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Abstract

We use high-frequency electricity consumption data from a natural experiment in Flanders to study the
interacting effects of real-time electricity pricing, which encourages consumption during periods of low
generation cost, and peak demand charges, which discourage simultaneous demand that stresses local grids.
Our matched difference-in-differences estimates show that real-time pricing increases household peak de-
mand, while peak demand charges reduce it by 1–3% on average. Reductions are largest among electric
vehicle owners, who shift up to 0.75 kWh per day to nighttime hours. These household-level responses
result in lower coincident grid-level demand peaks, reducing the need for costly grid reinforcement.
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1. Introduction

The shift toward a zero-carbon energy system is transforming how electricity is priced and consumed. To
manage rising infrastructure and generation costs, many regions are moving beyond static tariffs toward
pricing schemes that better reflect the underlying cost structure of supply. For energy production, real-time
electricity prices are being introduced. By varying prices over time based on actual energy market condi-
tions, consumers are incentivized to align their demand with times of low cost of supply (Burkhardt et al.,
2023; Harding and Sexton, 2017; Jessoe and Rapson, 2014; Borenstein, 2005). However, distribution grids
face an additional constraint: the need to limit coincident peak demand. Increasing electrification and elec-
tric vehicle (EV) ownership creates higher consumption peaks than traditional appliances. In Europe, the
expected number of EVs is expected to grow from 3.2 million in 2023 to 30 million by 2030, (ACER, 2024;
Eurelectric, 2024). This increases the risk of overloading transformers, feeders, and distribution substations,
and accelerates the need for costly grid investments (Bailey et al., 2025b; Becker et al., 2025; Powell et al.,
2022). Real-time pricing (RTP) and time-of-use tariffs may further inadvertently increase peaks on local
grids by encouraging consumption to be concentrated in low-cost hours (Bailey et al., 2025b).

Because of these developments, annual investments in grid infrastructure are projected to reach $300 billion
(US) and€100 billion (Europe) by 2050 (ACER, 2024; US Energy Information Administration, 2023), with
two-thirds expected to go to local distribution networks. In Europe, for instance, the number of required
transformer stations is expected to double and the distribution lines are required to grow with 70% between
2021 and 2050 (Eurelectric, 2024). Given the scale of these economically significant investments, iden-
tifying ways to mitigate future costs is essential, requiring charges that are increasingly forward-looking
(signalling future investment costs), rather than backward looking (recovering historical costs) (Schittekatte
et al., 2023). The literature explores several solutions, including time-of-use pricing (Bernard et al., 2024;
Bailey et al., 2025a; Blonz et al., 2025), critical peak pricing (Garnache et al., 2025), and managed charging
(Bailey et al., 2025b). In this context, we focus on peak demand charges as a tariff designed to encourage
consumers to reduce their demand during peak times and distribute their consumption more evenly across
the day.

In this study, we examine the combined effects of the introduction of peak demand charges and real-time
electricity pricing on residential customers. While peak demand charges and real-time pricing coexist within
the retail electricity bill, they have distinct effects on the consumption profile of electricity consumers.
Particularly, real-time electricity prices follow the marginal cost of producing electricity and incentivize
consumers to shift their demand to the lowest-price hour. In contrast, peak demand charges do the exact
opposite, effectively reducing the marginal cost of electricity consumption to zero in all but the highest-
demand hour, thus encouraging consumers to flatten their demand profile entirely. This study considers
both components: real-time prices for the electricity production cost component and peak demand charges
to alleviate local distribution network capacity constraints. The possible effects of both real-time prices
and peak demand charges are expected to increase (Borenstein and Holland, 2005; Borenstein, 2005), as
the increasing expansion of heat pumps (Blonz et al., 2025; Bernard et al., 2024) and EVs (Bailey et al.,
2025a), whose demand is increasingly automated (Bollinger and Hartmann, 2020; Harding and Lamarche,
2016), contribute to the growing elasticity of demand.

With these insights, this paper evaluates the impact of both peak demand charges and RTP on electricity
consumption in the region of Flanders (Belgium), using a unique high-frequency panel of 15-minute level
consumption data of over 42,000 residential low-voltage consumers between 2022 and 2024. Both the peak
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demand charge and the RTP were introduced in this period. Firstly, as of January 2022, every consumer had
the option to switch from a flat energy price contract to a RTP one. Secondly, as of January 2023, the volu-
metric tariff for network costs was partially replaced by a peak demand charge that is based on a consumer’s
monthly 15-minute peak demand, with a minimum of 2.5 kW. Consumers pay between €35.18/kW-year
and €50.05/kW-year in 2023 and from €35.12/kW-year to €53.39/kW-year in 2024. As these energy and
network prices collectively contribute to the total retail price, they each affect the consumers’ electricity
load profiles, albeit in distinctive ways, as previously discussed.

We provide empirical evidence on the causal impacts of peak demand charges and RTP on household elec-
tricity consumption behavior, focusing on monthly peak demand at the individual and grid level. Exploiting
a natural experiment in which a subset of households, protected consumers, were exempt from the newly in-
troduced peak demand tariff, we identify the causal effect of peak pricing using a difference-in-differences
(DID) strategy. To account for differences in pre-treatment load profiles and observable characteristics
between treated and control groups, we estimate a two-way fixed effects DID model with covariates, an
inverse probability weighted DID estimator Abadie (2005), and a doubly robust estimator DID Sant’Anna
and Zhao (2020). Across specifications, we find that the introduction of peak demand charges reduces
household monthly peak demand by 50 to 120 watts, equivalent to approximately 1–3 percent of the aver-
age pre-treatment peak of 4,000 watts. This effect corresponds to switching off roughly ten 10 watt LED
light bulbs during peak load hours.

To estimate the effect of real-time pricing, we exploit the staggered rollout of RTP contracts across house-
holds. Using a similar DID framework adjusted for variation in treatment timing, we find that RTP increases
monthly peak demand by 30 to 120 watts per household. These increases are concentrated in periods when
real-time prices are low, suggesting households respond by shifting or adding consumption to take advan-
tage of lower marginal prices.

Event-study estimates reveal heterogeneous and time-varying treatment effects. The effect of RTP is most
pronounced during summer months, when households respond to low real-time prices by increasing usage
during low-cost periods. In contrast, the effect of peak demand charges shows little seasonal variation but is
strongly moderated by low-carbon technology adoption. Households with EVs exhibit a sustained reduction
in peak demand by shifting charging to nighttime or hours of high solar production. By contrast, households
without low-carbon technologies relying solely on manual demand response display diminishing respon-
siveness over time, with peak load gradually reverting to pre-treatment levels five months post-introduction.

To assess how household-level price responses scale to the level of the electricity distribution grid, we con-
struct synthetic distribution circuit-level data by aggregating smart meter readings to randomly assigned
circuits of 10 or 25 households, simulating local distribution feeders and cables, following an approach
inspired by Bailey et al. (2025b). We simulate varying levels of EV adoption across these circuits to cap-
ture different stages of transport electrification. Our findings reveal that peak demand charges significantly
reduce coincident peak load at the grid level, particularly in highly electrified circuits. In circuits with
100% EV adoption, we estimate that monthly distribution circuit-level peak demand declines by up to 6.8%
for 10-household groups (1.8 kW) and 6.0% for 25-household groups (3.1 kW) following the introduction
of peak demand charges. This grid-level effect arises because EV charging tends to occur simultaneously
across households, often in the early evening, so reductions in individual peaks aggregate into meaningful
declines in coincident circuit-level peak demand. Our findings suggest that peak demand charges can be an
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effective tool to reduce local grid congestion, supporting recent calls in the literature for tariff structures that
address rising peak loads from electrification and help avoid costly grid reinforcement (Bailey et al., 2025b;
Becker et al., 2025; Powell et al., 2022).

Related literature and contributions Our paper contributes to several strands of the literature. First, we
contribute to the literature on household electricity demand response by analyzing how multiple pricing
schemes, specifically real-time pricing and capacity-based peak demand charges, jointly affect household
behavior. While earlier observational studies have estimated household price elasticities under RTP (Fabra
et al., 2021) and time-of-use (TOU) tariffs (Enrich et al., 2024), others have relied on experimental designs
to evaluate TOU (Bollinger and Hartmann, 2020; Blonz et al., 2025), critical-peak pricing (CPP) (Jessoe
and Rapson, 2014; Garnache et al., 2025), and RTP interventions (Allcott, 2011; Hofmann and Lindberg,
2024). We extend this literature in four key ways.

First, our study is among the first to examine the interaction between pricing schemes with distinct incentive
structures. We show that combining RTP and peak demand charges can either amplify or attenuate their
individual effects, depending on household characteristics and prevailing market prices. Second, we present
one of the first large-scale empirical evaluations of peak demand charges in a European context. On average,
we find that the introduction of a capacity-based tariff leads to a monthly peak reduction of between 50-120
watts per household, equivalent to a 1–3% decline relative to pre-treatment levels. This complements ear-
lier, smaller-scale work such as Stokke et al. (2010), who found peak reductions of up to 12% in a sample
of Norwegian households exposed to seasonal peak charges based on winter weekday consumption. Third,
we provide an extensive heterogeneity analysis of household responses to the compulsory peak demand
charge. While prior work has examined the effects of solar PV adoption (Astier et al., 2023; Gillingham
et al., 2025; Qiu et al., 2019), in-home EV charging and EV-specific TOU tariffs (Qiu et al., 2022; La Nauze
et al., 2024), and smart heating incentives (Blonz et al., 2025), as well as the joint adoption of EVs and
solar panels (Liang et al., 2022), our results document substantial heterogeneity in responsiveness to peak
pricing. In particular, households owning EVs exhibit peak reductions up to six times larger than the aver-
age. Finally, a related branch of the literature examines if households respond to average or marginal price
incentives (Ito, 2014; Shaffer, 2020; Ito and Zhang, 2025). Peak demand charges introduce a non-linear
and cost structure, with marginal cost equal to zero in all but the highest-demand hour. Marginal price
incentives are prevalent under real-time pricing as well, where the marginal prices vary daily. Our analysis
briefly contributes to this literature by showing that households can respond to marginal pricing schemes:
in response to real-time prices, households increase consumption during low-price summer afternoon hours
and winter night hours. Our findings do not provide a conclusive answer to the debate around marginal
and average pricing. We complement, rather than contradict, this existing literature by highlighting some
conditions under which marginal pricing may elicit a demand response.

Secondly, we link our results to an underexplored challenge for demand-side flexibility and electrification:
capacity constraints in local distribution networks. As indicated by Bailey et al. (2025b), existing literature
primarily focuses on the electricity production cost component of the overall electricity bill (e.g. Allcott
(2011); Fabra et al. (2021); Burkhardt et al. (2023)). Although important, these largely neglect the role of
electricity distribution. Electricity distribution and local distribution circuits, however, are likely to be the
earliest constraint on residential electrification and demand response (Bailey et al., 2025b). The needs to
expand local distribution networks are particularly acute in circuits with high EV penetration, where simul-
taneous fast charging causes sharper consumption peaks than traditional appliances, thereby accelerating

4



the need for upgrades (Becker et al., 2025; Powell et al., 2022). Moreover, well-intended time-of-use tariffs
can even exacerbate the problem by inducing new and larger “shadow peaks”, particularly in highly electri-
fied neighborhoods (Bailey et al., 2025a,b; Turk et al., 2025). A similar argument could hold for real-time
electricity pricing, as these incentivize a coincident shift of electricity consumption towards periods with
low cost of generation. Our findings indicate the introduction of the peak demand charge scheme can al-
leviate these concerns and lead to a statistically and economically significant reduction in the coincident
monthly peak in distribution circuits. This result holds, and is even stronger, in distribution circuits with
high EV penetration, for which the introduction of peak demand charges can create reductions of up to 6%
of pre-treatment circuit level peaks.

Thirdly, we provide an extensive discussion of the behavioral mechanisms underlying demand response.
The literature identifies several factors that either hinder or enhance residential electricity flexibility. Mech-
anisms that impede behavioral responses include lack of awareness of the tariff, information and adaptation
costs (Fabra et al., 2021), and response fatigue (Hofmann and Lindberg, 2024). By examining the dynamics
of demand response over time, our analysis uncovers response fatigue, with the effects of peak demand
charges gradually decaying away over time, especially for households without low-carbon technologies.
Conversely, the literature also discusses two factors that enhance demand response to pricing: the availabil-
ity of information (Jessoe and Rapson, 2014) and the role of automation (Bollinger and Hartmann, 2020;
Blonz et al., 2025). We complement this work by linking the mechanisms underlying the demand response
to the incentives provided by peak demand charges and RTP. We show that the largest overall reduction of
monthly peak electricity demand is obtained by households adopting low-carbon technologies and empha-
size EV charging as a largely automated process driving demand flexibility.

The remainder of this paper is structured as follows. Section 2 provides a stylized microeconomic model of
electricity consumption, aiming to clarify the incentives behind peak demand charges and real-time pricing.
Section 3 introduces our institutional setting and data. In Section 4 we introduce our research design and
empirical strategy. Section 5 presents the main results and extensions. Finally, Section 6 concludes.

2. Theoretical Predictions

We develop a stylized microeconomic model of electricity consumption over two periods to illustrate the
effects of peak-demand charges (PDC) and real-time pricing (RTP), extending the model of Berg and Sav-
vides (1983). The two periods, kWh1 and kWh2, can, for instance, represent electricity consumption of an
individual consumer during peak and off-peak hours, respectively. We start from a baseline scenario with
static pricing. In this baseline, the consumer faces a budget constraint determined by a uniform electricity
price po for both periods, consisting of an energy component, volumetric network tariffs, levies and taxes,
and total income I. This is represented as BC1:

BC1 : po × kWh1 + po × kWh2 = I (1)

We assume the consumer maximizes a standard CES utility function and has a preference for kWh1, i.e.,
peak-period consumption. At the initial optimum, depicted in Figure 1, peak electricity consumption kWh∗1
exceeds off-peak consumption kWh∗2. Now, consider the introduction of a peak-demand charge scheme,
fully or partly replacing a volumetric distribution network tariff. This scheme has two key features. First,
a surcharge pp is applied to the period with the highest electricity consumption. Second, the per-unit
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electricity price in both periods is reduced from po to the rate pn, as we impose the introduction of a peak
demand charge to be budget-neutral. The new budget constraint BC2 is:

BC2 : pn × kWh1 + pn × kWh2 + pp{1(kWh1 ≥ kWh2)kWh1 + 1(kWh1 < kWh2)kWh2}︸                                                                  ︷︷                                                                  ︸
PDC

= I (2)

Figure 1 illustrates the new kinked budget curve BC2 and the corresponding shift in the consumer’s opti-
mum from (kWh∗1, kWh∗2) to (kWh∗∗1 , kWh∗∗2 ) following the introduction of the peak demand charge. In our
stylized model, the effects of the policy are twofold. First, as shown in the left panel, the PDC incentivizes
the consumer to reduce peak consumption (kWh1) by shifting load to the off-peak period (kWh2). Second, as
represented in the right panel, the impact of the PDC is stronger when the consumer’s CES utility function
has a higher elasticity of substitution. This reflects greater residential flexibility: more elastic consumers
are more responsive to changes in relative prices and can more easily substitute between time periods.

