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Abstract

Local projections (LPs) are widely used for estimating impulse responses (IRs) as they are
considered more robust to model misspecification than forward-iterated IRs from dynamic
models such as VARs. However, this robustness comes at the cost of higher variance, partic-
ularly at longer horizons. To mitigate this trade-off, several GLS transformations of LPs have
been proposed. This paper analyzes two broad strands of GLS-type LP estimators: those that
condition on residuals from an auxiliary VAR, and those that condition on residuals from
previous-horizon LPs. We show that the former impose a VAR structure, which leads them to
align with VAR IRs, while the latter preserve the unrestricted nature of LPs but end up repli-
cating LP OLS estimates. Consequently, the intended efficiency gains are either not achieved
or come at the expense of the very robustness that motivates the use of LPs.
JEL-codes: C22, C32, C52
Keywords: impulse responses, local projections, VAR models, GLS estimation, efficiency, ro-
bustness

1 Introduction

Since the seminal work of Jordà (2005), local projections (LPs) have become a widely used method

for estimating impulse responses (IRs). Unlike VAR-based approaches that extrapolate IRs from

a fixed number of sample autocovariances, LPs estimate them directly at each horizon, thereby
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imposing fewer restrictions on the data’s dynamics. This flexibility is often argued to enhance

robustness relative to VARs. Olea et al. (2024) indeed show that LP confidence intervals achieve

correct asymptotic coverage under broad conditions, while even mild misspecification can cause

severe undercoverage in VAR-based intervals. Similarly, Kolesár and Plagborg-Møller (2024)

demonstrate that LPs retain robustness in nonlinear settings. At the same time, LP estimates

are typically more variable and can appear more erratic than VAR-based IRs (Ramey, 2016). Be-

cause each horizon is estimated separately, forecast errors accumulate across horizons, inducing

a moving-average (MA) structure in the LP residuals and inflating estimator variance, especially

at longer horizons.

This highlights a broader bias–variance trade-off. Plagborg-Møller and Wolf (2021) show that LPs

and VARs yield identical IRs in population when the VAR includes a sufficiently long lag length.

In finite samples, however, low-order VARs achieve lower variance but may suffer from misspeci-

fication bias, while LPs are more robust but less precise. Simulation evidence supports this view:

Kilian and Kim (2011) find that when the data follow a finite-order VAR, LP confidence intervals

are excessively wide, while bias-adjusted VAR bootstrap intervals are considerably narrower. Ex-

tending this to thousands of designs, Li et al. (2024) document that LPs generally deliver lower

bias but higher variance than VAR estimators.

Concerns over the finite-sample variability of LPs have motivated refinements aimed at improv-

ing efficiency. Jordà (2005) already suggested recursively incorporating previous-horizon pro-

jection errors, which later inspired Generalized Least Squares (GLS) transformations for LPs.

Lusompa (2023), for instance, shows that the autocorrelation structure of LP errors reflects the

dynamics of an auxiliary VAR, which motivates a GLS transformation based on VAR residuals.

A similar approach is explored by Breitung and Brüggemann (2023). Monte Carlo evidence in

Bruns and Lütkepohl (2022) indicates that such GLS variants often outperform LP OLS and other

LP refinements in terms of root mean squared error (RMSE), particularly at longer horizons.

However, these GLS transformations are motivated by settings where the reduced-form dynamics

are fully captured by a VAR, either exactly in a finite-order specification or asymptotically in

a sieve VAR as the lag length p grows with the sample size. In applied work, by contrast,

researchers must choose a finite lag length. Even when a sieve representation exists, the working

finite-order VAR can be locally misspecified. In this empirically relevant fixed-p regime, VAR-

residual–based GLS transformations may reduce variance but risk importing misspecification

bias, leaving the net effect unclear.

