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Abstract

This paper studies output fluctuations in a panel of OECD economies with the aim to

decompose the evolution in output volatility into domestic and international factors. To this

end we use a factor-augmented dynamic panel model with both domestic and international

shocks and spillovers between countries through trade linkages. Changes in the volatility of

output growth can be due to time-varying sensitivity to these shocks, changes in the prop-

agation mechanism or shifts in the variances of shocks. We explicitly model cross-sectional

dependence in the variance equation by specifying a common factor structure in the volatility

of domestic shocks. The results show that while the size of international shocks and spillovers

does not decrease in most countries, the volatilities of domestic shocks share a clear common

decreasing trend. Hence, the ‘Great Moderation’ appears to be mainly driven by a decline in

the volatility of domestic shocks rather than smaller international shocks.
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1 Introduction

The sharp decline in output volatility in most advanced economies since the mid 1980s is one of the

most striking stylized facts in modern macroeconomics. First documented for the U.S. by Kim and

Nelson (1999) and McConnell and Perez-Quiros (2000), the phenomenon has been so widespread

and persistent that it was famously coined the ‘Great Moderation’ by Stock and Watson (2003).

Although a large literature has already analyzed the potential sources and consequences of output

volatility, this continues to be an area of lively debate.

One strand of the literature has focused on the fundamentals underlying the observed decline in

aggregate volatility such as better monetary policy (Clarida et al., 2000), increased government size

and fiscal policy (Fatas and Mihov, 2001), improved inventory management methods (Kahn et al.,

2002), financial innovation and increased global integration (Dynan et al., 2006), or demographic

changes (Jaimovich and Siu, 2009). Alternatively, the ‘good luck’ hypothesis brought forward by

Stock and Watson (2003) entails the idea that the period from 1980 onwards has simply been

characterized by the absence of large shocks hitting economies. Related to this is the question

whether the recent Great Recession marks the end of the Great Moderation. While some authors

confirm that this is indeed the case (see e.g. Ng and Wright, 2013), others consider it to be merely

a temporary offset of the structural decline in volatility (see e.g. Clark, 2009).

Starting off from Blanchard and Simon (2001) who show that there has been a global decline in

output volatility in G7 countries, with magnitude and timing differing across countries, a second

strand of the literature tries to explain trends in aggregate volatility in terms of the ‘geographic

origin’, i.e. to what extent these trends are driven by global or country-specific factors. Stock and

Watson (2005) estimate a factor-augmented structural VAR where GDP growth is decomposed

into common and idiosyncratic shocks as well as spillovers, i.e. shocks that originate in a certain

country and subsequently spread to other countries. They find that a decrease in the size of

global shocks is responsible for much of the observed decline in business cycle volatility in the

G7. Carare and Mody (2012) add evidence that spillovers have become more important since

the 1990s and acted as a volatility amplifier during the recent Great Recession. Using a dynamic

factor approach, Kose et al. (2003) show that a common world factor is an important source of

business cycle volatility in advanced economies. Extending their approach by allowing for time-

varying factor loadings and stochastic volatility in the latent factors and idiosyncratic components,

Del Negro and Otrok (2008) find no evidence of increased business cycle synchronization. In fact,

their results document that a common drop in the volatility of country-specific fluctuations is an

important feature of the Great Moderation, but they leave this aspect unmodeled.

In this paper we set up and estimate a factor-augmented dynamic panel data model with time-

varying coefficients and stochastic volatilities to decompose aggregate output growth volatility in

international and country-specific factors. More specifically, our encompassing empirical frame-

work allows the moderation in volatility to be driven by (i) smaller international shocks; (ii) a

moderation in foreign countries that spills over to the remaining countries; (iii) lower contempora-

neous sensitivity to international and foreign shocks; (iv) a milder propagation of shocks over time;

(v) a common and/or idiosyncratic reduction in the volatility of country-specific shocks. Such a

general decomposition has not been done before. Disentangling a country’s output volatility into
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its constituent components is of particular importance for policy makers as it provides informa-

tion on whether the observed change in output volatility is due to one of the country-specific

components, which may be under their control, or due to international factors, which are not.

We contribute to the literature in the following three ways. First, we merge the factor-

augmented VAR approach of Stock and Watson (2005), by decomposing output growth shocks

into country-specific shocks, common shocks and spillovers, and the dynamic factor approach of

Del Negro and Otrok (2008), by allowing for time variation in the variance of shocks and time-

varying sensitivities to shocks. Second, we further extend these approaches by explicitly modeling

a common factor in the volatility of domestic shocks. Hence, next to co-movements in countries’

GDP through common growth shocks and spillovers, our model is also able to capture co-movement

in the size of country-specific shocks. The idea to model a common component in the volatility

of otherwise uncorrelated shocks is not entirely new. Kim et al. (2009) extract macroeconomic

uncertainty as the common factor in consumption and dividend growth volatility. Laurini and

Mauad (2015) include a common jump factor in a multivariate stochastic volatility model to ac-

count for crises and contagion in emerging countries’ exchange rates markets. Herskovic et al.

(2016) show that not only firms’ returns but also their volatilities exhibit a strong common factor

structure. However, to the best of our knowledge, we are the first to model a common factor in

the volatility of domestic output growth shocks as one of the potential sources of the Great Mod-

eration. Third, we explicitly address model uncertainty. We start by specifying all coefficients and

variance parameters as random walks, but then go on and test which time-varying components are

relevant model attributes and fall back to a more parsimonious model when appropriate. This not

only avoids over-parameterization but will also provide us with information on which components

actually contribute to changes in output volatility.

Using quarterly data on the growth rates of real output for 16 advanced countries over the

period 1961:Q1 - 2015:Q4, we obtain the following results. First, the volatility of common shocks

clearly varies over time - shooting up around the oil crises of the 1970s, the worldwide recession

of the early 1990s and the recent Great Recession - but there is no marked evidence of a declining

trend. As individual countries’ sensitivity to the common shocks and spillovers has remained stable

over the sample period, changes in the volatility of the international business cycle component is

not what is driving the Great Moderation. Second, the volatility of domestic shocks shows a clear

common downward trend across the 16 advanced economies we consider. We identify this as one

of the main drivers of the widespread reduction in volatility. Finally, the Great Recession shows

up as a temporary increase in the volatility of common shocks and hence does not mark the end

of the Great Moderation.

The remainder of the paper is structured as follows: Section 2 introduces our empirical spec-

ification and estimation approach. The main estimation results are presented in Section 3 and

further documented by means of variance decompositions in Section 4. Section 5 concludes. The

appendix contains a detailed description of the estimation methodology.
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2 Model and estimation approach

2.1 Empirical specification

Our starting point is the factor-augmented dynamic panel model proposed by Stock and Watson

(2005) extended to allow for time-varying coefficients and stochastic volatilities as in Del Negro

and Otrok (2008). More specifically,

∆yit = αit +

p∑
j=1

βj
it∆yi,t−j +

q∑
k=1

γk
it∆y∗i,t−k + εit, (1)

where ∆yit is real GDP growth for country i in quarter t and ∆y∗it is trade-weighted real GDP

growth of the trading partners of country i.

Our model has a number of distinct features. First, as outlined in Stock and Watson (2005),

Equation (1) can be seen as a vector autoregression (VAR) where the cross-country dimension

represents the different variables in the system. The inclusion of ∆y∗it corresponds to restricting

the coefficients on the lags of foreign GDP growth to be proportional to their respective trade

shares. Given the medium-size dataset at hand this solves the dimensionality problem which would

arise when including the growth rates for each of the foreign countries separately. Moreover, this

weighted average offers a convenient spillover measure.

Second, the model in Equation (1) is structural in the sense that we impose an unobserved

component factor structure on the innovations εit,

εit = ϕε
itε

f
t + εcit, (2)

where εft are common international shocks with country-specific loadings ϕε
it and εcit are country-

specific innovations. These are identified through the assumption that spillovers in Equation (1)

happen with at least one-period lag and imposing that εcit in Equation (2) is a domestic shock

uncorrelated across countries such that all of the contemporaneous cross-country correlation in

output growth is induced by the common shock εft . Thus, this model makes it possible to quantify

both the direct effect of common international shocks εft and the indirect effect of spillovers from

(domestic and common) shocks εit in one country to its trading partners.

Third, we specify all coefficients to vary over time according to driftless random walks:

αit = αi,t−1 + ηαit, ηαit ∼ N (0, σ2
α), (3)

βj
it = βj

i,t−1 + ηβ
j

it , ηβ
j

it ∼ N (0, σ2
βj ), for j = 1, . . . , p, (4)

γk
it = γk

i,t−1 + ηγ
k

it , ηγ
k

it ∼ N (0, σ2
γk), for k = 1, . . . , q, (5)

ϕε
it = ϕε

i,t−1 + ηϕ
ε

it , ηϕ
ε

it ∼ N (0, σ2
ϕε). (6)

Hence, we allow for changes in the persistence of shocks as measured by βit as well as changes in a

country’s sensitivity to both spillovers and common shocks as measured by γit and ϕε
it respectively.

We also model the intercept αit as a random walk to capture permanent changes in trend output

growth. This avoids that low-frequency drifts, such as the productivity slowdown of the early
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1970s and slower growth or secular stagnation in the aftermath of the 2008 global financial crisis,

bias our decomposition of growth and volatility at the business cycle frequency (Fernald, 2007).

Finally, the variance of both common and country-specific innovations is allowed to vary

stochastically over time:

εft ∼ N (0, egt), εcit ∼ N (0, ehit). (7)

As one of the stylized facts of the Great Moderation is a global reduction in volatility but without a

clear increase in international synchronization of business cycles and with its magnitude and timing

varying considerably across countries, country-specific volatilities are likely co-moving even after

controlling for common shocks and spillovers. We explicitly model this correlation in the volatilities

of country-specific shocks by specifying the log-variance hit as a common factor structure,

hit = ϕh
ith

f
t + hc

it, (8)

where hf
t is a common factor with country-specific time-varying loading ϕh

it and hc
it the remaining

idiosyncratic part. Again, we assume that the time-varying volatility components follow indepen-

dent driftless random walk processes:

gt = gt−1 + ηgt , ηgt ∼ N (0, σ2
g), (9)

hf
t = hf

t−1 + ηh
f

t , ηh
f

t ∼ N (0, σ2
hf ), (10)

ϕh
it = ϕh

i,t−1 + ηϕ
h

it , ηϕ
h

∼ N (0, σ2
ϕh), (11)

hc
it = hc

i,t−1 + ηh
c

it , ηh
c

it ∼ N (0, σ2
hc). (12)

Note that while all regression and variance parameters are heterogeneous across countries, for the

sake of parsimony the variances of their innovations are assumed homogeneous.