If, in addition to the peak-demand charge, real-time prices are introduced to reflect variation in the marginal
cost of generating electricity, the per-unit electricity price in both periods pn becomes period-dependent,
changing the budget constraint to BC3 :

BC3 : p1︸︷︷︸
RTP

×kWh1 + p2︸︷︷︸
RTP

×kWh2 + pp{1(kWh1 ≥ kWh2)kWh1 + 1(kWh1 < kWh2)kWh2}︸                                                                  ︷︷                                                                  ︸
PDC

= I (3)

Here, p1 and p2 represent the real-time price for the peak and off-peak periods, respectively. Figure 2 il-
lustrates the possible effects the introduction of real-time pricing can have on peak and off-peak electricity
demand. On the one hand, as represented in the left panel, real-time prices can reinforce the incentive given
by peak demand charges. This is the case if real-time electricity prices are high in periods of peak electricity
demand, or, in our model, if p1 is high 1. In the extreme case, though, an offsetting very low value of p2, the
off-peak real-time electricity price could theoretically generate shadow peaks (Bailey et al., 2025b), with
electricity demand peaking in period 2. On the other hand, as represented in the right panel, real-time prices
can also counteract peak demand charges. This is the case if electricity prices are low in periods where the
individual household has its peak electricity demand, or, in our model, if p1 is low.

In summary, our model provides several key insights. First, peak demand charges reduce peak electricity
consumption without incentivizing shadow peaks. Second, the magnitude of the demand response is influ-
enced by the elasticity of substitution in the CES utility function, which serves as a proxy for household
flexibility. Finally, the introduction of real-time pricing in conjunction with peak demand charges can either
reinforce or counteract the effects of peak-demand charges, depending on the correlation between system
level energy prices (represented by p1 and p2) and local distribution network tariffs (represented by pp).

1At the transmission system level, real-time electricity prices typically used to be high in periods of peak electricity demand.
However, renewables generation has an increasingly important impact on prices. As shown in Figure A.3 in Appendix A.1, prices
tend to fall when solar and wind generation is high: the correlation between the hourly day-ahead price (€/MWh) and hourly total
renewables generation (MWh) equalled -0.53 in 2023 and -0.56 in 2024. At the household or distribution level, peak electricity
demand can occur in periods with high renewable generation, and low real-time electricity prices. This decoupling implies that
real-time price signals may no longer align with local demand stress.
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(a) Introduction of peak demand charges reduces peak consumption and in-
creases off-peak consumption
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(b) Consumption changes are larger when the elasticity of substitution in-
creases

Figure 1: Conceptual Framework: Household electricity consumption under peak demand charges

Notes: Assume household can consume electricity in two periods 1, 2: kWh1 and kWh2. These periods can refer to system peak versus off-peak
hours. Budget constraint BC1 applies under a static flat-rate tariff. BC2 reduces overall static flat-rate tariff and introduces a peak-demand
charge that applies to all consumption in the most-used period. The left panel illustrates a household with lower substitution flexibility; the
right panel illustrates a household that adjusts more to the price structure because of higher substitution flexibility.
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BC2
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(a) Reinforcing effect of RTP on peak demand
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kWh∗∗1

kWh∗∗2

kWh∗∗∗1

kWh∗∗∗2

(b) Counteracting effect of RTP on peak demand

Figure 2: Conceptual Framework: Household electricity consumption under peak demand charges and real-time pricing

Notes: Assume household can consume electricity in two periods 1, 2: kWh1 and kWh2. These periods can refer to system peak versus off-peak
hours. Budget constraint BC1 applies under a static flat-rate tariff. BC2 reduces overall static flat-rate tariff and introduces a peak-demand
charge that applies to all consumption in the most-used period. BC3 introduces, on top of the peak-demand charge, real-time price variation.
The left panel illustrates a setup in which real-time pricing reinforces the effect of peak demand charges; the right panel illustrates a setup in
which real-time pricing counteracts the effect of peak demand charges
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3. Data

As described in the model in previous section, the joint introduction of peak demand charges and real-
time pricing affects peak electricity demand. The model also emphasizes heterogeneous effects, and the
combination of incentives leads to an overall effect on peak electricity demand that is difficult to pin down
ex ante. This paper, therefore, aims to evaluate the empirical impact of both peak demand charges and real-
time pricing on electricity consumption, using as a case study the region of Flanders and a high-frequency
panel of 15-minute level consumption data of 42,000 residential low-voltage consumers between 2022 and
2024. This section introduces in more detail our institutional setting and data.

3.1. Institutional Setting

As of January 2022, all residential consumers in Flanders were given the voluntary option to switch from
a flat-rate electricity contract, where the electricity price remains constant throughout the day, to a real-
time pricing contract. Under real-time pricing, the electricity price changes every hour and is directly
linked to the Belgian day-ahead wholesale electricity market. These prices can vary substantially: in 2023,
the month-by-hour average ranged from below €20/MWh during periods of high solar generation to over
€180/MWh during winter evening peak hours or tight supply conditions, as described in Appendix Figure
A.1. Secondly, as of January 2023, the grid charge design changed. The volumetric kWh-based tariff for
network costs was replaced by a tariff for network costs based on a combination of a volumetric kWh-based
tariff, representing 20% of overall grid charges, and a kW-based peak demand charge, representing the
other 80% of overall grid charges. The volumetric kWh-based tariff was reduced, such that the total grid
charge reform was budget-neutral. The kW-based peak demand charge is based on a consumer’s monthly
15-minute peak demand, which is computed based on the 15-minute interval with the highest electricity
consumption and takes a minimum value of 2.5 kW. The yearly average of the twelve 15-minute monthly
peak demands is multiplied by the per kW-price, ranging from€35.18/kW-year to€50.05/kW-year in 2023
and from €35.12/kW-year to €53.39/kW-year in 2024. As these energy and network prices collectively
contribute to the total retail price, they each affect the consumers’ electricity load profiles and monthly
peaks, albeit in distinctive ways.

3.2. Data sources and sample construction

We use high-frequency smart meter data on household electricity consumption as our primary data source.
The dataset comprises 15-minute interval electricity usage records for over 50,000 households before pre-
processing. Data comes from Flanders, Belgium, spanning the period from January 2022 to December
2024. The data were provided by Fluvius, the Flemish distribution system operator (DSO).

Prior to analysis, we applied a series of preprocessing steps. For the main analysis, we restricted the sample
to households with at least one full year of data preceding the introduction of the kW-based peak demand
charge, resulting in a balanced panel starting in January 2022. To mitigate the influence of outliers, we
truncated monthly grid withdrawals (in kWh), monthly peak demand (in kW), and installed solar capacity
(in kW) at the 99th percentile. The final sample consists of more than 1.5 million household-month observa-
tions across approximately 42,000 households during the 2022–2024 period. For the additional analysis on
real-time pricing, we then add approximately 15,000 households to our sample that have an active real-time
pricing contract somewhere in 2023 and 2024. We observe these households both before and after switch-
ing to a real-time pricing contract. However, we do not always observe these households for the complete
three year period from 2022 to 2024, which is the reason they are not always included in the main analysis
of the peak demand charge. We apply the same preprocessing for this additional sample of households on
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real-time pricing.

In addition to consumption data, we observe detailed metadata on the adoption of low-carbon technologies
at the household level. These include heat pumps, electric vehicles, solar photovoltaic systems, and battery
energy storage. Solar photovoltaic systems and battery energy storage are identified by the DSO using ad-
ministrative records, based on the mandatory reporting of these systems. Electric vehicle and heat pump
adoption is identified by the DSO through a combination of administrative records, based on the manda-
tory reporting of electric vehicle charging stations and heat pumps to the distribution system operator, and
machine learning–based classification models. These machine learning-based classification models take
households with electric vehicles and heat pumps, identified through mandatory reporting, as the training
set. Using this approach, the DSO also identifies the month of installation of the low-carbon technologies.

In addition to high-frequency consumption data, we observe rich metadata on the adoption of low-carbon
technologies at the household level, including heat pumps, electric vehicles, solar photovoltaic systems,
and battery energy storage. The distribution system operator (DSO) identifies solar PV systems and bat-
teries using administrative records, drawing on mandatory reporting requirements for these technologies.
For electric vehicles and heat pumps, identification combines administrative data, based on the required
registration of charging stations and heat pumps, with machine learning–based classification models. These
models are trained on households with confirmed technology adoption (via reporting) and used to predict
adoption status for the all other households. This approach also enables the DSO to infer the month of
installation for each low-carbon technology.

Finally, we obtained further contract-level information for all households. First, we identify a subset of
households designated as protected customers, who were exempted from the peak demand charge imple-
mented under the otherwise mandatory new tariff. Second, we observe whether a household is voluntarily
enrolled in a real-time pricing contract, including the date of real-time pricing contract start. The majority
of real-time pricing households adopted this contract type only after the introduction of the peak demand
charges on January 1st, 2023.

3.3. Sample description
Metering data Our analysis of peak demand charges relies on smart meter data recorded at 15-minute inter-
vals for a balanced panel of 42,077 households over the 2022–2024 period. For each household-month, we
construct several key measures of electricity consumption and injection. Monthly peak demand is defined
as the highest load observed within any single 15-minute interval during the month, measured in watts (W).
In addition to monthly peak withdrawal, we aggregate grid withdrawals and grid injections over the month
to obtain household-level measures of total monthly withdrawals (kWh) and total monthly injection (kWh).

Table 1 summarizes the distribution of these monthly variables across the sample. The average monthly peak
demand is approximately 4.1 kW, with an interquartile range (IQR) from roughly 3.0 kW to 5.0 kW. When
broken down by year, monthly peak withdrawals are reduced across 2022 and 2023, but slightly increase
in 2024. Total grid withdrawals average 256 kWh per month, with slightly higher withdrawals observed in
2024 compared to earlier years. Monthly grid injections, which occur through solar photovoltaic generation,
average 163 kWh, though the distribution is highly skewed: the median injection is significantly lower,
representing the share of households with zero or minimal injection. This sample structure reflects the
characteristics of smart meter deployment, which prioritized households with solar PV and battery owners.
Therefore, grid injections are a prominent feature of the dataset, and the distribution of withdrawals reflects
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the combined effects of total consumption, self-consumption from PV production, and injection into the
electricity grid.

Table 1: Descriptive statistics: smart meter data and sample composition

Mean Std 25% 50% 75%
Monthly peak withdrawal [W] 4146 1814 2988 3884 4959
Monthly peak withdrawal (2022) [W] 4142 1745 3040 3920 4948
Monthly peak withdrawal (2023) [W] 4048 1747 2925 3801 4852
Monthly peak withdrawal (2024) [W] 4249 1936 3001 3931 5080
Grid withdrawals per month [kWh] 256 191 131 210 327
Grid withdrawals per month (2022) [kWh] 251 182 132 210 320
Grid withdrawals per month (2023) [kWh] 249 184 127 205 320
Grid withdrawals per month (2024) [kWh] 269 205 133 217 344
Grid injection per month [kWh] 163 206 0 73 274
Grid injection per month (2022) [kWh] 175 222 0 71 304
Grid injection per month (2023) [kWh] 165 209 0 75 274
Grid injection per month (2024) [kWh] 149 184 0 72 249
PV (01-01-2023) 0.69 0.46 0.00 1.00 1.00
Battery (01-01-2023) 0.16 0.37 0.00 0.00 0.00
EV (01-01-2023) 0.05 0.21 0.00 0.00 0.00
HP (01-01-2023) 0.17 0.38 0.00 0.00 0.00
Average solar capacity (2023) [kW] 4.26 1.74 3.00 4.00 5.00
Average battery size (2023) [kWh] 8.50 3.19 5.12 9.60 10.00
Average battery capacity (2023) [kVA] 4.48 1.66 3.00 4.00 5.00

Note: Descriptive statistics for the smart meter data and sample composition for
households included in the main analysis. This table reports household-month statis-
tics. There are 1,514,722 observations for 42077 households, 40630 treated house-
holds and 1717 control households.

Low-carbon technology adoption Table 1 summarizes the adoption of low-carbon technologies within the
sample as of January 1, 2023. Administrative records indicate that 69 percent of households had installed
solar photovoltaic systems, with an average installed capacity of 4.26 kW. Sixteen percent of households
had adopted battery storage, with an average usable storage capacity of 8.50 kWh and a corresponding
average power capacity of 4.48 kVA. Ownership of electric vehicles and heat pumps is identified using a
combination of administrative sources and machine learning classification algorithms trained on household-
level smart meter data. Based on this approach, 5 percent of households are identified as electric vehicle
owners and 17 percent as heat pump owners.

Real-time pricing sample In addition to the main balanced panel of 42,077 households, we construct a
supplementary sample of 15,284 households for the analysis of real-time pricing. For these households,
smart meter data become available on a staggered basis starting in early 2022. As a result, this sample is
unbalanced, but data is typically available both before and after the real-time pricing enrollment. Descriptive
statistics for the real-time pricing sample are reported in Appendix Table A.3. Relative to the main sample,
households in the real-time pricing sample exhibit higher rates of battery and electric vehicle ownership,
while solar photovoltaic adoption remains broadly similar and heat pump adoption rates are slightly lower.
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3.4. Descriptive evidence

We begin by providing descriptive evidence on how households’ monthly peak electricity demand evolves
following the introduction of peak demand charges and enrollment in real-time pricing. Figures 3 and 4
illustrate the distribution of raw monthly peak electricity demand across different periods and subsamples.
In each figure, dashed lines correspond to the distribution prior to the introduction of peak demand charges
(Figure 3) or enrollment in real-time pricing (Figure 4), while solid lines depict the distribution afterward.

The top-left panel of Figure 3 plots the distribution for the full balanced sample. Following the imple-
mentation of the kW-based peak demand tariff, the distribution exhibits a slight leftward shift, suggesting
a reduction in monthly peak demand. This shift is consistent with the patterns observed in Table 1, where
mean monthly peak demand declines in the period following the reform. Figure 3 further suggests het-
erogeneity in the response across households. The top-right panel, focusing on households with an electric
vehicle, reveals a more pronounced shift: the frequency of peaks above 10 kW diminishes significantly, with
the probability mass moving toward the 5–10 kW range. While not expressing any causality, this pattern
is consistent with households moderating their peak usage, possibly by shifting high-load activities such as
electric vehicle charging or by reducing highest loads by adapting charging power. The lower two panels
show the results for heat pumps and households without low-carbon technologies. Households with heat
pumps typically have lower peaks than households with electric vehicles, and the shift in the peak distribu-
tion after peak demand charges is also less pronounced.

Figure 4 shows a markedly different pattern for households that adopt real-time pricing. Here, the distribu-
tion of monthly peak demand shifts to the right following adoption, indicating higher levels of peak usage.
In addition to changes in the magnitude of monthly peaks, real-time pricing appears to influence the timing
of peak demand events, as shown in Figures 5a and 5b. After adoption, households are less likely to reach
their monthly peak during traditional evening system peak hours and more likely to do so during nighttime
and afternoon periods, times when electricity prices are typically lower in the day-ahead market (Figure
A.1).
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Figure 3: Kernel density plot for the distribution of monthly peaks before and after the introduction of peak demand charges for
the full sample and three constituent subsamples. Before PDC start refers to the year 2022, when mandatory peak demand charges
were not active. After PDC start refers to the years 2023 and 2024, after the mandatory introduction of peak demand charges
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Figure 4: Kernel density plot for the distribution of monthly peaks before and after the voluntary uptake of a real-time pricing
contract. Before RTP start refers to the monthly peak distribution of households that will adopt real-time pricing, but to observations
prior to this adoption. After RTP start refers to households that have adopted real-time pricing
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Figure 5: Kernel density plots for the distribution of monthly peak hours before and after the voluntary uptake of a real-time pricing
contract.
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4. Empirical Strategy

In this section, we describe our empirical strategy to estimate the causal effect of peak demand charges
and real-time pricing on residential peak electricity demand. First, we estimate the average treatment effect
for the treated (ATT) at the individual household level, for both treatments separately. Next, we turn to
the aggregate impact of the treatments at the level of the local distribution grid. Finally, we explore the
mechanisms underlying the overall treatment effects.

