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Abstract

This paper investigates the degree of time variation in the excess sensitivity of aggregate con-
sumption growth to anticipated aggregate disposable income growth using quarterly US data over
the period 1953-2014. Our empirical framework contains the possibility of stickiness in aggregate
consumption growth and takes into account measurement error and time aggregation. Our empirical
specification is cast into a Bayesian state space model and estimated using Markov Chain Monte Carlo
(MCMC) methods. We use a Bayesian model selection approach to deal with the non-regular test for
the null hypothesis of no time variation in the excess sensitivity parameter. Anticipated disposable
income growth is calculated by incorporating an instrumental variables estimation approach into our
MCMC algorithm. Our results suggest that the excess sensitivity parameter in the US is stable at
around 0.24 over the entire sample period.
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1 Introduction

Traditional permanent income and life cycle models of consumption predict that (log) real aggregate
private consumption follows a random walk (see Hall, 1978). Empirical studies however have revealed that
aggregate consumption growth is excessively sensitive to anticipated disposable income growth (see e.g.,
Campbell and Mankiw, 1989, 1990, 1991). The most common interpretations given to this observation
are the occurrence of liquidity constraints (see e.g., Flavin, 1985; Deaton, 1991; Ludvigson, 1999) and
the prevalence of precautionary and buffer stock savings motives (see e.g., Carroll, 1992; Ludvigson and
Michaelides, 2001) which increase the weight given by consumers to current income in their consumption
decisions.

In a number of empirical papers, the assumption that the excess sensitivity (ES) parameter is constant
has been relaxed in favor of time-varying specifications (see e.g., Campbell and Mankiw, 1991; McKiernan,
1996; Bacchetta and Gerlach, 1997; Girardin et al., 2000; Peersman and Pozzi, 2007). Some of these
studies have reported that ES has become less important during the last decades in the US (see e.g.,
Bacchetta and Gerlach, 1997) and in other developed economies (see e.g., Girardin et al., 2000; Blundell-
Wignall et al., 1991). This is attributed to financial liberalization and the development of financial
markets. These structural developments are thought to have improved the possibilities of consumers to
smooth consumption over time and across states of the world, i.e., by curbing the importance of credit
constraints and precautionary saving motives in consumer decisions these developments have, over time,
reduced the ES parameter.

Some recent papers, which belong to a different branch of the ES literature that implicitly assumes
that the ES parameter is constant, argue that the measured degree of ES of aggregate consumption
growth, while still statistically significant, becomes of lower magnitude once other forms of aggregate
consumption predictability are taken into account (see e.g., Basu and Kimball, 2002; Sommer, 2007;
Kiley, 2010; Carroll et al., 2011). Sommer (2007) and Carroll et al. (2011), in particular, show that
the magnitude of the degree of ES measured in quarterly US data is considerably lower in a model
that contains a mechanism - i.e., habit formation, rational inattention or imperfect information - that
generates dependency of aggregate consumption growth to its own past (i.e., ‘stickiness’). Sommer (2007)
further argues that it is necessary to adequately deal with both measurement error and time aggregation
to obtain valid estimates of the ES parameter.

The contribution of this paper to the literature is to link both these strands of research by investigating
the potential time variation of the ES of aggregate consumption growth to anticipated disposable income

growth using an empirical framework that contains the possibility of stickiness in aggregate consumption



growth and that provides an adequate treatment of measurement error and time aggregation. As Gali
et al. (2007) show that different sources and degrees of aggregate consumption growth predictability have
different macroeconomic implications, it is important to correctly measure the potentially time-varying
degree of ES using an appropriate empirical framework. Our empirical framework is applied to US data
over the period 1953 —2014. The paper further contributes to the literature by suggesting an appropriate
methodological approach that allows to test whether the time variation in the ES parameter is empirically
relevant and that adequately deals with all the complications that arise when estimating time-varying
ES in our elaborate empirical set-up. More specifically, our methodological approach is centered around
three issues.

First, a key question is whether time variation in the ES parameter, which is modelled as a standard
unobserved random walk process, is statistically relevant. This is a non-regular testing problem as the
null hypothesis that the variance of the innovations to the time-varying ES parameter is zero lies on the
boundary of the parameter space. No previous study that investigates the possible time variation in the
ES parameter has taken this complication into account. We use the Bayesian model selection approach
for state space models recently suggested by Frithwirth-Schnatter and Wagner (2010) to test for time
variation in the ES parameter. Their approach applied to our time-varying parameter case implies
splitting the time-varying parameter in a constant part and in a time-varying part and introducing a
stochastic binary model indicator which is one if the time-varying part is to be included in the model
and zero otherwise. Using Markov Chain Monte Carlo (MCMC) methods (i.e., Gibbs sampling), these
stochastic binary indicators are then sampled jointly with the other model parameters. Moreover, for the
variance of the innovation to the ES parameter, we do not use the standard inverse gamma (IG) prior
that is usually employed for variance parameters in a Bayesian setting. Rather, we use a Gaussian prior
centered at zero for the standard deviation of the innovation to the ES parameter. The reason for this
is that when using an IG prior distribution for the variance parameters, the choice of the shape and the
scale hyperparameters that define this distribution has a strong influence on the posterior distribution
when the true value of the variance is close to zero. More specifically, as the IG distribution does not
have probability mass at zero, using it as a prior distribution tends to push the posterior density away
from zero. This is of particular importance when estimating the variance of the innovations to the time-
varying ES parameter as the purpose of the paper is to decide whether time variation is relevant or
not. An interesting implication of estimating the standard deviation instead of the variance of the the
innovations to the time-varying parameters is that the sign of the standard deviation is not identified.
This offers an extra piece of information as it implies that the posterior distribution becomes bimodal

when there is time variation, while it is unimodal around zero when there is no time variation.