For future use, define βit =
(
β1
it, . . . , β

p
it

)
and γit =

(
γ1
it, . . . , γ

q
it

)
. After stacking the unobserved

components over cross-sections, i.e. βt = (β1t, . . . , βNt) and similarly for the other components,

further define the vector of time-varying parameters λt = (αt, βt, γt), of time-varying factor

loadings ϕt = (ϕε
t , ϕh

t ) and of stochastic volatilities ζt = (gt, hf
t , hc

t). The vectors λ, ϕ and

ζ then refer to λt, ϕt and ζt stacked over time. The innovation variances are combined in the

vector σ2 = (σ2
α, σ

2
β , σ

2
γ , σ

2
ϕε , σ2

ϕh , σ
2
g , σ

2
hf , σ

2
hc) with σ2

β = (σ2
β1 , . . . , σ2

βp) and σ2
γ = (σ2

γ1 , . . . , σ2
γq ).

In addition xt = (∆yt, ∆yt−j , ∆y∗t−k) represents the data matrix stacked over cross-sections which

is further stacked over time to obtain x.

2.2 Identification and normalization

As it stands, the model in Section 2.1 is not identified and thus requires properly chosen normal-

izations. A first issue that arises is that the products ϕε
itε

f
t and ϕh

ith
f
t in Equations (2) and (8)

are identified but not the relative scale and sign of their constituent components. Multiplying

the loadings by a rescaling constant c while dividing the common factor by the same c would

leave the product unchanged. As long as the standard deviations of the innovations to both com-
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ponents are appropriately adjusted, the two models are equivalent. A standard normalization

is therefore to constrain the scale of the factor (see e.g. Del Negro and Otrok, 2008). However,

while being effective in a model with fixed loadings, time variation brings about a new identifi-

cation issue as the rescaling term can now be a time-varying sequence ct rather than a constant

c. Del Negro and Otrok (2008) argue that in principle this does not pose a formal identification

problem as multiplying the time-varying loadings with ct implies that the rescaled loadings no

longer satisfy the model’s assumptions. For instance, when transforming ϕε
it to ctϕ

ε
it the innova-

tions ctη
ϕε

it would no longer satisfy the homoskedasticity assumption of Equation (6). However,

while the model is theoretically identified, this can fail in practice for the following reasons. First,

the homoskedasticity restriction imposes only a weak constraint on the evolution of the factor

loadings when estimating them using the Kalman filter (outlined below), still leaving scope for

some time-varying rescaling. Second, although the country-specific loadings ϕε
it are assumed to be

uncorrelated across cross-sections, the Kalman filter does not impose this when estimating them.

Hence, the loadings ϕε
it possibly pick up a common business cycle component that should in fact

be captured by the common factor εft . Moreover, a common issue in factor models is that the sign

of the factor and the loadings is indeterminate (see e.g. Del Negro and Otrok, 2008; Kose et al.,

2008). A homoskedasticity restriction does not prevent sign switches as multiplying ϕε
it and εft by

ct = −1 leaves the variance of the rescaled innovation ctη
ϕε

it unchanged.

We avoid the above-mentioned identification issues by restricting the cross-sectional averages

of the loadings to be 1 in each period:

ϕ̄ε
t =

1

N

N∑
i=1

ϕε
it = 1, ϕ̄h

t =
1

N

N∑
i=1

ϕh
it = 1, ∀ t = 1, ..., T. (13)

This boils down to dividing the original, unnormalized loadings by their cross-sectional average in

every period t and assuming that Equations (6) and (11) hold for the rescaled loadings. Note that

this normalization scheme implies that a country’s loading should be interpreted as being relative

to the average loading. Hence, increasing business cycle integration for all countries in the sample

should come about through bigger global shocks rather than through an overall increase in the

sensitivity to these shocks.

A similar weak identification issue may arise when separating the constituent components of

the log-variance hit of domestic shocks in Equation (8). Although, the country-specific random

walk processes hc
it are assumed to be uncorrelated across cross-sections, this is not imposed when

filtering these sequences using the Kalman filtering approach. Hence, there is some scope for hc
it

to pick up common volatility trends that should be captured by ϕh
ith

f
t . For this reason, we restrict

the cross-sectional average of hc
it to 0 in each period:

h
c

t =
1

N

N∑
i=1

hc
it = 0, ∀ t = 1, ..., T. (14)

This restriction is consistent with our assumption that all co-movement in countries’ log-variances

should stem from the common component ϕh
ith

f
t while the remaining idiosyncratic volatilities hc

it

should no longer include a common factor.
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Note that our normalizations imply that hf
t will correspond to the panel average log-volatility

in each period and hence resembles the Common Correlated Effects (CCE) approach of Pesaran

(2006) to estimate panel data models with a common factor structure in the errors. To see this,

take cross-sectional averages of hit in Equation (8) and solve for the common factor hf
t to obtain

hf
t =

1

ϕ
h

t

(
ht − h

c

t

)
, (15)

with ht being the cross-sectional average of hit. Plugging this expression for hf
t back in Equation

(8), we obtain

hit =
ϕh
it

ϕ
h

t

(
ht − h

c

t

)
+ hc

it = ϕh∗
it ht + hc∗

it , (16)

where ϕh∗
it = ϕh

it/ϕ
h

t and hc∗
it = hc

it−ϕh
it/ϕ

h

t h
c

t . It is easily verified that the cross-sectional averages

of ϕh∗
it and hc∗

it are 1 and 0, respectively, for each t. This is exactly the normalization we impose

in Equations (13) and (14).

2.3 Bayesian estimation and stochastic model specification search

The time-varying dynamic panel model outlined above corresponds to a state space model with

the observation equation given by merging Equations (1)-(2) and (7)-(8) and the state Equations

(3)-(6) and (9)-(12) describing the laws of motion for the unobserved random walk components.

We estimate this model using Bayesian Markov Chain Monte Carlo (MCMC) methods. A detailed

description can be found in the appendix.

The main aim of this paper is to determine the time-varying sources of output volatility. While

previous research has already dealt with this question, most work relies on structural break tests

(e.g. McConnell and Perez-Quiros, 2000), ad hoc split-sample regressions (e.g. Stock and Watson,

2005) or imposing time variation on various model components (Del Negro and Otrok, 2008).

Instead of merely assuming time variation from the outset, we will test for which model components

the time variation is actually relevant and fall back to a more parsimonious specification when

appropriate. More specifically, we will use the Bayesian stochastic model specification search

proposed by Fruehwirth-Schnatter and Wagner (2010), as outlined in the next paragraphs.

Non-centered parametrization

The first step is to rewrite the model’s time-varying components into a non-centered parametriza-

tion. The random walk specification of, for instance, the autoregressive parameters βit in (4) can

be reparameterized as

βj
it = βj

i0 + σβj β̃j
it, (17)

with β̃j
it = β̃j

i,t−1 + ηβ̃
j

it , β̃j
i0 = 0, ηβ̃

j

it ∼ N (0, 1), (18)
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for j = 1, . . . , p and where σβj β̃j
it is the time-varying part of βj

it and βj
i0 the initial value if βj

it

varies over time (σβj > 0) while being its constant value if there is no time variation (σβj =

0). The other random walk components αit, γit, ϕ
ε
it, ϕ

h
it, gt, h

f
t and hc

it in the model can be

rewritten in a similar way, with αi0, βi0, γi0, ϕ
ε
i0, ϕ

h
i0, g0, h

f
0 , h

c
i0 referring to the initial values

and σ = (σα, σβ , σγ , σϕε , σϕh , σg, σhf , σhc) to the vector of standard deviations. For future use

let λ0 = (α0, β0, γ0), ϕ0 = (ϕε
0, ϕ

h
0 ) and ζ0 = (g0, h

f
0 , h

c
0) be the initial values stacked over cross-

sections. Similarly, define the time-varying parts as λ̃ = (α̃, β̃, γ̃), ϕ̃ = (ϕ̃ε, ϕ̃h) and ζ̃ = (g̃, h̃f , h̃c).

The non-centered parameterization offers several features that will prove useful for model

selection. First, it is not identified as the signs of σβj and β̃j
it can be changed while leaving their

product unchanged. As a result, the likelihood function is symmetric around zero along the σβj

dimension. When βj
it varies over time (i.e. σ2

βj > 0) the likelihood function is bimodal with modes

−
√
σ2
βj and

√
σ2
βj . When βj

it is constant (i.e. σ
2
βj = 0) the likelihood function is unimodal around

zero. Hence, non-identification of the sign of σβj offers an intuitive view on whether βj
it varies

over time.

Parsimonious specification

The non-centered parameterization is very useful for formal model selection as, in contrast to

the original component βj
it, the transformed process β̃j

it does not degenerate to a time-invariant

parameter when σβj = 0 as the constant part is now represented by βj
i0. This allows us to

reformulate the question whether βj
it is time-varying as a more standard variable selection problem.

To this end, Fruehwirth-Schnatter and Wagner (2010) define the parsimonious specification as

βj
it = βj

i0 + δβjσβj β̃j
it, (19)

where δβj is a binary indicator that is either 0 or 1. If δβj = 0, β̃j
it is excluded from the model

and σβj is set to zero. If δβj = 1, β̃j
it is included and σβj is estimated.

Defining similar binary indicators for the other time-varying components and collecting all

of them in the vector M = (δα, δβ , δγ , δϕε , δϕh , δg, δhf , δhc), with δβ = (δβ1 , . . . , δβp) and δγ =

(δγ1 , . . . , δγq ), the specification of the model is described by a combination of the elements in M.