This paper builds on this notion and evaluates how LP GLS estimators perform relative to the

benchmark LP OLS and VAR IRs. In doing so, we impose only weak regularity conditions that

allow for local reduced-form VAR misspecification in a fixed-p setting, ensuring broad empirical

relevance and enabling us to assess the effectiveness of GLS-based LP estimators in managing

the bias–variance trade-off. We distinguish between two broad strands of GLS implementations.

The first strand exploits the fact that under a correct reduced-form VAR specification, whether
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exact or asymptotic, LP errors follow a Vector Moving Average (VMA) process in terms of VAR

projection errors and IR coefficients (Lusompa, 2023). This motivates GLS transformations that

condition on auxiliary VAR residuals. However, we find that once all available VAR residuals

are used, the LP GLS estimator reproduces the VAR IRs mechanically, as it fully imposes the

VAR dynamics on the LPs, regardless of whether the VAR is correctly specified. The closely

related variant of Breitung and Brüggemann (2023) likewise coincides with the VAR IRs, either

numerically or up to
p

T-equivalence. These VAR-residual–based GLS variants should there-

fore not be viewed as refinements of LPs, but rather as rebranded implementations of the VAR

model, with the same sensitivities as the latter. The second strand allows for local reduced-form

VAR misspecification. In such cases, we show that LP errors follow a VMA process involving

iteratively re-centered VAR projection errors and pseudo-true IRs. This motivates an alternative

GLS variant that instead conditions on previous-horizon LP residuals, as originally suggested by

Jordà (2005). However, conditioning on LP residuals replicates the LP OLS estimator, preserving

robustness and LP flexibility but forgoing efficiency gains.

Taken together, our results imply that none of these LP GLS variants generate distinct asymp-

totic distributions. They are either numerically identical to VAR IRs or to LP OLS, or are
p

T–equivalent to them. These conclusions are established in a fixed-p framework, which re-

flects the empirically relevant case where applied researchers must work with a finite lag length,

but they continue to hold pointwise along a sieve sequence in which the lag length grows with

the sample size (i.e., p = p(T) ! • as T ! •, under standard sieve regularity conditions).

The only exception is the LP GLS estimator of Lusompa (2023), which excludes the current-

horizon VAR residual from the conditioning set. As a result, it imposes most — but not all — of

the VAR dynamics on the LP, preventing full collapse to the VAR IRs and yielding a genuinely

distinct limiting distribution. Because closed-form expressions are analytically intractable un-

der our general framework, we complement the general results with structured data-generating

processes (DGPs) that allow sharper analytical and simulation-based comparisons. Specifically,

we analyze (i) a stylized example with shrinking local misspecification that delivers explicit ex-

pressions for asymptotic bias and variance, (ii) a similar DGP but with misspecification induced

by data-driven lag selection, (iii) data simulated from the empirically calibrated DSGE model of

Smets and Wouters (2005), and (iv) data generated by the dynamic factor model of Stock and

Watson (2016), following the Monte Carlo design of Li et al. (2024), which yields a large set of

empirically realistic DGPs. Across these designs, the Lusompa (2023) estimator typically lies

between LP OLS and VAR IRs along the bias–variance frontier, but seldom improves upon either

benchmark in terms of weighted RMSE.

The remainder of the paper is structured as follows. Section 2 introduces the general framework,

defines benchmark VAR and LP estimators, and derives the autocorrelation structure of LP errors

that underpins the various GLS transformations. Section 3 analyzes the bias–variance trade-

off, showing how LP GLS estimators align with, or deviate from, the benchmark methods in

this general setting. Section 4 then focuses on the Lusompa (2023) estimator and illustrates its
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behavior relative to VAR and LP OLS across a wide range of DGPs. Section 5 concludes. Proofs

and supplementary material are provided in Appendices A and B.

2 Assumptions, Autocorrelation Processes, and Estimators

This section establishes the framework for evaluating LP and VAR impulse response estimators.