Second, as anticipated aggregate income growth is not observed, the ES parameter is estimated from
the relation between consumption growth and ex-post observed aggregate disposable income growth using
an instrumental variables (IV) method. Time-varying ES parameter models with endogenous regressors
have been estimated by, among others, Bacchetta and Gerlach (1997) and Peersman and Pozzi (2007)
using approzimate methods. In a recent paper, Kim and Kim (2011) show that the control function
approach to IV estimation can be used to construct an ezact state space representation which can then
be estimated by maximum likelihood (ML). Building on their paper, we incorporate a control function
type of approach in our MCMC algorithm to deal with endogeneity. The advantage of our Gibbs sampling
approach compared to ML estimation is that it is computationally easier to implement and, as such, does
not suffer from the numerical optimization problems inherent to ML estimation (see Kim and Kim (2011)).
Moreover, as our Bayesian IV approach relies on sampling the posterior distribution rather than on using
asymptotic approximations, it allows for exact inference even when instruments are weak.

Third, the potential presence of stickiness in aggregate consumption growth, on the one hand, and
time aggregation and measurement error in the log level of consumption, on the other hand, implies that
aggregate consumption growth follows an autoregressive (AR) process with moving average (MA) errors,
i.e., an AR(1) process with MA(3) errors. To obtain valid estimates for the ES parameter, the AR(1)
term in the consumption growth equation and the MA terms in the error term of the consumption growth
equation must be taken into account explicitly. To deal with the MA components in the error term, we
follow Chib and Greenberg (1994) who present exact methods to analyze Bayesian regression models with
MA errors using MCMC sampling.

Our estimation results suggest that the degree of excess sensitivity of aggregate consumption growth
to anticipated disposable income growth for the US is stable and lies around 0.24 over the entire sample
period (1954-2014). This estimated magnitude of the excess sensitivity parameter is in accordance with
recent findings of Sommer (2007) and Carroll et al. (2011) who consider an empirical framework with a
constant ES parameter but with the possibility of stickiness in aggregate consumption growth along with
time aggregation and measurement error. The lack of time variation in the ES parameter however stands
in contrast to the findings reported by some of the previous studies that investigate time-varying ES for
the US (e.g., the study by Bacchetta and Gerlach (1997) who argue that the degree of ES has dropped
gradually over time). The evidence in favor of time variation that is reported in the literature has been
obtained from the estimation of more restricted empirical models however. These typically do not allow
for stickiness in aggregate consumption growth, nor do they allow for time aggregation and measurement
error. Upon estimating more restricted empirical models that are in line with the time-varying ES

frameworks employed in previous studies, we do obtain evidence that is more supportive - albeit hardly



conclusive - of time variation in ES. Our results therefore imply that the finding of time variation in
the ES parameter may be due to specification errors and may not be the result of genuine structural
economic developments such as financial liberalization. Our findings further confirm that there is notable
stickiness in aggregate consumption growth as we find a coefficient on lagged consumption growth that
lies around 0.55, a result which is in accordance with the findings reported recently by Sommer (2007),
Kiley (2010) and Carroll et al. (2011).

The remainder of this paper is organized as follows. In section 2 we present the benchmark theoretical
model for aggregate consumption growth to which we add anticipated disposable income growth to
allow for time-varying excess sensitivity. Section 3 outlines our empirical specification and estimation
methodology. Section 4 presents the estimation results for the US over the period 1953-2014. Section 5

concludes.

2 Theoretical framework

In this section we first present a benchmark model for aggregate consumption growth with stickiness
modeled through habit formation in consumer preferences! and MA(3) errors to capture the effects
of time aggregation and measurement error. This benchmark model is a generalization of the model
presented by Sommer (2007) as it includes a time-varying intercept in aggregate consumption growth
that allows to capture and control for unspecified and/or hard-to-estimate components of aggregate
consumption growth. Following, among others, Bacchetta and Gerlach (1997) and Carroll et al. (2011)
we then add anticipated income growth to the consumption growth equation to allow for time-varying

ES of consumption to income.

2.1 A benchmark theoretical model with habit formation

Suppose a representative permanent income consumer maximizes the following stream of discounted
utilities
T
maXEth]U (Ct+j7Xt+j> s (1)
§=0
subject to a budget constraint, where E; denotes the consumer’s expectation conditional on period ¢

information, p is the discount factor, C; is the level of period ¢ ‘effective’ consumption and X; is a

variable or a combination of variables that shifts marginal utility at time ¢.? ‘Effective’ consumption is

L Alternative mechanisms by which stickiness can be incorporated into aggregate consumption growth are rational inat-
tention (see e.g., Reis, 2006; Carroll et al., 2011) and imperfect information (see e.g., Pischke, 1995).
2Examples are hours worked (see e.g., Kiley, 2010) and/or government consumption (see e.g., Evans and Karras, 1998).



