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Abstract

This paper investigates the degree of time variation in the excess sensitivity of aggregate con-

sumption growth to anticipated aggregate disposable income growth using quarterly US data over

the period 1953-2014. Our empirical framework contains the possibility of stickiness in aggregate

consumption growth and takes into account measurement error and time aggregation. Our empirical

specification is cast into a Bayesian state space model and estimated using Markov Chain Monte Carlo

(MCMC) methods. We use a Bayesian model selection approach to deal with the non-regular test for

the null hypothesis of no time variation in the excess sensitivity parameter. Anticipated disposable

income growth is calculated by incorporating an instrumental variables estimation approach into our

MCMC algorithm. Our results suggest that the excess sensitivity parameter in the US is stable at

around 0.24 over the entire sample period.
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1 Introduction

Traditional permanent income and life cycle models of consumption predict that (log) real aggregate

private consumption follows a random walk (see Hall, 1978). Empirical studies however have revealed that

aggregate consumption growth is excessively sensitive to anticipated disposable income growth (see e.g.,

Campbell and Mankiw, 1989, 1990, 1991). The most common interpretations given to this observation

are the occurrence of liquidity constraints (see e.g., Flavin, 1985; Deaton, 1991; Ludvigson, 1999) and

the prevalence of precautionary and bu↵er stock savings motives (see e.g., Carroll, 1992; Ludvigson and

Michaelides, 2001) which increase the weight given by consumers to current income in their consumption

decisions.

In a number of empirical papers, the assumption that the excess sensitivity (ES) parameter is constant

has been relaxed in favor of time-varying specifications (see e.g., Campbell and Mankiw, 1991; McKiernan,

1996; Bacchetta and Gerlach, 1997; Girardin et al., 2000; Peersman and Pozzi, 2007). Some of these

studies have reported that ES has become less important during the last decades in the US (see e.g.,

Bacchetta and Gerlach, 1997) and in other developed economies (see e.g., Girardin et al., 2000; Blundell-

Wignall et al., 1991). This is attributed to financial liberalization and the development of financial

markets. These structural developments are thought to have improved the possibilities of consumers to

smooth consumption over time and across states of the world, i.e., by curbing the importance of credit

constraints and precautionary saving motives in consumer decisions these developments have, over time,

reduced the ES parameter.

Some recent papers, which belong to a di↵erent branch of the ES literature that implicitly assumes

that the ES parameter is constant, argue that the measured degree of ES of aggregate consumption

growth, while still statistically significant, becomes of lower magnitude once other forms of aggregate

consumption predictability are taken into account (see e.g., Basu and Kimball, 2002; Sommer, 2007;

Kiley, 2010; Carroll et al., 2011). Sommer (2007) and Carroll et al. (2011), in particular, show that

the magnitude of the degree of ES measured in quarterly US data is considerably lower in a model

that contains a mechanism - i.e., habit formation, rational inattention or imperfect information - that

generates dependency of aggregate consumption growth to its own past (i.e., ‘stickiness’). Sommer (2007)

further argues that it is necessary to adequately deal with both measurement error and time aggregation

to obtain valid estimates of the ES parameter.

The contribution of this paper to the literature is to link both these strands of research by investigating

the potential time variation of the ES of aggregate consumption growth to anticipated disposable income

growth using an empirical framework that contains the possibility of stickiness in aggregate consumption
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growth and that provides an adequate treatment of measurement error and time aggregation. As Gali

et al. (2007) show that di↵erent sources and degrees of aggregate consumption growth predictability have

di↵erent macroeconomic implications, it is important to correctly measure the potentially time-varying

degree of ES using an appropriate empirical framework. Our empirical framework is applied to US data

over the period 1953�2014. The paper further contributes to the literature by suggesting an appropriate

methodological approach that allows to test whether the time variation in the ES parameter is empirically

relevant and that adequately deals with all the complications that arise when estimating time-varying

ES in our elaborate empirical set-up. More specifically, our methodological approach is centered around

three issues.

First, a key question is whether time variation in the ES parameter, which is modelled as a standard

unobserved random walk process, is statistically relevant. This is a non-regular testing problem as the

null hypothesis that the variance of the innovations to the time-varying ES parameter is zero lies on the

boundary of the parameter space. No previous study that investigates the possible time variation in the

ES parameter has taken this complication into account. We use the Bayesian model selection approach

for state space models recently suggested by Frühwirth-Schnatter and Wagner (2010) to test for time

variation in the ES parameter. Their approach applied to our time-varying parameter case implies

splitting the time-varying parameter in a constant part and in a time-varying part and introducing a

stochastic binary model indicator which is one if the time-varying part is to be included in the model

and zero otherwise. Using Markov Chain Monte Carlo (MCMC) methods (i.e., Gibbs sampling), these

stochastic binary indicators are then sampled jointly with the other model parameters. Moreover, for the

variance of the innovation to the ES parameter, we do not use the standard inverse gamma (IG) prior

that is usually employed for variance parameters in a Bayesian setting. Rather, we use a Gaussian prior

centered at zero for the standard deviation of the innovation to the ES parameter. The reason for this

is that when using an IG prior distribution for the variance parameters, the choice of the shape and the

scale hyperparameters that define this distribution has a strong influence on the posterior distribution

when the true value of the variance is close to zero. More specifically, as the IG distribution does not

have probability mass at zero, using it as a prior distribution tends to push the posterior density away

from zero. This is of particular importance when estimating the variance of the innovations to the time-

varying ES parameter as the purpose of the paper is to decide whether time variation is relevant or

not. An interesting implication of estimating the standard deviation instead of the variance of the the

innovations to the time-varying parameters is that the sign of the standard deviation is not identified.

This o↵ers an extra piece of information as it implies that the posterior distribution becomes bimodal

when there is time variation, while it is unimodal around zero when there is no time variation.
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Second, as anticipated aggregate income growth is not observed, the ES parameter is estimated from

the relation between consumption growth and ex-post observed aggregate disposable income growth using

an instrumental variables (IV) method. Time-varying ES parameter models with endogenous regressors

have been estimated by, among others, Bacchetta and Gerlach (1997) and Peersman and Pozzi (2007)

using approximate methods. In a recent paper, Kim and Kim (2011) show that the control function

approach to IV estimation can be used to construct an exact state space representation which can then

be estimated by maximum likelihood (ML). Building on their paper, we incorporate a control function

type of approach in our MCMC algorithm to deal with endogeneity. The advantage of our Gibbs sampling

approach compared to ML estimation is that it is computationally easier to implement and, as such, does

not su↵er from the numerical optimization problems inherent to ML estimation (see Kim and Kim (2011)).

Moreover, as our Bayesian IV approach relies on sampling the posterior distribution rather than on using

asymptotic approximations, it allows for exact inference even when instruments are weak.

Third, the potential presence of stickiness in aggregate consumption growth, on the one hand, and

time aggregation and measurement error in the log level of consumption, on the other hand, implies that

aggregate consumption growth follows an autoregressive (AR) process with moving average (MA) errors,

i.e., an AR(1) process with MA(3) errors. To obtain valid estimates for the ES parameter, the AR(1)

term in the consumption growth equation and the MA terms in the error term of the consumption growth

equation must be taken into account explicitly. To deal with the MA components in the error term, we

follow Chib and Greenberg (1994) who present exact methods to analyze Bayesian regression models with

MA errors using MCMC sampling.

Our estimation results suggest that the degree of excess sensitivity of aggregate consumption growth

to anticipated disposable income growth for the US is stable and lies around 0.24 over the entire sample

period (1954-2014). This estimated magnitude of the excess sensitivity parameter is in accordance with

recent findings of Sommer (2007) and Carroll et al. (2011) who consider an empirical framework with a

constant ES parameter but with the possibility of stickiness in aggregate consumption growth along with

time aggregation and measurement error. The lack of time variation in the ES parameter however stands

in contrast to the findings reported by some of the previous studies that investigate time-varying ES for

the US (e.g., the study by Bacchetta and Gerlach (1997) who argue that the degree of ES has dropped

gradually over time). The evidence in favor of time variation that is reported in the literature has been

obtained from the estimation of more restricted empirical models however. These typically do not allow

for stickiness in aggregate consumption growth, nor do they allow for time aggregation and measurement

error. Upon estimating more restricted empirical models that are in line with the time-varying ES

frameworks employed in previous studies, we do obtain evidence that is more supportive - albeit hardly
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conclusive - of time variation in ES. Our results therefore imply that the finding of time variation in

the ES parameter may be due to specification errors and may not be the result of genuine structural

economic developments such as financial liberalization. Our findings further confirm that there is notable

stickiness in aggregate consumption growth as we find a coe�cient on lagged consumption growth that

lies around 0.55, a result which is in accordance with the findings reported recently by Sommer (2007),

Kiley (2010) and Carroll et al. (2011).

The remainder of this paper is organized as follows. In section 2 we present the benchmark theoretical

model for aggregate consumption growth to which we add anticipated disposable income growth to

allow for time-varying excess sensitivity. Section 3 outlines our empirical specification and estimation

methodology. Section 4 presents the estimation results for the US over the period 1953-2014. Section 5

concludes.