We begin by introducing a general reduced-form regularity condition and the Wold represen-

tation of the data. To ensure broad applicability, our framework is deliberately general and

does not restrict the process to any particular parametric or structural model. We then define

the benchmark VAR and LP estimators and analyze the autocorrelation structure of LP errors,

building on the results of Lusompa (2023) under correct reduced-form VAR specification. These

results motivate the first strand of LP GLS estimators, which condition on auxiliary VAR resid-

uals to mitigate the accumulation of projection errors. Finally, we extend the analysis to local

reduced-form VAR misspecification and introduce a new theorem that justifies a second strand

of LP GLS estimators based on previous-horizon LP residuals.

2.1 Assumptions and Reduced-Form Representation

Let yt denote a (k ⇥ 1) observed data vector. As in Plagborg-Møller and Wolf (2021), we impose

the following nonparametric regularity condition:

Assumption 1. The data {yt} are covariance stationary and purely non-deterministic, with an

everywhere nonsingular spectral density matrix, absolutely summable Wold representation co-

efficients and finite fourth moments. For notational convenience, we proceed as if {yt} were a

(strictly stationary) jointly Gaussian vector time series.

This assumption provides a general reduced-form foundation for our analysis, ensuring that

results apply to a wide class of stationary multivariate processes. Note that the Gaussianity

assumption is made without loss of generality. It allows us to replace linear projection opera-

tors with conditional expectations, but all results remain valid under Assumption 1 even in the

absence of Gaussianity.

Under Assumption 1, yt has a canonical Wold representation (see, e.g., Hamilton, 1994, Ch. 4):

yt = et +
•

Â
j=1

Qjet�j, (1)

where et denotes the k ⇥ 1 vector of one-step-ahead linear prediction errors (innovations) with

E(et) = 0k⇥1, a positive definite covariance matrix Se, and E(ety0
t�j) = 0k⇥k for all j � 1.

The goal is to estimate population reduced-form IRs, which quantify the dynamic effects of each

shock in et on yt+h, over the horizons h = 1, . . . , H, where H is fixed, finite, and satisfies H < T.
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Based on the Wold representation in eq.(1), these IRs are given by the sequence of (k⇥ k) matrices

{Qh}H
h=1.

Remark 1. (Reduced-form IRs and structural identification). Assumption 1 imposes mild reg-

ularity conditions on the reduced-form Wold representation and does not restrict the causal

(structural) model. Consequently, the IRs Qh derived from the Wold representation in eq.(1)

capture the effects of reduced-form shocks and, in general, do not correspond to responses to

structural shocks. As emphasized by Plagborg-Møller and Wolf (2021), structural identification

is a population concept, logically separate from the choice of reduced-form estimation method.

Our analysis therefore focuses on estimators of reduced-form IRs. When structural IRs are of

interest, they can be obtained by post-multiplying the reduced-form IRs Qh by an appropriate

identification matrix B�1, such that the structural IRs are given by QhB�1. Specific identification

schemes — such as IV approaches and contemporaneous or long-run restrictions — amount to

imposing conditions that allow one or more columns of B�1 to be recovered (see, e.g., Kilian

and Lütkepohl, 2017, Stock and Watson, 2018, Plagborg-Møller and Wolf, 2021). Issues of global

misspecification — such as structural non-invertibility or underidentification — lie outside our

maintained reduced-form framework and do not affect the validity of the reduced-form Wold

representation.

2.2 Benchmark Estimators: VAR and LP OLS

VAR. Consider the VAR model:

yt+1 = Ayt + ht+1, for t = 1, . . . , T � 1, (2)

where A is a (k ⇥ k) parameter matrix, and ht+1 ⌘ yt+1 � E [yt+1|yt] is a (k ⇥ 1) vector of

projection errors.