assumed to be equal to

Cv=C7 —7C (2)

where C} is the representative agent’s consumption level in period t such that utility depends on the
level of consumption Cj relative to last period’s consumption level C}_; with the parameter v (where
0 <+ < 1) capturing the strength of habits. When v = 0 habits are irrelevant and the consumer derives
utility only from the level of consumption. When v = 1 habits are most important and the consumer
derives utility only from the change in consumption. When 0 < v < 1 the consumer derives utility
both from the level of consumption and from the change in consumption. Hayashi (1985) and Dynan
(2000) show that, provided the real interest rate is constant and T is large, the first-order condition under
time-nonseparable preferences can be written as

U'(Cy; Xy)

p—— | =1
U/(Ct—ﬁXt—l)

E,i|R , (3)

where R is the real interest factor (which equals 1 plus the real interest rate) and where U’(Cy; X;) =

AU (C¢;X+t)
aCc,

_ =1
Assuming that the utility function is of the CRRA type, i.e., U(Cy; X;) = %Xt with ¥ > 0, so

that U'(Cy; X4) = észt and using this into equation (3) gives

— Y
C, > X,
Rp | =
P (Ct—l X1

By =FE1[Z] =1, (4)

= \ ¥ _
where Z; = Rp | =+ t— . Assuming that n(C,; an n X, are jointly conditionally normally
h Z R Cc,l X)t(—l A i hat AlnC d Aln X, jointl ditionall 11

distributed implies that In Z; = In(Rp) — ¥ AlnC; + Aln X, is conditionally Gaussian as well. From the

lognormal property we can therefore write
1
Et—l [Zt] = exp Et_l(hl Zt) + §Vt_1(ln Zt) . (5)

We then substitute equation (5) into equation (4) and take logs of the resulting equality to obtain

(after some rearrangements of terms)

— 1 1 1
E; 4 (A In Ct) = ﬂUﬁ]Z’t + J ln(RP) + E,UIAIHX,ta (6)

where UlznZ,t = ViqInZy) = Vi1 [AIn Xy — 2¢covs_1[AIn Xy, AlnCy] + ?V;_1[AInCy] and where



A x,t = Ei—1 (Aln X,;). This can also be written as

— 1 1 1
Aln Ct = ﬁJIQnZyt + J IH(RP) + JMA In X,t + €, (7)

where ¢, = [A InC; — Ey_4 (A lnét)]. Note that the innovation ¢; implicitly reflects the revision in
permanent income of the optimizing permanent income consumer (see e.g., Campbell and Mankiw, 1990).

After collecting the first three terms of equation (7) into a time-varying variable 8y; and using the
approximation AlnCy; = Aln(C; —yC;_;) ~ AlnC; — yAInC;_; as suggested by Muellbauer (1988)
and Dynan (2000), we obtain

AlnCy = Bor + YAInCy_ | + €, (8)

where [y = ﬁafn zt Tt i In(Rp) + i,lLA In x,¢- As such, Bo is a catch-all term that allows to capture and
control for unspecified (i.e., the conditional mean and variance of Aln X;) and/or hard-to-estimate (i.e.,

the conditional variance V;_1[AInC}] in o, 7.+) components of aggregate consumption growth.3:4

2.2 Time aggregation and measurement error

Assuming that consumption decisions are made more frequently than the intervals at which consumption
is measured causes time aggregation. Sommer (2007) shows that time aggregation in combination with the
presence of habits induces an MA(2) structure in the error term e; of true aggregate consumption growth
AlnCy, where ‘true’ refers to consumption in the absence of measurement error and other transitory

components. This implies that equation (8) should be written as
AlnCy = for +yAIMCy +6° (L) &, (9)

with & an 4.i.d. error term and 6¢ (L) = 1+ 9§L + 9§L2 an MA(2) lag polynomial with parameters being
complicated functions of ~.°

Sommer (2007) further notes that aggregate consumption data measured at the quarterly level are
often plagued by measurement error and other sources of transitory consumption fluctuations. He argues
that measurement error is best modeled as an MA(1) structure in the log-level of consumption. This

implies that measured aggregate consumption growth Aln C; should be modeled as the sum of of true

3Note that in Sommer (2007) the intercept in consumption growth is assumed to be constant, i.e., ot = Bo (for all t)
as his model includes no preference shifters X; while he implicitly assumes a constant conditional variance of consumption
growth.

4Note that while the model is derived under a constant interest factor R, the presence of Bo; in the model implicitly also
allows to control for a time-varying interest rate in the estimation.

5Note that the proof in Sommer (2007) is based on a model with a constant mean in aggregate consumption growth
whereas we have the time-varying variable Bo; in the model. We can however rewrite equation (8) as (AInC} — ) =
Y(AInCy_ | — pe—1) + € with py = Bor + ype—1 so that his proof can equally be applied to our model.



aggregate consumption growth Aln C} given by equation (9) and an MA(2) error term
AlnC; = AlnCf +6° (L)<, (10)

where ¢; an i.i.d. error term and 6¢ (L) = 1 + OfL + 05 L% an MA(2) lag polynomial. This specification
assumes "general” measurement error. Note that this specification encompasses the simpler case where
measurement error is assumed to be a white noise error term in the log-level of consumption. In that
case, there is only an MA(1) error term in equation (10) where 65 = —1. This is the case of ”classical”
measurement error.