4.1. Monthly peak: Differences in Differences

Difference-in-Differences: Peak Demand Charges To identify the treatment effect of the introduction
of the peak demand charge scheme, we exploit a large-scale natural experiment in Flanders. Under the
policy change, a subset of the population, known as protected customers, was exempted from the newly
introduced peak demand charge, which is otherwise mandatory. Instead of facing the newly introduced
peak demand charge based on kilowatt (kW) peak usage, these protected customers continue to pay a fixed
volumetric kilowatt-hour (kWh) rate. Eligibility status for being a protected customer is determined by pre-
defined social criteria, including households with at least one chronically ill or disabled member receiving
social assistance, recipients of unemployment benefits, low-income retirees, and residents of social housing.

Exploiting this natural experiment, we implement a difference-in-differences (DiD) design to estimate the
treatment effect of peak demand charges. We compare the relative evolution of monthly peaks between
households subject to the peak demand charges (treatment group) and protected customers who remain on
the fixed volumetric kilowatt-hour (kWh). Define Peakit as the monthly peak of household i in month-
of-sample t. Furthermore, let 1{Yeart ≥ 2023} be a dummy variable that takes a value of one after the
introduction of peak demand charges on January 1st, 2023, and define 1{Protectedi = 0} an indicator
variable equal to 1 if a household is in the treated group. We estimate the following regression model:

Peakit = β0 + β1 × 1{Yeart ≥ 2023} × 1{Protectedi = 0} + X′itδ + λi + τt + εit (4)

The term λi captures household fixed effects, τt accounts for month-of-sample fixed effects and εit represents
the idiosyncratic error term, clustered at the household level. The main coeffient of interest, β1, identifies
the average treatment effect on the treated (ATT).

Identification issues: Peak Demand Charges If protected consumers are not an appropriate control group
for the treated households, pre-treatment characteristics between the treated and control group might differ,
and the parallel trends assumption underlying the difference-in-differences model might not hold uncondi-
tionally. To address these potential violations, we adopt multiple variations of a conditional difference-in-
differences model.

First, as shown in Equation 4 we directly add a set of control variables Xit to our baseline TWFE difference-
in-differences model to improve on covariate-balance between the treated and control group. More specif-
ically, we include monthly electricity grid withdrawals (kWh), monthly electricity injection (kWh), solar
capacity (kW), storage capacity (kW), and ownership of heat pumps and electric vehicles as household-
level control variables. Temperature and electricity market-price effects do not vary between households
and are thus captured in the month-of-sample fixed effects. Second, we implement the inverse-probability
weighted (IPW) difference-in-differences estimator of Abadie (2005) with stabilised weights. This estima-
tor estimates the propensity score of being treated, based on the same set of household-level covariates,
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and then computes a weighted mean of the outcome variable, where the weights are equal to the inverse of
the propensity scores. Finally, we adopt the doubly-robust difference-in-differences estimator proposed by
Sant’Anna and Zhao (2020). This method combines propensity score weighting with outcome regression,
providing an unbiased estimate of the average treatment effect on the treated if at least one of the models is
correctly specified. Again, the same set of covariates is used.

Difference-in-Differences: Real-time pricing For real-time pricing, we pursue a similar strategy and com-
pare households who enrolled for real-time pricing (treatment group) with customers who did not adopt
real-time pricing (never-takers). Let 1{RTPit = 1} be a binary variable taking a value of one if a household
is currently on a real-time pricing contract. We estimate the following regression model:

Peakit = α0 + α1 × 1{RTPit = 1} + X′itδ + λi + τt + εit (5)

The term α1 is our coefficient of interest. The terms λi, τt and εit again represent household fixed-effects,
month-of-sample fixed effects and the idiosyncratic error term. The control variables are the same as before.

Identification issues: Real-Time Pricing Identifying the effect of real-time pricing from observational
data suffers from at least two problems. First, households self-select into real-time prices. We aim to ac-
commodate for this self selection bias by again including the control variables used for the identification
of peak demand charges. Second, Equation 5 would typically be estimated using a TWFE difference-
in-differences model. Yet, it is shown in de Chaisemartin and D’Haultfœuille (2020), Goodman-Bacon
(2021) and Borusyak et al. (2024) that the TWFE difference-in-differences model delivers inconsistent es-
timates for the ATT if the treatment follows a staggered adoption or the treatment effect is heterogeneous
across treatment groups or time. That is, because a TWFE model is a weighted average of all possible
2 × 2 difference-in-differences comparisons, it incorporates both “clean” comparisons between treated and
not-yet-treated units and “forbidden” comparisons between units that are both already-treated, leading to
negative weighting issues and inconsistent estimation of the ATT if treatment effects are heterogeneous
across treatment groups or time (Roth et al., 2023). We aim to overcome these issues by estimating Equa-
tion 5 using recently introduced robust estimators. More specifically, we use the estimators introduced in,
Callaway and Sant’Anna (2021). This procedure relies on a generalization of the parallel trends assumption
to the setup of staggered adoption and isolates “clean” comparisons to produce consistent estimates of the
ATT, using as building blocks doubly robust 2 × 2 difference-in-differences estimators.

Dynamic treatment effects To explore the dynamics of treatment effects we also estimate fully dynamic
versions of our (robust) DiD models. More specifically, we estimate the following specifications:

Peakit = β0 +

24∑
k=−12
k,−1

(βk × 1{EventTimet = k} × 1{Protectedi = 0}) + X′itδ + λi + τt + εit (6)

Peakit = α0 +

12∑
moy=1

(
αmoy × 1{RTPit = 1}

)
+ X′itδ + λi + τt + εit, (7)

For peak demand charges, we specify a fully dynamic specification in which we obtain a month-of-sample
specific treatment effect estimates. As in the baseline DiD approach, we augment this model in three ways
to account for covariate imbalance. First, we directly add a set of control variables to our baseline event-
study. Second and third, we implement dynamic versions of the IPW DiD estimator (Abadie, 2005) and the
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doubly-robust DiD estimator (Sant’Anna and Zhao, 2020).

To estimate the dynamic effect of real-time pricing, we continue with our difference-in-differences spec-
ification with staggered treatment timing, following the framework of Callaway and Sant’Anna (2021).
Specifically, we estimate separate treatment effects for each adoption cohort, and then aggregate the results
to calendar time. While some early adopters enter in early 2023, the majority of uptake occurs in late 2023
and 2024. Due to the limited sample size and resulting imprecision for the 2023 cohorts, we focus in our
results on the 2024 calendar-month treatment effects. These estimates are therefore month-of-sample spe-
cific, but restricted to calendar year 2024. We include month-of-sample fixed effects (τt) and household
fixed effects (λi) to control for common shocks and seasonal variation across households.

Grid level effects To simulate the impact of network charges and low-carbon technologies on the distri-
bution grid, we adopt a strategy inspired by Bailey et al. (2025b). Households are randomly assigned to
synthetic distribution circuits consisting of either 10 or 25 households. Assignment is based on the adoption
of electric vehicles, heat pumps, and battery energy storage systems. For each technology, households are
placed into circuits with a predetermined adoption level: 0%, 20%, 50%, 80%, or 100%. We then aggre-
gate the load profiles for these 10 or 25 households, to obtain the aggregate load profile for the distribution
circuit. This also allows determining the coincident grid-level monthly peak.

We believe our simulation strategy provides several key advantages. First, our design captures different
stages of residential electrification. By varying the share of, for instance, electric vehicle adoption across
circuits, the design enables the simulation of grid impacts under different scenarios of electric vehicle pene-
tration. Second, our design allows maintaining realistic baseline demand profiles, without relying on ad-hoc
assumptions. Because households are assigned to circuits conditional on their own low-carbon technology
adoption status, the underlying heterogeneity in non-electric vehicle or non-heat pump electricity consump-
tion is preserved. This allows for a more accurate representation of baseline electricity load conditions
within each circuit.

To estimate the aggregate effect of peak demand charges, we estimate a variation on our main specifica-
tion, Equation 4. More specifically, we run a regression with the coincident grid-level monthly peak as an
outcome variable and a dummy variable indicating the post-treatment period as main explanatory variable.
As the absolute number of household with low-carbon technologies in the control group is limited, we no
longer make a direct comparison with the control group in our aggregate analysis. We do, however, fur-
ther include an extensive set of circuit-level control variables. These are identical to the household-level
control variables, but are now aggregated over all the household in the distribution circuit: the number of
households with heat pumps and electric vehicles, aggregate solar capacity (kW) and battery energy storage
capacity (kW), aggregate residential electricity production (kWh), and temperature, and added month-of-
year and circuit fixed-effects.

For the analysis of real-time pricing at the grid level, we follow a similar strategy to that outlined in Equation
5, with an adjustment to account for treatment variation within circuits. We construct a set of categorical
variables that indicate the share of households with an active real-time pricing contract within each synthetic
distribution circuit. Specifically, we define indicators for adoption levels of approximately 0%, 20%, 50%,
80%, and 100%. This approach is motivated by the staggered nature of real-time pricing uptake: unlike peak
demand charges, with a fixed start date, real-time pricing adoption evolves over time, making it infeasible
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to assign circuits a fixed level of treatment intensity at every point in time. As a result, we allow real-time
pricing penetration to vary within circuits across time and estimate how different levels of adoption affect
grid-level outcomes. We thus also exploit variation within circuits rather than only across circuits. The
control variables are the same as the grid-level control variables for the analysis of peak demand charges.

4.2. Load profile: Difference in Differences

Potential explanations for changes in monthly peaks can be manyfold. For instance, households might shift
consumption outside peak hours to off-peak hours, or they might reduce their overall consumption in re-
sponse to peak demand charges and real-time pricing. These incentives and load shifting dynamics might
be affected by information availability, knowledge or automation. In order to study to study the incentives
and mechanisms behind the introduction of peak demand charges and real-time pricing, we use granular
15-minute interval electricity consumption data in a regression framework to examine changes in the daily
household load profiles.

Our regression works as follows. From the raw 15-minute metering data, we first aggregate grid withdrawals
per hour (in kWh). We thus obtain one observation per household-hour combination. In a subsequent step,
we aggregate hourly observations to total daily withdrawals and total daily withdrawals within a specific
time interval. kWhidb represents these total electricity withdrawals for household i on day-of-sample d
during time interval (“block”) b. The time intervals include total withdrawals during night (22.00 - 06.00),
morning (06.00 - 12.00), afternoon (12.00 - 17.00) and evening peak hours (17.00 - 20.00). kWhidb is then
used in a difference-in-differences regression, defined separately for real-time pricing and peak demand
charges:

kWhidb = β0 + β1 × 1{Yeart ≥ 2023} × 1{Protectedi = 0} + X′idbδ + αidb + εidb. (8)

kWhidb = α0 + α1 × 1{RTPit = 1} + X′idbδ + αidb + εidb. (9)

Again 1{Yeart ≥ 2023} takes a value of one after the introduction of peak demand charges, and 1{Protectedi =

0} is an indicator variable taking a value of one for the treated households. Control variables Xidb include
hourly temperature and household-specific variables on solar capacity (kW), storage capacity (kW), heat
pump and electric vehicle adoption, and solar production (kWh). Finally, αidb includes household-day-of-
week, household-month-of-year and month-of-sample fixed effects. The effect of real-time pricing on the
load profile is studied in a similar way, replacing only the peak demand charge treatment variables with the
appropriate variables for real-time pricing.
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5. Results

In this section, we present our treatment effect estimates. We first investigate the effect of the peak demand
charge and real-time pricing on the individual monthly peak in Section 5.1 and the distribution grid peak
in Section 5.2. We then proceed to our analysis of the mechanisms and the effect on the shape of the daily
load profile in different seasons, which we present in Section 5.3.

5.1. Monthly Peak

5.1.1. Difference-in-Differences
Table 2 presents estimates of α1 and β1 in equations 4 and 5 and captures the effect of peak demand charges
and real-time pricing on monthly household-level peaks, showing that the introduction of both pricing
schemes had an opposing effect on peak electricity demand. The first three columns show the effects for
peak demand charges. In the first column, we apply the TWFE-DID estimator, which includes control
variables and month-of-sample and household fixed effects. In the second column, we apply the IPW-DID
estimator (Abadie, 2005). The third column uses the DR-DID estimator (Sant’Anna and Zhao, 2020) and
shows the largest point estimate. We show specification tests for our weighting procedures in Appendix
B.1. Our results are relatively stable across specifications. The point estimates increase in size from -51
watts to -122 watts, but all carry the same sign and all are statistically significant at the 1 percent level.

In order to help build intuition about the magnitude of our baseline effects, we provide a few interpreta-
tions. First, the magnitude of our baseline effects corresponds to an approximate reduction of between 1
to 3 percent of the average household monthly peak. Second, we highlight that this reduction is equiva-
lent to switching off close to ten energy-efficient LED lightbulbs rated at 10 W during peak periods but is
significantly less than switching off a typical washing machine during peak hours. Third, we benchmark
our baseline effects against those found in the literature. In response to a critical peak pricing experiment,
Garnache et al. (2025) observe reductions of consumption up to 12.5% at critical peak hours. Similarly,
Enrich et al. (2024) observe reductions of peak-hour electricity consumption up to 9% after the introduction
of a time-of-use tariff. Our results are quantitatively smaller, which might indicate that it is more difficult to
decrease monthly peak electricity demand than to shift average electricity usage in peak periods.

To prevent that our results are driven or attenuated by new low-carbon technology adoption, Appendix B.2
presents two robustness checks. In the first, we include only households in our analysis that do not acquire
any new low-carbon technology after the introduction of the peak demand charge scheme (Table B.2). In
the second, we do allow households that install new low-carbon technologies in our sample, and remove the
control variables modelling adoption of low-carbon technologies from our regression specification (Table
B.3). This should test the sensitivity of our coefficients to modelling choices around low-carbon technolo-
gies. Both robustness checks present results similar to our main specification, with statistically significant
and negative coefficients.

Columns four and five of Table 2 present the estimated effect of real-time pricing. Column four employs the
traditional TWFE-DID estimator, which should be interpreted with caution as it does not fully address the
staggered rollout of real-time pricing in our sample. In contrast, column five implements the doubly robust
difference-in-differences estimator proposed by Callaway and Sant’Anna (2021), which better accommo-
dates treatment timing heterogeneity. Our results suggest that real-time pricing leads to a statistically sig-
nificant increase in monthly peak demand, with an effect size comparable to that of peak demand charges.
This implies that the introduction of real-time pricing could potentially offset most of the peak-reducing
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impact of peak demand charges. These findings offer a new perspective on the implications of real-time
pricing: while Fabra et al. (2021) report an overall insignificant price elasticity, our evidence indicates that
real-time pricing may nonetheless contribute to higher household peak electricity consumption.