The OLS estimator for A in eq.(2), based on a sample of T � a observations, is defined as:

bA(�a) =

 
T�a

Â
t=1

yt+1y0
t

! 
T�a

Â
t=1

yty0
t

!�1

, for 1  a  T � 1, (3)

such that the corresponding VAR IR estimator for Qh is given by bAh
(�a). Note that, to align with

some of the LP estimators introduced below, we allow for estimation over a reduced sample

by excluding the last a observations. When using the maximum available sample (a = 1), we

simplify the notation to bA(�1) = bA.
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LP OLS. Local projections estimate the IRs Qh directly at each horizon through separate regres-

sions:

yt+h = Bhyt + et+h,h, for h = 1, . . . , H, (4)

where Bh represents the coefficients of the best linear projection of yt+h onto yt, and et+h,h ⌘
yt+h � E [yt+h|yt] = yt+h � Bhyt denotes the h-step-ahead projection error.

The OLS estimator for Bh in eq.(4), based on a sample of T � a observations, is given by:

bBh,(�a) =

 
T�a

Â
t=1

yt+hy0
t

! 
T�a

Â
t=1

yty0
t

!�1

, for h  a  T � 1. (5)

In similar fashion to the VAR estimator above, we accommodate a flexible use of the sample

and indicate it by the a subscript. Setting a = h employs the maximum available sample at

each horizon, in which case we simplify the notation to bBh,(�h) = bBh. Alternatively, setting

a = H uses the same dataset for the explanatory variable yt (i.e., y1, . . . , yT�H) across all horizons

h = 1, . . . , H. This approach is often used in practice to ensure a uniform sample size and

composition, reducing variability that may arise from differing sample periods at each horizon.

Remark 2 (Companion-form shorthand, fixed lag length, and sieve asymptotics). The first-order

models in eqs.(2) and (4) should be understood as companion-form representations of VAR and

LP models with a fixed lag length p. The companion form is purely a notational shorthand: any

VAR or LP with a fixed number of lags can be written this way with appropriately defined state

variables (cf. Lütkepohl, 2005, Ch. 2), so the notation does not restrict the choice of p, beyond

assuming it is fixed. We adopt a fixed-p framework because it naturally captures local misspec-

ification, which arises when the chosen lag length is too short to approximate the reduced-form

dynamics. Moreover, it yields exact population and finite-sample identities without invoking

asymptotic approximations. Where asymptotic arguments are used, they serve only to attach

explicit remainder orders arising from estimation-window misalignment in this fixed-lag setting.

Links to sieve asymptotics, where the lag length grows with the sample size, are provided where

relevant.

2.3 Autocorrelation Structures of LP Errors

Because projection errors accumulate in et+h,h, the LP errors are serially correlated, and the vari-

ance of the LP OLS estimator increases with the horizon h. This is reflected in the limiting

distribution of the LP OLS estimator, as derived in Bhansali (1997) and Lusompa (2023), which

shows that the variance grows with h. As such, understanding the autocorrelation structure of

LP errors is crucial for analyzing the properties of LP estimators and developing GLS transfor-

mations aimed at avoiding the error accumulation process.
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To that end, it is helpful to forward iterate the VAR in eq.(2). This yields the decomposition:

yt+h = Ahyt +
h

Â
j=1

Ah�jht+j. (6)

Since the LP error et+h,h is defined as the projection error from regressing yt+h onto yt, eq. (6)

shows that its behavior is determined by the autocorrelation structure in the forward VMA term

Âh
j=1 Ah�jht+j and by how this term relates to yt. The properties of the VAR projection errors ht

are therefore central for understanding the autocorrelation structure of LP errors. Because these

properties differ under correct and locally misspecified reduced-form VARs, we first formalize

this distinction and then characterize the resulting VMA representations of LP errors.

2.3.1 Correct versus Locally Misspecified Reduced-Form VAR Specification

By Assumption 1, yt admits a canonical invertible Wold representation, so the process can always

be expressed as a projection VAR(•) (cf. Hamilton, 1994, Plagborg-Møller and Wolf, 2021). In

practice, however, researchers estimate finite-order VARs, truncating the infinite-order represen-

tation at some lag length p. This truncation is the source of local reduced-form misspecification: if

p is too short to capture the reduced-form dynamics, the finite-order VAR only approximates

the projection VAR(•). Local misspecification is common when rich autoregressive dynamics

or moving-average components are compressed into a short VAR, or when degrees-of-freedom

constraints force the use of a limited number of lags (see, e.g., Braun and Mittnik, 1993; Stock

and Watson, 2018).