Combining equations (9) and (10) to obtain an expression containing only measured consumption

growth Aln C; gives

AlnCy = Bor +vyAlnCy_y + 0° (L) (st — vSt—1) + 6% (L) &,

:BOt'F’YAIHthl +9(L)€t, (11)
with &; an i.i.d. error term and 6 (L) = 1+ 61 L + 62 L% + 65L3 an MA(3) lag polynomial.®

2.3 Time-varying excess sensitivity

Empirical studies have demonstrated that aggregate consumption growth is excessively sensitive to an-
ticipated disposable income growth (see e.g., Campbell and Mankiw, 1989, 1990, 1991). We follow the
standard approach to test for this type of ES by adding anticipated income growth to the consumption
growth model. In line with, among others, Bacchetta and Gerlach (1997) we allow the ES parameter to

vary over time. More specifically, we extend our benchmark in equation (11) to
A 111 Ct = BOt =+ /BltEt—l(A lIl Y;) =+ "}/A 111 Ct—l =+ 9 (L) Et, (12)

where AlnY; is aggregate (total) disposable income growth and (31; is the time-varying ES parameter.”
Note that as the innovation &; implicitly reflects the revision in permanent income of the optimizing
permanent income consumer of sections 2.1 and 2.2, it can be correlated with the variable AlnY; (see
e.g., Campbell and Mankiw, 1990). We explicitly deal with this issue when estimating equation (12) as

discussed below.

6Note that 0 (L) &, is the sum of the two independent MA processes 6¢ (L) (st — yst—1) and 6¢ (L) &, the first being of
order order 3 and the second of order 2. Following Hamilton (1994), we can write the sum of two independent MA processes
as an MA process of which the order equals that of the highest order process in the sum.

"This approach differs from the method followed by among others Campbell and Mankiw (1990) and Kiley (2010) who
test for ES by writing down aggregate consumption growth as the sum of or (weighted) average between consumption growth
of optimizing permanent income consumers and consumption growth of current income (‘rule-of-thumb’) consumers.



We use the model in equation (12) to test for time-varying ES of aggregate consumption growth
with respect to income growth against the benchmark model in equation (11). This deviates from the
past literature in a number of ways. First, ES is usually tested against a framework where aggregate
consumption growth is either white noise (i.e., the standard random walk model) or an MA(1) process if
time aggregation and classical measurement error are taken into account (see e.g., Bacchetta and Gerlach
(1997)). The results of Sommer (2007) and Carroll et al. (2011) show however that allowing for stickiness
(i.e., the dependence of aggregate consumption growth on its own lag) is important when testing for the ES
of consumption to income. In our model this is incorporated by introducing a habit formation mechanism.
Second, as noted by Sommer (2007), allowing for classical measurement error may not be sufficient such
that a more general framework with MA(q) errors is called for. The relevant order g will be determined
empirically. Third, the time-varying variable Bg; controls for all potentially omitted variables that may
affect aggregate consumption growth (i.e., marginal utility shifters such as hours worked and government
consumption, the conditional variance of consumption growth which reflects a potential precautionary

savings motive, the interest rate that captures potential inter-temporal substitution effects).

3 Empirical methodology

In this section we outline our empirical specification and econometric methodology to estimate the model
for aggregate consumption growth outlined in section 2.
3.1 Empirical specification

We use equation (12) to test for time-varying ES of aggregate consumption growth with respect to income
growth against the benchmark model in equation (11). The empirical implementation of equation (12)

requires a number of further assumptions. These are outlined below.

Time-varying parameters

The parameters fy; and $1; in equation (12) are allowed to change over time according to a random walk

process
Bit+1 = Bit + it it ~ 1.1.d.-N(0, 072,1.)7 (13)

with i = 0, 1. Random walk processes allow for a very flexible evolution of the parameters 3;; over time.?

8As a robustness check, we have also estimated the time-varying intercept Bo; as an AR(1) process. This alternative
modeling strategy does not affect the conclusions reported in the paper.



Anticipated income growth and instrumental variables

Anticipated income growth E;_; (AlnY}) is not observed, but can be estimated by assuming that observed
income growth AlInY; is linearly related to a set of forecasting variables Z; known to the consumer at

time t — 1, so that

AlnY} = Zt5+Vt7 (14)

where Z; is uncorrelated with &; in equation (12) and where 14 an i.i.d. error term that is unpredictable

at time t, i.e., E;_1v; = 0. Taking expectations F;_1 of equation (14) gives

Et—l (A IHY;) = Zt5 + Et—lyt = Zt5, (15)

and substituting this in equation (12) yields

Aln Ot = /BOt + 61tZt§ + ’}/A In Ct_l + 0 (L) Et. (16)

Equation (16) is an instrumental variables (IV) type of regression model with instruments Z; where
0 is estimated using the first stage regression model (14). Because, as noted in section 2.3, the shocks
to aggregate income growth and aggregate consumption growth are correlated, equations (14) and (16)
are seemingly-unrelated regression equations with cross-equation parameter restrictions. The correlation

structure in the error terms v; and ¢; can be expressed as

2
g 0,0,
Spe=| T (17)
pPOLO: o;

where p is the correlation between v; and ¢;. Using a Cholesky factorization of ¥, . we can write

v, oy 0
t _ Hit 7 (18)
&t PO Oc/ 1- 02 2t
where p1¢ and po; are 4.i.d. error terms with unit variance. Replacing e; in equation (16) by
o
€t = P "+ 0/ 1 = pPay, (19)
yields
AInCy = Bos + B14Z:0 + vyAIn Cy_1 + pvf + 0 (L) ps, (20)