2 Theoretical framework

In this section we first present a benchmark model for aggregate consumption growth with stickiness

modeled through habit formation in consumer preferences1 and MA(3) errors to capture the e↵ects

of time aggregation and measurement error. This benchmark model is a generalization of the model

presented by Sommer (2007) as it includes a time-varying intercept in aggregate consumption growth

that allows to capture and control for unspecified and/or hard-to-estimate components of aggregate

consumption growth. Following, among others, Bacchetta and Gerlach (1997) and Carroll et al. (2011)

we then add anticipated income growth to the consumption growth equation to allow for time-varying

ES of consumption to income.

2.1 A benchmark theoretical model with habit formation

Suppose a representative permanent income consumer maximizes the following stream of discounted

utilities

maxEt

TX

j=0

⇢

j
U

�
Ct+j ;Xt+j

�
, (1)

subject to a budget constraint, where Et denotes the consumer’s expectation conditional on period t

information, ⇢ is the discount factor, Ct is the level of period t ‘e↵ective’ consumption and Xt is a

variable or a combination of variables that shifts marginal utility at time t.2 ‘E↵ective’ consumption is

1Alternative mechanisms by which stickiness can be incorporated into aggregate consumption growth are rational inat-
tention (see e.g., Reis, 2006; Carroll et al., 2011) and imperfect information (see e.g., Pischke, 1995).

2Examples are hours worked (see e.g., Kiley, 2010) and/or government consumption (see e.g., Evans and Karras, 1998).
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assumed to be equal to

Ct = C

⇤
t � �C

⇤
t�1, (2)

where C

⇤
t is the representative agent’s consumption level in period t such that utility depends on the

level of consumption C

⇤
t relative to last period’s consumption level C⇤

t�1 with the parameter � (where

0  �  1 ) capturing the strength of habits. When � = 0 habits are irrelevant and the consumer derives

utility only from the level of consumption. When � = 1 habits are most important and the consumer

derives utility only from the change in consumption. When 0 < � < 1 the consumer derives utility

both from the level of consumption and from the change in consumption. Hayashi (1985) and Dynan

(2000) show that, provided the real interest rate is constant and T is large, the first-order condition under

time-nonseparable preferences can be written as

Et�1


R⇢

U

0(Ct;Xt)

U

0(Ct�1;Xt�1)

�
= 1, (3)

where R is the real interest factor (which equals 1 plus the real interest rate) and where U

0(Ct;Xt) =

@U(Ct;Xt)

@Ct
.

Assuming that the utility function is of the CRRA type, i.e., U(Ct;Xt) = C
1� 
t

1� Xt with  > 0, so

that U 0(Ct;Xt) = C

� 
t Xt and using this into equation (3) gives

Et�1

"
R⇢

✓
Ct

Ct�1

◆� 
Xt

Xt�1

#
= Et�1 [Zt] = 1, (4)

where Zt ⌘ R⇢

⇣
Ct

Ct�1

⌘� 
Xt

Xt�1
. Assuming that � lnCt and � lnXt are jointly conditionally normally

distributed implies that lnZt = ln(R⇢)�  � lnCt +� lnXt is conditionally Gaussian as well. From the

lognormal property we can therefore write

Et�1 [Zt] = exp


Et�1(lnZt) +

1

2
Vt�1(lnZt)

�
. (5)

We then substitute equation (5) into equation (4) and take logs of the resulting equality to obtain

(after some rearrangements of terms)

Et�1

�
� lnCt

�
=

1

2 
�

2
lnZ,t +

1

 

ln(R⇢) +
1

 

µ� lnX,t, (6)

where �2
lnZ,t ⌘ Vt�1[lnZt] = Vt�1[� lnXt] � 2 covt�1[� lnXt,� lnCt] +  

2
Vt�1[� lnCt] and where
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µ� lnX,t = Et�1 (� lnXt). This can also be written as

� lnCt =
1

2 
�

2
lnZ,t +

1

 

ln(R⇢) +
1

 

µ� lnX,t + ✏t, (7)

where ✏t =
⇥
� lnCt � Et�1

�
� lnCt

�⇤
. Note that the innovation ✏t implicitly reflects the revision in

permanent income of the optimizing permanent income consumer (see e.g., Campbell and Mankiw, 1990).

After collecting the first three terms of equation (7) into a time-varying variable �0t and using the

approximation � lnCt = � ln(C⇤
t � �C

⇤
t�1) ⇡ � lnC⇤

t � �� lnC⇤
t�1 as suggested by Muellbauer (1988)

and Dynan (2000), we obtain

� lnC⇤
t = �0t + �� lnC⇤

t�1 + ✏t, (8)

where �0t =
1
2 �

2
lnZ,t +

1
 ln(R⇢)+ 1

 µ� lnX,t. As such, �0t is a catch-all term that allows to capture and

control for unspecified (i.e., the conditional mean and variance of � lnXt) and/or hard-to-estimate (i.e.,

the conditional variance Vt�1[� lnCt] in �2
lnZ,t) components of aggregate consumption growth.3,4

2.2 Time aggregation and measurement error

Assuming that consumption decisions are made more frequently than the intervals at which consumption

is measured causes time aggregation. Sommer (2007) shows that time aggregation in combination with the

presence of habits induces an MA(2) structure in the error term ✏t of true aggregate consumption growth

� lnC⇤
t , where ‘true’ refers to consumption in the absence of measurement error and other transitory

components. This implies that equation (8) should be written as

� lnC⇤
t = �0t + �� lnC⇤

t�1 + ✓

⇠ (L) ⇠t, (9)

with ⇠t an i.i.d. error term and ✓⇠ (L) = 1+ ✓

⇠
1L+ ✓

⇠
2L

2 an MA(2) lag polynomial with parameters being

complicated functions of �.5

Sommer (2007) further notes that aggregate consumption data measured at the quarterly level are

often plagued by measurement error and other sources of transitory consumption fluctuations. He argues

that measurement error is best modeled as an MA(1) structure in the log-level of consumption. This

implies that measured aggregate consumption growth � lnCt should be modeled as the sum of of true

3Note that in Sommer (2007) the intercept in consumption growth is assumed to be constant, i.e., �0t = �0 (for all t)
as his model includes no preference shifters Xt while he implicitly assumes a constant conditional variance of consumption
growth.

4Note that while the model is derived under a constant interest factor R, the presence of �0t in the model implicitly also
allows to control for a time-varying interest rate in the estimation.

5Note that the proof in Sommer (2007) is based on a model with a constant mean in aggregate consumption growth
whereas we have the time-varying variable �0t in the model. We can however rewrite equation (8) as (� lnC⇤

t � µt) =
�(� lnC⇤

t�1 � µt�1) + ✏t with µt = �0t + �µt�1 so that his proof can equally be applied to our model.
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aggregate consumption growth � lnC⇤
t given by equation (9) and an MA(2) error term

� lnCt = � lnC⇤
t + ✓

⇣ (L) &t, (10)

where &t an i.i.d. error term and ✓⇣ (L) = 1 + ✓

⇣
1L + ✓

⇣
2L

2 an MA(2) lag polynomial. This specification

assumes ”general” measurement error. Note that this specification encompasses the simpler case where

measurement error is assumed to be a white noise error term in the log-level of consumption. In that

case, there is only an MA(1) error term in equation (10) where ✓⇣1 = �1. This is the case of ”classical”

measurement error.

Combining equations (9) and (10) to obtain an expression containing only measured consumption

growth � lnCt gives

� lnCt = �0t + �� lnCt�1 + ✓

⇣ (L) (&t � �&t�1) + ✓

⇠ (L) ⇠t,

= �0t + �� lnCt�1 + ✓ (L) "t, (11)

with "t an i.i.d. error term and ✓ (L) = 1 + ✓1L+ ✓2L
2 + ✓3L

3 an MA(3) lag polynomial.6

2.3 Time-varying excess sensitivity

Empirical studies have demonstrated that aggregate consumption growth is excessively sensitive to an-

ticipated disposable income growth (see e.g., Campbell and Mankiw, 1989, 1990, 1991). We follow the

standard approach to test for this type of ES by adding anticipated income growth to the consumption

growth model. In line with, among others, Bacchetta and Gerlach (1997) we allow the ES parameter to

vary over time. More specifically, we extend our benchmark in equation (11) to

� lnCt = �0t + �1tEt�1(� lnYt) + �� lnCt�1 + ✓ (L) "t, (12)

where � lnYt is aggregate (total) disposable income growth and �1t is the time-varying ES parameter.7

Note that as the innovation "t implicitly reflects the revision in permanent income of the optimizing

permanent income consumer of sections 2.1 and 2.2, it can be correlated with the variable � lnYt (see

e.g., Campbell and Mankiw, 1990). We explicitly deal with this issue when estimating equation (12) as

discussed below.
6Note that ✓ (L) "t is the sum of the two independent MA processes ✓⇣ (L) (&t � �&t�1) and ✓⇠ (L) ⇠t, the first being of

order order 3 and the second of order 2. Following Hamilton (1994), we can write the sum of two independent MA processes
as an MA process of which the order equals that of the highest order process in the sum.