Gaussian prior centered at zero

Our Bayesian estimation procedure requires choosing prior distributions for the time-invariant

parts of the parameters in λ0, ϕ0, and ζ0, for the innovation variances in σ2 and for the probabilities

of the binary indicators in M being 1. It is well known that when using the standard inverse

Gamma prior distribution for the variances in σ2, the choice of the shape and scale that define

this distribution has a strong influence on the posterior, especially when the true value of the

variance is close to zero. More specifically, as the inverse Gamma distribution does not have

probability mass at zero, using it as a prior distribution tends to push the posterior density away

from zero. This is particularly problematic as we want to decide whether the model’s parameters

are time-varying, i.e. whether their innovation variances are zero or not. Due to the fact that in

the non-centered parameterization, as outlined above, the standard deviations σ of the innovations

7



to the random walk processes enter as regression parameters, we can replace the commonly used

inverse Gamma prior for σ2 by a Gaussian prior centered at zero for σ.

We therefore use a Gaussian prior distribution for all parameters. First, we choose an unin-

formative prior N ∼ (0, 1) for the time-invariant part of the parameters λ0 and of the stochastic

volatilities ζ0 while using N ∼ (1, 1) for the time-invariant part of the factor loadings ϕ0. The

latter is consistent with our chosen normalization scheme, introduced in Section 2.2, that imposes

the cross-sectional average of the factor loadings to be 1. Second, the prior distributions for the

standard deviations σ to the various random walk components are centered around zero with the

variance chosen such that the prior distribution has support over the range of relevant parameter

values, given the scale of the data and the fact that most of the time-varying parameters capture

slow long-run developments. The exact prior choices for σ are provided in the left part of Table 1.

Finally, for each of the binary indicators in M we choose a Bernoulli prior distribution where each

indicator has a prior probability p0 = 0.5 of being 1. Robustness of the results will be checked

with respect to the prior choices.

3 Estimation results

In this section we present our main estimation results. Following Stock and Watson (2005), all

reported results are obtained setting p = 4 and q = 1 in Equation (1). Experimenting with

alternative lag structures shows that the results are robust with respect to this choice. After

discussing the data used, we start off with the stochastic model specification search to test for

time variation in the various model components. Next, we present the results for the chosen

parsimonious specification. We end with a number of robustness tests.

3.1 Data

We estimate the model outlined in Section 2 using quarterly data for 16 advanced economies

over the period 1961:Q1 - 2015:Q4. The included countries are: Australia, Austria, Belgium,

Canada, Finland, France, Germany, Italy, Japan, Netherlands, Portugal, Spain, Sweden, Switzer-

land, United Kingdom and United States.1 As our focus is on economic fluctuations over the

business cycle horizon, we follow Stock and Watson (2005) and filter out high frequency (quarter-

to-quarter) fluctuations by measuring economic growth ∆yit as the year-on-year growth rate of

real GDP. Real GDP is taken from the OECD Quarterly National Accounts database. Trade-

weighted growth rates, which serve as the spillover measure in Equation (1), are calculated as

∆y∗it =
∑N

j=1,j ̸=i w
j
it∆yit ∀ i = 1, ..., N, t = 1, ..., T , where wj

it = (EXj
it + IXj

it)/(EXit + IMit)

is the share of country j in total gross trade of country i at time t. Gross trade is taken from

the OECD Quarterly International Trade database. Section 3.5 reports robustness checks with

respect to the country sample, using quarter-on-quarter growth rates, as well as estimating the

model with annual instead of quarterly data.

1Quarterly growth data are also available for Ireland and Norway over the sample period. However, we excluded
these countries as the construction of quarterly from annual data by the OECD induced significant interpolation
issues for these two countries. We further discuss the sensitivity of our results with respect to the construction of
quarterly data in Section 3.5.
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3.2 Results stochastic model specification search

We start by estimating an unrestricted model with all binary indicators inM set to one to generate

posterior distributions for the standard deviations σ of the innovations to the 11 non-centered

components of interest. As the sign of these standard deviations is not identified, a bimodal

posterior distribution is a first indication of time variation. Posterior densities are plotted in

Figure 1, while Table 1 reports the median and percentiles of the absolute value of the standard

deviations.

Figure 1: Posterior densities of the standard deviations σ (all binary indicators set to 1)
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σg

−0.20 −0.10 0.00 0.10 0.20

σhf

−0.30 −0.20 −0.10 0.00 0.10 0.20 0.30

σhc

Prior Posterior

A number of interesting features stands out. First, the standard deviations of the innovations

to each of the three stochastic volatility components gt, h
f
t , and hc

it all have a clear-cut bimodal

posterior density with no probability mass at zero. This suggests that changes in the size of both

common and domestic shocks have played an important role in the evolution of aggregate output

growth volatility over the last five decades. The variance of global shocks git is subject to the

largest innovations, with a posterior median absolute standard deviation of around 0.5. But also

the variance of domestic shocks hit varies over time, induced by time variation in both the common

volatility factor hf
t and the purely country-specific component hc

it.
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Table 1: Summary information for the prior and posterior distributions of the standard deviations σ

Prior variance Posterior

Parameter V0 median 5% 95%

Std. of long-run growth σα 0.52 0.133 0.089 0.183

Std. of AR(1) coefficient σβ1 0.12 0.009 0.004 0.016

Std. of AR(2) coefficient σβ2 0.12 0.004 0.000 0.012

Std. of AR(3) coefficient σβ3 0.12 0.003 0.000 0.008

Std. of AR(4) coefficient σβ4 0.12 0.002 0.000 0.006

Std. of spillover sensitivity σγ 0.12 0.009 0.002 0.016

Std. of loadings common growth shocks σϕε 0.12 0.013 0.002 0.029

Std. of loadings common volatility factor σϕh 0.12 0.017 0.002 0.047

Std. of SV common growth shocks σg 1.02 0.534 0.392 0.705

Std. of common volatility factor σhf 1.02 0.103 0.077 0.144

Std. of idiosyncratic volatility σhc 1.02 0.155 0.128 0.182

Notes: The prior distribution is N (0, V0). The posterior distribution is for the absolute value of the standard

deviations.

Second, there appears to be some time variation in the persistence of output growth. The pos-

terior distribution of the standard deviation of innovations to β1
it shows clear bimodality, although

there is still probability mass left at zero and the absolute posterior median of 0.01 is rather small.

For β2
it, β

3
it and β4

it there is no sign of time variation. Third, there is also some evidence that the

sensitivity to spillovers γit varies over time. The posterior density of σγ is bimodal but also has

considerable probability mass at zero. Fourth, accounting for a time-varying mean growth rate αit

proves to be necessary as there is clear bimodality in the posterior distribution of σα. Finally, we

do not find convincing evidence for changes in countries’ sensitivity to common growth shocks and

to the common volatility factor. The posterior density of σϕε is bimodal but also has significant

probability mass at zero while that of σϕh is clearly unimodal.

Inspecting the posterior density of the innovation standard deviations only provides a first idea

on the presence of time variation. As a more formal test, we next sample the stochastic binary

indicators in M together with the other parameters in the model. Table 2 reports the posterior

probabilities for the binary indicators being one. These probabilities are calculated as the fraction

of draws in which the stochastic model specification search prefers a model which allows for time

variation in the corresponding parameter. To check the robustness over alternative prior variances

for the innovation standard deviations σ, we multiply V0 as reported in Table 1 by a scaling factor

v0. Hence, the middle row (where v0 = 1) corresponds to our baseline scenario, while the first two

rows (where v0 < 1) and the last two rows (where v0 > 1) imply more and less informative priors,

respectively. Rows 3 and 5 further check the robustness with respect to alternative values for the

prior inclusion probability p0.

Overall, the results in Table 2 confirm our earlier conclusions. Under the baseline prior scenario

(p0 = 0.5; v0 = 1) we find strong evidence of time variation in the stochastic volatility components,

the intercept and to a slightly lesser extent in the AR(1) coefficient.
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Table 2: Posterior inclusion probabilities for the binary indicators M over different prior variances for σ
and different prior inclusion probabilities p0

Priors Posterior inclusion probabilities

Intercept AR coefficients Spillovers Loadings Stochastic volatilities

p0 v0 δα δβ1 δβ3 δβ3 δβ4 δγ δϕε δϕh δg δhf δhc

0.5 0.1 1.00 0.84 0.15 0.11 0.08 0.51 0.61 0.41 1.00 1.00 1.00

0.5 0.5 1.00 0.80 0.10 0.05 0.04 0.32 0.42 0.28 1.00 1.00 1.00

0.1 1 1.00 0.21 0.01 0.00 0.00 0.08 0.07 0.03 1.00 1.00 1.00

0.5 1 1.00 0.81 0.11 0.04 0.03 0.28 0.33 0.23 1.00 1.00 1.00

0.9 1 1.00 0.93 0.43 0.28 0.22 0.75 0.78 0.72 1.00 1.00 1.00

0.5 2 1.00 0.69 0.07 0.04 0.02 0.25 0.29 0.21 1.00 1.00 1.00

0.5 10 1.00 0.46 0.03 0.01 0.01 0.16 0.16 0.09 1.00 1.00 1.00

Notes: The prior distribution for each of the elements in σ is N (0, v0V0) with V0 the variance in the baseline

scenario as reported in Table 1. p0 is the prior inclusion probability of the binary indicators. The posterior

inclusion probabilities are calculated as the average selection frequencies over all iterations of the MCMC.

Moreover, the inclusion probabilities for the stochastic volatility components and the intercept

are completely unaffected by the prior choice. For the AR(1) parameter, the inclusion probability

only falls below 50% when using a very loose prior for the innovation standard deviation (v0 = 10)

or a low prior inclusion probability (p0 = 0.1). For the other components there is much less

evidence in favor of time variation. Only for the spillover parameter and the factor loadings, the

posterior inclusion probabilities exceed 50% when using a very informative prior for the innovation

standard deviation (v0 = 0.1)2 or a high prior inclusion probability (p0 = 0.9).

The main conclusions of our tests for time variation are roughly in line with previous find-

ings and discussions in the literature. First, Antolin-Diaz et al. (2017) have recently shown that

long-run growth in the U.S. is characterized by a slowly but persistently decreasing pattern. A

similar result can be found in Berger et al. (2016a). Second, the discussion whether persistence

as measured by the AR coefficients has changed over time is more controversial. Using rolling

regression approaches and different break tests for U.S. data, Blanchard and Simon (2001) and

Stock and Watson (2003) do not find evidence for changes in the dynamics of output growth.