10



with v} = 0.0 (L) v, /o, and where p; = o, ﬂpgt is an 7.7.d. error term that is not correlated with
any other error term in the model. Note that, as a result, we have 02 = 0‘3 /(1 —p?). Equation (20)
is a control function type of IV regression model similar to the one outlined by Kim and Kim (2011) to
deal with endogeneity in a time-varying parameter model.” However, instead of using their two-step or
joint maximum likelihood (ML) procedure to estimate the non-linear model implied by equations (14)
and (20), we use the Gibbs sampler as outlined in section 3.3 below. The advantage of our modeling and
sampling approach compared to Kim and Kim (2011)’s two-step ML approach is that when estimating
equation (20) we explicitly take into account that the error terms 14 and £; may be correlated and that
0 is estimated in a first step, so that Ztg is a generated regressor. The advantage of our modeling and
sampling approach compared to Kim and Kim (2011)’s joint ML approach is that it is computationally
easier to implement. As such, it does not suffer from the numerical optimization problems inherent to
the joint ML estimation that are reported by Kim and Kim (2011). Moreover, as our Bayesian approach
relies on sampling the posterior distribution rather than using asymptotic approximations, it allows for

exact inference even when the instruments Z; are weak.

3.2 Stochastic model specification search

A key question in the above model is whether the ES parameter 1 is time-varying or constant. Although

2

Bt can be filtered using the Kalman filter and the variance of the innovations oy

can be estimated using
ML, testing whether the time variation is relevant implies testing agl = 0 against agl > 0, which is
a non-regular testing problem as the null hypothesis lies on the boundary of the parameter space. In
a recent article, Frithwirth-Schnatter and Wagner (2010) show how to extend Bayesian model selection
for standard regression models with observed variables to unobserved components in state space models.
Their approach relies on a non-centered parameterization of the state space model in which (i) binary
stochastic indicators for each of the model components are sampled together with the parameters and (ii)

the standard inverse gamma (IG) prior for the variances of innovations to the components is replaced by

a Gaussian prior centered at zero for the square root of these variances (i.e., for the standard deviations).

Non-centered parameterization

Frithwirth-Schnatter and Wagner (2010) argue that a first piece of information on the hypothesis whether
the variance of innovations to a state variable is zero or not can be obtained by considering a non-centered

parameterization. This implies rearranging the data generating process for the time-varying parameters

9 An apparent difference is that our specification includes anticipated income growth, which is a predetermined regressor
calculated using instrumental variables, while the specification of Kim and Kim (2011) includes an endogenous regressor.
Besides the error term from the first step auxiliary regression, the control function equation in Kim and Kim (2011) therefore
includes the endogenous regressor instead of the term Z:§ that we include in our equation (20).

11



Bit in equation (13) to

Bit = Pio + 00, By, (21)

with ﬁ;’k,t+1 = ?t + 77;57 ;'kO =0, 77; ~ ZZdN(Ov 1)v (22)

for ¢ = 0,1 and where B;p is the initial value of 3;; when this coefficient is time-varying (c,, > 0)
while being the constant value of f;; when there is no time variation (o,, = 0). A crucial aspect of
the non-centered parameterization is that it is not identified as the signs of o, and §;; can be changed
by multiplying both with -1 without changing their product in equation (21). As a result of the non-
identification, the likelihood function is symmetric around 0 along the o, dimension. When f;; is

time-varying (o7, > 0), the likelihood function is bimodal with modes —o,, and oy,. For o, = 0, the

i i
likelihood function is unimodal around zero. As such, allowing for non-identification of ¢, provides useful

information on whether 072“ > 0.

Stochastic model specification

A second advantage of the non-centered parameterization in equation (21) is that when Ufh = 0 the
transformed component 3 (in contrast to 3;;) degenerates to zero with the time-invariant parameter
now represented by B;9. As such, the question whether the ES parameter is time-varying or not can be

expressed as a variable selection problem in equation (21). To this end, Frithwirth-Schnatter and Wagner

(2010) introduce the stochastic model specification

Bit = Bio + tion, Biy, (23)

where ¢; is a binary indicator which is either 0 or 1. If ¢; = 0, the component 3, drops from the model
such that f;p represents the constant intercept or slope parameter. If ¢; = 1 then 3}, is included in the

model and oy, is estimated from the data. In this case B9 is the initial value of §;;.

Gaussian priors centered at zero for o,,

Our Bayesian estimation approach requires choosing prior distributions for the model parameters. When
using the standard IG prior distribution for the variance parameters, the choice of the shape and scale
hyperparameters that define this distribution has a strong influence on the posterior distribution when
the true value of the variance is close to zero. More specifically, as the IG distribution does not have
probability mass at zero, using it as a prior distribution tends to push the posterior density away from

zero. This is of particular importance when estimating the variances afh, of the innovations to the time-

12



varying parameters (3;; as for these components we want to decide whether they are relevant or not.
As O‘%i is a regression coefficient in equation (23), a further important advantage of the non-centered
parameterization is that it allows us to replace the standard IG prior on the variance parameter 072” by a
Gaussian prior centered at zero on oy,. Centering the prior distribution at zero makes sense as, for both

0,271_ =0 and 0,2,1, > 0, oy, is symmetric around zero. Frithwirth-Schnatter and Wagner (2010) show that

the posterior density of o,, is much less sensitive to the hyperparameters of the Gaussian distribution and

is not pushed away from zero when 07277, = 0. As such, we choose a Gaussian prior distribution centered
at zero, i.e., N'(0,Vp), for o,, and o, where o,, and o0, are the standard deviations of the innovations

to the time-varying parameters.

