme Root-mean-square error

Baseline High volatility
(σZ = σG = 0.01) (σZ = σG = 0.025)

Non-linear learning 0.010 0.026
Linear learning 0.010 0.034

Table 2: Forecasting performance of linear and non-linear learning. Root-mean-squared errors are calculated over
10,000 simulation periods.

2 4 6 k̄ 8 10 12 14

1

2

3

Capital stock (kt)

ψ
([k

t
,z̄
,ḡ

],
γ

)

Linear
Non-linear

Figure 8: Linear and non-linear approximating function for different values of the capital stock. Government
spending and technology are fixed at their steady state values and γ equals the coefficient vector of the parameter-
ized expectations algorithm.

result, Figure 8 plots the linear and non-linear approximating function for different values of the capital stock. For
values close to the steady state (k = k̄), the approximation by the linear and non-linear function is very similar. For
capital (and government spending) far away from the steady state, the linear and non-linear approximation differ
quite substantially. In both cases, agents can update the coefficients of the approximating function to improve their
forecasting, but the results presented in Table 2 show that non-linear learning outperforms linear learning in terms
of RMSE.

Second, the linear learning approach also generates time variation in the government spending multipliers.
Figure 9 shows how the impact multipliers for output, consumption, and investment again fluctuate around the
rational expectations multipliers, but their values are less dispersed. Under non-linear learning, the updating of
the belief coefficients generate more variation in the consumption response after the government spending shock.
Consequently, the effects on output and investment will also vary more.

5 Conclusion

In this paper, we explore the transitional dynamics following fiscal policy changes in a stochastic macroeconomic
framework where agents use adaptive learning to update non-linear forecast rules to form expectations. Several
papers have already studied the effect of fiscal policy using a learning framework (see e.g. Evans and Honkapohja,
2009; Gasteiger and Zhang, 2014; Benhabib et al., 2014). All of these papers, however, use linear forecast rules. In
this paper, we apply a different approach. Following, inter alia, Marcet and Marshall (1994) and Berardi and Duffy
(2015), we interpret the parameterized expectations algorithm (PEA) as a real-time learning mechanism used by
agents to update their expectations over time in the original non-linear model.

Our main contribution is to study the dynamics of government spending in the standard RBC model where
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Figure 9: Distribution of impact multipliers based on 10 simulations over 10,000 periods of the model with a linear
approximating function. The histograms represent the government spending multipliers for output, consumption,
and investment for different values of the gain parameter (κ). The purple lines represent the rational expectations
multipliers. The vertical axis measures relative frequencies.

agents use this non-linear learning mechanism to form expectations. To the best of our knowledge, ours is the
first study to compare the transitional dynamics resulting from this framework with the dynamics under rational
expectations.

In our non-linear learning set-up, the effects of government spending shocks vary substantially over time. We
have shown that this variation is endogenously driven by agents’ expectations about the future. The resulting
fluctuations in the government spending multipliers are in marked contrast to the time-invariant multipliers of
the rational expectations solution of the model. We also show that the forecasting performance of the learning
mechanism is better if agents use a non-linear approximating function instead of a linear one. In particular in
the context of relatively high structural shocks which drive the economy far away from its steady state, using a
non-linear approximating function to form expectations is advantageous.

Our findings provide several avenues for future research. First, it may be very fruitful to go beyond the standard
RBC model. Understanding how learning affects the variability of fiscal multipliers in more elaborate models is an
important topic. It may, for example, shed further light on the dependency of multipliers on the state of the business
cycle and the stance of monetary policy. Second, the non-linear learning model provides a natural framework for
studying the consequences of a structural change in fiscal policy. Comparing the dynamics of this learning model
with the rational expectations dynamics is, in our view, a promising direction for further research.
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Appendices

A Parameterized expectations algorithm

Under the parameterized expectations algorithm (PEA) the vector of coefficients γ of the approximating function
ψ (·,γ) is calculated with the following iterative procedure.

Step 1 Draw a large sequence of shocks
{

εG
t , εZ

t
}T

t=0 and compute {gt , zt}T
t=0 as defined in (6) and (11).

Step 2 Choose an initial guess γ0 and an initial value k0 for the capital stock.

Step 3 At iteration i∈ {0, . . . , imax}, use γ i to generate the endogenous variables {ct (γi) , nt (γi) , kt+1 (γi)}T
t=0.

In particular, (i) substituting the approximating function ψ (xt ,γ i) for the expectation function in equa-
tion (4) gives consumption ct = β [ψ (xt ,γ i)]

−1/σ , (ii) the first-order condition (3) determines labour
supply nt , and (iii) kt+1 follows from the resource constraint (2).

Step 4 Use the data for t = 0, . . . ,T−1 to run the non-linear least squares regression of c−σ

t+1

(
1−δ +αzt+1kα−1

t+1 n1−α

t+1

)
on the approximating function ψ (xt , ·) to obtain an estimate γ̂ .

Step 5 Use this estimate to update the guess for γ according to

γ i+1 = (1−µ)γ i +µγ̂, (16)

where (0,1] is a damping parameter.

Step 6 Apply steps 3-5 iteratively until the convergence criterion ∑k
∣∣γk

i+1− γ̂k
∣∣ < τ is met, where k is the

number of parameters in γ .

In our experiments, we set T = 10,000, imax = 200, µ = 0.8, and τ = 1× 10−5. The initial value for the capital
stock is the steady state: k0 = k̄.

B Learning algorithm

To simulate the learning model, we follow the following steps.

Initialisation

1. Draw a sequence of shocks
{

εG
t , εZ

t
}S

t=0 and compute {gt , zt}S
t=0 as defined in (6) and (11).

2. Choose an initial guess γ0 and an initial value k0 for the capital stock.

Simulation Simulate the model S periods forward using the following scheme.

1. Approximate the conditional expectational function in the consumption Euler equation

Etφ (st+1) = Et
[
c−σ

t+1
(
1−δ +αzt+1kα−1

t+1 n1−α

t+1
)]
, (17)

by the parametric function ψ
(
xt , γ t−1

)
of the state variables xt = [1,kt , zt , gt ].

16



2. Calculate the corresponding endogenous variables determined by the following system

ct = β
[
ψ
(
xt ,γ t−1

)]−1/σ
, (18)

c−σ
t =

b(1−nt)
−θ

wt
, (19)

wt = (1−α)ztkα
t n−α

t (20)

yt = ztkα
t n1−α

t , (21)

it = yt − ct −gt , (22)

kt+1 = (1−δ )kt + it . (23)

3. Update the vector of parameters γ t−1 according to

γ t = γ t−1 +κR−1
t xt−1

[
log(φ (st))− log

(
ψ
(
xt−1,γ t−2

))]
, (24)

Rt = Rt−1 +κ

[
xt−1x

′
t−1−Rt−1

]
. (25)
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