In contrast, Gaĺı and Gambetti (2009) document changes in the conditional and unconditional

moments of several components of output in the U.S. Third, also the evidence concerning con-

vergence to a common business cycle is mixed. Kose et al. (2008) find evidence for convergence

among industrialized countries while Doyle and Faust (2002) conclude that this has not been the

case. Finally, we more formally confirm the observation by Del Negro and Otrok (2008) that there

has been co-movement in the volatility of country-specific shocks.

2The increase in the posterior probabilities when using a smaller (and vise versa higher) prior variance for σ may
appear counter intuitive, but results from the fact that in this case more weight is given to less extreme (and hence
more likely) values of σ when calculating the marginal likelihood of the model with time variation. Moreover, by
allowing for less time variation the competing models become more similar in their marginal likelihoods causing a
tendency for the posterior inclusion probability to shrink towards the prior p0 = 0.5.
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3.3 Parameter estimates and unobserved components

In this section we present the posterior distributions of constant parameters and time-varying

components in the parsimonious specification. To get further insights into the role played by the

various model components, a variance decomposition of the evolution of total volatility will be

presented in Section 4.

Based on the results of the model selection presented in the previous section, our parsimonious

specification allows for time variation in the different variance components, the intercept and the

AR(1) coefficient. The other parameters are fixed to be invariant over time. We have experimented

with models allowing for time variation in the spillover parameters γit and the factor loadings ϕε
it,

for which some evidence of time variation existed, but we found no clear trends in these parameters.

Moreover, the behaviour of the other components was largely unaffected by these changes.

Figure 2: Common growth shocks and their volatility
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(a) Common shocks
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(b) Volatility of common shocks

Note: HDI is the 90% highest density interval. The gray bars indicate National Bureau of Economic Research

(NBER) recessions.

Common shocks and spillovers

Figure 2 plots the posterior means and 90% highest density intervals (HDI) of the common shocks

εft along with their time-varying volatility. Several periods characterized by large common shocks

correspond to well-known events. We clearly identify the oil crises of 1973/1974 and 1979/1980,

the worldwide recession of the early 1990s and the recent Great Recession of 2007 - 2009. The

timing of most U.S. recessions, which are indicated by the gray bars in Figure 2, coincides with

the occurrence of large negative global economic shocks. The only exceptions are the relatively

mild recession in 1969/1970, the early 1980s recession due to the Federal Reserve’s contractionary

monetary policy, as well as the recession in the early 2000s associated with the burst of the dot-

com bubble and the September 11th attacks, which are all U.S. recessions that do not show up as

global shocks.
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In line with the stochastic model specification search in Section 3.2, Figure 2(b) shows consid-

erable variation in the volatility of common growth shocks over time. Periods with larger common

shocks are followed by more tranquil times and vice versa. There is however no sign of a decreas-

ing trend. This shows that a reduction in the size of common shocks is not the major driver of

the observed decrease in volatility across advanced economies. This is in line with the different

timing in the volatility decline across countries. Also note that the Great Recession shows up as

a temporary increase in the volatility of common shocks and hence does not mark the end of the

Great Moderation according to our results. The stochastic model specification search also showed

that country-specific sensitivities to the common shocks did not change over the sample period.

The left hand side of Table 3 therefore presents the time-invariant factor loadings ϕε
i0.

Table 3: Posterior distributions of factor loadings and spillover sensitivities

Growth: Loadings and Spillovers Volatility: Loadings

ϕε
i0 Percentiles γi0 Percentiles ϕh

i0 Percentiles

median 5% 95% median 5% 95% median 5% 95%

Australia 0.37 0.11 0.61 0.11 0.03 0.20 1.10 0.39 1.83

Austria 1.16 0.95 1.38 0.44 0.32 0.57 0.70 -0.03 1.49

Belgium 0.97 0.79 1.15 0.37 0.28 0.47 0.72 -0.03 1.40

Canada 0.75 0.56 0.93 0.24 0.14 0.33 0.57 -0.16 1.30

Finland 1.38 1.03 1.72 0.34 0.17 0.51 1.03 0.25 1.77

France 1.00 0.86 1.13 0.29 0.19 0.39 1.05 0.29 1.76

Germany 1.50 1.27 1.75 0.27 0.12 0.43 1.38 0.70 2.07

Italy 1.06 0.85 1.26 0.40 0.27 0.54 1.38 0.70 2.11

Japan 1.02 0.68 1.35 0.12 0.02 0.24 1.26 0.53 1.97

Netherlands 1.19 0.98 1.43 0.42 0.28 0.56 0.70 0.01 1.45

Portugal 0.93 0.67 1.18 0.18 0.06 0.30 1.14 0.43 1.92

Spain 0.72 0.56 0.87 0.15 0.06 0.24 1.67 0.95 2.38

Sweden 1.39 1.11 1.68 0.36 0.20 0.52 1.09 0.45 1.81

Switzerland 1.01 0.81 1.21 0.23 0.13 0.34 0.85 0.11 1.63

U.K. 0.90 0.68 1.11 0.07 -0.04 0.18 1.02 0.21 1.81

U.S. 0.67 0.48 0.86 0.04 -0.06 0.14 0.32 -0.35 1.00

Most countries exhibit very similar sensitivity to common shocks, i.e. the posterior median is

close to one for the majority of countries in our sample. Australia constitutes a clear exception.

Its median factor loading of 0.37 signals a partial decoupling of the international business cycle.

Also Canada, Spain and the U.S. seem to be somewhat less sensitive to global shocks. Other

countries like Finland, Germany, and Sweden seem to be particularly sensitive as indicated by a

median factor loading clearly exceeding one.

Next, we turn to evaluating the role of spillovers. The middle part of Table 3 presents summary

results for the posterior distributions of γi0, which is the country-specific sensitivity to lagged

trade-weighted average growth rates ∆y∗i,t−1. The stochastic model specification search showed
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these sensitivities to be constant over time. Nevertheless, there are significant differences across

countries. On the one hand, some European countries appear to be particularly sensitive to growth

spillovers transmitted via the trade channel. Those include small open economies such as Austria,

Belgium, Finland, Netherlands and Sweden but also Italy. On the other hand, we find the more

closed economies Australia, Japan, the U.K. and the U.S. to be much less affected by spillovers.

The left hand side of Table 4 reports average pairwise correlation coefficients of the original

output growth rates ∆yit and the model’s residuals ε̂cit, respectively. As expected, output growth

is positively correlated with an average pairwise correlation coefficient of around 0.5. For the

residuals this crumbles to -0.02. This shows that common shocks and spillovers are sufficient to

capture most of the cross-country correlation in output growth rates.

Table 4: Cross-sectional correlation in output growth and its volatility

Growth Volatility

∆yit ε̂cit ∆Var(∆yit) ∆e(ϕ
h
i0h

f
t +hc

it) ∆eh
c
it

Avg. corr. 0.53 -0.02 0.74 0.43 -0.04

5th perc. 0.34 -0.19 0.44 0.09 -0.28

95th perc. 0.74 0.14 0.94 0.75 0.24

Notes: Reported are the average along with the 5th and 95th percentiles of the country-by-

country cross-correlations. The total variance series Var(∆yit) is calculated from our model

estimates using a simulation-based approach. Details can be found in Section 4. As the

estimated stochastic volatilities are non-stationary by construction, we report correlations

for first-differenced series to avoid spurious correlations.

Domestic shocks: common and idiosyncratic volatility

The right hand side of Table 4 provides a first view on the correlation structure of output volatility

across our 16 advanced economies. First, with a correlation of 0.74, co-movement in output

volatility is clearly present. Second, the correlation coefficient of 0.43 for changes in the volatilities

of domestic shocks suggests that there is an important role for commonality in the size of country-

specific shocks for the overall correlation structure in output volatility. Third, the last column in

Table 4 confirms that there is no significant correlation left in the idiosyncratic volatilities hc
it.

We will now take a closer look at the evolution and composition of the volatility of domestic

shocks. The model specification search indicated that the country-specific loadings ϕh
it on the

common volatility factor hf
t do not exhibit time variation, while both the common volatility

factor itself and the remaining idiosyncratic volatility hc
it were found to vary over time. Figure

3 plots the posterior mean and HDI of the common volatility factor. The variances of domestic

growth shocks clearly share a common downward trend. This implies that the observed widespread

decline in output volatility is induced by a common drop in the size of domestic rather than global

shocks or spillovers. Although already suggested by the results in Del Negro and Otrok (2008),

this paper is the first to actually model and quantify such a common volatility factor.
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Figure 3: Common factor in the variance of domestic shocks
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Next to a clear downward trend, common volatility also shoots up around the time that major

global shocks occur. This suggests that the turmoil caused by a large global shock is further

amplified through a global increase in country-specific macroeconomic uncertainty. Results for

the loadings ϕh
i0 on the common volatility factor hf

t are presented in Table 3. Next to exhibiting

no significant time variation, as indicated by the results from Section 2.3, they are also rather

similar across countries, i.e. the posterior distributions include 1 in nearly all countries. Note

however that the loadings are not very precisely estimated, as indicated by the relatively wide 5%

and 95% posterior percentiles reported in Table 3. The U.S. is the only country for which the

factor loadings ϕh
i0 are significantly smaller than 1 with a posterior median of around 0.3.

Figure 4 presents a decomposition of the evolution in the total volatility of domestic shocks

into the contribution of the common factor and the idiosyncratic component for each of the

16 considered countries. The relative importance of these two components clearly varies over

countries. First, and most striking is the fact that the sharp drop in volatility in the U.S. seems

to be purely country-specific in the sense that its particular pronounced pattern is fully captured

by the idiosyncratic volatility component. Second, idiosyncratic volatility has remained much

more stable in countries like Australia, Finland, Italy or Sweden. Hence, in these countries the

observed drop in the volatility of domestic shocks is almost exclusively accounted for by the

common volatility factor.
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Figure 4: Decomposition of (log-)volatility of domestic shocks into common and idiosyncratic part
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Third, in other countries like Germany, Japan and Portugal an increase in the idiosyncratic

component has counteracted the decrease in the common component, rendering the total drop in

volatility less pronounced. In Germany for instance, idiosyncratic volatility increased towards the

reunion in 1990. In Japan, the idiosyncratic component increased steadily since the beginning of

the 1990s, a period of low growth and stagnation commonly called ‘the lost decades’.