Table 2: Main Specification using DiD

PDC RTP
(1) (2) (3) (4) (5)

TWFE-DID IPW-DID DR-DID TWFE-DID CS-DID
1{Yeart ≥ 2023} × 1{Protectedi = 0} -51.40∗∗∗ -95.67∗∗∗ -122.22∗∗∗

(-3.79) (-3.11) (-3.99)
1{RTPit = 1} 38.00∗∗∗ 127.46∗∗

(4.06) (2.35)
Fixed Effects ✓ ✓
Control variables ✓ ✓ ✓ ✓
Weighting ✓ ✓ ✓
Observations 1,514,722 1,514,722 1,514,722 1,275,700 1,275,700
Households 42,077 42,077 42,077 57,361 57,361
Treated 40,360 40,360 40,360 N/A N/A
Control 1717 1717 1717 N/A N/A

Note: The monthly peak (W) over the period January 2022 - December 2024 is modelled in a difference-in-
differences framework. The introduction of the peak demand tariff on January 1st, 2023 indicates the post
period and protected households on the social tariff serve as control group. Three specifications are used
to estimate the model. Column (1) uses TWFE-DID with additional control variables. Control variables
include grid withdrawals (kWh), solar capacity (kW), solar injection (kWh), storage capacity (kWh) and
the dummy variables for the presence of heat pumps and electric vehicles. Household fixed effects and
time fixed effects are included. In column (2), we apply the IPW-DID estimator with stabilised weights,
weighting based on grid withdrawals (kWh), solar capacity (kW), solar injection (kWh), postal code, and
dummy variables for the quarter of low-carbon technology adoption (separate for EV, HP, PV and battery
storage). Column (3) shows the estimate for the Sant’Anna and Zhao (2020) Doubly Robust DID estimator
using the same weighting variables. Finally, columns (4) and (5) show the results for real-time prices, using
the TWFE-DID and Callaway and Sant’Anna (2021) Doubly Robust DID estimator with never-takers as the
control group, respectively. The unit of observation is household-month-of-sample. For real-time pricing,
the number of treated and control households varies per month-of-sample, as treatment follows staggered
adoption. Standard errors are clustered at the household level. t-statistics in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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5.1.2. Event study
Peak demand charges Beyond average effects, we now explore the dynamics of treatment effects over time
using event studies. More specifically, in this section, we estimate a dynamic version of our difference-in-
differences models. Figure 6 presents the event-study results for three specifications of our difference-in-
differences model for peak demand charges: the TWFE-DID estimator with control variables, the IPW-DID
estimator with stabilised weights, and the Doubly Robust DID estimator (Sant’Anna and Zhao, 2020). All
specifications provide suggestive evidence that the parallel trends assumption holds using “pre-trends”: the
coefficients for the months prior to the introduction of peak demand charges are close to zero across all
estimators, with no discernible trends. This suggests that, before the implementation of the peak demand
charges on January 1st, 2023, treated and control households were following similar trajectories in terms
of their monthly peak demand conditional on control variables. It is only after the policy intervention that
treated households begin to reduce their peak demand relative to the control group.

Figure 6 also illustrates the temporal dynamics of the peak demand charge, showing a clear pattern of decay
in the treatment effect over time. In the early months of 2023, treated households significantly reduce their
monthly peak demand, but this reduction diminishes gradually in subsequent months. This decline is robust
across the various model specifications. These findings indicate that the effect of the peak demand charge
gradually decays away as time progresses, regardless of the estimator used. Response fatigue provides a
plausible explanation for the diminishing effect, particularly among households that rely on manual de-
mand response, those without low-carbon technologies. For these households, the sustained effort required
to reduce peak demand manually may lead to a gradual decline in engagement. As these households are
not able to leverage automated systems, continuously altering consumption patterns becomes increasingly
difficult, likely explaining the attenuation of the peak reduction over time, as shown in Figure 7a. This
response fatigue aligns with findings in Hofmann and Lindberg (2024), who document a decreased interest
and attention to electricity prices in a randomized controlled trial setting.

Finally, some households are not incentivized to reduce their monthly peak after the introduction of peak
demand charges, as the new tariff structure imposes a minimum peak of 2.5 kW. Therefore, those house-
holds with average pre-treatment monthly peaks below 2.5 kW, are not incentivized to reduce their peaks
further. Figure 7b shows that these households do not change their monthly peaks after the introduction
of the kW-based peak demand charge scheme. For these households, the minimum threshold of 2.5 kW
serves as a financial constraint that makes it difficult to justify further reductions in demand, as a peak re-
duction does not translate into a lower electricity bill. Furthermore, even when they do attempt to reduce
their peak consumption, the inherent difficulty in achieving substantial reductions when pre-treatment peaks
are already low, means that the overall impact of the treatment is less pronounced, as illustrated in Figure 7b.
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Figure 6: Estimates of the dynamic specification for peak demand charges in the full sample. Each dot represents the point estimate
of the monthly peak reduction (in W) for a given month-of-sample t. Three different estimators are used. First, the TWFE-DID
estimator with individual and month-of-sample fixed effects including control variables. Second, the IPW-DID estimator with
stabilised weights. Third, the Sant’Anna and Zhao (2020) Doubly Robust DID estimator. December 2022 is used as the reference
category in both pre- and post-treatment periods. Standard errors are clustered at the household level and vertical bars show 95%
confidence intervals.
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(a) Households without low-carbon technologies (manual re-
sponse)
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(b) Households with 2022 peak < 2.5 kW

Figure 7: Each dot represents the point estimate of the monthly peak reduction (in W) for a given month-of-sample t. Three
different estimators are used. First, the TWFE-DID estimator with individual and month-of-sample fixed effects including control
variables. Second, the IPW-DID estimator with stabilised weights. Third, the Sant’Anna and Zhao (2020) Doubly Robust DID
estimator. December 2022 is used as the reference category in both pre- and post-treatment periods. Standard errors are clustered
at the household level and vertical bars show 95% confidence intervals.
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Real-time pricing In this section, we turn our attention to the event-study effects of real-time pricing, which
differs from the peak-demand charge policy’s effects. Figure 8 shows statistically significant increases in
monthly peak demand among households that voluntarily adopt real-time pricing on top of the compulsory
peak demand charge, with additional seasonal variation. The peak-increasing effect of real-time pricing
is most pronounced during the summer months, June, July, August, and September, when monthly peak
demand rises by more than 150 W. These results suggest that the interaction between real-time pricing and
peak demand charges is seasonally dependent, affecting the alignment of incentives across pricing schemes.

A possible explanation could be the following: in winter, day-ahead electricity prices tend to be elevated
during both morning and evening peak periods, but are not consistently low during off-peak hours (Figure
A.1). As a result, households on real-time pricing have less financial incentive to create so-called “shadow
peaks” by shifting consumption to very low-priced hours. In contrast, during summer months, day-ahead
prices can be substantially lower, or even negative, during periods of high solar PV generation. In this
context, real-time pricing introduces a trade-off: households face incentives to both reduce their monthly
peak (to minimize peak demand charges) and to increase consumption during low-price hours (to benefit
from low marginal costs of electricity production). These competing incentives appear to largely offset each
other, resulting in a smaller net effect on household monthly peak electricity demand during these months.
As the number of negative price hours is increasing, and expected to increase further in the future (IEA,
2025), the economic significance of this finding is expected to increase even further.
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Figure 8: Estimates of the dynamic specification for real-time prices in the full sample, showing coefficients per month-of-year
in 2024. Each dot represents the point estimate of the monthly peak change (in W) for a given month-of-year. The Callaway
and Sant’Anna (2021) Doubly Robust DID estimator with never-takers as the control group is used to estimate the causal effect.
Standard errors are clustered at the household level and vertical bars show 95% confidence intervals.
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5.1.3. Heterogeneity
Low-carbon technology To assess whether the introduction of peak demand charges generated heteroge-
neous treatment effects across household types, we examine treatment heterogeneity by low-carbon tech-
nology adoption. Our analysis proceeds in two steps. First, we classify each household into one or more
categories based on the technologies installed prior to January 2023, the start of the peak demand charge
tariff. These categories include households without any low-carbon technology, and those with electric ve-
hicles (EVs), heat pumps (HPs), solar photovoltaics, or batteries. Second, we estimate Equation 4 separately
by subgroup to identify heterogeneous effects.

Table 3 reports the estimates of β1 across household subsamples. All specifications use the TWFE-DID esti-
mator and control for household and month-of-sample fixed effects. In addition, we include household-level
covariates and account for adoption of new low-carbon technologies after the introduction of the kW-based
peak demand charge scheme. The results reveal considerable heterogeneity in treatment effects. House-
holds with heat pumps or no low-carbon technologies exhibit peak demand reductions lower in magnitude
than the full-sample average. Battery-owning households reduce their peaks somewhat more, indicating
a modest additional response capacity. The most notable finding concerns EV-owning households. These
households reduce their monthly peak load by an average of 319 W following the reform, a reduction that is
both economically and statistically significant. Relative to their 2022 pre-treatment baseline, this reduction
amounts to roughly 5 percent of their average monthly peak. This contrasts both in absolute and rela-
tive terms with the more modest 1–3 percent reductions observed in the full sample and other subgroups.
Appendix Table B.4 provides robustness checks using alternative estimators, which corroborate the main
findings: the estimated treatment effects are larger for EV and battery owning households.

Figures 9a and 9b present the event-study estimates of the dynamic response of monthly peak demand to the
introduction of kW-based peak demand charges, separately for households with EVs and those with battery
storage. These figures show a sharp reduction in peak demand in the months immediately following the
reform for both groups, with this effect persisting over time. The coefficients do not dissipate in the months
following the reform and remain statistically significant. This treatment effect is consistent with the adoption
of automated energy-management systems, such as smart EV chargers, as well as applications provided by
EV manufacturers, both of which can incorporate the incentive from the peak demand charge into the
charging schedule to help limit peak demand.By deferring EV charging to off-peak periods, these systems
help reduce peak demand consistently, transforming what might otherwise be a one-time adjustment into a
lasting change driven by automation. For robustness, Appendix Figure B.4 displays event-study estimates
for all subgroups of low-carbon technologies. These results reinforce the finding that households with EVs
exhibit the most stable and persistent reductions in peak demand over time.
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Table 3: Heterogeneity analysis using DiD

(1) (2) (3) (4) (5) (6)
Full sample EV HP HP BAT No LCT

Main Additional
1{Yeart ≥ 2023} × 1{Protectedi = 0} -51.40∗∗∗ -319.47∗∗∗ -29.37 -88.70 -147.55∗∗∗ -18.44

(-3.79) (-2.41) (-0.45) (-1.41) (-2.61) (-1.13)
Control variables ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,514,722 57,636 102,168 79,308 245,088 290,844
Households 42,077 1600 2838 2203 6808 8079
Treated 40,360 1547 2745 2107 6588 7513
Control 1717 54 93 96 220 566
Average Peakit 2022 4142.44 6331.26 5083.59 4966.90 3861.69 3706.10

Note: The monthly peak (W) over the period January 2022 - December 2024 is modelled in a difference-in-
differences framework. The introduction of the peak demand tariff on January 1st, 2023 indicates the post period
and protected households on the social tariff serve as control group. Results are presented for the TWFE-DID es-
timator with additional control variables. Control variables include grid withdrawals (kWh), solar capacity (kW),
solar injection (kWh), storage capacity (kWh) and the dummy variables for the presence of heat pumps and electric
vehicles. Household fixed effects and time fixed effects are included. Households with heat pumps as main source
of heating do not have significant gas consumption, whereas households with heat pumps as additional source of
heating also have significant gas consumption. Standard errors are clustered at the household level. t-statistics in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 9: Estimates of the dynamic specification for peak demand charges for households with electric vehicle ownership, relying
on a manual demand response. Each dot represents the point estimate of the monthly peak reduction (in W) for a given month-of-
sample t. Three different estimators are used. First, the TWFE-DID estimator with individual and month-of-sample fixed effects
including control variables. Second, the IPW-DID estimator with stabilised weights. Third, the Sant’Anna and Zhao (2020) Doubly
Robust DID estimator. December 2022 is used as the reference category in both pre- and post-treatment periods. Standard errors
are clustered at the household level and vertical bars show 95% confidence intervals.
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Peak demand charge price level Table 4 presents estimates from an extended specification that examines
heterogeneity in treatment effects by the level of the peak demand charge. We introduce this specification
for two reasons. First, while peak demand charges were introduced uniformly across Flanders on January
1st, 2023, the actual tariff levels vary by region, ranging from €35.18/kW-year to €50.05/kW-year in 2023
and from €35.12/kW-year to €53.39/kW-year in 2024. To capture this variation, we define R̃ateit as the
deviation of a household’s peak demand charge rate from the annual average. Second, it is important to note
that households typically receive their electricity bill annually, in a randomly assigned month that depends
on the timing of their most recent retailer switch. As a result, it may take up to a year before all households
have had the opportunity to observe the new peak demand charge on their bill. To capture this effect, we
estimate the regression separately for 2023 and 2024, where in the latter period all households had observed
the bill-impact of the peak demand charge.

Column (1) replicates our average treatment effect estimated with the TWFE-DID specification including
control group and control variables, indicating a statistically significant reduction in monthly peaks of ap-
proximately 51.4 W. Columns (2) through (4) explore heterogeneity by interacting the treatment indicator
with household-level deviations from the average peak demand charge rate. While the overall interaction
term is not statistically significant in column (2), the year-specific analysis in columns (3) and (4) reveals
that the effect of the rate deviation becomes significant in 2024. Specifically, a one-euro/kW-year increase
in the deviation from the average rate is associated with a 2.75 W additional reduction in peak demand.
These results suggest that while the introduction of peak demand charges had an immediate impact on
consumption, the salience or responsiveness to the precise rate level appears to increase over time.

Table 4: Effect of Peak Demand Charge Rate

Main Deviations
All All 2023 2024

1{Yeart ≥ 2023} × 1{Protectedi = 0} -51.40∗∗∗ -53.06∗∗∗ -58.08∗∗∗ -46.00∗∗∗

(-3.79) (-3.90) (-4.60) (-2.66)

1{Yeart ≥ 2023} × 1{Protectedi = 0} × R̃ateit -1.311 -0.0921 -2.754∗

(-1.34) (-0.10) (-1.75)
Fixed Effects ✓ ✓ ✓ ✓
Control variables ✓ ✓ ✓ ✓
N 1,514,772 1,514,772 1,009,848 1,009,848
Clusters 42,077 42,077 42,077 42,077

Note: The monthly peak (W) over the period January 2022 - December 2024 is modelled in a
difference-in-differences framework. The introduction of the peak demand tariff on January 1st,
2023 indicates the post period and protected households on the social tariff serve as control group.
Four specifications are used to estimate the model. Each specification uses the TWFE-DID es-
timator. Column (1) estimates the treatment effect for the full sample, and columns (4), (5) and
(6) model add the deviation from the average peak demand rate as a covariate. All specifications
include control variables: grid withdrawals (kWh), solar capacity (kW), solar injection (kWh),
storage capacity (kWh), heat pump and electric vehicle ownership. Furthermore, all specifica-
tions include household and month-of-sample fixed effects. The unit of observation is household-
month-of-sample. Standard errors are clustered at the household level. t-statistics in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5.2. Grid level effects

The effects of the introduction of peak demand charges and real-time pricing thus far leverage data at the
individual household-level. However, transmission and distribution grids are sized to ensure meeting future
system peaks in demand (Joskow and Tirole, 2005; Fell et al., 2021; Schittekatte et al., 2023). Network
charges should thus provide an incentive to spread consumption over time, particularly discouraging usage
during periods of high coincident system peaks, in order to reduce the need for costly grid reinforcement
and enhance overall system efficiency. This issue is becoming increasingly salient with the growing adop-
tion of electric vehicles, as simultaneous fast charging events can generate substantially higher load peaks
compared to conventional household appliances (Bailey et al., 2025b; Becker et al., 2025; Powell et al.,
2022). For this reason, this section leverages the granularity of our dataset to assess how individual be-
havioral responses to tariffs and prices scale to the level of the distribution grid. Our approach proceeds in
two steps. First, we generate synthetic distribution circuit-level data through a bootstrap procedure similar
to Bailey et al. (2025b). Second, we estimate local distribution grid effects of peak demand charges and
real-time pricing through regression analysis.