7This approach di↵ers from the method followed by among others Campbell and Mankiw (1990) and Kiley (2010) who
test for ES by writing down aggregate consumption growth as the sum of or (weighted) average between consumption growth
of optimizing permanent income consumers and consumption growth of current income (‘rule-of-thumb’) consumers.
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We use the model in equation (12) to test for time-varying ES of aggregate consumption growth

with respect to income growth against the benchmark model in equation (11). This deviates from the

past literature in a number of ways. First, ES is usually tested against a framework where aggregate

consumption growth is either white noise (i.e., the standard random walk model) or an MA(1) process if

time aggregation and classical measurement error are taken into account (see e.g., Bacchetta and Gerlach

(1997)). The results of Sommer (2007) and Carroll et al. (2011) show however that allowing for stickiness

(i.e., the dependence of aggregate consumption growth on its own lag) is important when testing for the ES

of consumption to income. In our model this is incorporated by introducing a habit formation mechanism.

Second, as noted by Sommer (2007), allowing for classical measurement error may not be su�cient such

that a more general framework with MA(q) errors is called for. The relevant order q will be determined

empirically. Third, the time-varying variable �0t controls for all potentially omitted variables that may

a↵ect aggregate consumption growth (i.e., marginal utility shifters such as hours worked and government

consumption, the conditional variance of consumption growth which reflects a potential precautionary

savings motive, the interest rate that captures potential inter-temporal substitution e↵ects).

3 Empirical methodology

In this section we outline our empirical specification and econometric methodology to estimate the model

for aggregate consumption growth outlined in section 2.

3.1 Empirical specification

We use equation (12) to test for time-varying ES of aggregate consumption growth with respect to income

growth against the benchmark model in equation (11). The empirical implementation of equation (12)

requires a number of further assumptions. These are outlined below.

Time-varying parameters

The parameters �0t and �1t in equation (12) are allowed to change over time according to a random walk

process

�i,t+1 = �it + ⌘it, ⌘it ⇠ i.i.d.N (0,�2
⌘i), (13)

with i = 0, 1. Random walk processes allow for a very flexible evolution of the parameters �it over time.8

8As a robustness check, we have also estimated the time-varying intercept �0t as an AR(1) process. This alternative
modeling strategy does not a↵ect the conclusions reported in the paper.
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Anticipated income growth and instrumental variables

Anticipated income growth Et�1 (� lnYt) is not observed, but can be estimated by assuming that observed

income growth � lnYt is linearly related to a set of forecasting variables Zt known to the consumer at

time t� 1, so that

� lnYt = Zt� + ⌫t, (14)

where Zt is uncorrelated with "t in equation (12) and where ⌫t an i.i.d. error term that is unpredictable

at time t, i.e., Et�1⌫t = 0. Taking expectations Et�1 of equation (14) gives

Et�1 (� lnYt) = Zt� + Et�1⌫t = Zt�, (15)

and substituting this in equation (12) yields

� lnCt = �0t + �1tZt� + �� lnCt�1 + ✓ (L) "t. (16)

Equation (16) is an instrumental variables (IV) type of regression model with instruments Zt where

� is estimated using the first stage regression model (14). Because, as noted in section 2.3, the shocks

to aggregate income growth and aggregate consumption growth are correlated, equations (14) and (16)

are seemingly-unrelated regression equations with cross-equation parameter restrictions. The correlation

structure in the error terms ⌫t and "t can be expressed as

⌃⌫," =

2

4 �

2
⌫ ⇢�⌫�"

⇢�⌫�" �

2
"

3

5
, (17)

where ⇢ is the correlation between ⌫t and "t. Using a Cholesky factorization of ⌃⌫," we can write

2

4 ⌫t

"t

3

5 =

2

4 �⌫ 0

⇢�" �"

p
1� ⇢

2

3

5

2

4 µ1t

µ2t

3

5
, (18)

where µ1t and µ2t are i.i.d. error terms with unit variance. Replacing "t in equation (16) by

"t =
⇢�"

�⌫
⌫t + �"

p
1� ⇢

2
µ2t, (19)

yields

� lnCt = �0t + �1tZt� + �� lnCt�1 + ⇢⌫

⇤
t + ✓ (L)µt, (20)
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with ⌫⇤t = �"✓ (L) ⌫t /�⌫ and where µt = �"

p
1� ⇢

2
µ2t is an i.i.d. error term that is not correlated with

any other error term in the model. Note that, as a result, we have �2
" = �

2
µ

�
(1� ⇢

2) . Equation (20)

is a control function type of IV regression model similar to the one outlined by Kim and Kim (2011) to

deal with endogeneity in a time-varying parameter model.9 However, instead of using their two-step or

joint maximum likelihood (ML) procedure to estimate the non-linear model implied by equations (14)

and (20), we use the Gibbs sampler as outlined in section 3.3 below. The advantage of our modeling and

sampling approach compared to Kim and Kim (2011)’s two-step ML approach is that when estimating

equation (20) we explicitly take into account that the error terms ⌫t and "t may be correlated and that

� is estimated in a first step, so that Zt
b
� is a generated regressor. The advantage of our modeling and

sampling approach compared to Kim and Kim (2011)’s joint ML approach is that it is computationally

easier to implement. As such, it does not su↵er from the numerical optimization problems inherent to

the joint ML estimation that are reported by Kim and Kim (2011). Moreover, as our Bayesian approach

relies on sampling the posterior distribution rather than using asymptotic approximations, it allows for

exact inference even when the instruments Zt are weak.

3.2 Stochastic model specification search

A key question in the above model is whether the ES parameter �1t is time-varying or constant. Although

�1t can be filtered using the Kalman filter and the variance of the innovations �2
⌘1 can be estimated using

ML, testing whether the time variation is relevant implies testing �2
⌘1 = 0 against �2

⌘1 > 0, which is

a non-regular testing problem as the null hypothesis lies on the boundary of the parameter space. In

a recent article, Frühwirth-Schnatter and Wagner (2010) show how to extend Bayesian model selection

for standard regression models with observed variables to unobserved components in state space models.

Their approach relies on a non-centered parameterization of the state space model in which (i) binary

stochastic indicators for each of the model components are sampled together with the parameters and (ii)

the standard inverse gamma (IG) prior for the variances of innovations to the components is replaced by

a Gaussian prior centered at zero for the square root of these variances (i.e., for the standard deviations).

Non-centered parameterization

Frühwirth-Schnatter and Wagner (2010) argue that a first piece of information on the hypothesis whether

the variance of innovations to a state variable is zero or not can be obtained by considering a non-centered

parameterization. This implies rearranging the data generating process for the time-varying parameters

9An apparent di↵erence is that our specification includes anticipated income growth, which is a predetermined regressor
calculated using instrumental variables, while the specification of Kim and Kim (2011) includes an endogenous regressor.
Besides the error term from the first step auxiliary regression, the control function equation in Kim and Kim (2011) therefore
includes the endogenous regressor instead of the term Zt� that we include in our equation (20).
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�it in equation (13) to

�it = �i0 + �⌘i�
⇤
it, (21)

with �

⇤
i,t+1 = �

⇤
it + ⌘

⇤
it, �

⇤
i0 = 0, ⌘

⇤
it ⇠ i.i.d.N (0, 1), (22)

for i = 0, 1 and where �i0 is the initial value of �it when this coe�cient is time-varying (�⌘i > 0)

while being the constant value of �it when there is no time variation (�⌘i = 0). A crucial aspect of

the non-centered parameterization is that it is not identified as the signs of �⌘i and �⇤
it can be changed

by multiplying both with -1 without changing their product in equation (21). As a result of the non-

identification, the likelihood function is symmetric around 0 along the �⌘i dimension. When �it is

time-varying (�2
⌘i > 0), the likelihood function is bimodal with modes ��⌘i and �⌘i . For �2

⌘i = 0, the

likelihood function is unimodal around zero. As such, allowing for non-identification of �⌘i provides useful

information on whether �2
⌘i > 0.

Stochastic model specification

A second advantage of the non-centered parameterization in equation (21) is that when �

2
⌘i = 0 the

transformed component �⇤
it (in contrast to �it) degenerates to zero with the time-invariant parameter

now represented by �i0. As such, the question whether the ES parameter is time-varying or not can be

expressed as a variable selection problem in equation (21). To this end, Frühwirth-Schnatter and Wagner

(2010) introduce the stochastic model specification

�it = �i0 + ◆i�⌘i�
⇤
it, (23)

where ◆i is a binary indicator which is either 0 or 1. If ◆i = 0, the component �⇤
it drops from the model

such that �i0 represents the constant intercept or slope parameter. If ◆i = 1 then �⇤
it is included in the

model and �⌘i is estimated from the data. In this case �i0 is the initial value of �it.

Gaussian priors centered at zero for �⌘i

Our Bayesian estimation approach requires choosing prior distributions for the model parameters. When

using the standard IG prior distribution for the variance parameters, the choice of the shape and scale

hyperparameters that define this distribution has a strong influence on the posterior distribution when

the true value of the variance is close to zero. More specifically, as the IG distribution does not have

probability mass at zero, using it as a prior distribution tends to push the posterior density away from

zero. This is of particular importance when estimating the variances �2
⌘i of the innovations to the time-

12



varying parameters �it as for these components we want to decide whether they are relevant or not.

As �2
⌘i is a regression coe�cient in equation (23), a further important advantage of the non-centered

parameterization is that it allows us to replace the standard IG prior on the variance parameter �2
⌘i by a

Gaussian prior centered at zero on �⌘i . Centering the prior distribution at zero makes sense as, for both

�

2
⌘i = 0 and �2

⌘i > 0, �⌘i is symmetric around zero. Frühwirth-Schnatter and Wagner (2010) show that

the posterior density of �⌘i is much less sensitive to the hyperparameters of the Gaussian distribution and

is not pushed away from zero when �2
⌘i = 0. As such, we choose a Gaussian prior distribution centered

at zero, i.e., N (0, V0), for �⌘0 and �⌘1 where �⌘0 and �⌘1 are the standard deviations of the innovations

to the time-varying parameters.