Other priors

2

, and o2, which are always included in the model, we choose

For the variances of the error terms o
the standard IG prior distribution 7G(cp,Cy) where ¢o denotes the shape and Cy denotes the scale of
the distribution. For each of the model parameters Bog, SB10, 7, p, € and 6, we assume a normal prior
distribution A (bg, V). Details on the chosen hyperparameters (bg, Vo) for the prior A distributions and
(co, Cp) for the prior IG distributions are presented in section 4.2 below. For the binary indicators ¢
and ¢; we choose a uniform prior distribution where each model component has a p prior probability of

being included in the model, i.e., p(tg = 1) = p(1; = 1) = p.1°

3.3 Gibbs sampler

Using equation (23), the model in equation (20) can be rewritten as

AlnCy = (Boo + Loon, Bo) + (Bro + t10y, B1y) Zed + YAIn Cy_y + pvf + 60 (L) . (24)

Taken together, equations (14) and (24) can be considered as the observation equations of a state space
(SS) model, with the unobserved states §§, and 57, evolving according to the state equations in (22). In
a standard linear Gaussian SS model, the Kalman filter can be used to filter the unobserved states from
the data and to construct the likelihood function such that the unknown parameters can be estimated
using maximum likelihood. However, the stochastic model specification search outlined in subsection 3.2
implies a non-regular estimation problem for which the standard approach via the Kalman filter and
maximum likelihood is not feasible. Instead, we use the Gibbs sampler which is a Markov Chain Monte

Carlo (MCMC) method to simulate draws from the intractable joint and marginal posterior distributions

10Note that when p = 0.5 (i.e., for our baseline case), each of the four models (i.e., the four combinations of the binary
indicators) has the same prior probability equal to 0.25.
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of the unknown parameters and the unobserved states using only tractable conditional distributions.
Intuitively, this amounts to reducing the complex non-linear model into a sequence of blocks for subsets
of parameters/states that are tractable conditional on the other blocks in the sequence.

For notational convenience, define the time-varying parameter vector 8; = (85, 51;), the unknown
parameter vectors ¢; = (6, 0‘3), P2 = (,6’00,610,0,,0,0771,%/), Ui) and ¢ = (41, P2,0) and the model
indicator M = (10,01).1Y Let D; = (AInCy, AlnY;, Z;) be the data vector. Stacking observations
over time, we denote D = {D;}!_, and similarly for 5*. The posterior density of interest is then
given by f (¢, 5*, M|D). Building on Frithwirth-Schnatter and Wagner (2010) for the stochastic model
specification part and on Chib and Greenberg (1994) for the moving average (MA) part, our MCMC

scheme is as follows:

1. Sample the first step parameters ¢; = (57 JE) from f (¢1|D) using the regression model in equation

(14) and calculate Z;§ and v;. Then v} can be calculated using vy = 0.0 (L) v /o, .

2. Sample the MA coefficients 6 from f (0|¢1, p2, 8%, M, D) conditional on the parameters ¢, the
time-varying parameters $*, the binary indicators in M and Z;0 and v/ calculated in the first

block.

3. Sample the binary indicators M and the second step parameters ¢ using the non-centered param-
eterization in equation (24) conditional on the MA coefficients 6, the time-varying parameters 5*

and Z;0 and v} calculated in the first block.

(a) Sample the binary indicators M from f (M|, 0, *, D) marginalizing over the parameters ¢

for which variable selection is carried out.

(b) Sample the unrestricted parameters in ¢o from f (¢2|@1,6, 8%, M, D) while setting the re-
stricted parameters o, (for which the corresponding component f, is not included in the

model M) equal to 0.

4. Sample the unrestricted (i.e. for which ¢; = 1) time varying parameters in 5* from f (5*|¢, M, D)
again using the non-centered parameterization in equation (24) conditional on the second step
parameters ¢, the binary indicators M and Z;6 and v; calculated in the first block. The restricted
time varying parameters (for which ¢; = 0) in 8* are sampled directly from their prior distribution

using equation (22).'2

HNote that 0 = (01,02, ....,04).
12Even when ¢; = 0 a sample for
a time-varying 87, in block 3(a).

*

¥ is required as this will be used to calculate the marginal likelihood of a model with
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5. Perform a random sign switch for o, and {85}/, i.e., oy, and {85 }7_, are left unchanged with

probability 0.5 while with the same probability they are replaced by —o,, and {5}, ..

Given an arbitrary set of starting values, sampling from these blocks is iterated J times and, after a
sufficiently large number of burn-in draws B, the sequence of draws (B + 1, ..., J) approximates a sample
from the virtual posterior distribution f (¢, 8*, M|D). Details on the exact implementation of each of
the blocks can be found in Appendix A. The results reported below are based on 10000 Gibbs sampler

iterations, with the first 5000 draws discarded as a burn-in sequence.