5.2.1. Electric vehicles and peak demand charges
To simulate the effect of network charges and electric vehicle adoption on the distribution grid, we ran-
domly assigned households to distribution circuits comprising either 10 or 25 households. Conditional on
their own electric vehicle adoption status, each household was then randomly placed into a circuit with a
predetermined level of EV adoption: 0%, 20%, 50%, 80%, or 100%.

To understand the potential impact of electric vehicle charging on the distribution grid, Figure 10 shows the
distribution of monthly peak electricity demand across varying levels of electric vehicle adoption. Across
the groups, we observe that monthly peak electricity demand increases consistently with the percentage
of households that has adopted an EV in the circuit. Distribution circuits of 10 households with 0% EV
adoption, peak on average at 15.32 kW (31.01 kW for circuits with 25 households), while distribution
circuits with 100% EV adoption peak on average at 26.41 kW (51.34 kW for circuits with 25 households).
We provide further descriptives in Appendix Tables C.1 and C.2. These tables illustrates that EV charging
exhibits highly coincident behavior: the coincidence factor for households with EVs remains comparable
to that of non-EV households. Because EV charging significantly increases individual peak demand, the
resulting circuit-level coincident peaks are substantially higher in absolute kilowatt terms. This increase in
peak load places additional strain on the local distribution grid and lead to overload of distribution feeder
cables and stations.
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Figure 10: Kernel density for the distribution of monthly peaks in the distribution grid for circuits with 10 or 25 households
connected, and varying levels of electric vehicle adoption

We now explore how the introduction of peak demand charges has changed these monthly peaks through a
panel fixed effects regression model, with the coincident grid-level monthly peak as an outcome variable and
a dummy variable indicating the post-treatment period as main explanatory variable. We further include an
extensive set of circuit-level control variables, including the number of households with heat pumps, EVs,
solar PV and battery energy storage installed, residential electricity production, and temperature, and added
month-of-year and circuit fixed-effects.

The results from this exercise are shown in Table 5. The table makes several points. The results indicate a
statistically significant reduction in coincident peaks in local distribution circuits following the introduction
of peak demand charges. The reduction of the coincident peak is most pronounced in circuits with a higher
level of EV-adoption. For instance, in circuits with 100% EV adoption and 10 connected households, the in-
troduction of peak demand charges leads to a reduction in the monthly peak load of 1.8 kW. This represents
a decline of approximately 6.8% relative to the pre-treatment mean monthly peak of 26.41 kW (see Table
C.1). The effect scales with the size of the circuit: in circuits with 100% EV adoption and 25 connected
households, the coincident peak declines by 3.09 kW, or 6.0% of the pre-treatment average.

In Appendix C.3 and Appendix C.4 we provide similar analysis, now for circuits with increased uptake
of heat pumps or residential battery energy storage. For heat pumps we find similar results, although the
reduction of the circuit-level peak after the introduction of peak demand charges is smaller for heat pumps
than for electric vehicles in circuits with 10 households and 100% adoption. For larger circuits with 25
households and 100% heat pump adoption, the result turns insignificant. In circuits with higher levels of
battery energy storage adoption, we find that battery installation itself reduces circuit-level coincident peaks
(Figures C.2a and C.2b). However, introducing peak demand charges does not further reduce monthly peak
demand in these circuits.
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Table 5: Synthetic distribution level TWFE regression results by EV adoption level

Percentage of households with EV
0% 20% 50% 80% 100%

PANEL A: 10 households
Peak (kW)
Daily -0.111∗∗∗ -0.315∗∗∗ -0.536∗∗∗ -0.648∗∗∗ -0.673∗∗∗

(-3.37) (-6.37) (-7.88) (-9.06) (-9.24)
Monthly -0.453∗∗∗ -0.824∗∗∗ -1.511∗∗∗ -1.847∗∗∗ -1.810∗∗∗

(-4.58) (-4.97) (-6.20) (-6.60) (-5.24)

PANEL B: 25 households
Peak (kW)
Daily -0.173∗∗ -0.569∗∗∗ -0.653∗∗∗ -1.116∗∗∗ -1.238∗∗∗

(-2.07) (-5.01) (-4.75) (-6.44) (-4.94)
Monthly -0.508∗∗ -0.798∗∗ -1.988∗∗∗ -1.861∗∗ -3.093∗∗∗

(-2.10) (-2.14) (-3.59) (-2.32) (-3.23)

Note: The distribution grid level coincident monthly peak (kW) - aggregated over 10 households in
Panel A or 25 households in Panel B - over the period January 2022 - December 2024 is modeled in a
panel fixed effects regression model. The introduction of the peak demand tariff on January 1st, 2023
indicates the post period. We employ a TWFE model without control group, but with additional control
variables. Control variables include grid-level aggregate distributed solar production (kWh), aggregate
grid withdrawals (kWh), solar capacity installed (kW), storage capacity installed (kWh), temperature,
and the variables for the number of heat pumps and electric vehicles in the distribution circuit. Fixed
effects include circuit and month-of-year fixed effects. Standard errors are clustered at the circuit level,
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.2.2. Real-time pricing
In Figure 11, we examine how the introduction of real-time pricing affects coincident monthly peak demand
at the distribution grid level. The figure displays the distribution of monthly peak loads across synthetic cir-
cuits comprising 10 or 25 households, stratified by varying levels of real-time pricing adoption (0%, 1-20%,
20-50%, 50-80%, or 100%). Importantly, real-time pricing adoption is staggered over time, and the share of
adopters in each circuit increases throughout the sampling period. Consequently, circuits with higher real-
time pricing adoption are disproportionately observed later in the panel, introducing potential confounding
due to seasonality or underlying time trends in electricity demand. While these descriptive results provide
suggestive insights, they should be interpreted with caution given this potential confounding bias.

Across adoption levels in Figure 11, we observe a modest increase in coincident monthly peaks at the dis-
tribution level, although the effect is less pronounced than that observed under electric vehicle adoption.
Specifically, in circuits where none of the 10 connected households has adopted real-time pricing, the aver-
age monthly coincident peak is 15.27 kW. This rises to 20.17 kW in circuits where all connected households
have adopted real-time pricing. Additional summary statistics are provided in Appendix Tables C.3 and C.4.
We next examine how real-time pricing adoption affects coincident peak demand in a regression framework,
controlling for adoption of low-carbon technology, month-of-year, temperature and solar production effects.
Table 6 presents results from a panel fixed effects regression model, estimating the impact of varying levels
of real-time pricing penetration within synthetic distribution circuits of 10 and 25 households. Across both
circuit sizes, we find limited evidence that real-time pricing also increases peak demand at the grid level.
While daily peak demand increases modestly at intermediate and higher adoption levels, the effects are
generally not statistically significant at any levels. Similarly, we do not observe a statistically significant
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pattern in monthly peak effects. These findings suggest that the impact of real-time pricing on grid-level
coincident peaks is currently modest.
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Figure 11: Kernel density for the distribution of monthly peaks in the distribution grid for circuits with 10 or 25 households
connected, and varying levels of real-time pricing adoption.

Table 6: Synthetic distribution level TWFE regression results by real-time pricing adoption level

Percentage of households with active real-time pricing contract
0% 20% 50% 80% 100%

PANEL A: 10 households
Peak (kW)
Daily Ref. 0.005 0.139 0.109 0.137

(0.06) (1.28) (0.79) (0.90)
Monthly Ref. 0.0886 0.261 0.792 0.437

(0.47) (0.81) (0.20) (1.03)

PANEL B: 25 households
Peak (kW)
Daily Ref. 0.068 0.694∗ 0.408 0.478

(0.31) (1.93) (0.94) (1.08)
Monthly Ref. 0.012 0.072 -0.380 -0.005

(0.02) (0.09) (-0.31) (-0.00)

Note: The distribution grid level coincident monthly peak (kW) - aggregated over 10 households in Panel
A or 25 households in Panel B - over the period January 2022 - December 2024 is modeled in a panel fixed
effects regression model. We employ a TWFE model with additional control variables. Control variables
include grid-level aggregate distributed solar production (kWh), aggregate grid withdrawals (kWh), solar
capacity installed (kW), storage capacity installed (kWh), temperature, and the variables for the number
of heat pumps and electric vehicles in the distribution circuit. Fixed effects include circuit and month-of-
year fixed effects. Standard errors are clustered at the circuit level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5.3. Daily load profile

After presenting treatment effects for monthly peak demand at the individual household and distribution
level, we now turn to the underlying behavioral mechanisms using complete daily load profiles. This sec-
tion explores the individual behavior behind changes in monthly peak electricity demand, and discusses
important enablers of the demand response, such as automation and information availability (Jessoe and
Rapson, 2014; Bollinger and Hartmann, 2020; Blonz et al., 2025). Our evaluation focusses on two groups,
who face significant financial incentives under under the peak-demand charge. We first discuss households
who voluntarily adopted real-time pricing and then discuss the incentives and demand response for house-
holds owning an electric vehicle.

5.3.1. Real-time pricing and peak demand charges
Based on our results for monthly peaks we hypothesized a potential effect of day-ahead prices and seasonal
effect on electricity consumption patterns for households on real-time pricing. Figure A.1 adds more detail
to this hypothesis. This figure displays the raw mean day-ahead electricity prices on the Belgian market for
2023 and 2024, respectively. Each heatmap plots average hourly day-ahead prices by month-of-year, show-
ing both seasonal and intraday variation. The figures indicate that day-ahead prices are generally higher
during the winter months. Additionally, the lowest prices tend to occur during daytime hours in months
with longer solar duration, reflecting the influence of solar PV generation. A consistent pattern across most
months is the increase in day-ahead prices during evening system-level demand peaks, particularly between
17:00 and 20:00. For households on real-time pricing, this day-ahead electricity price translates immedi-
ately to a bill impact.

To assess the role of within-day variation of day-ahead prices, Figures 12a and 12b plot the average
household-level hourly electricity consumption for winter months and summer months. The figure con-
tains data for adopters of real-time pricing, plotting their consumption before and after adoption. The load
profiles imply a clear response to price changes, as customers shift their load to hours with lower prices.
After switching to real-time prices, nighttime electricity increases, while evening peak-hour electricity con-
sumption decreases. This load shifting pattern correlates with the shape of real-time electricity prices, that
are generally highest in winter evening peak-hours. In summer months, the observed shift is less pro-
nounced, though some small increase in electricity consumption is observed for night and afternoon hours:
hours with, on average, the lowest real-time electricity prices.

We then formalize this findings by estimating regression equation 9. This regression estimates the change
in kWh electricity demand after the uptake of a real-time pricing contract, controlling for household char-
acteristics, including the uptake of new low-carbon technologies. Table 7 shows the findings. In the first
row of the table, we pool together the daily electricity consumption, and find that real-time pricing does not
have an effect on total load. In the other rows of the table, we pool together electricity consumption in a
specific block of hours. For instance, the second row pools together all morning consumption, and finds that
real-time pricing decreases morning consumption by on average 0.127 kWh per day. The decomposition
between winter and summer months adds intuition to our findings. Throughout winter months households
clearly shift away from electricity consumption in morning hours and evening peak hours, almost substitut-
ing this demand one-to-one by an increase in nighttime consumption. For summer months, on the contrary,
the observed load shifting is much smaller, in line with descriptive evidence. We do however observe an
increase in average afternoon consumption.
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Figure 12: Average kWh hourly electricity grid withdrawals for RTP adopters before and after adoption

Table 7: Load shifting for real-time pricing

(1) (2) (3)
All Winter Summer

Total grid withdrawals:
All hours 0.404 0.074 0.655

(1.45) (0.10) (1.20)
Morning hours (06.00 - 12.00) -0.127∗∗ -0.438∗∗ 0.077

(-2.16) (-2.22) (0.61)
Afternoon hours (12.00 - 17.00) 0.065 0.008 0.303∗∗

(1.01) (-1.64) (2.11)
Peak hours (17.00 - 20.00) -0.125∗∗ -0.519∗∗∗ -0.055

(-2.49) (-3.77) (-0.44)
Night hours (22.00 - 06.00) 0.576∗∗∗ 1.442∗∗∗ 0.338

(3.73) (3.61) (1.20)
Control variables ✓ ✓ ✓
Household × day-of-week FE ✓ ✓ ✓
Household × month-of-year FE ✓ ✓ ✓
Month-of-sample FE ✓ ✓ ✓
Observations 358,639 88,523 92,202
Clusters 1061 1061 1061

Note: The daily grid withdrawals (kWh) in a block of hours over the day over the period January
2023 - December 2024 are regressed in a multi-way fixed effects difference-in-difference (MWFE-
DID). The uptake of real-time prices indicates the post period and not-yet-treated households serve as
control group. The model is estimated for the full sample, and the different seasons separately. The
unit of observation is household-day-of-sample. Control variables include solar capacity (kW), solar
production (kWh), storage capacity (kWh), daily variables for temperature and the dummy variables
for the presence of heat pumps and electric vehicles. t-statistics in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01
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5.3.2. Electric vehicles, solar panels and peak demand charges
In this section, we present evidence showing the load shifting dynamics in response to the introduction of
peak demand charges for EV-owning households. In Figures 13a and 13b, we first explore the change in
the load profiles descriptively, and plot the average hourly electricity grid withdrawals for electric vehicle-
owning households in summer and winter months, before and after the introduction of peak demand charges.
“Before PDC introduction” refers to 2022, prior to the introduction of peak demand charges, while “After
PDC introduction” refers to 2023 and 2024, when households were charged based on their kilowatt peak
usage. To avoid confounding the figure by intermediate electric vehicle adoption, these figures only in-
corporate data for households that adopted their electric vehicle before the start of 2022. In analogy with
the results for real-time pricing, we observe a more pronounced change in load profiles in winter months.
Nighttime electricity grid withdrawals increases after the introduction of the peak demand charge scheme,
while peak hour electricity withdrawals reduce.

Table 8 presents the estimation results of Equation 8 for EV-owning households. In the first row, we again
pool together the daily electricity grid withdrawals over all hours of the day, while the other rows pool
together electricity grid withdrawals in a block of hours. The results corroborate our descriptive evidence
and demonstrates the response of electric vehicle-owning households to the peak demand charges. Pooling
together all hours of the day, we observe that peak demand charges have not led to an overall load reduction.

We do however observe patterns of load shifting. Specifically, in winter months we observe a reduction
in grid withdrawals of 0.274 kWh during the [17.00; 20.00] interval, the evening peak. We also observe
significant reductions throughout the rest of the morning and afternoon hours. An offsetting effect is ob-
served at night, with increased grid withdrawals during the [22.00; 06.00] interval. The overall shift of
load amounts to roughly 0.75 kWh per day. In summer months, we do not observe statistically significant
load shifting effects. These results are robust to the inclusion of self-production, as we observe similar load
shifting dynamics when substituting our outcome variable grid withdrawals (kWh) by consumption (kWh).
Detailed results for total electricity consumption, the sum of withdrawals and production, minus injection,
can be found in Appendix Figures D.2a and D.2b and Table D.2.