Propagation of shocks

To get an idea about the time-varying persistence in output growth, Figure 5 plots the sum of

the AR coefficients. Based on the results of the stochastic model specification search, only β1
it

varies over time while β2
it, β

3
it and β4

it are fixed to be constant. Despite some moderate changes,

the persistence is relatively stable in most countries, showing that changes in the propagation

mechanism in Equation (1) are not the main source of the Great Moderation.
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Figure 5: Sum of AR coefficients
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3.4 Discussion

Although we do not explicitly link the evolution in the various time-varying components, parame-

ters and sensitivities to underlying macroeconomic and other fundamentals, our results neverthe-

less provide some insights into the relevance of competing explanations for the common drop in

volatility.

Absence of large common shocks: ‘good luck’

At least the ‘good luck’ hypothesis does not seem to be fully reconcilable with our findings. While

Figure 2 reveals that the 1980s and the late 1990s/early 2000s are characterized by relatively

small common shocks, suggesting that a less hostile international environment and hence ‘good

luck’ has temporarily contributed to lower volatility in all countries, we identify the permanent
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common drop in the volatility of domestic shocks plotted in Figure 3 as the main driver of the

Great Moderation. It is hard to argue that ‘good luck’ is driving the volatility of domestic shocks

to a permanently lower level in all countries at the same time.

Advances in fiscal and monetary regimes: ‘good policy’

A common and gradual adoption of ‘best practices’ in fiscal and monetary policy methods provide

much more likely explanations. With respect to fiscal policy, output volatility may be reduced as

a result of governments committing to fiscal rules rather than using discretionary interventions

(Fatas and Mihov, 2003). However, while all countries in our sample have implemented various

types of fiscal rules at certain points in time during our sample period (see Bova et al., 2015, for

an overview), in most cases these became only active during the 1990s or even later, which is long

after the global drop in output volatility has set in. Pertaining to monetary policy, a common

moderating effect may stem from a general movement towards a more systematic response to

shocks ultimately increasing credibility of monetary policy (Clarida et al., 2000). Note that the

U.S., with the aggressive disinflation policy under Federal Reserve Chairman Paul Volcker in the

early 1980s, adopting this ‘new’ monetary policy earlier, or more abrupt, compared to most of

the other countries in our sample may explain why it has a much lower loading on the common

volatility factor. This global component may then simply reflect the delayed, or more gradual,

adoption of U.S. monetary policy by the other countries in our sample. The fact that the factor

loading for Canada is also relatively low may be explained by the fact that the Bank of Canada

followed the U.S. lead on raising interest rates more swiftly in an attempt to resist downward

pressure on the exchange rate. Note that as the majority of countries in our sample are members

of the EMU or euro area, the common factor may to some extent also be due to the gradual

movement towards a common European monetary policy, eventually resulting in the installment

of the ECB in 1998 and the introduction of the euro in 1999. However, this does not explain the

high factor loadings of countries like Australia and Japan.

Improved inventory management

Structural improvements at the firm level related to better management of inventories have been

discussed as a likely explanation for the Great Moderation from the beginning (Blanchard and

Simon, 2001; Kahn et al., 2002). These allow firms in all countries to better smooth the impact of

shocks, and may thus also be driving our common volatility factor. However, this cannot explain

the low factor loadings in the U.S. and Canada. One could further argue that improved inventory

management, as well as the policy changes discussed above, are developments that should be

reflected in the propagation of shocks rather than their size. Our results indicate that smaller

shocks were much more important than changes in the way the economy responds to these shocks.

However, as pointed out by Bean (2009) “shocks are not measured directly, only their consequences

are”. Sims (2012) draws the analogy with the use of fire extinguishers in response to a kitchen fire.

If these are used quickly and effectively, the fire can easily be suppressed. The observed damage

would, however, be very different if the extinguishers had not been used. Although the shock that

caused the fire is the same in both cases, the observed consequences are very different. In this
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view, structural changes and good policy that reduce the economy’s vulnerability to shocks may

very well show up as smaller shocks in the data.

Shifts in the sectoral composition

Most advanced economies have displayed significant changes in their sectoral composition over

our sample period, moving away from agriculture and manufacturing towards services. As the

latter sector is known to be less volatile than the former two, an increase in the share of services

is expected to dampen aggregate volatility. The empirical results in Moro (2012) and Burren and

Neusser (2013) indeed suggest that the shift to services accounts for up to 30% of the decline in

U.S. volatility, while Carvalho and Gabaix (2013) argue that the low-frequency decline in U.S.

volatility observed from 1960 to 1990 can be accounted for almost entirely by the downfall of a

handful of heavy-manufacturing sectors. This explanation is supported by our empirical findings

to the extent that the start of our estimated common drop in the volatility of country-specific

shocks around 1970 coincides with the start of the de-industrialization in most OECD economies.

However, the magnitude of some of the factor loadings is not fully in line with what one would

expect from the literature. The more rapid de-industrialization in countries such as the U.K. and

the U.S. compared to Germany and Japan (as documented by e.g. Nickell et al., 2008) is not

reflected in higher factor loadings on the common volatility factor for the former two countries.

This suggests that also other explanations are driving our results. Evaluating the contribution of

sectoral shifts to the Great Moderation is ideally done by extending and applying our model to

sectoral data. We leave this for future research.

3.5 Robustness checks

In this section, we briefly discuss the outcome of a number of robustness tests. Full results are

available from the authors on request.

Dropping countries with questionable quality of quarterly data

We start with discussing the robustness of our results with respect to data quality. It should

be noted that some caution is needed when using longer series of quarterly real GDP. As early

GDP data is only available on an annual basis for the majority of countries, the OECD uses

interpolation methods to construct quarterly data. Depending on the length of the interpolated

period and the complexity of the applied method, this results in artificial volatility patterns for

some countries. Although the country-specific error terms εcit in Equation (2) and volatility terms

hc
it in Equation (8) should be able to capture most of these artificial fluctuations, they may still

distort the results of our empirical model. This is especially the case for the relative importance of

common and domestic movements in volatility. While interpolation methods are used over periods

of different length at the beginning of the sample for all countries except Australia, the U.K. and

the U.S., the data looks most suspicious for Belgium and Portugal. Hence, we re-estimate our

model dropping these countries from the sample. While the main results are qualitatively not

affected, the correlation in the volatility across countries as well as the persistence of growth
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rates as measured by the AR coefficients appear to be somewhat sensitive to the cross-sectional

dimension of the sample. This is not surprising as excluding countries that, due to interpolation,

have less volatile growth rates in the beginning of the sample leads to a strengthening of the cross-

country correlation structure. In addition, breaks in the series when the interpolation period ends

may affect the AR coefficients implying less evidence of changes in the propagation mechanism

when the affected countries are excluded.

Annual data

As an additional robustness check we also use annual data. This greatly improves the quality of

the data but also reduces the sample size significantly. Despite the resulting higher estimation

uncertainty, Figure 6 demonstrates that the general patterns in the volatility of global shocks and

in the common volatility factor still show up. Again no clear trend is visible in the volatility of

common shocks, while the volatility of domestic shocks shows a clear common downward trend.

For the sake of brevity we do not present results of the tests for time variation. However, for the

two factors plotted in Figure 6 time variation was found to be relevant whereas this was not the

case for the other model components.

Figure 6: Robustness of volatility estimates to annual data
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Quarter-on-quarter growth rates

We also test the robustness of our results with respect to the way growth rates are calculated.

While we use year-on-year rates in our baseline estimation, other papers rely on annualized quarter-

on-quarter rates (e.g. Del Negro and Otrok, 2008; Berger et al., 2016b). Overall, results and

interpretation remain qualitatively unchanged but we find that the high frequency noise present

in quarter-on-quarter data tends to blur the correlation structure in the growth rates, i.e. the role
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of common shocks and spillovers is found to be smaller. As a result, the correlation structure in

the volatility of domestic shocks is even stronger in this case.

Alternative lag structure

Regarding the lag structure of the model we test a number of different specifications. Our baseline

version with four lags of own GDP and one lag of foreign countries GDP follows Stock and Watson

(2005). Generally, including less own lags or more lags of foreign GDP does not change the results

significantly.

Heterogeneous standard deviations of innovations

Although the random walk components αit, βit, γit, ϕ
ε
it, ϕ

h
it and hc

it are fully heterogeneous, for

efficiency reasons our baseline model assumes that the corresponding innovation variances σ2
α, σ

2
β ,

σ2
γ , σ

2
ϕε , σ2

ϕh and σ2
hc are homogeneous across countries.

Table 5: Posterior inclusion probabilities for the heterogeneous binary indicators in M

Intercept AR coefficients Spillovers Loadings SV

δiα δiβ1 δiβ2 δiβ3 δiβ4 δiγ δiϕε δiϕh δihc

Australia 0.67 0.43 0.18 0.32 0.28 0.78 0.37 0.50 0.90

Austria 0.84 0.14 0.45 0.36 0.44 0.29 0.33 0.59 0.89

Belgium 0.56 0.90 0.38 0.22 0.10 0.15 0.58 0.52 0.97

Canada 0.45 0.08 0.08 0.10 0.10 0.11 0.27 0.50 0.91

Finland 0.73 0.31 0.30 0.15 0.10 0.25 0.61 0.51 0.77

France 0.32 0.33 0.15 0.17 0.15 0.50 0.45 0.64 0.80

Germany 0.30 0.12 0.14 0.11 0.15 0.20 0.39 0.51 0.36

Italy 0.99 0.21 0.20 0.19 0.12 0.30 0.47 0.48 0.88

Japan 1.00 0.14 1.00 0.25 0.12 0.73 0.59 0.47 0.18

Netherlands 0.97 0.15 0.11 0.13 0.21 0.13 0.83 0.47 0.97

Portugal 0.99 0.56 0.26 0.46 0.18 0.37 0.43 0.48 0.96

Spain 1.00 0.16 0.11 0.12 0.11 0.22 0.36 0.45 0.98

Sweden 0.59 0.18 0.14 0.12 0.26 0.47 0.36 0.47 0.74

Switzerland 0.82 0.45 0.23 0.16 0.17 0.23 0.35 0.45 0.95

U.K. 0.12 0.06 0.07 0.08 0.08 0.06 0.48 0.48 0.94

U.S. 0.34 0.12 0.07 0.07 0.08 0.09 0.23 0.43 0.96

Notes: The prior distribution for each of the elements in σi is N (0, V0) with V0 the variance in the baseline

scenario as reported in Table 1. The prior inclusion probability p0 of the binary indicators equals the baseline

value of 0.5. The posterior inclusion probabilities are calculated as the average selection frequencies over all

iterations of the MCMC.