Other priors

For the variances of the error terms �2
µ and �

2
⌫ , which are always included in the model, we choose

the standard IG prior distribution IG(c0, C0) where c0 denotes the shape and C0 denotes the scale of

the distribution. For each of the model parameters �00, �10, �, ⇢, ✓ and �, we assume a normal prior

distribution N (b0, V0). Details on the chosen hyperparameters (b0, V0) for the prior N distributions and

(c0, C0) for the prior IG distributions are presented in section 4.2 below. For the binary indicators ◆0

and ◆1 we choose a uniform prior distribution where each model component has a p prior probability of

being included in the model, i.e., p(◆0 = 1) = p(◆1 = 1) = p.10

3.3 Gibbs sampler

Using equation (23), the model in equation (20) can be rewritten as

� lnCt = (�00 + ◆0�⌘0�
⇤
0t) + (�10 + ◆1�⌘1�

⇤
1t)Zt� + �� lnCt�1 + ⇢⌫

⇤
t + ✓ (L)µt. (24)

Taken together, equations (14) and (24) can be considered as the observation equations of a state space

(SS) model, with the unobserved states �⇤
0t and �

⇤
1t evolving according to the state equations in (22). In

a standard linear Gaussian SS model, the Kalman filter can be used to filter the unobserved states from

the data and to construct the likelihood function such that the unknown parameters can be estimated

using maximum likelihood. However, the stochastic model specification search outlined in subsection 3.2

implies a non-regular estimation problem for which the standard approach via the Kalman filter and

maximum likelihood is not feasible. Instead, we use the Gibbs sampler which is a Markov Chain Monte

Carlo (MCMC) method to simulate draws from the intractable joint and marginal posterior distributions

10Note that when p = 0.5 (i.e., for our baseline case), each of the four models (i.e., the four combinations of the binary
indicators) has the same prior probability equal to 0.25.
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of the unknown parameters and the unobserved states using only tractable conditional distributions.

Intuitively, this amounts to reducing the complex non-linear model into a sequence of blocks for subsets

of parameters/states that are tractable conditional on the other blocks in the sequence.

For notational convenience, define the time-varying parameter vector �⇤
t = (�⇤

0t,�
⇤
1t), the unknown

parameter vectors �1 =
�
�,�

2
⌫

�
, �2 =

�
�00,�10,�⌘0 ,�⌘1 , �, ⇢,�

2
µ

�
and � = (�1,�2, ✓) and the model

indicator M = (◆0, ◆1).11 Let Dt = (� lnCt,� lnYt, Zt) be the data vector. Stacking observations

over time, we denote D = {Dt}Tt=1 and similarly for �⇤. The posterior density of interest is then

given by f (�,�⇤
,M|D). Building on Frühwirth-Schnatter and Wagner (2010) for the stochastic model

specification part and on Chib and Greenberg (1994) for the moving average (MA) part, our MCMC

scheme is as follows:

1. Sample the first step parameters �1 =
�
�,�

2
⌫

�
from f (�1|D) using the regression model in equation

(14) and calculate Zt� and ⌫t. Then ⌫⇤t can be calculated using ⌫⇤t = �"✓ (L) ⌫t /�⌫ .

2. Sample the MA coe�cients ✓ from f (✓|�1,�2,�⇤
,M, D) conditional on the parameters �2, the

time-varying parameters �⇤, the binary indicators in M and Zt� and ⌫

⇤
t calculated in the first

block.

3. Sample the binary indicators M and the second step parameters �2 using the non-centered param-

eterization in equation (24) conditional on the MA coe�cients ✓, the time-varying parameters �⇤

and Zt� and ⌫⇤t calculated in the first block.

(a) Sample the binary indicators M from f (M|�1, ✓,�⇤
, D) marginalizing over the parameters �2

for which variable selection is carried out.

(b) Sample the unrestricted parameters in �2 from f (�2|�1, ✓,�⇤
,M, D) while setting the re-

stricted parameters �⌘i (for which the corresponding component �⇤
it is not included in the

model M) equal to 0.

4. Sample the unrestricted (i.e. for which ◆i = 1) time varying parameters in �⇤ from f (�⇤|�,M, D)

again using the non-centered parameterization in equation (24) conditional on the second step

parameters �2, the binary indicators M and Zt� and ⌫⇤t calculated in the first block. The restricted

time varying parameters (for which ◆i = 0) in �⇤ are sampled directly from their prior distribution

using equation (22).12

11Note that ✓ = (✓1, ✓2, ...., ✓q).
12Even when ◆i = 0 a sample for �⇤

it is required as this will be used to calculate the marginal likelihood of a model with
a time-varying �⇤

it in block 3(a).
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5. Perform a random sign switch for �⌘i and {�⇤
it}Tt=1, i.e., �⌘i and {�⇤

it}Tt=1 are left unchanged with

probability 0.5 while with the same probability they are replaced by ��⌘i and {��⇤
it}Tt=1.

Given an arbitrary set of starting values, sampling from these blocks is iterated J times and, after a

su�ciently large number of burn-in draws B, the sequence of draws (B + 1, ..., J) approximates a sample

from the virtual posterior distribution f (�,�⇤
,M|D). Details on the exact implementation of each of

the blocks can be found in Appendix A. The results reported below are based on 10000 Gibbs sampler

iterations, with the first 5000 draws discarded as a burn-in sequence.

4 Empirical results

4.1 Data

To estimate the empirical model, quarterly US data are available for all variables used over the period

1953Q1 � 2014Q4. The use of lagged instruments reduces the sample size with 2 observations so that

the e↵ective sample period is 1953Q3 � 2014Q4, i.e., this implies an e↵ective sample size equal to 246

observations.13 Where necessary, data are seasonally adjusted. For Ct, we use real per capita expen-

ditures on nondurables and services (excluding clothing and footwear). For Yt, real per capita personal

disposable income is used. Both variables are put in real terms using the deflator of nondurables and

services (excluding clothing and footwear) with base year 2009 = 100. With respect to the estimation of

anticipated income growth, external instruments are also used. In particular, we include as instruments

lagged changes in the short run interest rate for which we take the three-month nominal T-bill rate,

lagged changes in stock prices which we proxy using the S&P 500 index, lags of the inflation rate where

the inflation rate is calculated as the log change in the CPI index, lags of the level of consumer confidence

for which we take the index of consumer sentiment, and lags of the change in the unemployment rate.

Data for nominal expenditures on nondurables and services (excluding clothing and footwear), for

nominal personal disposable income and for the corresponding deflator are taken from the National

Product and Income Accounts (NIPA). Population data are taken from the OECD Quarterly National

Accounts. For the three-month T-bill rate, data are taken from the Board of Governors. Data for the

S&P 500 index comes from Sommer (2007) and is updated with data from Thomson Reuters Datastream.

Finally, for the CPI index and the unemployment rate, data are taken from the Bureau of Labor Statistics

while for the consumer sentiment index, the University of Michigan index is used.

13Note that for some variables instruments are formed using further lags (i.e., a third and fourth lag). As data for these
variables are typically available well before 1953Q1, these deeper lags do not reduce the e↵ective sample size.
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4.2 Prior choice

With respect to model selection, we mention that for the binary indicators ◆0 and ◆1 we choose a uniform

prior distribution where, in the baseline case, each time-varying model component has a p = 0.5 prior

probability of being included in the model.

Summary information on the prior distributions of the other unknown parameters is reported in Table

1. For the variances �2
µ and �2

⌫ of the error terms in the consumption and income growth equations, we use

an inverse gamma prior distribution IG(c0, C0) where the shape c0 = ⌫0T and scale C0 = c0�
2
0 parameters

are calculated from the prior belief �2
0 and the prior strength ⌫0, which is expressed as a fraction of the

sample size T .14 Our prior belief for �µ is 0.5, implying that 95% of the quarterly consumption growth

shocks lie between -1% and 1%, while our prior belief for �⌫ of 0.75 implies that the 95% of the quarterly

income growth shocks lie between -1.5% and +1.5%. The smaller value for �µ reflects the idea that

income is more volatile than consumption. In both cases, the prior is fairly loose with strength set equal

to 0.1.

For the remaining parameters, Gaussian prior distributions N (b0, V0) are used. First, consider the

time-varying ES parameter, �1t. For �10, the prior is given by �10 ⇠ N (0.4, 0.22) which reflects our belief

that if there is no time variation in �1t (i.e., �⌘1 = 0) then the ES parameter ranges from roughly 0

to 0.8. This encompasses all values found in the literature. Campbell and Mankiw (1990) for example

report values of 0.5 up to 0.7 for the U.S. Controlling for habits, Kiley (2010) and Sommer (2007) find

lower values of about 0.3 and 0.15 respectively. For the standard deviation �⌘1 of the innovations to

the time-varying part in �1t a Gaussian prior centered at zero N (0, 0.22) is chosen. Note that the prior

standard deviation
p
V0 = 0.2 implies a very loose prior as it allows that 95% of the standard deviations

of the quarterly innovations to the ES parameter lie between �0.39 and 0.39.