Several mechanisms may explain the effects we observe. First, the introduction of peak demand charges
appears to shift electricity consumption from peak to off-peak hours, particularly during the night. Such
load-shifting behavior reduces household-level monthly peaks, thereby lowering the peak component of
the electricity bill. Similar patterns have been documented in response to time-of-use pricing schemes for
electric vehicle owners in Arizona (Qiu et al., 2022) and price incentive programs in Australia (La Nauze
et al., 2024). Second, we find that this nighttime charging effect diminishes during the summer months.
In this period, households with rooftop solar panels exhibit relatively stable grid withdrawals following the
introduction of peak demand charges. This likely reflects a pre-existing incentive for solar self-consumption
among households that already owned both electric vehicles and solar panels prior to the tariff reform (Liang
et al., 2022; La Nauze et al., 2024). These findings are also consistent with prior evidence showing that
co-adoption of electric vehicles and solar panels induces a shift in charging behavior, from nighttime to
daytime, to align electricity demand with solar generation profiles (Qiu et al., 2022; Liang et al., 2022;
Astier et al., 2023; La Nauze et al., 2024). In Appendices Appendix D.3 and Appendix D.4, we extend
this analysis to households with heat pumps and battery energy storage. For these groups, we do not find
evidence of load shifting in response to peak demand charges. However, we do observe an increase in
overall grid withdrawals for heat pump households, which is statistically significant during winter months.
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Figure 13: Average kWh hourly electricity grid withdrawals for EV adopters before and after the introduction of peak demand
charges

Table 8: Load shifting for EV owners

(1) (2) (3)
All Winter Summer

Total grid withdrawals:
All hours 0.349 -0.434 0.790

(0.83) (-0.61) (1.51)
Morning hours (06.00 - 12.00) 0.00164 -0.386∗∗ 0.217

(0.02) (-2.44) (1.50)
Afternoon hours (12.00 - 17.00) -0.0118 -0.394∗ 0.152

(-0.12) (-1.86) (1.41)
Peak hours (17.00 - 20.00) -0.0600 -0.274∗∗ 0.0813

(-0.69) (-2.07) (0.66)
Night hours (22.00 - 06.00) 0.460∗∗ 0.788∗ 0.277

(2.10) (1.77) (1.26)
Control variables ✓ ✓ ✓
Household × day-of-week FE ✓ ✓ ✓
Household × month-of-year FE ✓ ✓ ✓
Month-of-sample FE ✓ ✓ ✓
Observations 2,106,068 516,362 531,802
Households 2021 2021 2021

Note:The daily grid withdrawals (kWh) in a block of hours over the day over the period January 2022
- December 2024 are regressed in a multi-way fixed effects difference-in-difference (MWFE-DID). The
introduction of the peak demand tariff on January 1st, 2023 indicates the post period and protected
households serve as control group. The model is estimated for the full sample, and the different seasons
separately. The unit of observation is household-day-of-sample. Control variables include solar capacity
(kW), solar production (kWh), storage capacity (kWh), daily variables for temperature and the dummy
variables for the presence of heat pumps and electric vehicles. t-statistics in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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6. Conclusion

The transition to a zero-carbon energy system is reshaping how electricity is priced and consumed. On the
production side, real-time pricing promotes productive efficiency by aligning consumption with temporal
variations in the marginal cost of electricity production, encouraging demand shifts toward periods of lower
supply costs (Borenstein, 2005; Burkhardt et al., 2023). Recent research has emphasized a second, increas-
ingly important constraint: local distribution network capacity. Rising residential electrification and the
adoption of electric vehicles are intensifying coincident peak demand at the local distribution level, acceler-
ating the need for costly grid upgrades (Bailey et al., 2025b; Powell et al., 2022). Time-of-use charges and
real-time pricing may exacerbate these challenges by inducing synchronized consumption responses to low
wholesale prices, thereby increasing local coincident peak loads and overloading distribution infrastructure.

Using high-frequency consumption data of over 42,000 low-voltage consumers, we find that peak demand
charges are effective at reducing the individual and distribution grid-level coincident monthly peaks. The
average treatment effect equals between 51 and 122 watts, which is 1-3 percent of the pre-treatment av-
erage. Households with an electric vehicle show the most pronounced peak reduction of 300 watts, 5
percent of their average pre-treatment monthly peak (in line with the findings in Bailey et al. (2025a)), an
effect that remains statistically significant over time. This reduction of monthly peak electricity demand
is obtained largely through load shifting to night hours, with a shift of up to 0.75 kWh per day in winter
months. The individual-level effects further translate to the low-voltage grid, especially when more of the
connected households own electric vehicles. The voluntary adoption of real-time pricing conditional on
peak demand charges can partially counteract this reduction by concentrating consumption during lower-
cost periods, leading to new peaks, an effect that is particularly pronounced during summer months. These
peak increases amount on average to 127 watts. Furthermore, the effects of real-time prices do not seem to
propagate to the distribution grid, alleviating the concern that real-time prices increase grid congestion.

Rather than generating conflicting incentives, the two pricing mechanisms can operate in a complemen-
tary manner when carefully designed: real-time pricing addresses energy system efficiency by signaling
marginal production costs (Fabra et al., 2021; Allcott, 2011; Borenstein, 2005), while peak demand charges
internalize distribution-level constraints that are otherwise invisible to consumers (Bailey et al., 2025b;
Becker et al., 2025; Powell et al., 2022). In increasingly automated households (Bollinger and Hartmann,
2020; Blonz et al., 2025), this complementarity is required for scalable demand-side flexibility that does
not violate local grid constraints. While our empirical analysis focuses on such joint implementation of
real-time pricing and peak demand charges in Flanders, Belgium, the underlying mechanisms are likely
to be relevant in broader contexts. Several neighboring countries, including Germany, France, and the
Netherlands, exhibit comparable levels of per capita household electricity consumption and are similarly
characterized by winter peak demand. Furthermore, the observed price variation in the day-ahead whole-
sale prices observed in Belgium, which serve as the basis for the real-time pricing contracts, follow a similar
shape in other Western European countries (see Figures A.1 and A.2 in Appendix A.1).

These findings contribute to a growing literature recognizing the importance of aligning price signals across
the electricity supply chain to address both production and network-level challenges in the energy transition.
More broadly, our findings highlight a challenge inherent in vertically structured electricity markets: the
coexistence of multiple tariff components makes coordination across different stages of the supply chain –
generation, transmission, and distribution – a necessary condition for avoiding unintended outcomes such
as inefficient load shifting or the exacerbation of local network constraints.
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Appendix

This appendix contains additional descriptive statistics (Appendix A), additional econometric results for
the main specification on individual-level effects (Appendix B), aggregated grid-level effects (Appendix
C) and mechanisms using daily load profiles (Appendix D).
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Appendix A. Supplementary Descriptives

Appendix A.1. Real-time prices

Figure A.1 displays heatmaps for day-ahead electricity price by hour of day and month of year for 2023 and
2024 in Belgian and other European bidding zones. Prices exhibit clear seasonal and within-day variation,
with higher prices concentrated during winter evenings and lower prices during midday hours, especially in
the summer months. The patterns are somewhat less pronounced in 2024, reflecting milder price volatility
compared to 2023. Figure A.2 shows correlation matrices for pairwise correlation between day-ahead
electricity prices (€/MWh) for four European bidding zones. Correlations are high, ranging from between
0.7 to 0.97.
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Figure A.1: Heatmaps for hour-by-month average day-ahead electricity prices (€/MWh)3



BE DE-LU FR NL

BE
DE

-L
U

FR
NL

0.92

0.97 0.89

0.93 0.93 0.88

Correlation of Hourly Day-Ahead Prices - 2023

0.5

0.6

0.7

0.8

0.9

1.0

Co
rre

la
tio

n

(a) 2023

BE DE-LU FR NL

BE
DE

-L
U

FR
NL

0.91

0.88 0.7

0.95 0.96 0.75

Correlation of Hourly Day-Ahead Prices - 2024

0.5

0.6

0.7

0.8

0.9

1.0

Co
rre

la
tio

n

(b) 2024

Figure A.2: Correlation matrix for pairwise correlation between day-ahead electricity prices (€/MWh) for four European bidding
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Figure A.3: Correlation matrix for pairwise correlation between day-ahead electricity prices (€/MWh), actual total load (MWh)
and actual total renewables generation (solar, offshore wind, onshore wind, MWh)
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Appendix A.2. Sample composition - Peak Demand Charges

Table A.1 summarizes the smart meter readings for the 42,077 households included in our sample for the
evaluation of peak demand charges. We summarize meter readings for total monthly grid withdrawals, total
monthly grid injection and monthly peak electricity demand.

Table A.2 describes the composition of the 42,077 households that are included in our final sample for the
evaluation of peak demand charges. We present summary statistics separately for the treatment and control
group. Columns (1) shows the total number of households included in the final sample. Columns (2) and
(3) presents the household counts separately for the treated and control group. The control group consists of
the protected households that are not exposed to the introduction of peak demand charges. Finally, column
(4) represents the same results, but now represented as the percentage of households adopting a specific
combination of low-carbon technologies. Percentages are computed separately for each year. Columns (5)
and (6) further split up the sample into treated and control households.

Table A.1: Descriptive statistics: smart meter data

Treated Mean Std 25% 50% 75%
Monthly peak withdrawal [W] 4152 1821 2990 3886 4963
Monthly peak withdrawal (2022) [W] 4148 1752 3040 3924 4952
Monthly peak withdrawal (2023) [W] 4051 1753 2926 3801 4854
Monthly peak withdrawal (2024) [W] 4257 1944 3005 3934 5087
Grid withdrawals per month [kWh] 256 191 130 210 326
Grid withdrawals per month (2022) [kWh] 251 182 132 209 319
Grid withdrawals per month (2023) [kWh] 248 184 126 204 319
Grid withdrawals per month (2024) [kWh] 268 205 132 216 344
Grid injection per month [kWh] 165 206 0 76 277
Grid injection per month (2022) [kWh] 177 223 0 74 307
Grid injection per month (2023) [kWh] 167 210 0 78 277
Grid injection per month (2024) [kWh] 151 184 0 74 252

Control Mean Std 25% 50% 75%
Monthly peak withdrawal [W] 4016 1626 2926 3847 4865
Monthly peak withdrawal (2022) [W] 4020 1557 2984 3884 4860
Monthly peak withdrawal (2023) [W] 3968 1590 2892 3798 4804
Monthly peak withdrawal (2024) [W] 4059 1726 2905 3856 4931
Grid withdrawals month [kWh] 267 185 141 227 345
Grid withdrawals month (2022) [kWh] 266 181 144 227 341
Grid withdrawals month (2023) [kWh] 263 180 139 224 341
Grid withdrawal month (2024) [kWh] 272 194 140 229 353
Grid injection month [kWh] 121 188 0 10 193
Grid injection month (2022) [kWh] 130 205 0 2 215
Grid injection month (2023) [kWh] 121 189 0 11 191
Grid injection month (2024) [kWh] 111 169 0 16 179

Note: Descriptive statistics for the smart meter data included in the main analysis. This table reports household-
month statistics. There are 1,514,722 observations for 42,077 households, 40630 treated households and 1717
control households.
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Table A.2: Descriptive statistics: sample composition

(1) (2) (3) (4) (5) (6)
Households Households Households % % %

(All) (Treated) (Control) (All) (Treated) (Control)
1-1-2022

EV 175 173 2 0.4% 0.4% 0.1%
PV 26613 25774 839 63.2% 63.9% 48.9%
HP 615 601 14 1.4% 1.5% 0.8%
Battery 3845 3722 123 9.1% 9.2% 7.1%
Total 42077 40360 1717

1-1-2023
EV 2023 1957 66 4.8% 4.8% 3.8%
PV 28287 29199 912 67.2% 72.3% 53.1%
HP 7257 6990 267 17.2% 17.3% 15.5%
Battery 6859 6636 223 16.3% 16.4% 12.9%
Total 42077 40360 1717

All Total 42077 40360 1717

Note: Characteristics of the households studied. This table reports household-level statistics. There
are 40,360 households observed for the full three year period from 2022 up to and including 2024.
We classify the households based on low-carbon technology adoption. Percentages represent the
proportion of households with a specific type of low-carbon technology adoption, relative to the
total number of households in the metering regime.
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Appendix A.3. Sample composition - Real-Time Pricing

Table A.3 summarizes the characteristics of the 15,284 households included in the final sample for the eval-
uation of real-time pricing. For these households, smart meter data become available on a staggered basis
beginning in early 2022. We report summary statistics for total monthly grid withdrawals, total monthly
grid injections, and monthly peak electricity demand. In addition, we present information on the adoption
of low-carbon technologies, reflecting the status as of January 1, 2024.

Table A.3: Descriptive statistics: smart meter data and sample composition for real-time pricing households

Mean Std 25% 50% 75%
Monthly peak withdrawal [W] 4274 2152 2896 3900 5188
Monthly peak withdrawal (2023) [W] 4210 1928 3000 3916 5020
Monthly peak withdrawal (2024) [W] 4299 2237 2848 3892 5264
Grid withdrawals per month [kWh] 268 222 117 209 354
Grid withdrawals per month (2023) [kWh] 262 201 132 216 341
Grid withdrawals permonth (2024) [kWh] 270 230 111 206 360
Grid injection per month [kWh] 136 204 0 24 218
Grid injection per month (2023) [kWh] 125 194 0 9 199
Grid injection per month (2024) [kWh] 141 207 0 29 226
PV (01-01-2024) 0.61 0.49 0.00 1.00 1.00
Battery (01-01-2024) 0.28 0.45 0.00 0.00 1.00
EV (01-01-2024) 0.09 0.28 0.00 0.00 0.00
HP (01-01-2024) 0.11 0.32 0.00 0.00 0.00
Average solar capacity (2024) [kW] 4.94 2.04 3.68 5.00 5.00
Average battery size (2024) [kWh] 9.25 3.25 7.20 10.00 10.00
Average battery capacity (2024) [kVA] 4.96 1.79 4.00 5.00 5.00

Note: Descriptive statistics for the smart meter data and sample composition for households included in the additional
analysis for real-time pricing. This table reports household-month statistics. We add 15,284 households on a real-
time pricing contract in 2023 or 2024, for which there are 253,682 observations. For this group, not the full three
year period is available.
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Appendix A.4. Consumer survey data

Table A.4: Familiarity with peak demand charges

Do you know the “capacity tariff”
Yes No Total

Yes 33 90 123
(26.83%) (73.17%) (100%)

Is the price you pay No 381 451 832
for electricity the social (45.79%) (54.21%) (100%)
maximum price, also referred Do not know 3 43 46
to as the social tariff? (6.52%) (93.48%) (100%)

Total 417 854 1001
(41.66%) (58.34%) (100%)

Note: Familiarity with peak demand charges by customer type. This Table shows
a crosstabulation of two survey questions from the VREG Marktmonitor (2024).
Differences between categories are statistically significant, Pearson χ2 = 40.35, p-
value = 0.00.

Table A.5: Correct definition of peak demand charges

Give correct definition of “capacity tariff”
Yes No Total

Yes 14 19 33
(42.42%) (57.58%) (100%)

Is the price you pay No 271 110 381
for electricity the social (71.73%) (28.87%) (100%)
maximum price, also referred Do not know 3 0 3
to as the social tariff? (100%) (0%) (100%)

Total 288 129 417
(69.06%) (30.94%) (100%)

Note: Correct definition of peak demand charges by customer type. This Table shows a
crosstabulation of two survey questions from the VREG Marktmonitor (2024). Differences
between categories are statistically significant, Pearson χ2 = 13.07, p-value = 0.00.