This further implies that the stochastic model specification search outlined in Section 2.3 tests

for panel-wide time variation in the parameters rather than in each country separately, i.e. the

binary indicators δα, δβ , δγ , δϕε , δϕh and δhc are fixed to be the same for all countries in the

21



panel. As this homogeneity assumption may be violated in practice, we have re-estimated the

model allowing the innovation variances and binary indicators to differ across countries. The

results are found to be robust to this heterogeneous specification. First, the evidence for time

variation in the common components gt and hf
t is not significantly affected. While the posterior

inclusion probability of the stochastic volatility component gt in the common shocks remains at

1, the probability for the common volatility factor hf
t drops slightly to 0.84.

Second, the posterior inclusion probabilities for the heterogeneous binary indicators reported

in Table 5 still show strong support for time variation in the idiosyncratic volatility component

hc
it and in the long-run mean growth rate αit. Evidence for a changing propagation mechanism

as measured by the AR coefficients βit remains very weak. Moreover, inclusions probabilities for

time-varying sensitivities to spillovers γit and common growth shocks ϕε
it remain below 0.5 in most

countries. While the posterior indicator mean for the loadings on the common volatility factor

ϕh
it has been around 0.2 in the homogeneous case, most countries now show values of around 0.5.

This signals a relatively limited amount of information in the data with respect to possible time

variation in these loadings such that the posterior inclusion probabilities tend towards the prior

probability of 0.5.

The role of changing trade patterns

As we use time-varying trade weights, our spillover measure ∆y∗it in Equation (1) may be partly

driven by changing trade patterns. However, when inspecting the evolution of trade weights, for

most countries there is no clear trend visible. Only some country pairs show increasing/decreasing

trade shares, e.g. the share of the U.K. in total gross trade of Australia decreased from around

40% to 6% over the sample period while over the same period Japan’s share in total trade of

Australia increased from 15% to 42%. Moreover, the trade weights do not exhibit significant

structural breaks at the time of the ‘Great Trade Collapse’ in late 2008, indicating that this was a

synchronized drop in trade across countries. Nevertheless, we check the robustness of our results

by re-estimating the model using fixed trade weights (at both their mean values as well as the first

values in the sample). None of the results were significantly affected, though.

4 Variance decomposition

In this section we use a variance decomposition to illustrate the relative importance of the various

model components for explaining the overall evolution in output growth volatility. The variance

decomposition approach most commonly used in the dynamic factor model literature (see e.g. Kose

et al., 2003; Del Negro and Otrok, 2008) is based on what is generally known as model-implied

variance. This means that for each point in time t, each country i, and each iteration of the

MCMC the model estimates are used to calculate implied (long-run equilibrium) variances. Since

common and idiosyncratic components are independent by assumption, total variance is additive

and the variance shares of interest can be straightforwardly calculated. However, through the

inclusion of lagged foreign GDP growth in Equation (1), the spillover channel in our empirical

specification, implies that the different model components are not mutually independent anymore.
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This requires a slight adjustment of the procedure, as outlined below.

4.1 A simulation-based approach

To calculate the contribution of common shocks, spillovers and domestic shocks to the overall

variance of output growth, first rewrite the model in Equations (1)-(2) as follows:

∆yit −∆y0it = ∆y1it +∆y2it +∆y3it, (20)

with ∆y0it =

p∑
j=1

βj
it∆y0i,t−j + αit, (21)

∆y1it =

p∑
j=1

βj
it∆y1i,t−j +

q∑
k=1

γk
it∆y∗i,t−k, (22)

∆y2it =

p∑
j=1

βj
it∆y2i,t−j + ϕε

itε
f
t , (23)

∆y3it =

p∑
j=1

βj
it∆y3i,t−j + εcit. (24)

Conditional on the model estimates we can use Equations (21)-(24) to calculate ∆y0it and

generate samples for ∆y1it, ∆y2it and ∆y3it by (i) drawing εft and εcit from their distributions in

Equation (7) and (ii) calculating the spillover terms ∆y∗i,t−k using lagged simulated growth rates.3

Doing this in each draw of the MCMC, we obtain J − B simulated samples of ∆yit and its

constituent components ∆y0it, ∆y1it, ∆y2it and ∆y3it.

Next, for each component, each country and each point in time we compute the sample variance

over the J−B draws. Note that by construction, our spillover component ∆y1it is not independent

of the common and domestic shock components ∆y2it and ∆y3it. This is because both a global

shock ft−1 and a domestic shock εci,t−1 will still be present in the components ∆y2it and ∆y3it but

at the same time feed into the spillover component ∆y1it through their impact on trade-weighted

growth ∆y∗i,t−1. Although the resulting covariance terms Cov(∆y1it,∆y2it) and Cov(∆y1it,∆y3it) are

small, we assign them to the spillover component to make sure that the components’ variances

sum up to the total variance. Note that the covariance between the common and domestic shock

components is zero by assumption. Hence, our variance decomposition is given by

V ar(∆yit −∆y0it)︸ ︷︷ ︸
Total

=V ar(∆y1it) + 2Cov(∆y1it,∆y2it) + 2Cov(∆y1it,∆y3it)︸ ︷︷ ︸
Spillovers

+ V ar(∆y2it)︸ ︷︷ ︸
Common shocks

+ V ar(∆y3it)︸ ︷︷ ︸
Country-specific shocks

. (25)

Our simulation-based approach offers several advantages. First, it allows to separate the con-

tribution of spillovers from that of global and domestic shocks. Second, the dynamics of the model

are fully taken into account. This is not the case when calculating model-implied variances as these

3Each of the components is initialized at zero with a burn-in period of 10 quarters. The parameter values used over
the burn-in period are set equal to their mean values over the first 5 years of the sample.
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are typically long-run equilibrium measures ignoring short-run dynamics. Third, by simulating

the model in every draw of the MCMC, parameter uncertainty is explicitly taken into account.

4.2 Simulated model-based versus rolling window volatility

To assess the adequacy of our model and simulation approach, Figure 7 plots the simulated

total variance of GDP growth along with the commonly used 10-year centered rolling window

variance. With a decreasing trend in all countries, starting either at the beginning of the sample

or somewhere in the 1970s or 1980s, the Great Moderation clearly shows up in the two alternative

volatility measures.

Figure 7: Simulated model-based versus rolling window variance
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However, our model-based approach seems to be much more accurate in timing the changes.

Although the centered rolling window measure is able to pick up the timing of the long-run decline

in volatility in most countries, by partly relying on future realized volatility more sudden events
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like the Great Recession are predated by a number of years. Using an entirely backward-looking

window as an alternative will tend to postdate most events. Also note that the rolling window

variance remains high(er) at the end of the sample for most countries and hence is not yet able to

show that the Great Recession induced only a temporary volatility increase.

4.3 Results variance decomposition

Figure 8 decomposes total volatility into the contributions of global shocks, spillovers and domestic

shocks.

Figure 8: Simulation-based variance decomposition
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The plots reveal large differences across countries and time with respect to the importance of

these three components. First, driven by considerable cross-sectional variation in the sensitivi-

ties reported in Table 3, the contribution of common shocks and spillovers differs widely across

countries. Output volatility in small open economies like Austria and Belgium is almost entirely
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driven by these international components, leaving only a minor role for domestic shocks. Figure 8

reveals that in these countries the decline in total volatility mainly spills over from the less volatile

output growth of their trading partners. To a lesser extent, a similar pattern emerges in Canada

and even in larger economies like France, Germany and Italy. At the other end of the spectrum,

output volatility in Australia is almost entirely driven by domestic shocks.

Table 6: Average variance shares of the different components over two subsamples (in %)

Global shocks Spillovers Domestic shocks

1962-1983 1984-2015 1962-1983 1984-2015 1962-1983 1984-2015

Australia 1.39 4.70 4.87 11.48 93.75 83.82

Austria 9.93 15.41 44.37 57.10 45.70 27.49

Belgium 15.82 20.47 60.13 45.20 24.06 34.33

Canada 8.40 12.35 35.98 43.28 55.62 44.37

Finland 8.94 13.50 28.54 39.23 62.52 47.27

France 14.55 24.95 40.53 58.60 44.91 16.45

Germany 20.13 25.77 32.37 35.77 47.50 38.46

Italy 9.56 17.85 35.68 53.60 54.76 28.55

Japan 12.65 11.81 16.87 10.21 70.47 77.98

Netherlands 7.23 15.94 27.59 56.51 65.17 27.56

Portugal 10.42 13.53 25.06 22.75 64.52 63.71

Spain 10.77 15.85 29.77 41.67 59.47 42.48

Sweden 11.74 19.10 26.43 36.53 61.83 44.37

Switzerland 9.67 19.31 27.51 44.09 62.82 36.60

U.K. 9.99 22.71 10.89 17.75 79.11 59.53

U.S. 9.55 17.40 15.12 14.05 75.32 68.55

Also in Japan, Spain, Switzerland, the U.K. and the U.S. international shocks are relatively

less important compared to the other countries in the sample. Second, for most countries, a decline

in the volatility of domestic shocks is an important source of the overall volatility decline. This

is most prominently the case for Australia, Finland, France, Germany, Italy, Netherlands, Spain,

Sweden, Switzerland, the U.K. and the U.S. Third, because of the decline in the volatility of

domestic shocks in most countries, international shocks and spillovers contribute more to overall

output volatility towards the end of the sample. This can also be observed from Table 6 where we

report the average variance shares for the 1962 - 1983 and 1984 - 2015 subsamples.