For the time-varying intercept, �0t, the prior distribution for the time-invariant part is fairly unin-

formative and centered at zero, �00 ⇠ N (0, 1). The prior belief �⌘0 ⇠ N (0, 0.22) about the degree of

time-variation in �0t is also centered at zero with the same prior standard deviation as the innovations

to the ES parameter.

According to Carroll et al. (2011), the strength of habits in aggregate consumption growth for the U.S.

varies between 0.5 and 0.7. These results are confirmed by, amongst others, Fuhrer (2000) and Sommer

(2007) who both find a stickiness parameter around 0.7. Therefore our prior for � is N (0.6, 0.152) such

that the 95% prior interval ranges from roughly 0.3 to 0.9. For the MA parameters ✓, a loose prior

centered at zero is used.15

14Since this prior is conjugate, ⌫0T can be interpreted as the number of fictitious observations used to construct the prior
belief �2

0 .
15For the initial conditions � of the MA process, a Gaussian prior with mean 0 and variance 1 is used (unreported in
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Table 1: Prior distributions of model parameters

Inverse Gamma priors: IG(c0, C0) = IG(⌫0T, ⌫0T�2
0) Percentiles

�0 ⌫0 2.5% 97.5%

error term consumption equation �µ 0.50 0.10 0.42 0.62

error term income equation �⌫ 0.75 0.10 0.63 0.94

Gaussian priors: N (b0, V0) Percentiles

Non-centered components b0
p
V0 2.5% 97.5%

std. of time-varying intercept �⌘0 0.00 0.20 �0.39 0.39

std. of time-varying ES parameter �⌘1 0.00 0.20 �0.39 0.39

Model parameters

constant value intercept �00 0.00 1.00 �1.96 1.96

constant value ES parameter �10 0.40 0.20 0.01 0.79

consumption habits parameter � 0.60 0.15 0.31 0.89

degree of correlation between ⌫t and "t ⇢ 0.00 0.40 �0.78 0.78

MA parameters ✓ 0.00 0.50 �0.98 0.98

parameters first stage income equation � 0.00 0.50 �0.98 0.98

Notes: We set IG priors on the variance parameters �2 but in the top panel of this table we report details
on the implied prior distribution for the standard deviations � as these are easier to interpret. Likewise, in
the bottom panel of the table we report

p
V0 instead of V0.

For the degree of correlation ⇢ between ⌫t and "t, an uninformative prior is chosen, i.e., ⇢ ⇠ N (0, 0.42).

A loose prior centered at zero is used for the parameters � on the instrumental variables used to proxy

Et�1(� lnYt).

4.3 Estimation results

We successively estimate five empirical models with increasing complexity. The fifth and last model

coincides with the empirical specification presented in section 3. This approach facilitates the investigation

of the impact of the features incorporated into the model on the obtained estimates for excess sensitivity

and its variation over time. It also allows us to compare our findings to some of the findings reported

in the literature. Hence, for each of the models, the importance of time variation in the ES parameter

is discussed as is the robustness of the results under di↵erent instrument sets. We end this section

with the presentation of the results for the parsimonious model that is selected by the stochastic model

specification search.

Instrument sets

Since anticipated income growth Et�1(� lnYt) is not observed, a set of instrumental variables Zt is used

to estimate it. As Campbell and Mankiw (1990) and Kiley (2010), among others, show that the choice

Table 1). We refer to Appendix A for details on the estimation of the MA process.

17



of instruments can be critically important, the evaluation of the time variation in the ES parameter is

reported using three di↵erent instrument sets. A first instrument set, Z1, is based upon Campbell and

Mankiw (1990) and includes a constant, lags 1-4 of disposable income growth and consumption growth, a

lagged error correction term, i.e., log consumption minus log disposable income (see also Campbell, 1987)),

lags 1-2 of changes in the short term interest rate and lags 1-2 of changes in stock prices. To construct

the second instrument set, Z2, we add the first and second lag of the inflation rate to the instruments

contained in Z

1 (see Fuhrer, 2000; Kiley, 2010). Following Sommer (2007), the third instrument set Z3 is

constructed by adding lags 1-2 of the consumer sentiment index and of the change in the unemployment

rate.16,17

In column 2 of Table 2 we report the average explanatory power of the di↵erent instrument sets in

explaining � lnYt. For all instrument sets we find an average adjusted R

2 over all iterations of about

30%, which is very reasonable.

Model 1 (M1): no habits, no time-varying intercept, no MA components in the error term

We start by testing for time variation in the ES parameter using a basic model in which there is no time

variation in the intercept (�⌘0 = 0), no dependency of aggregate consumption growth on its own past,

and no MA structure in the error term. Based on equation (20), the empirical specification for aggregate

consumption growth then becomes,

� lnCt = �00 + �1tZt� + ⇢⌫

⇤
t + µt,

where the data generating process for �1t is represented by equations (22) and (23).

We first estimate this model with the binary indicator ◆1 set to 1 to generate a posterior distribution

for the standard deviation (�⌘1) of the innovations to the ES parameter. If this distribution is bimodal,

with low or no probability mass at zero, this can be taken as a first indication of a time-varying ES. Figure

1 presents the resulting posterior distribution of �⌘1 as well as the mean of the posterior distribution of

the time-varying ES parameter and its 90 % highest posterior density (HPD) interval. When looking

at panel (a), we find clear-cut bimodality in the posterior distribution of the standard deviation of the

innovations to the ES parameter, pointing to an important amount of time variation. Panel (b) further

shows the resulting time variation in ES, which starts at a value close to 0.4 in 1953 and increases to

16Note that our results are very similar when we use lags 1 to 4 for the external instruments (i.e., for the instruments not
obtained from disposable income and consumption) instead of lags 1 and 2.

17Concerning the choice of lags, note that, in general, the presence of autocorrelation of the MA form in the error term
µt necessitates the use of instruments that are appropriately lagged, i.e., depending on the order of the MA component in
µt. Our empirical approach, however, explicitly takes into account and controls for the MA terms so that we do not face
this issue.
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around 0.5 in the early 1970s after which it keeps on decreasing until it lies around 0.25 in 2014.

Figure 1: Stochastic model selection and time-varying parameters (binary indicators set to 1) in M1
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(a) Posterior distribution �⌘1
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(b) Evolution time-varying ES parameter �1t

Note: Figures are presented for the results using instrument set Z3 but are similar when using instrument sets Z1 and Z2

As a more formal test for time variation, we next sample the stochastic binary indicator ◆1 together

with the other parameters of the model. Table 2 reports the posterior probabilities that the binary

indicators ◆i attached to the time-varying parameters �it are equal to one for each of the five di↵erent

models that we estimate and for the three instrument sets discussed above. The posterior probabilities

for the binary indicators are calculated as the average selection frequencies over all iterations of the Gibbs

sampler. In the baseline scenario, we assign a 0.5 prior probability to each of the binary indicators being

one. Results for this baseline scenario are presented in the upper part of Table 2. As a sensitivity control,

we re-estimate the di↵erent models with the prior inclusion probabilities set to 0.1 and 0.9 respectively.

The resulting posterior probabilities are reported in the middle and lower part of Table 2.

For M1, the results in the baseline scenario (p = 0.5) show that when using instrument sets Z

2

and Z

3 the inclusion probability of a time-varying ES parameter is 0.27. For instrument set Z

1 it is

somewhat lower. Only when increasing the prior inclusion probability to 0.9, there is some sign of time

variation. All in all, the results indicate that, despite the bimodal posterior distribution of �⌘1 and a

moderate reduction in the ES parameter over time, there is no real evidence in favor of time-varying

excess sensitivity.
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Table 2: Posterior inclusion probabilities for the binary indicators over di↵erent models and instrument sets

Prior Instrument set Posterior

M1 M2 M3 M4 M5

Z R

2
adj ◆1 ◆1 ◆0 ◆1 ◆0 ◆1 ◆0 ◆1

p = 0.5 Z

1 0.30 0.18 0.18 0.63 0.17 0.06 0.06 0.06 0.07

Z

2 0.33 0.27 0.22 0.65 0.18 0.06 0.06 0.06 0.07

Z

3 0.26 0.27 0.21 0.68 0.15 0.06 0.06 0.06 0.07

p = 0.1 Z

1 0.30 0.03 0.03 0.16 0.03 0.01 0.01 0.01 0.01

Z

2 0.33 0.06 0.04 0.17 0.03 0.01 0.01 0.01 0.01

Z

3 0.26 0.06 0.04 0.20 0.03 0.01 0.01 0.01 0.01

p = 0.9 Z

1 0.30 0.60 0.63 0.93 0.60 0.36 0.37 0.38 0.40

Z

2 0.33 0.71 0.67 0.92 0.60 0.35 0.37 0.37 0.39

Z

3 0.26 0.71 0.66 0.93 0.54 0.35 0.36 0.37 0.38

Model specification

Habits No No No Yes Yes

TV intercept No No Yes Yes Yes

MA error terms No MA(1) MA(1) MA(2) MA(3)

Notes: The prior inclusion probability is given by p = p(◆0 = 1) = p(◆1 = 1). The instrument set Z1 includes lags 1-4

of disposable income growth and consumption growth, a lagged error correction term and lags 1-2 of the change in stock

prices and the change in the short term interest rate. Instrument set Z2 adds the first and second lag of the inflation rate.

Instrument set Z3 further includes lags 1-2 of the consumer sentiment index and of the change in the unemployment rate.