Table A.6: Financial impact of peak demand charges

What impact has the “capacity tariff” had on overall bill?
Remarkable Slight No Slight Remarkable Total

decrease decrease change increase increase
Yes 6 15 43 17 19 100

(6.00%) (15.00%) (43.00%) (17.00%) (19.00%) (100%)
Is the price you pay No 42 53 258 188 95 636
for electricity the social (6.60%) (8.33%) (40.57%) (29.56%) (14.94%) (100%)
maximum price, also referred Do not know 1 3 15 8 4 31
to as the social tariff? (3.23%) (9.68%) (48.39%) (25.81%) (12.90%) (100%)

Total 49 71 316 213 118 767
(6.39%) (9.26%) (41.20%) (27.77%) (15.38%) (100%)

Note: Estimated impact of peak demand charges on annual bill by customer type. This Table shows a crosstabulation of
two survey questions from the VREG Marktmonitor (2024). Differences between categories are not statistically significant,
Pearson χ2 = 11.25, p-value = 0.19.
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Appendix B. Supplementary Results: Differences-in-Differences

Appendix B.1. Specification Tests

Figure B.1: Common support graph. This figure plots the distribution of estimated propensity scores for the Doubly Robust DiD
model (Sant’Anna and Zhao, 2020) estimated for the full sample of 42,077 households.

Table B.1: Balancing Table

Variable Matched Treated Control Bias (%) Bias reduction (%) t p
Solar capacity (kW) U 2.97 2.22 30.5 12.42 0.000

M 2.97 2.88 3.6 88.1 5.05 0.000
Storage capacity (kWh) U 1.39 1.08 9.7 3.72 0.000

M 1.39 1.41 -0.4 95.4 -0.58 0.562
Grid withdrawals (kWh) U 385.62 383.89 0.7 0.30 0.767

M 386.62 383.63 0.8 -15.0 1.20 0.232
Grid injection (kWh) U 20.77 15.20 20.5 7.83 0.000

M 20.77 19.75 3.7 81.8 5.04 0.000

Note: Balancing Table for observable covariates. Balancing statistics are shown for the unmatched (U) and matched (M)
sample. The matched sample uses the weights generated by the DR-DID model Sant’Anna and Zhao (2020) estimated for
the full sample of 42,077 households. Outlier observations (eleven observations with inverse probability weights > 100)
are excluded from this table. t-statistics are based on a regression of the variable on a treatment indicator, the bias is the
percentage difference in sample means in the treated and non-treated groups. Rubin’s B = 32.8 for the unmatched sample
and B = 4.4 for the matched sample. Table constructed using the Stata command psmatch from Leuven and Sianesi (2003).
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Appendix B.2. Robustness Checks

Table B.2: Robustness using DID: new low-carbon technology adopters excluded

(1) (2) (3)
TWFE-DID IPW-DID DR-DID

1{Yeart ≥ 2023} × 1{Protectedi = 0} -10.28 -68.26∗∗∗ -70.51∗∗

(-0.83) (-2.81) (-2.53)
Observations 734,688 734,688 734,688
Households 20,408 20,408 20,408
Treated 19,436 19,436 19,436
Control 972 972 972

Note: The monthly peak (W) over the period January 2022 - December 2024 is modelled in a difference-in-
differences framework. The introduction of the peak demand tariff on January 1st, 2023 indicates the post period
and protected households on the social tariff serve as control group. We exclude all households that adopt any new
low-carbon technology over the period 2023-2024. Three specifications are used to estimate the model. Column
(1) uses TWFE-DID with additional control variables. Control variables include grid withdrawals (kWh), solar
capacity (kW), solar injection (kWh), storage capacity (kWh). Household fixed effects and time fixed effects
are included. In column (2), we apply the IPW-DID estimator with stabilised weights, weighting based on grid
withdrawals (kWh), solar capacity (kW), solar injection (kWh), postal code, and dummy variables for the quarter
of low-carbon technology adoption (separate for EV, HP, PV and battery storage). Column (3) shows the estimate
for the Sant’Anna and Zhao (2020) Doubly Robust DID estimator using the same weighting variables. The unit
of observation is household-month-of-sample. Standard errors are clustered at the household level. t-statistics in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure B.2: Estimates of the dynamic specification for peak demand charges in the sample of households that does not adopt any
new low carbon technology throughout the period 2022-2024. Each dot represents the point estimate of the monthly peak reduction
(in W) for a given month-of-sample t. Three different estimators are used. First, the TWFE-DID estimator with individual and
month-of-sample fixed effects, excluding control variables for low-carbon technology adoption. Second, the IPW-DID estimator
with stabilised weights. Third, the Sant’Anna and Zhao (2020) Doubly Robust DID estimator. December 2022 is used as the
reference category in both pre- and post-treatment periods. Standard errors are clustered at the household level and vertical bars
show 95% confidence intervals.
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Table B.3: Robustness using DID: no controls for new low-carbon technologies

(1) (2) (3)
TWFE-DID IPW-DID DR-DID

1{Yeart ≥ 2023} × 1{Protectedi = 0} -32.90∗∗∗ -85.95∗∗∗ -106.22∗∗∗

(-2.61) (-3.43) (-4.36)
Observations 2,012,724 2,012,724 2,012,724
Households 55,909 55,909 55,909
Treated 53,522 53,522 53,522
Control 2387 2387 2387

Note: The monthly peak (W) over the period January 2022 - December 2024 is modelled in a difference-in-differences
framework. The introduction of the peak demand tariff on January 1st, 2023 indicates the post period and protected
households on the social tariff serve as control group. We do not explicitly control for the adoption of new low-carbon
technologies over the period 2022-2024 using EV or heatpump adoption dummy variables. Three specifications are
used to estimate the model. Column (1) uses TWFE-DID with additional control variables. Control variables include
grid withdrawals (kWh), solar capacity (kW), solar injection (kWh), storage capacity (kWh). Household fixed effects
and time fixed effects are included. In column (2), we apply the IPW-DID estimator with stabilised weights, weighting
based on grid withdrawals (kWh), solar capacity (kW), and solar injection (kWh). Column (3) shows the estimate
for the Sant’Anna and Zhao (2020) Doubly Robust DID estimator using the same weighting variables. The unit
of observation is household-month-of-sample. Standard errors are clustered at the household level. t-statistics in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure B.3: Estimates of the dynamic specification for peak demand charges in the full sample, without controls for new low carbon
technologies. Each dot represents the point estimate of the monthly peak reduction (in W) for a given month-of-sample t. Three
different estimators are used. First, the TWFE-DID estimator with individual and month-of-sample fixed effects, excluding control
variables for low-carbon technology adoption. Second, the IPW-DID estimator with stabilised weights. Third, the Sant’Anna and
Zhao (2020) Doubly Robust DID estimator. December 2022 is used as the reference category in both pre- and post-treatment
periods. Standard errors are clustered at the household level and vertical bars show 95% confidence intervals.

11



Appendix B.3. Heterogeneity

Table B.4: Heterogeneity analysis using DiD

(1) (2) (3) (4) (5) (6)
Full sample Electric Heat pump Heat pump Battery storage No low-carbon

vehicle (main) (additional) technology
TWFE-DID (no controls) 12.71 -173.67∗∗ 94.42 38.01 -153.92∗∗ -2.27

(0.71) (-1.05) (-0.41) (0.46) (-2.35) (-0.11)
TWFE-DID (controls) -51.40∗∗ -319.47∗∗∗ -29.37 -88.70 -147.55∗∗∗ -18.44

(-3.79) (-2.41) (-0.45) (-1.41) (-2.61) (-1.13)
IPW-DID -95.67∗∗∗ -404.02∗∗ 147.88 -217.62 -170.79∗∗ -69.94∗∗

(-3.11) (-2.05) (1.10) (-1.44) (-2.09) (-2.22)
DR-DID -122.22∗∗∗ -380.89∗∗ 161.01 -192.72 -168.33∗∗ -70.20∗∗

(-3.99) (-2.02) (1.20) (-1.35) (-2.63) (-2.06)
Observations 1,514,722 57,636 102,168 79,308 245,088 290,844
Households 42,077 1600 2838 2203 6808 8079
Treated 40,360 1547 2745 2107 6588 7513
Control 1717 54 93 96 220 566
Average Peakit 2022 4142.44 6331.26 5083.59 4966.90 3861.69 3706.10

Note: The monthly peak (W) over the period January 2022 - December 2024 is modelled in a difference-in-differences
framework. The introduction of the peak demand tariff on January 1st, 2023 indicates the post period and protected
households on the social tariff serve as control group. Four specifications are used to estimate the model. Row (1)
uses the TWFE-DID estimator without control variables. In row (2) we use TWFE-DID with additional control vari-
ables. Control variables include grid withdrawals (kWh), solar capacity (kW), solar injection (kWh) and storage capacity
(kWh). Household fixed effects and time fixed effects are included. In row (3), we apply the IPW-DID estimator with
stabilised weights, weighting based on grid withdrawals (kWh), solar capacity (kW), solar injection (kWh) and dummy
variables for the quarter of low-carbon technology adoption (separate for EV, HP, PV and battery storage). Finally, row
(4) shows the estimate for the (Sant’Anna and Zhao, 2020) Doubly Robust DID estimator using the same weighting
variables. The unit of observation is household-month-of-sample. Standard errors are clustered at the household level.
t-statistics in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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(b) Heat pump as additional heating
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(c) Electric vehicle
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(d) Battery energy storage
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(e) No low-carbon technologies

Figure B.4: Estimates of the dynamic specification for peak demand charges in the five subsamples. Each dot represents the point
estimate of the monthly peak reduction (in W) for a given month-of-sample t. Three different estimators are used. First, the TWFE-
DID estimator with individual and month-of-sample fixed effects including control variables. Second, the IPW-DID estimator with
stabilised weights. Third, the Sant’Anna and Zhao (2020) Doubly Robust DID estimator. December 2022 is used as the reference
category in both pre- and post-treatment periods. Standard errors are clustered at the household level and vertical bars show 95%
confidence intervals.
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Appendix C. Supplementary Results: Grid-Level Effects

Appendix C.1. Electric vehicles

Table C.1: Synthetic distribution grid descriptive statistics by EV adoption level, 10 households

Percentage of households with EV
0% 20% 50% 80% 100%

Peak (kW)
Daily 10.48 11.69 13.58 15.51 16.83

(2.46) (3.39) (4.37) (5.23) (5.84)
Monthly 15.32 17.64 21.04 24.15 26.41

(2.43) (3.76) (4.75) (5.45) (6.08)
Yearly 18.15 21.67 26.70 30.81 34.55

(2.01) (3.36) (4.17) (4.64) (4.94)
Grid withdrawals (kWh)
Daily 78.99 88.70 104.82 120.82 131.98

(14.68) (23.11) (35.99) (47.87) (56.69)
Monthly 2424.22 2719.98 3214.23 3703.68 4047.56

(357.05) (556.08) (910.80) (1231.36) (1480.50)
Yearly 14534.67 16317.52 19285.36 22235.04 24285.35

(1722.49) (2028.85) (2621.46) (3040.05) (3415.60)
Coincidence factor
Daily 0.53 0.54 0.54 0.54 0.54

(0.08) (0.08) (0.09) (0.09) (0.09)
Monthly 0.40 0.41 0.41 0.41 0.41

(0.05) (0.05) (0.06) (0.06) (0.06)
Yearly 0.35 0.37 0.38 0.38 0.40

(0.03) (0.04) (0.05) (0.04) (0.05)

Note: Synthetic distribution grid descriptive statistics based on an aggregation of 10 households. The rows indicate the
percentage of households with an electric vehicle (EV). All other households in the synthetic distribution grid do not have
any low-carbon technologies. Values represent mean peak electricity withdrawals (kW), total electricity withdrawals (kWh)
and coincidence factors for the peak electricity demand with corresponding standard deviations between parenthesis.
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Table C.2: Synthetic distribution level descriptive statistics by EV adoption level. 25 households

Percentage of households with EV
0% 20% 50% 80% 100%

Peak (kW)
Daily 23.24 25.57 29.12 33.49 36.28

(4.38) (5.95) (7.66) (9.68) (10.97)
Monthly 31.01 34.98 40.81 47.24 51.34

(4.38) (6.32) (7.99) (10.55) (11.50)
Yearly 36.62 43.11 52.63 62.86 68.75

(3.29) (4.11) (5.11) (6.64) (7.88)
Grid withdrawals (kWh)
Daily 196.99 221.56 259.19 303.40 329.67

(26.75) (45.43) (72.59) (105.58) (125.43)
Monthly 6041.04 6795.35 7948.53 9305.05 10110.41

(646.72) (1155.71) (1928.94) (2873.05) (3439.30)
Yearly 36246.26 40772.10 47691.15 55830.29 60662.48

(2773.84) (3033.09) (3407.96) (5200.31) (5049.57)
Coincidence factor
Daily 0.47 0.47 0.46 0.47 0.47

(0.06) (0.06) (0.06) (0.07) (0.07)
Monthly 0.32 0.32 0.32 0.32 0.32

(0.03) (0.04) (0.04) (0.05) (0.04)
Yearly 0.28 0.29 0.31 0.31 0.31

(0.02) (0.03) (0.03) (0.03) (0.03)

Note: Synthetic distribution grid descriptive statistics based on an aggregation of 25 households. The rows indicate the
percentage of households with an electric vehicle (EV). All other households in the synthetic distribution grid do not have
any low-carbon technologies. Values represent mean peak electricity withdrawals (kW), total electricity withdrawals (kWh)
and coincidence factors for the peak electricity demand with corresponding standard errors between parenthesis.
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Appendix C.2. Real-time pricing

Table C.3: Synthetic distribution level descriptive statistics by real-time pricing adoption level. 10 households

Percentage of households with real-time pricing
0% 1-20% 20-50% 50-80% 80-100%

Peak (kW)
Daily 11.05 10.83 12.86 12.41 13.31

(4.24) (4.31) (4.94) (4.52) (5.02)
Monthly 15.27 16.25 17.86 18.55 20.17

(6.27) (5.29) (6.26) (5.14) (5.58)
Yearly 36.62 43.11 52.63 62.86 68.75

(3.29) (4.11) (5.11) (6.64) (7.88)
Grid withdrawals (kWh)
Daily 84.79 83.99 104.27 99.57 111.89

(40.34) (40.60) (50.32) (45.93) (52.64)
Monthly 2101.31 2323.88 2499.30 2784.41 3398.93

(1358.80) (1208.83) (1708.84) (1381.36) (1440.69)
Yearly 36246.26 40772.10 47691.15 55830.29 60662.48

(2773.84) (3033.09) (3407.96) (5200.31) (5049.57)
Coincidence factor
Daily 0.53 0.53 0.54 0.54 0.54

(0.09) (0.09) (0.10) (0.09) (0.09)
Monthly 0.36 0.39 0.39 0.40 0.42

(0.12) (0.09) (0.10) (0.07) (0.06)
Yearly 0.28 0.29 0.31 0.31 0.31

(0.02) (0.03) (0.03) (0.03) (0.03)

Note: Synthetic distribution grid descriptive statistics based on an aggregation of 10 households. The rows indicate the
percentage of households with an active real-time pricing contract. All other households in the synthetic distribution grid
are not-yet takers, households who have not yet adopted real-time pricing, but will be adopting later in the sample period.
Values represent mean peak electricity withdrawals (kW), total electricity withdrawals (kWh) and coincidence factors for
the peak electricity demand with corresponding standard errors between parenthesis.
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Table C.4: Synthetic distribution level descriptive statistics by real-time pricing adoption level. 10 households