5 Concluding remarks

This paper has investigated the sources of output volatility within a time-varying factor-augmented

dynamic panel model with stochastic volatility for a panel of 16 OECD countries over the period

1961:Q1 - 2015:Q4. Our empirical specification allows output growth in a particular country to

be driven by global shocks, spillovers and domestic shocks. Changes in the volatility of output
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growth can stem from a time-varying sensitivity to each of these shocks, changes in the propagation

mechanism or shifts in the variances of shocks. As a novel model component we allow for a common

factor in the volatility of domestic shocks. We start with a Bayesian stochastic model specification

search to determine for which of the model’s components the time variation is actually relevant.

The results clearly indicate that both the volatility of global and domestic shocks vary over time.

There is some evidence of time variation in the propagation mechanism, while the sensitivities to

spillovers and global shocks are found to be constant. Next, we estimate the parsimonious model

specification, restricting parameters for which no relevant time variation was found to be constant

over the sample period. The results show that although the volatility of global shocks varies over

time it does not exhibit a clear downward trend. It mainly reflects periods of worldwide turmoil,

temporarily shooting up around the oil crises of the 1970s, the worldwide recession of the early

1990s and the recent Great Recession. Hence, the latter does not mark the end of the Great

Moderation. As individual countries’ sensitivities to the common shocks and spillovers have also

remained stable over the sample period, changes in the volatility of the international business

cycle component is not what is driving the Great Moderation. In contrast, the volatilities of

domestic shocks show a clear common downward trend. We identify this as the main driver of the

widespread reduction in volatility.

The focus of this paper has been a decomposition of output and in particular its volatility into

domestic versus international components. Obviously, a better understanding of the underlying

drivers of output volatility further requires linking these components to macroeconomic and other

fundamentals. While our paper does not elaborate on that, it is an essential first step towards a

better understanding of output volatility as it signals that there is an important common factor in

the volatility of domestic shocks. When this unobserved common volatility factor is correlated with

the alleged country-specific determinants, ignoring it will lead to inconsistent estimates. Future

research on output volatility and its determinants will therefore have to account for cross-sectional

dependence in the variance equation.
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Appendix A General outline of the Gibbs sampler

Our MCMC scheme to jointly sample the binary indicators M = (δα, δβ , δγ , δϕε , δϕh , δg, δhf , δhc),

the time-invariant parameters P = (λ0, ϕ0, ζ0, σ) and the time-varying unobserved state variables

S = (λ̃, ϕ̃, ζ̃, εf ) is as follows:

1. Sample the binary indicators in M together with the constant parameters P conditional on

the time-varying states S. Restricted elements in σ, i.e. for which the corresponding binary

indicator in M is zero, are set to zero.

2. Sample the time-varying states S conditional on the binary indicators M and the time-

invariant parameters P. States in S which are not selected by the stochastic specification

search, i.e. for which the corresponding binary indicator in M is zero, are sampled from

their prior random walk distribution.

3. Perform a random sign switch for S and the corresponding standard deviations in σ. This

sign switch is suggested by Fruehwirth-Schnatter and Wagner (2010) to amplify the sign

indeterminacy of σ and, hence, its potential bimodality.

Starting from an arbitrary set of initial values, sampling from these blocks is iterated J times and

after a sufficiently long burn-in period B, the sequence of draws (B + 1, . . . , J) can be taken as a

sample from the joint posterior distribution of interest f(M,P,S|x). The results reported in the

paper are based on 50,000 iterations with 10,000 draws being discarded as burn-in.

Appendix B Detailed Gibbs sampling algorithm

In this section we provide details on the MCMC building blocks.

Block 1: Sampling the binary indicators in M and the parameters in P

For notational convenience, let us define a general regression model

w = zMbM + e, e ∼ N (0,Σ), (A-1)

where w is a NT × 1 vector including observations on a dependent variable wit stacked over

time and cross-sections and z an unrestricted predictor matrix. The corresponding unrestricted

parameter vector is denoted b. zM and bM are then the restricted predictor matrix and the

restricted parameter vector that exclude those elements in z and b for which the corresponding

indicator in M is 0. Furthermore, Σ is a diagonal matrix with elements σ2
it that may vary over

both cross-sections and time to allow for heteroskedasticity of a known form.

As in Fruehwirth-Schnatter and Wagner (2010) we first marginalize over the parameters in

b when sampling M and next draw b conditional on the sampled indicators M. The posterior

distribution of M can be obtained using Bayes’ rule as

f(M|S, w) ∝ f(w|M,S)p(M), (A-2)
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with p(M) being the prior probability of M and f(w|M,S) being the marginal likelihood of the

regression model (A-1) where the effect of the parameters bM has been integrated out. Under the

normal conjugate prior bM ∼ N(aM0 , AM
0 ), the closed form solution for the marginal likelihood

f(w|M,S) is

f(w|M,S) ∝ |Σ|−0.5|AM
T |0.5

|AM
0 |0.5

exp

(
−1

2
(w′Σ−1w + (aM0 )′(AM

0 )
−1

aM0

−(aMT )′(AM
T )

−1
aMT )

)
, (A-3)

with

aMT = AM
T

(
(zM)′Σ−1w + (AM

0 )
−1

aM0

)
, (A-4)

AM
T =

(
(zM)′Σ−1zM + (AM

0 )
−1

)−1

. (A-5)

Following George and McCulloch (1993), instead of using a multi-move sampler in which all

elements in M are sampled simultaneously, we use a single-move sampler in which each of the

binary indicators δr (for r = α, β, γ, ϕε, ϕh, g, hf , hc) in M is sampled from f(δr|M/δr ,S, w).
Given these general definitions, Block 1 of the MCMC algorithm splits up as follows:

Block 1(a): Sampling the binary indicators δα, δβ, δγ and parameters λ0, σα, σβ, σγ

In this block we first sample the binary indicators δα, δβ and δγ , marginalizing over the parameters

for which variable selection is performed while conditioning on the time-varying states in S. Using

the parsimonious non-centered specification introduced in Equation (19), the model in (1) can be

written in the linear regression format (A-1), whereas an observation at point t, wt, is defined as

∆yt − ϕε
tε

f
t︸ ︷︷ ︸

wt

=
[
IN diag(∆yt−1) diag(∆y∗t−1) δαα̃t δβ β̃t∆yt−1 δγ γ̃t∆y∗t−1

]
︸ ︷︷ ︸

zM
t



α0

β0

γ0

σα

σβ

σγ


︸ ︷︷ ︸
bM

+εct ,

where IN denotes the identity matrix with dimension N and the restricted vectors zMt and bM

exclude those elements for which the corresponding binary indicator is zero. For the sake of

notational convenience we include only one lag of ∆yit and ∆y∗it, i.e. we set p = q = 1, but the

algorithm can be straightforwardly extended to allow for higher order dynamics. Using Equations

(7) and (8), the covariance matrix Σ is constructed as a diagonal matrix with elements ehit . The

marginal likelihood f(w|δα, δβ , δγ ,S) can then be calculated as in Equation (A-3) such that using

the posterior distribution of M defined in Equation (A-2) the binary indicators δα, δβ and δγ can
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be sampled one at a time from the Bernoulli distribution with probability

p(δr = 1|δ/r,S, w) =
f(δr = 1|δ/r,S, w)

f(δr = 0|δ/r,S, w) + f(δr = 1|δ/r,S, w)
,

for r = α, β, γ.

The time-invariant parameters λ0 = (α0, β0, γ0) and the unrestricted (i.e. for which the corre-

sponding binary indicator is one) standard deviations σα, σβ , σγ can next be sampled from their

posterior distribution N ∼ (aMT , AM
T ) with aMT and AM

T given by (A-4) and (A-5). The restricted

(i.e. for which the corresponding binary indicator is zero) standard deviations are set to zero.

Block 1(b): Sampling the binary indicator δϕε and parameters ϕε
0 and σϕε

Using the parsimonious non-centered specification for ϕε
it, Equations (1)-(2) can be written in the

general linear regression format (A-1) as

∆yt − αt − βt ⊙∆yt−1 − γt ⊙∆y∗t−1︸ ︷︷ ︸
wt

=
[
εft IN δϕεεft ϕ̃

ε
t

]
︸ ︷︷ ︸

zM
t

[
ϕε
0

σϕε

]
︸ ︷︷ ︸

bM

+εct ,

where ⊙ is the element-wise (Hadamard) product of two vectors. Using Equations (7) and (8), the

covariance matrix Σ is again a diagonal matrix with elements ehit . As in Block 1(a), the binary

indicator δϕε is first sampled from the Bernoulli distribution and next the time-invariant parame-

ters ϕε
0 and the unrestricted standard deviation σϕε are sampled from their posterior distribution.

When δϕε = 0, we set σϕε = 0 .

Block 1(c): Sampling the binary indicator δg and the parameter σg

Conditional on εft , the stochastic volatility component gt enters the model in a non-linear way:

εft = egt/2ε̃ft , ε̃ft ∼ N (0, 1).

Following Kim et al. (1998) this expression can be linearized by taking the natural-log of the

squares

ln((εft )
2 + c) = gt + ϵ̃ft , (A-6)

where c = 0.001 is an offset constant and ϵ̃ft = ln(ε̃ft )
2. The latter follows a log-chi-square

distribution that can be approximated by a mixture of M normal distributions as follows

f(ϵ̃ft ) =

M∑
j=1

qjfN (ϵ̃ft |mj − 1.2704, v2j ),
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where qj is the component probability of a specific normal distribution with mean mj − 1.2704

and variance v2j . This mixture can equivalently by expressed as

ϵ̃ft |(ι
g
t = j) ∼ N (mj − 1.2704, v2j ), with Pr(ιgt = j) = qj .

with ιgt a mixture indicator that can be sampled from

p(ιgt = j|gt, ϵ̃ft ) ∝ qjfN (ϵ̃ft |gt +mj − 1.2704, v2j ),

with the values for qj , mj , and v2j for M = 10 taken from Table 1 in Omori et al. (2007).