Model 2 (M2): no habits, no time-varying intercept, MA(1) error term

In the absence of habits, time aggregation and classical measurement error induce an MA(1) structure

in the growth rate of consumption. This leads to the following empirical specification for aggregate

consumption growth,

� lnCt = �00 + �1tZt� + ⇢⌫

⇤
t + ✓(L)µt,

with ✓(L) = 1 + ✓1L an MA(1) lag polynomial. We again report the results in two steps. First, Figure 2

shows the posterior distribution for the standard deviation �⌘1 and plots the time-varying ES-parameter.

Second, the individual posterior probability for the binary indicator ◆1 is reported in Table 2. Panel (a)

of Figure 2 suggests that there is some bimodality in the posterior distribution for �⌘1 but compared to

M1 it is less clear. Looking at the posterior inclusion probability for the time-varying part of the ES

parameter in Table 2 shows that in the baseline scenario there is no significant time variation as for all

instrument sets the probabilities vary around 0.2. For the two other scenarios (i.e., when p(◆i = 1) = 0.1

and when p(◆i = 1) = 0.9), posterior probabilities are also lower than the corresponding ones reported

20



for M1.

Figure 2: Stochastic model selection and time-varying parameters (binary indicators set to 1) in M2
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(b) Evolution time-varying ES parameter �1t

Note: Figures are presented for the results using instrument set Z3 but are similar when using instrument sets Z1 and Z2

Further, to underline the importance of controlling for the MA process in the error term, we report

the posterior distribution of the di↵erent MA coe�cients ✓ in Table 3. For M2, the 95% HPD interval of

✓1 varies between 0.04 and 0.33 which shows that controlling for MA terms is necessary.

A model similar to M2 is estimated by McKiernan (1996). In contrast to our analysis, their results

indicate that the relationship between income and consumption is rather variable over the period 1959�

1994 as a likelihood ratio test rejects the null hypothesis of a fixed parameter model against the alternative

of a stochastic parameter model. However, similar to our results they do not find a notable decrease over

time of the ES parameter.

Table 3: Posterior distribution for the MA parameters over di↵erent models

M2 M3 M4 M5

✓1 ✓1 ✓1 ✓2 ✓1 ✓2 ✓3

2.5% 0.04 0.03 -0.47 -0.12 -0.43 -0.10 -0.07

mean 0.19 0.17 -0.27 0.05 -0.22 0.07 0.08

97.5% 0.33 0.32 -0.05 0.23 0.05 0.25 0.23

Note: Results presented are based on instrument set Z3 but are similar when using

other instrument sets. Results are obtained with binary indicators set to 1.
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Model 3 (M3): no habits, time-varying intercept, MA(1) error term

Models M1 and M2 are rather restrictive as they do not allow other variables, besides expected income

growth, to have an impact on aggregate consumption growth. In M3 we allow for a time-varying constant

�0t that controls for potentially omitted variables that may a↵ect aggregate consumption growth. The

empirical specification for � lnCt then becomes,

� lnCt = �0t + �1tZt� + ⇢⌫

⇤
t + ✓(L)µt,

with ✓(L) = 1+ ✓1L an MA(1) lag polynomial and where equations (22) and (23) represent the processes

for the time-varying variables �0t and �1t.

As we now allow for a time-varying intercept, Figure 3 and Table 2 also provide information on whether

the time variation in the intercept is empirically relevant. When analyzing the posterior distribution of

�⌘0 , we notice that Figure 3 panel (a) provides evidence of a bimodal distribution with low probability

mass at zero, pointing to significant time-variation in the intercept. When analyzing the posterior distri-

bution of �⌘1 , Figure 3 panel (c) suggests that there is no bimodality in the posterior distribution of �⌘1

and thus no time variation in ES. This is confirmed in Table 2 as in the baseline scenario the posterior

probability of ◆1 equal to 1 is below 0.20 for all instrument sets. Even when increasing the prior inclusion

probability up to 0.9, the posterior does not exceed 0.60. The model selection thus clearly rejects time

variation in the ES parameter. For the intercept on the contrary, results are mixed. While Figure 3 panel

(a) points to a time-varying intercept, results on the posterior inclusion probability give no clear evidence

for time variation in the intercept. Related to the importance of taking into account the MA process in

the error terms, Table 3 shows a similar posterior distribution for the MA coe�cient in M3 as the one

found for the MA parameter in M2.
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Figure 3: Stochastic model selection and time-varying parameters (binary indicators set to 1) in M3
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Note: Figures are presented for the results using instrument set Z3 but are similar when using instrument sets Z1 and Z2

Our results for the ES parameter as reported in Figure 3 panel (d) di↵er from the ES estimates

reported by Bacchetta and Gerlach (1997) who estimate excess sensitivity in an empirical framework

that is similar to our M3. They find that the ES of consumption to income falls gradually from about

0.75 in the early 1970s to about 0.4 in the early 1990s. Our findings in this framework (M3), on the

other hand, suggest that ES has been relatively stable. We note that Bacchetta and Gerlach (1997) do

not explicitly test for time variation in the ES parameter.

Models 4 and 5 (M4, M5): habits, time-varying intercept, MA(2)/MA(3) error term

Finally, in M4 and M5 we also allow for habits in aggregate consumption growth. The di↵erence between

both models is that M4 assumes ‘classical’ measurement error while M5 assumes general’ measurement
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error. We refer to section 2.2 for details.18 The empirical specification for � lnCt is given by,

� lnCt = �0t + �1tZt� + �� lnCt�1 + ⇢⌫

⇤
t + ✓(L)µt,

where for M4 we have ✓(L) = 1 + ✓1L + ✓2L
2 while for M5 we have ✓(L) = 1 + ✓1L + ✓2L

2 + ✓3L
3 and

where the data generating processes for �0t and �1t are shown by equations (22) and (23). Note that

M5 coincides with the full empirical specification in equation (20). The results obtained for both models

are almost identical. This is due to the fact that the posterior distribution of the MA(3) parameter

✓3 has considerable probability mass at zero, as reported in Table 3, making both models virtually

indistinguishable. As such, we present only the graphs for M5 in Figure 4 as the ones for M4 are almost

identical.

Panels (a) and (c) of Figure 4 clearly show that the posterior distributions of �⌘0 and �⌘1 are unimodal

at zero. This suggests that these components are stable over time. Next, when sampling the stochastic

binary indicators together with the other parameters, the results reported in Table 2 for M4 and M5

support these findings. The posterior probabilities for the binary indicators being one for the time-

varying parts in the intercept and in the ES parameter are lower than 0.1 for all instrument sets. Even

when increasing the prior inclusion probability to 0.9, the posterior probabilities of both indicators are

not larger than 0.4. The model selection thus strongly rejects time variation in the intercept and in the

ES of private consumption growth to expected disposable income growth. The unambiguous rejection

of a time-varying intercept suggests that the omission of time-varying variables like hours worked and

government consumption in our empirical specification is not a major source of concern. While, as M3

shows, there is still some indication of time variation in the intercept when lagged consumption growth is

not included in the model, once we control for stickiness in aggregate consumption growth this is no longer

the case. This confirms the results of Sommer (2007) and Carroll et al. (2011) who argue that allowing

for consumption growth to depend on its own lag is important when testing for the ES of consumption

to income. Further, when analyzing the MA structure of the residuals in Table 3, we notice that only

the first MA term is relevant as the posterior mean of ✓1 equals �0.27 (in M4), respectively �0.22 (in

M5) while the posterior distributions of ✓2 and - as noted above - ✓3 have considerable probability mass

at zero.

Finally, as can be seen from Table 1, the prior beliefs about the degree of time variation in �0t and

�1t are both centered at zero with a prior standard deviation of
p
V0 = 0.2. To check for robustness, we

have also calculated the posterior inclusion probabilities of the time-varying components of �⇤
0t and �⇤

1t

18Note that it is the combination of habits and ”classical” measurement error (which in itself leads to an MA(1) error)
that leads to an MA(2) error. Likewise, it is the combination of habits and ”general” measurement error (which in itself
leads to an MA(2) error) that leads to an MA(3) error.
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for M5 for alternative values for the prior standard deviation
p
V0, i.e., for

p
V0 = 0.05 and

p
V0 = 1.

We conclude - for all three prior specifications - that there is no evidence of time variation, neither in

the intercept nor in the ES parameter. These results are not reported but are available from the authors

upon request.

Figure 4: Stochastic model selection and time-varying parameters (binary indicators set to 1) in M5
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Note: Figures are presented for the results using instrument set Z3 but are similar when using instrument sets Z1 and Z2

A parsimonious model

When allowing for stickiness in aggregate consumption growth, the time variation in both the intercept

and the ES parameter is found to be irrelevant using the model selection criteria. We therefore restrict

these parameters to be time invariant in the parsimonious model. Furthermore, the estimates of the MA

parameters reported in Table 3 show that, for M4 and M5, only the first MA term is relevant. As such,

we allow for only one MA term. This leads to the following parsimonious specification for aggregate
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consumption growth,

� lnCt = �00 + �10Zt� + �� lnCt�1 + ⇢⌫

⇤
t + ✓(L)µt,

with ✓(L) = 1 + ✓1L an MA(1) lag polynomial.