4 Empirical results

4.1 Data

To estimate the empirical model, quarterly US data are available for all variables used over the period
1953Q1 — 2014Q4. The use of lagged instruments reduces the sample size with 2 observations so that
the effective sample period is 1953Q3 — 2014Q4, i.e., this implies an effective sample size equal to 246
observations.!> Where necessary, data are seasonally adjusted. For C}, we use real per capita expen-
ditures on nondurables and services (excluding clothing and footwear). For Y;, real per capita personal
disposable income is used. Both variables are put in real terms using the deflator of nondurables and
services (excluding clothing and footwear) with base year 2009 = 100. With respect to the estimation of
anticipated income growth, external instruments are also used. In particular, we include as instruments
lagged changes in the short run interest rate for which we take the three-month nominal T-bill rate,
lagged changes in stock prices which we proxy using the S&P 500 index, lags of the inflation rate where
the inflation rate is calculated as the log change in the CPI index, lags of the level of consumer confidence
for which we take the index of consumer sentiment, and lags of the change in the unemployment rate.
Data for nominal expenditures on nondurables and services (excluding clothing and footwear), for
nominal personal disposable income and for the corresponding deflator are taken from the National
Product and Income Accounts (NIPA). Population data are taken from the OECD Quarterly National
Accounts. For the three-month T-bill rate, data are taken from the Board of Governors. Data for the
S&P 500 index comes from Sommer (2007) and is updated with data from Thomson Reuters Datastream.
Finally, for the CPI index and the unemployment rate, data are taken from the Bureau of Labor Statistics

while for the consumer sentiment index, the University of Michigan index is used.

13Note that for some variables instruments are formed using further lags (i.e., a third and fourth lag). As data for these
variables are typically available well before 1953Q1, these deeper lags do not reduce the effective sample size.
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4.2 Prior choice

With respect to model selection, we mention that for the binary indicators ¢y and ¢; we choose a uniform
prior distribution where, in the baseline case, each time-varying model component has a p = 0.5 prior
probability of being included in the model.

Summary information on the prior distributions of the other unknown parameters is reported in Table

2

;, and o2 of the error terms in the consumption and income growth equations, we use

1. For the variances o
an inverse gamma prior distribution IG(cg, Cp) where the shape ¢y = 1T and scale Cy = coag parameters
are calculated from the prior belief 62 and the prior strength v, which is expressed as a fraction of the
sample size T.'* Our prior belief for o, is 0.5, implying that 95% of the quarterly consumption growth
shocks lie between -1% and 1%, while our prior belief for o, of 0.75 implies that the 95% of the quarterly
income growth shocks lie between -1.5% and +1.5%. The smaller value for o, reflects the idea that
income is more volatile than consumption. In both cases, the prior is fairly loose with strength set equal
to 0.1.

For the remaining parameters, Gaussian prior distributions A (bg, Vp) are used. First, consider the
time-varying ES parameter, $1;. For B¢, the prior is given by 819 ~ N(0.4,0.22) which reflects our belief
that if there is no time variation in fi; (i.e., o, = 0) then the ES parameter ranges from roughly 0
to 0.8. This encompasses all values found in the literature. Campbell and Mankiw (1990) for example
report values of 0.5 up to 0.7 for the U.S. Controlling for habits, Kiley (2010) and Sommer (2007) find
lower values of about 0.3 and 0.15 respectively. For the standard deviation o, of the innovations to
the time-varying part in 81; a Gaussian prior centered at zero N'(0,0.22) is chosen. Note that the prior
standard deviation v/Vj = 0.2 implies a very loose prior as it allows that 95% of the standard deviations
of the quarterly innovations to the ES parameter lie between —0.39 and 0.39.

For the time-varying intercept, Bo¢, the prior distribution for the time-invariant part is fairly unin-
formative and centered at zero, Bgo ~ N(0,1). The prior belief oy, ~ N(0,0.22) about the degree of
time-variation in Sy; is also centered at zero with the same prior standard deviation as the innovations
to the ES parameter.

According to Carroll et al. (2011), the strength of habits in aggregate consumption growth for the U.S.
varies between 0.5 and 0.7. These results are confirmed by, amongst others, Fuhrer (2000) and Sommer
(2007) who both find a stickiness parameter around 0.7. Therefore our prior for v is A’(0.6,0.15%) such
that the 95% prior interval ranges from roughly 0.3 to 0.9. For the M A parameters 6, a loose prior

centered at zero is used.!®

14Since this prior is conjugate, voT can be interpreted as the number of fictitious observations used to construct the prior
belief og.
15For the initial conditions A of the MA process, a Gaussian prior with mean 0 and variance 1 is used (unreported in
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Table 1: Prior distributions of model parameters

Inverse Gamma priors: IG(co, Co) = IG(voT, vyTod) Percentiles
o) vy 2.5% 97.5%
error term consumption equation o, 0.50 0.10 0.42 0.62
error term income equation o, 0.75 0.10 0.63 0.94
Gaussian priors: N (b, Vo) Percentiles
Non-centered components bo VVo 2.5% 97.5%
std. of time-varying intercept oy, 0.00 0.20 —0.39 0.39
std. of time-varying ES parameter oy, 0.00 0.20 —0.39 0.39
Model parameters
constant value intercept Boo  0.00 1.00 —1.96 1.96
constant value ES parameter B0 0.40 0.20 0.01 0.79
consumption habits parameter 5y 0.60 0.15 0.31 0.89
degree of correlation between v and e  p 0.00 0.40 —0.78 0.78
M A parameters 0 0.00 0.50 —0.98 0.98
parameters first stage income equation  § 0.00 0.50 —0.98 0.98

Notes: We set IG priors on the variance parameters o2 but in the top panel of this table we report details
on the implied prior distribution for the standard deviations o as these are easier to interpret. Likewise, in
the bottom panel of the table we report \/Vp instead of Vp.
For the degree of correlation p between v and &, an uninformative prior is chosen, i.e., p ~ N(0,0.4?).