Using a non-centered parsimonious specification for gt, Equation (A-6) can be written in the

general regression format (A-1) as

(
ln

(
(εft )

2 + 0.001
)
− (mιgt

− 1.2704)
)

︸ ︷︷ ︸
wt

=
[
1 δg g̃t

]
︸ ︷︷ ︸

zM

[
g0

σg

]
︸ ︷︷ ︸
bM

+ϵ̃ft ,

with the covariance matrix Σ of ϵ̃f a diagonal matrix with elements v2
ιgt
. Similar to the approach

in Block 1(a), this representation can now be used to first draw the binary indicator δg from a

Bernoulli distribution and next sample the time-invariant parameter g0 and the (unrestricted)

shock standard deviation σg from their posterior distribution. When δg = 0, we set σg = 0.

Block 1(d): Sampling the binary indicators δϕh , δhc and parameters ϕh
0 , h

c
0, σϕh , σhc

Similar to the approach in Block 1(c) we start by linearizing the error term εcit with respect to the

stochastic volatility component hit

ln((εcit)
2 + c) = hit + ϵ̃cit = ϕh

ith
f
t + hc

it + ϵ̃cit, (A-7)

where εcit = ∆yit−αit−βityi,t−1−γity
∗
i,t−1−ϕε

itε
f
t and ϵ̃cit again follows a log-chi-square distribution

that can be approximated using a mixture of normals with mixture indicators ιhit sampled as

outlined in Block 1(c). Using a non-centered parsimonious specification for both ϕh
it and hc

it,

Equation (A-7) can be written in the general regression format (A-1) as

(
ln

(
(εct)

2 + 0.001
)
− (mιht

− 1.2704)
)

︸ ︷︷ ︸
wt

=
[
hf
t IN IN δϕh ϕ̃h

t h
f
t δhc h̃c

t

]
︸ ︷︷ ︸

zM
t


ϕh
0

hc
0

σϕh

σhc


︸ ︷︷ ︸

bM

+ϵ̃ct ,

with the covariance matrix Σ of ϵ̃c being a diagonal matrix with elements v2
ιhit
. Using this equation,

the binary indicators δϕh and δhc are first drawn from a Bernoulli distribution as described above

and the time-invariant parameters ϕh
0 and hc

0 as well as the (unrestricted) standard deviations σϕh

and σhc are sampled from their posterior distribution. Restricted standard deviations are again
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set to zero.

Block 1(e): Sampling the binary indicator δhf and parameters hf
0 , σhf

Now using a non-centered parsimonious specification for hf
t , Equation (A-7) can be written in the

general regression format (A-1) as

(
ln

(
(εct)

2 + 0.001
)
− (mιht

− 1.2704)− hc
t

)
︸ ︷︷ ︸

wt

=
[
ϕh
t δhfϕh

t h̃
f
t

]
︸ ︷︷ ︸

zM
t

[
hf
0

σhf

]
︸ ︷︷ ︸

bM

+ϵ̃ct .

The binary indicator δhf is drawn from a Bernoulli distribution as described above whereas the

time-invariant parameter hf
0 and the (unrestricted) standard deviation σhf are sampled from their

posterior distribution. When δhf = 0, we set σhf = 0.

Block 2: Sampling the time-varying states S

In this block we use the forward-filtering and backward-sampling approach of Carter and Kohn

(1994) to sample the time-varying states in S. To this end, we first specify a general state space

model of the following form as given in Durbin and Koopman (2012)

wt = Ztκt + et, et ∼ N (0,Ht), (A-8)

κt+1 = Ttκt +Rtηt, ηt ∼ N (0, Qt), (A-9)

where wt is an N×1 vector of observations (stacked over cross-sections) and κt an unobserved state

vector. The matrices Zt, Tt, Ht, Qt are assumed to be known (conditioned upon). The error terms

et and ηt are assumed to be serially uncorrelated and independent of each other at all points in

time. As Equations (A-8) and (A-9) constitute a linear Gaussian state space model, the unknown

state variables κt can be filtered using the standard Kalman filter. Sampling κ = [κ1, ..., κT ] can

then be done using the algorithm outlined in Carter and Kohn (1994). Given this general state

space model, Block 2 splits up as follows:
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Block 2(a): Sampling the time-varying states α̃, β̃, γ̃ and the common shocks εf

The time varying parameters α̃it, β̃it, γ̃it and the standardized common shocks ε̃ft can be sampled

from the general state space model in Equations (A-8)-(A-9) upon defining

(∆yt − α0 − β0 ⊙∆yt−1 − γ0 ⊙∆y∗
t−1)︸ ︷︷ ︸

wt

=
[
σαIN σβdiag(yt−1) σγdiag(y

∗
t−1) ϕε

te
gt/2

]
︸ ︷︷ ︸

Zt


α̃t

β̃t

γ̃t

ε̃ft


︸ ︷︷ ︸

κt

+ εct︸︷︷︸
et

,


α̃t+1

β̃t+1

γ̃t+1

ε̃ft+1


︸ ︷︷ ︸

κt+1

=


IN 0 0 0

0 IN 0 0

0 0 IN 0

0 0 0 0


︸ ︷︷ ︸

Tt


α̃t

β̃t

γ̃t

ε̃ft


︸ ︷︷ ︸

κt

+


IN 0 0 0

0 IN 0 0

0 0 IN 0

0 0 0 1


︸ ︷︷ ︸

Rt


ηα̃
t

ηβ̃
t

ηγ̃
t

ηε̃f

t


︸ ︷︷ ︸

ηt

,

with Ht = INe(ϕ
h
t h

f
t +hc

t) and Qt = I3N+1.

Conditional on the time-invariant parameters in P, the centered time-varying parameters α, β

and γ can then be reconstructed using Equations (17)-(18). Conditional on gt the common shocks

εft can be calculated as εft = egt/2ε̃ft .

Block 2(b): Sampling the state g̃

Using the non-centered version of Equation (A-6), the time-varying state g̃t can be sampled from

the state space model(
ln

(
(εft )

2 + 0.001
)
− (mιgt

− 1.2704)
)
− g0︸ ︷︷ ︸

wt

=
[
σg

]
︸︷︷︸
Zt

[
g̃t

]
︸︷︷︸
κt

+ ϵ̃ct︸︷︷︸
et

,

g̃t+1︸︷︷︸
κt+1

=
[
1
]

︸︷︷︸
Tt

[
g̃t

]
︸︷︷︸
κt

+
[
1
]

︸︷︷︸
Rt

[
ηg̃t

]
︸︷︷︸
ηt

,

with Ht = v2
ιgt

and Qt = 1.

Block 2(c): Sampling the states ϕ̃h and h̃c

Using a non-centered version of Equation (A-7), the time-varying states ϕ̃h
it and h̃c

it can be sampled

from the state space model

(
ln((εct)

2 + 0.001)− (mιht
− 1.2704)− ϕh

0h
f
t − hc

0

)
︸ ︷︷ ︸

wt

=
[
σϕhhf

t IN σhcIN

]
︸ ︷︷ ︸

Zt

[
ϕ̃h
t

h̃c
t

]
︸ ︷︷ ︸

κt

+ ϵ̃ct︸︷︷︸
et

,

[
ϕ̃h
t+1

h̃c
t+1

]
︸ ︷︷ ︸

κt+1

=

[
IN 0

0 IN

]
︸ ︷︷ ︸

Tt

[
ϕ̃h
t

h̃c
t

]
︸ ︷︷ ︸

κt

+

[
IN 0

0 IN

]
︸ ︷︷ ︸

Rt

[
ηϕ̃

h

t

ηh̃
c

t

]
︸ ︷︷ ︸

ηt

,

36



with Ht = v2
ιht

and Qt = I2N .

In order to implement the normalizations on ϕh
it and hc

it as described in Subsection 2.2, we

follow the approach outlined in Doran (1992), i.e. augment the Kalman filter such that the

estimates satisfy chosen restrictions. For sake of brevity, the description above only outlines the

general estimation procedure but does not elaborate on the normalizations.

Block 2(d): Sampling the state h̃f

Again using a non-centered version of Equation (A-7), the time-varying state h̃f can be sampled

from the following state space model(
ln((εct)

2 + 0.001)− (mιht
− 1.2704)− hc

t − ϕh
t h

f
0

)
︸ ︷︷ ︸

wt

=
[
ϕh
t σhf

]
︸ ︷︷ ︸

Zt

[
h̃f
t

]
︸︷︷︸
κt

+ ϵ̃ct︸︷︷︸
et

,

[
h̃f
t+1

]
︸ ︷︷ ︸
κt+1

=
[
1
]

︸︷︷︸
Tt

[
h̃f
t

]
︸︷︷︸
κt

+
[
1
]

︸︷︷︸
Rt

[
ηh̃

f

t

]
︸ ︷︷ ︸

ηt

,

with Ht = v2
ιht

and Qt = 1.

Block 2(e): Sampling the state ϕ̃ε

The linear state space model used in this block to sample the time-varying states ϕ̃ε takes the

following form

(∆yt − αt − βt ⊙∆yt−1 − γ ⊙∆y∗t−1 − ϕε
0ε

f
t )︸ ︷︷ ︸

wt

=
[
σϕεεft IN

]
︸ ︷︷ ︸

Zt

[
ϕ̃ε
t

]
︸︷︷︸
κt

+ εct︸︷︷︸
et

,

[
ϕ̃ε
t+1

]
︸ ︷︷ ︸
κt+1

=
[
IN

]
︸ ︷︷ ︸
Tt

[
ϕ̃ε
t

]
︸︷︷︸
κt

+
[
IN

]
︸ ︷︷ ︸
Rt

[
ηϕ̃

ε

t

]
︸ ︷︷ ︸

ηt

,

with Ht = INe(ϕ
h
t h

f
t +hc

t) and Qt = IN . In order to implement the normalization on ϕε
it as described

in Subsection 2.2, we again use the approach of Doran (1992).

Block 3: Random sign switch for the standard deviations in σ

Perform a random sign switch for each of the standard deviations in σ and the corresponding

states in S, e.g. with probability 0.5 the signs of both the respective standard deviation and the

state are changed while remaining unchanged with the same probability.

37