Table 4: Posterior distributions of model parameters (parsimonious model)

Percentiles

mean 2.5% 97.5%

error term consumption equation �µ 0.39 0.36 0.43

error term income equation �⌫ 0.80 0.73 0.87

Percentiles

Model parameters mean 2.5% 97.5%

constant value of intercept �00 0.12 0.05 0.20

constant value of ES parameter �10 0.24 0.11 0.37

consumption stickiness � 0.55 0.41 0.70

degree of correlation between ⌫t and ✏t ⇢ 0.32 0.19 0.45

MA(1) parameter ✓1 �0.30 �0.49 �0.10

Note: Results are presented using instrument set Z3 but are similar when using instrument
sets Z1 and Z2.

Descriptive statistics on the posterior distributions of the parsimonious model’s parameters are given

in Table 4. The results show that the time invariant intercept in the equation for aggregate consumption

growth lies between 0.05 and 0.20.19 For the ES parameter the 95% HPD interval varies between 0.11

and 0.37 with a mean value of 0.24. The stickiness parameter ranges between 0.41 and 0.70 with a mean

of 0.55. Both these results are similar to findings reported by Carroll et al. (2011) and Kiley (2010)20

and show that even if there is no significant amount of time variation, the ES of private consumption

to disposable income remains a major factor contributing to the predictability of aggregate consumption

growth. With respect to the presence of autocorrelation of the MA form in the error term, the posterior

distribution points to a negative MA coe�cient. The results also indicate that it is important to control

for correlation between shocks to income growth and shocks to consumption growth as the 95% HPD

interval of ⇢ ranges between 0.19 and 0.45.

19To interpret the magnitude of this estimate, note that data for aggregate consumption growth are expressed in percentage
terms (as numbers between 0 and 100). The mean of aggregate consumption growth (on a quarterly basis) over the full
sample period equals 0.48%.

20More specifically, for the US Carroll et al. (2011) find an ES parameter of 0.27 and a sticky consumption growth
coe�cient of 0.55 when using an instrumental variable approach. Kiley (2010) reports an ES parameter of 0.3 and a
coe�cient on lagged consumption growth of 0.65 when using their preferred instrument set (which includes lagged levels of
inflation).
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5 Conclusions

The recent literature investigates the excess sensitivity (ES) of aggregate consumption growth to antic-

ipated aggregate disposable income growth using an elaborate empirical framework that contains both

the possibility of stickiness in aggregate consumption growth and an adequate treatment of measurement

error and time aggregation. However, this framework has only served as a benchmark for testing for

ES under the assumption that the degree of ES is constant. This paper contributes to the literature by

investigating time-varying ES in this elaborate empirical framework using quarterly US data over the pe-

riod 1953� 2014. We estimate a Bayesian state space model using Markov Chain Monte Carlo (MCMC)

methods. We test whether the time variation is statistically relevant using the Bayesian model selec-

tion approach recently suggested by Frühwirth-Schnatter and Wagner (2010). Their approach implies

splitting the time-varying ES parameter, which is assumed to follow a standard random walk process,

into a constant part and into a time-varying part and introducing a stochastic binary model indicator

which is one if the time-varying part should be included in the model and zero otherwise. To control for

endogeneity in our framework, we further incorporate a control function type approach to instrumental

variables estimation in our MCMC algorithm. As our Bayesian IV approach relies on sampling the pos-

terior distribution rather than using asymptotic approximations, it allows for exact inference even when

instruments are weak.

The estimation results show that in a basic model that includes only anticipated income growth, the

ES of US consumption growth to anticipated income growth has decreased over time, starting from around

0.4 in the early 1950s and ending close to 0.25 in 2014. This confirms some of the results reported in the

literature that argue that excess sensitivity has dropped gradually over time. However, when estimating

our elaborate empirical specification that includes the possibility of stickiness in consumption growth

along with the possibility of time aggregation and measurement error, the excess sensitivity parameter

is found to be stable at around 0.24 over the entire sample period. This suggests that the time variation

of the ES parameter found in the basic model is due to a specification error. In line with Carroll et al.

(2011) and others, the coe�cient on lagged consumption growth is found to be around 0.55 showing that

there is a notable amount of stickiness in aggregate consumption growth.
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Appendix A Gibbs sampling algorithm

In this appendix we provide details on the Gibbs sampling algorithm used in section 3.3 to jointly sample

the binary indicators M, the parameters � and the time-varying parameters �⇤.

Blocks 1-3: Sampling the binary indicators M and the parameters �

For notational convenience, let us define a general regression model

yt = x

M
t b

M + ✓ (L) et, et ⇠ N
�
0,�2

e

�
, (B-1)

where yt is a scalar dependent variable, xt an unrestricted predictor vector that contains variables that

are relevant for explaining yt, b is the corresponding parameter vector, ✓ (L) is a lag polynomial of order

q and et is a white noise error with variance �2
e . The restricted predictor matrix x

M
t and restricted

parameter vector bM exclude those elements in xt and b for which the corresponding binary indicator in
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M is 0. Further let y = [y1, . . . , yT ]
0, x = [x0

1, . . . , x
0
T ]

0 and � be a subset of � including all unknown

parameters in equation (B-1), with restricted versions xM and �M.

The MA(q) errors in equation (B-1) imply a model which is non-linear in the parameters. As suggested

by Ullah et al. (1986) and Chib and Greenberg (1994), conditional on ✓ a linear model can be obtained

from a recursive transformation of the data. For t = 1, . . . T let

eyt = yt �
qX

i=1

✓ieyt�i, with eyt = 0 for t  0, (B-2)

ext = xt �
qX

i=1

✓iext�i, with ext = 0 for t  0, (B-3)

and further for j = 1, . . . , q

!jt = �
qX

i=1

✓i!j,t�i + ✓t+j�1, with !jt = 0 for t  0, (B-4)

where ✓s = 0 for s > q. Equation (B-1) can then be transformed as

eyt = exM
t b

M + !t�+ et,

= ewM
t �

M + et, (B-5)

with !t = (!1t, . . . ,!qt), ewt = (ext,!t) and �M =
⇣
b

M0
,�

0
⌘0

and where � = (e0, . . . , e�q+1)
0 are initial

conditions that can be estimated as unknown parameters.

Conditional on ✓, equation (B-5) is a standard linear regression with observed variables eyt and ewM
t

and i.i.d. errors et. Under the normal-inverse gamma conjugate prior21

p

�
�M� = N

�
b

M
0 , B

M
0 �

2
e

�
, p

�
�

2
e

�
= IG (c0, C0) , (B-6)

the conditional posterior distributions of �M and �2
e are

p

�
�M|y, x, ✓,�2

e ,M
�
= N

�
b

M
T , B

M
T �

2
e

�
, p

�
�

2
e |y, x, ✓,M

�
= IG

�
cT , C

M
T

�
, (B-7)

21Note that we set prior variances V0 in Table 1 from which B0 can be calculated as B0 = V0/�2
0 with �2

0 the prior
variance of the error terms in either the consumption or income growth equation.
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with the posterior moments bMT , BM
T , cT and C

M
T given by

b

M
T = B

M
T

⇣�
ewM�0 ey +

�
B

M
0

��1
b

M
0

⌘
, (B-8)

B

M
T =

⇣�
ewM�0 ewM +

�
B

M
0

��1
⌘�1

, (B-9)

cT = c0 + T /2 , (B-10)

C

M
T = C0 + 0.5

⇣
ey0ey +

�
b

M
0

�0 �
B

M
0

��1
b

M
0 �

�
b

M
T

�0 �
B

M
T

��1
b

M
T

⌘
. (B-11)

Block 1: Sampling the first step parameters �1 and calculating Zt� and ⌫

⇤
t

Equation (14) can be written in the general notation of equation (B-1) as: yt = � lnYt, xt = Zt, b = �

and ✓(L) = 1 such that ✓(L)et = ⌫t and �

2
e = �

2
⌫ . Sampling � and �

2
⌫ can then be done from their

posterior distributions in equation (B-7). Using the sampled � and �

2
⌫ , calculate Et�1 (� lnYt) = Zt�

and ⌫

⇤
t = �"✓ (L) (� lnYt � Zt�) /�⌫ conditional on ✓ and �

2
" with the latter calculated from �2 as

�

2
" = �

2
µ

�
(1� ⇢

2) .

Block 2: Sampling the MA coe�cients ✓

Conditional on the parameters �1 and �2, on the time-varying coe�cients �⇤ and on the binary indicators

M, equation (16) can be written in the general notation of equation (B-1) as: yt = � lnCt, xt = (1,

Zt�, �⇤
0t, �

⇤
1tZt�, � lnCt�1), b = (�00, �10, �⌘0 , �⌘1 , �) and et = "t, such that �2

e = �

2
" with the latter

calculated conditional on �2 as �2
" = �

2
µ

�
(1� ⇢

2) . The values of the binary indicators in M then imply

the restricted x

M
t and b

M.

Under the normal conjugate prior p (✓) = N
�
b

✓
0, B

✓
0�

2
e

�
, the exact conditional distribution of ✓ is given

by22

p

�
✓|�,�2

e ,M, y, x

�
/

TY

t=1

exp

 
�et (✓)

2

2�2
e

!
⇥ exp

✓
�1

2

�
✓ � b

✓
0

�0 �
B

✓
0�

2
e

��1 �
✓ � b

✓
0

�◆
, (B-12)

where et (✓) = eyt (✓) � ewM
t (✓)�M is calculated from the transformed model in equation (B-5) further

conditioning on the initial conditions � to obtain �M =
⇣
b

M0
,�

0
⌘0
.