A loose prior centered at zero is used for the parameters  on the instrumental variables used to proxy

E_1(AInY)).

4.3 Estimation results

We successively estimate five empirical models with increasing complexity. The fifth and last model
coincides with the empirical specification presented in section 3. This approach facilitates the investigation
of the impact of the features incorporated into the model on the obtained estimates for excess sensitivity
and its variation over time. It also allows us to compare our findings to some of the findings reported
in the literature. Hence, for each of the models, the importance of time variation in the ES parameter
is discussed as is the robustness of the results under different instrument sets. We end this section
with the presentation of the results for the parsimonious model that is selected by the stochastic model

specification search.

Instrument sets

Since anticipated income growth E;_;(AlnY;) is not observed, a set of instrumental variables Z; is used

to estimate it. As Campbell and Mankiw (1990) and Kiley (2010), among others, show that the choice

Table 1). We refer to Appendix A for details on the estimation of the MA process.
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of instruments can be critically important, the evaluation of the time variation in the ES parameter is
reported using three different instrument sets. A first instrument set, Z!, is based upon Campbell and
Mankiw (1990) and includes a constant, lags 1-4 of disposable income growth and consumption growth, a
lagged error correction term, i.e., log consumption minus log disposable income (see also Campbell, 1987)),
lags 1-2 of changes in the short term interest rate and lags 1-2 of changes in stock prices. To construct
the second instrument set, Z2, we add the first and second lag of the inflation rate to the instruments
contained in Z! (see Fuhrer, 2000; Kiley, 2010). Following Sommer (2007), the third instrument set Z2 is
constructed by adding lags 1-2 of the consumer sentiment index and of the change in the unemployment
rate. 1617

In column 2 of Table 2 we report the average explanatory power of the different instrument sets in

explaining AlnY;. For all instrument sets we find an average adjusted R? over all iterations of about

30%, which is very reasonable.

Model 1 (M1): no habits, no time-varying intercept, no M A components in the error term

We start by testing for time variation in the ES parameter using a basic model in which there is no time
variation in the intercept (o,, = 0), no dependency of aggregate consumption growth on its own past,
and no MA structure in the error term. Based on equation (20), the empirical specification for aggregate

consumption growth then becomes,

AlnCy = Poo + S1:Z:6 + pv] + pis,

where the data generating process for 1; is represented by equations (22) and (23).

We first estimate this model with the binary indicator ¢1 set to 1 to generate a posterior distribution
for the standard deviation (o) of the innovations to the ES parameter. If this distribution is bimodal,
with low or no probability mass at zero, this can be taken as a first indication of a time-varying ES. Figure
1 presents the resulting posterior distribution of ¢, as well as the mean of the posterior distribution of
the time-varying ES parameter and its 90 % highest posterior density (HPD) interval. When looking
at panel (a), we find clear-cut bimodality in the posterior distribution of the standard deviation of the
innovations to the ES parameter, pointing to an important amount of time variation. Panel (b) further

shows the resulting time variation in ES, which starts at a value close to 0.4 in 1953 and increases to

16Note that our results are very similar when we use lags 1 to 4 for the external instruments (i.e., for the instruments not
obtained from disposable income and consumption) instead of lags 1 and 2.

17Concerning the choice of lags, note that, in general, the presence of autocorrelation of the MA form in the error term
e necessitates the use of instruments that are appropriately lagged, i.e., depending on the order of the MA component in
pt. Our empirical approach, however, explicitly takes into account and controls for the MA terms so that we do not face
this issue.

18



around 0.5 in the early 1970s after which it keeps on decreasing until it lies around 0.25 in 2014.

Figure 1: Stochastic model selection and time-varying parameters (binary indicators set to 1) in M1
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Note: Figures are presented for the results using instrument set Z3 but are similar when using instrument sets Z' and Z2

As a more formal test for time variation, we next sample the stochastic binary indicator ¢1 together
with the other parameters of the model. Table 2 reports the posterior probabilities that the binary
indicators ¢; attached to the time-varying parameters (;; are equal to one for each of the five different
models that we estimate and for the three instrument sets discussed above. The posterior probabilities
for the binary indicators are calculated as the average selection frequencies over all iterations of the Gibbs
sampler. In the baseline scenario, we assign a 0.5 prior probability to each of the binary indicators being
one. Results for this baseline scenario are presented in the upper part of Table 2. As a sensitivity control,
we re-estimate the different models with the prior inclusion probabilities set to 0.1 and 0.9 respectively.
The resulting posterior probabilities are reported in the middle and lower part of Table 2.

For M1, the results in the baseline scenario (p = 0.5) show that when using instrument sets 72
and Z3 the inclusion probability of a time-varying ES parameter is 0.27. For instrument set Z' it is
somewhat lower. Onl