Percentage of households with real-time pricing
0% 20% 50% 80% 100%

Peak (kW)
Daily 24.59 23.18 31.01 26.99 27.86

(8.85) (8.18) (8.95) (8.93) (9.36)
Monthly 26.91 33.34 39.36 36.96 38.71

(13.31) (8.77) (9.65) (9.83) (9.83)
Yearly 36.62 43.11 52.63 62.86 68.75

(3.29) (4.11) (5.11) (6.64) (7.88)
Grid withdrawals (kWh)
Daily 214.21 208.22 291.50 254.74 272.50

(95.32) (87.54) (112.29) (106.27) (115.48)
Monthly 4009.11 6081.38 6432.30 7204.51 8275.29

(3737.30) (2498.20) (4514.44) (3328.15) (3298.40)
Yearly 36246.26 40772.10 47691.15 55830.29 60662.48

(2773.84) (3033.09) (3407.96) (5200.31) (5049.57)
Coincidence factor
Daily 0.46 0.46 0.48 0.46 0.46

(0.08) (0.07) (0.09) (0.07) (0.06)
Monthly 0.25 0.32 0.32 0.32 0.33

(0.11) (0.05) (0.06) (0.06) (0.05)
Yearly 0.28 0.29 0.31 0.31 0.31

(0.02) (0.03) (0.03) (0.03) (0.03)

Note: Synthetic distribution grid descriptive statistics based on an aggregation of 25 households. The rows indicate the
percentage of households with an active real-time pricing contract. All other households in the synthetic distribution grid
are not-yet takers, households who have not yet adopted real-time pricing, but will be adopting later in the sample period.
Values represent mean peak electricity withdrawals (kW), total electricity withdrawals (kWh) and coincidence factors for
the peak electricity demand with corresponding standard errors between parenthesis.
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Appendix C.3. Heat pumps
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Figure C.1: Kernel density for the distribution of monthly peaks in the distribution grid for circuits with 10 or 25 households
connected, and varying levels of heat pump adoption

Table C.5: Synthetic distribution level TWFE regression results by heat pump adoption level

Percentage of households with heat pump
0% 20% 50% 80% 100%

PANEL A: 10 households
Peak (kW)
Daily -0.111∗∗∗ -0.103∗∗ -0.158∗∗∗ -0.145∗∗ -0.203∗∗

(-3.37) (-2.04) (-2.78) (-2.15) (-2.45)
Monthly -0.453∗∗∗ -0.284∗∗ -0.405∗∗ -0.366∗ -0.573∗∗

(-4.58) (-2.12) (-2.14) (-1.75) (-2.08)

PANEL B: 25 households
Peak (kW)
Daily -0.173∗∗ -0.240∗∗ -0.220 -0.239 -0.370

(-2.07) (-2.24) (-1.49) (-1.11) (-1.28)
Monthly -0.508∗∗ -0.674∗ -0.411 -0.770 -1.240

(-2.10) (-1.99) (-0.73) (-1.00) (-1.26)

Note: The distribution grid level coincident monthly peak (kW) - aggregated over 10 households in Panel A or
25 households in Panel B - over the period January 2022 - December 2024 is modeled in a panel fixed effects
regression model. The introduction of the peak demand tariff on January 1st, 2023 indicates the post period. We
employ a TWFE model without control group, but with additional control variables. Control variables include grid-
level aggregate distributed solar production (kWh), aggregate grid withdrawals (kWh), solar capacity installed (kW),
storage capacity installed (kWh), temperature, and the variables for the number of heat pumps and electric vehicles
in the distribution circuit. Fixed effects include circuit and month-of-year fixed effects. Standard errors are clustered
at the circuit level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix C.4. Battery energy storage
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Figure C.2: Kernel density for the distribution of monthly peaks in the distribution grid for circuits with 10 or 25 households
connected, and varying levels of battery energy storage adoption

Table C.6: Synthetic distribution level TWFE regression results by battery energy storage adoption level

Percentage of households with battery energy storage
0% 20% 50% 80% 100%

PANEL A: 10 households
Peak (kW)
Daily -0.111∗∗∗ -0.200∗∗∗ -0.202∗∗∗ -0.119∗ -0.174∗∗∗

(-3.37) (-4.84) (-3.81) (-1.74) (-3.16)
Monthly -0.453∗∗∗ -0.518∗∗∗ -0.681∗∗∗ -0.151 -0.338

(-4.58) (-3.84) (-2.84) (-0.58) (-1.42)

PANEL B: 25 households
Peak (kW)
Daily -0.173∗∗ -0.283∗∗∗ -0.325∗∗ -0.210 -0.173

(-2.07) (-3.34) (-2.03) (-1.57) (-1.14)
Monthly -0.508∗∗ -0.942∗∗ -1.028∗ -0.841 0.527

(-2.10) (-2.45) (-1.97) (-1.48) (0.64)

Note: The distribution grid level coincident monthly peak (kW) - aggregated over 10 households in Panel A or 25
households in Panel B - over the period January 2022 - December 2024 is modeled in a panel fixed effects regression
model. The introduction of the peak demand tariff on January 1st, 2023 indicates the post period. We employ a TWFE
model without control group, but with additional control variables. Control variables include grid-level aggregate
distributed solar production (kWh), aggregate grid withdrawals (kWh), solar capacity installed (kW), storage capacity
installed (kWh), temperature, and the variables for the number of heat pumps and electric vehicles in the distribution
circuit. Fixed effects include circuit and month-of-year fixed effects. Standard errors are clustered at the circuit level,
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix D. Supplementary Results: Load Profile

Appendix D.1. Real-time pricing
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Figure D.1: Average kWh hourly electricity consumption for RTP adopters before and after adoption

Table D.1: Load shifting for real-time pricing

(1) (2) (3)
All Winter Summer

Total grid withdrawals:
All hours -0.0616 -0.612 -1.347

(-0.16) (-0.76) (-1.33)
Morning hours (06.00 - 12.00) ............................ -0.180 -0.535∗∗ -1.132∗∗

(-1.16) (-2.27) (-2.39)
Afternoon hours (12.00 - 17.00) -0.292∗ -0.422∗ -1.221

(-1.73) (-1.84) (-1.54)
Peak hours (17.00 - 20.00) -0.132∗ -0.390∗∗∗ 0.0886

(-1.84) (-2.64) (0.37)
Night hours (22.00 - 06.00) 0.491∗∗∗ 0.768∗ 0.767∗

(2.77) (1.87) (1.94)
Control variables ✓ ✓ ✓
Household × day-of-week FE ✓ ✓ ✓
Household × month-of-year FE ✓ ✓ ✓
Month-of-sample FE ✓ ✓ ✓
Observations 358,639 88,523 92,202
Clusters 1061 1061 1061

Note: The daily electricity consumption (kWh) in a block of hours over the day over the period January
2023 - December 2024 is regressed in a multi-way fixed effects difference-in-difference (MWFE-DID). The
uptake of real-time prices indicates the post period and not-yet-treated households serve as control group.
The model is estimated for the full sample, and the different seasons separately. The unit of observation is
household-day-of-sample. Control variables include solar capacity (kW), solar production (kWh), storage
capacity (kWh), daily variables for temperature and the dummy variables for the presence of heat pumps and
electric vehicles. t-statistics in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix D.2. Electric vehicles
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Figure D.2: Average kWh hourly electricity grid withdrawals for EV adopters before and after the introduction of peak demand
charges

Table D.2: Load shifting for EV owners

(1) (2) (3)
All Winter Summer

Total electricity consumption:
All hours 0.461 -0.379 1.027∗

(1.11) (-0.50) (1.80)
Morning hours (06.00 - 12.00) ............................ 0.0305 -0.338∗ 0.299

(0.18) (-1.81) (1.20)
Afternoon hours (12.00 - 17.00) 0.0787 -0.389 0.341∗

(0.63) (-1.54) (1.65)
Peak hours (17.00 - 20.00) -0.0655 -0.271∗∗ 0.0716

(-0.71) (-2.05) (0.53)
Night hours (22.00 - 06.00) 0.458∗∗ 0.788∗ 0.250

(2.08) (1.77) (1.12)
Control variables ✓ ✓ ✓
Household × day-of-week FE ✓ ✓ ✓
Household × month-of-year FE ✓ ✓ ✓
Month-of-sample FE ✓ ✓ ✓
Observations 2,106,068 516,362 531,802
Households 2021 2021 2021

Note: The daily electricity consumption (kWh) over the period January 2022 - December 2024 is regressed in
a multi-way fixed effects difference-in-difference (MWFE-DID). The introduction of the peak demand tariff
on January 1st, 2023 indicates the post period and protected households serve as control group. The model is
estimated for the full sample, and the different seasons separately. The unit of observation is household-day-
of-sample. Control variables include solar capacity (kW), solar production (kWh), storage capacity (kWh),
daily variables for temperature and the dummy variables for the presence of heat pumps and electric vehicles.
t-statistics in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix D.3. Heat pumps
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Figure D.3: Average kWh hourly electricity grid withdrawals for HP adopters before and after the introduction of peak demand
charges

Table D.3: Load shifting for HP owners

(1) (2) (3)
All Winter Summer

Total grid withdrawals:
All hours 0.483∗∗ 0.754∗∗ 0.330

(2.06) (2.16) (1.26)
Morning hours (06.00 - 12.00) -0.00378 -0.0677 0.0675

(-0.06) (-0.64) (1.05)
Afternoon hours (12.00 - 17.00) -0.000743 0.0125 0.00693

(-0.02) (0.14) (0.15)
Peak hours (17.00 - 20.00) 0.0733∗ 0.112 0.0125

(1.68) (1.57) (0.27)
Night hours (22.00 - 06.00) 0.355∗∗∗ 0.643∗∗∗ 0.198

(2.87) (3.11) (1.52)
Control variables ✓ ✓ ✓
Household × day-of-week FE ✓ ✓ ✓
Household × month-of-year FE ✓ ✓ ✓
Month-of-sample FE ✓ ✓ ✓
Observations 1,165,941 285,859 294,362
Households 1123 1123 1123

Note: The daily grid withdrawals (kWh) in a block of hours over the day over the period January 2022
- December 2024 are regressed in a multi-way fixed effects difference-in-difference (MWFE-DID). The
introduction of the peak demand tariff on January 1st, 2023 indicates the post period and protected house-
holds serve as control group. The model is estimated for the full sample, and the different seasons sep-
arately. The unit of observation is household-day-of-sample. Control variables include solar capacity
(kW), solar production (kWh), storage capacity (kWh), daily variables for temperature and the dummy
variables for the presence of heat pumps and electric vehicles. t-statistics in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Figure D.4: Average kWh hourly electricity grid withdrawals for HP adopters before and after the introduction of peak demand
charges

Table D.4: Load shifting for HP owners

(1) (2) (3)
All Winter Summer

Total electricity consumption:
All hours 0.549∗∗ 0.748∗∗ 0.438

(2.08) (2.12) (1.24)
Morning hours (06.00 - 12.00) -0.0108 -0.0697 0.0989

(-0.10) (-0.63) (0.63)
Afternoon hours (12.00 - 17.00) 0.0945 0.00842 0.131

(0.91) (0.08) (0.90)
Peak hours (17.00 - 20.00) 0.0740∗ 0.113 0.0177

(1.65) (1.58) (0.28)
Night hours (22.00 - 06.00) 0.332∗∗∗ 0.643∗∗∗ 0.146

(2.69) (3.11) (1.16)
Control variables ✓ ✓ ✓
Household × day-of-week FE ✓ ✓ ✓
Household × month-of-year FE ✓ ✓ ✓
Month-of-sample FE ✓ ✓ ✓
Observations 1,165,941 285,859 294,362
Households 1123 1123 1123

Note: The daily electricity consumption (kWh) over the period January 2022 - December 2024 is re-
gressed in a multi-way fixed effects difference-in-difference (MWFE-DID). The introduction of the peak
demand tariff on January 1st, 2023 indicates the post period and protected households serve as control
group. The model is estimated for the full sample, and the different seasons separately. The unit of
observation is household-day-of-sample. Control variables include solar capacity (kW), solar production
(kWh), storage capacity (kWh), daily variables for temperature and the dummy variables for the presence
of heat pumps and electric vehicles. t-statistics in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix D.4. Battery energy storage
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Figure D.5: Average kWh hourly electricity grid withdrawals for battery energy storage adopters before and after the introduction
of peak demand charges

Table D.5: Load shifting for battery energy storage owners

(1) (2) (3)
All Winter Summer

Total grid withdrawals:
All hours -0.330 0.119 -0.706∗

(-1.18) (0.28) (-1.86)
Morning hours (06.00 - 12.00) -0.126∗∗ -0.0447 -0.155∗∗

(-2.05) (-0.49) (-2.02)
Afternoon hours (12.00 - 17.00) -0.0684 -0.0710 -0.0691∗

(-1.51) (-0.65) (-1.86)
Peak hours (17.00 - 20.00) -0.0722 -0.0381 -0.112∗

(-1.42) (-0.45) (-1.92)
Night hours (22.00 - 06.00) -0.0193 0.335 -0.307

(-0.13) (1.61) (-1.48)
Control variables ✓ ✓ ✓
Household × day-of-week FE ✓ ✓ ✓
Household × month-of-year FE ✓ ✓ ✓
Month-of-sample FE ✓ ✓ ✓
Observations 1,595,908 392,510 405,197
Households 2000 2000 2000

Note: The daily grid withdrawals (kWh) in a block of hours over the day over the period January 2022
- December 2024 are regressed in a multi-way fixed effects difference-in-difference (MWFE-DID). The
introduction of the peak demand tariff on January 1st, 2023 indicates the post period and protected house-
holds serve as control group. The model is estimated for the full sample, and the different seasons sep-
arately. The unit of observation is household-day-of-sample. Control variables include solar capacity
(kW), solar production (kWh), storage capacity (kWh), daily variables for temperature and the dummy
variables for the presence of heat pumps and electric vehicles. t-statistics in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Figure D.6: Average kWh hourly electricity grid withdrawals for battery energy storage adopters before and after the introduction
of peak demand charges

Table D.6: Load shifting for battery energy storage owners

(1) (2) (3)
All Winter Summer

Total electricity consumption:
All hours -0.267 0.137 -0.706

(-0.74) (0.31) (-1.17)
Morning hours (06.00 - 12.00) 0.00565 -0.0420 0.00123

(0.02) (-0.26) (0.00)
Afternoon hours (12.00 - 17.00) -0.118 -0.0509 -0.195

(-0.45) (-0.34) (-0.45)
Peak hours (17.00 - 20.00) -0.0662 -0.0402 -0.0844

(-0.81) (-0.48) (-0.52)
Night hours (22.00 - 06.00) -0.0431 0.333 -0.365

(-0.27) (1.60) (-1.48)
Control variables ✓ ✓ ✓
Household × day-of-week FE ✓ ✓ ✓
Household × month-of-year FE ✓ ✓ ✓
Month-of-sample FE ✓ ✓ ✓
Observations 1,165,941 285,859 294,362
Households 1123 1123 1123

Note: The daily electricity consumption (kWh) over the period January 2022 - December 2024 is re-
gressed in a multi-way fixed effects difference-in-difference (MWFE-DID). The introduction of the peak
demand tariff on January 1st, 2023 indicates the post period and protected households serve as control
group. The model is estimated for the full sample, and the different seasons separately. The unit of
observation is household-day-of-sample. Control variables include solar capacity (kW), solar production
(kWh), storage capacity (kWh), daily variables for temperature and the dummy variables for the presence
of heat pumps and electric vehicles. t-statistics in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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