Direct sampling of ✓ using equation (B-12) is not possible, though, as et (✓) is a non-linear function of

✓. To solve this issue, Chib and Greenberg (1994) propose to linearize et (✓) around ✓⇤ using a first-order

22Note that the expression in Chib and Greenberg (1994) also includes a term (p2 (✓) in their notation) which evaluates the
initial conditions (↵0 in their notation) which are drawn (using a value for ✓) as initial values in a state space representation.
As is apparent from equation (B-5), in a pure MA model (see also Chib and Greenberg, 1994, eq. (15)), the initial conditions
are easily estimated together with �. As such, they are conditioned on in equation (B-12).
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Taylor expansion

et (✓) ⇡ et (✓
⇤)� t (✓ � ✓

⇤) , (B-13)

where  t = ( 1t, . . . , qt) is a 1 ⇥ q vector including the first-order derivatives of et (✓) evaluated at ✓⇤

obtained using the following recursion

 it = �et�i (✓
⇤)�

qX

j=1

✓

⇤
j i,t�j , (B-14)

where  it = 0 for t  0. An adequate approximation can be obtained by choosing ✓⇤ to be the non-linear

least squares estimate of ✓ conditional on the other parameters in the model, which can be obtained as

✓

⇤ = argmin
✓

TX

t=1

(et (✓))
2
, (B-15)

For given values of ✓⇤, equation (B-13) can then be rewritten as an approximate linear regression

model

et (✓
⇤) + t✓

⇤ ⇡  t✓ + et (✓) , (B-16)

with dependent variable et (✓⇤) +  t✓
⇤ and explanatory variables  t. As such a normal approximation

to the exact conditional distribution of ✓ is given by

q

�
✓|✓⇤,�,�2

e ,M, y, x

�
⇠ N

�
b

✓
T , B

✓
T�

2
e

�
, (B-17)

with

b

✓
T = B

✓
T

⇣
 0⌅+

�
B

✓
0

��1
b

✓
0

⌘
, B

✓
T =

⇣
 0 +

�
B

✓
0

��1
⌘�1

, (B-18)

and where ⌅ is a T ⇥ 1 vector with tth element (et (✓⇤) + t✓
⇤) and  is a T ⇥ q matrix with tth row  t.

We can now sample ✓ using a Metropolis-Hastings (MH) algorithm. Suppose ✓(i) is the current draw in

the Markov chain. To obtain the next draw ✓

(i+1), first draw a candidate ✓c from the proposal distribution

in equation (B-17). The MH step then implies a further randomization which amounts to accepting the

candidate draw ✓

c with probability

↵

⇣
✓

(i)
, ✓

c
⌘
= min

(
p

�
✓

c|�,�2
e ,M, y, x

�

p

�
✓

(i)|�,�2
e ,M, y, x

� q
�
✓

(i)|✓⇤,�,�2
e ,M, y, x

�

q (✓c|✓⇤,�,�2
e ,M, y, x)

, 1

)
. (B-19)

If ✓c is accepted, ✓(i+1) is set equal to ✓c while if ✓c is rejected, ✓(i+1) is set equal to ✓(i).
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Block 3: Sampling the binary indicators M and the second step parameters �2

Conditional on the time-varying coe�cients �⇤
t and on the first block results Zt� and ⌫⇤t , equation (24)

can be written in the general notation of equation (B-1) as: yt = � lnCt, xt = (1, Zt�, �⇤
0t, �

⇤
1tZt�,

� lnCt�1, ⌫⇤t ), b = (�00, �01, �⌘0 , �⌘1 , �, ⇢) and et = µt, such that �2
e = �

2
µ. Further conditioning on the

MA parameters ✓, the unrestricted transformed variables eyt and ewt in equation (B-5) are obtained, with

corresponding unrestricted extended parameter vector � = (b0,�0)0. The values of the binary indicators

in M then imply the restricted ewM
t and �M.

A naive implementation of the Gibbs sampler would be to first sample M from f

�
M|�,�2

e , ey, ew
�

and next �M and �2
e from f

�
�M

,�

2
e |M, ey, ew

�
. However, this approach does not result in an irreducible

Markov chain as whenever an indicator in M equals zero, the corresponding coe�cient in � is also zero

which implies that the chain has absorbing states. Therefore, as in Frühwirth-Schnatter and Wagner

(2010) we marginalize over the parameters � and �2
e when sampling M and next draw the parameters

�M and �2
e conditional on the binary indicators in M.

Block 3(a): Sampling the binary indicators M

The posterior distribution f (M|ey, ew) can be obtained using Bayes’ Theorem as

f (M|ey, ew) / f (ey |M, ew ) p (M) , (B-20)

with p (M) being the prior probability of M and f (ey |M, ew ) the marginal likelihood of the regression

model (B-5) where the e↵ect of the parameters � and �

2
e has been integrated out. Under the normal-

inverse gamma conjugate prior in equation (B-6), the closed form solution of the marginal likelihood is

given by:

f (ey |M, ew ) /
��
B

M
T

��0.5
��
B

M
0

��0.5
� (cT )C

c0
0

� (c0)
�
C

M
T

�cT , (B-21)

with � being the gamma function and the posterior moments b

M
T , BM

T , cT and C

M
T given in equations

(B-8)-(B-11).

Following George and McCulloch (1993) we use a single-move sampler in which the binary indicators

◆0 and ◆1 in M are sampled recursively from the Bernoulli distribution with probability

p (◆i = 1 |◆�i, ey, ew ) =
f (◆i = 1 |◆�i, ey, ew )

f (◆i = 0 |◆�i, ey, ew ) + f (◆i = 1 |◆�i, ey, ew )
, (B-22)

for i = 0, 1. We further randomize over the sequence in which the binary indicators are drawn.
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Block 3(b): Sampling the second step parameters �2

Given the binary indicators in M, the second step parameters �2 = (�00, �10, �⌘0 , �⌘1 , �, ⇢, �
2
µ) are

sampled, together with �, by drawing �M and �2
e from the general expression in equation (B-7). Note

that the unrestricted � = (�00, �10, �⌘0 , �⌘1 , �, ⇢, �) is restricted to obtain �M by excluding �⌘i when

◆i = 0. In this case �⌘i is not sampled but set equal to zero.

Block 4: Sampling the time-varying parameters �⇤

In this block we use the forward-filtering and backward-sampling approach of Carter and Kohn (1994) and

De Jong and Shephard (1995) to sample the time-varying parameters �⇤ conditionally on the coe�cients

�2 and �, on the first block results Zt� and ⌫⇤t and on the binary indicators M. More specifically, equation

(24) can be rewritten as:

yt = ◆0�⌘0�
⇤
0t + ◆1�⌘1�

⇤
1tx1t + ✓ (L)µt, (B-23)

with yt = � lnCt � �00 � �10Zt� � �� lnCt�1 � ⇢⌫

⇤
t and x1t = Zt�.

Again using the recursive transformation suggested by Ullah et al. (1986) and Chib and Greenberg

(1994), the model in equation (B-23) can be transformed to a model with i.i.d. error terms as

eyt = ◆0�⌘0
e
�0t + ◆1�⌘1

e
�1t + !t�+ µt, (B-24)

where eyt and !t = (!1t, . . . ,!qt) are calculated (conditional on ✓) from equations (B-2) and (B-4) and

similarly

e
�0t = �

⇤
0t �

qX

i=1

✓i
e
�0,t�i, with e

�0t = 0 for t  0, (B-25)

e
�1t = �

⇤
1tx1t �

qX

i=1

✓i
e
�1,t�i, with e

�1t = 0 for t  0. (B-26)

Substituting equation (22) in (B-25)-(B-26) yields

e
�0,t+1 = �

⇤
0t �

qX

i=1

✓i
e
�0,t+1�i + ⌘

⇤
0t, (B-27)

e
�1,t+1 = �

⇤
1tx1,t+1 �

qX

i=1

✓i
e
�1,t+1�i + x1,t+1⌘

⇤
1t, (B-28)

such that the state space representation of the model in equations (B-24), (22) and (B-27)-(B-28) is given
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by

eyt � !t� =

�⌘z }| {h
(0 �⌘0 0 . . . 0) (0 �⌘1 0 . . . 0)

i

↵tz }| {2

4 ↵0t

↵1t

3

5+µt, (B-29)
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, (B-30)

with ↵i,t+1 given by

2
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e
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h
⌘
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it

i
, (B-31)

for i = 0, 1 and where x0t = 1 8t. In line with equations (22) and (B-25)-(B-26), each of the states is

initialized at zero.

Equations (B-29)-(B-30) constitute a standard linear Gaussian state space model, from which the

unknown state variables ↵t can be filtered using the standard Kalman filter. Sampling ↵t from its

conditional distribution can then be done using the multimove simulation smoother of Carter and Kohn

(1994) and De Jong and Shephard (1995). Using �i0, �⌘i and �

⇤
it, the time-varying coe�cients �it in

equation (20) can then easily be reconstructed from equation (21). Note that in a restricted model

with ◆i = 0, �⌘i is excluded from �⌘ and ↵it is dropped from the state vector ↵t. In this case, no

forward-filtering and backward-sampling for �⇤
it is needed as this can be sampled directly from its prior

distribution using equation (22).
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