By contrast, a correctly specified reduced-form VAR requires a lag length p that is sufficiently

long to capture the reduced-form dynamics. This holds exactly when the true process is itself a

finite-order VAR(p), and more generally asymptotically under a sieve where the lag length tends

to infinity in function of T, i.e. p = p(T) ! • as T ! •, under standard sieve regularity

conditions.

Our analysis of the autocorrelation structure of LP errors therefore distinguishes between two

cases: the empirically relevant scenario of local reduced-form VAR misspecification, where the

VAR lag order is insufficient, and the case of correct reduced-form VAR specification. For brevity,

we will often refer to these simply as local misspecification and correct specification, respectively.

2.3.2 VMA Representation of LP Errors under Correct Specification

Lusompa (2023) shows that, under Assumption 1 and correct reduced-form VAR specification,

the VAR projection errors ht coincide with the Wold innovations et. Under this condition, the

forward-iterated VAR representation in eq. (6) implies that the LP projection error in eq.(4) equals

the forward VMA term. In population, the LP error et+h,h can therefore be expressed as a VMA
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process of these innovations and the IRs:

eVAR
t+h,h = Qh�1ht+1 + Qh�2ht+2 + · · ·+ Q1ht+h�1 + ht+h, (7)

where the superscript ‘VAR’ indicates that this representation underlies the GLS transformations

based on VAR residuals, as discussed in Subsection 2.4.1.

2.3.3 VMA Representation of LP Errors under Local Misspecification

Under local misspecification, the decomposition in eq. (6) continues to hold, but the VAR projec-

tion errors ht are no longer orthogonal to yt. Consequently, the forward VMA term Âh
j=1 Ah�jht+j

exhibits forward dependence, such that terms as E[ht+jy
0
t] are generally nonzero for j � 1. This

forward dependence implies two important departures from the correctly specified case. First,

the VAR projection errors ht no longer coincide with the Wold innovations et and become serially

correlated. Second, the LP coefficients Bh no longer equal the true impulse responses Qh (i.e.,

Bh 6= Qh). However, following Galvao and Kato (2014), Bh can still be interpreted as a pseudo-true
IR, defined as the best linear projection of yt+h onto yt. In this sense, Bh provides the optimal

linear approximation to the true h-period-ahead response Qh, even if the underlying model is

locally misspecified. Nonetheless, it is important to recognize that bBh is not necessarily closer

to Qh than bAh
, as discussed in Kilian and Kim (2011). The relative accuracy of these estima-

tors depends on the degree and nature of misspecification, meaning that LPs do not universally

dominate VAR-based estimators in terms of bias.

The following lemma provides an explicit expression for the pseudo-true IRs Bh:

Lemma 1. Under Assumption 1, allowing for local reduced-form VAR misspecification, pseudo-true IRs
Bh are given by:

Bh = Ah +
h

Â
j=1

Ah�jC j,

where C j = fjG
�1, fj = E[ht+jy

0
t] and G = E [yty0

t].
Proof. See Appendix A.

Lemma 1 shows that the LP coefficients Bh deviate from the VAR IRs Ah whenever C j 6= 0
for some j  h. This occurs under local misspecification, where future VAR errors ht+j are

correlated with current regressors yt. These forward dependence terms fj = E[ht+jy
0
t] give

rise to misspecification terms C j = fjG
�1, which accumulate over j  h and generate a wedge

between the LP-based pseudo-true IRs and the VAR-implied IRs. Intuitively, the deviation arises

because LPs impose orthogonality at each horizon, whereas VARs impose it only through their

finite lag structure.

An implication of Lemma 1 is that, under local reduced-form VAR misspecification, the LP errors
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et+h,h cannot be expressed purely as a VMA process of Wold innovations and IRs. Instead, the

misspecification terms C j generate additional dependence, giving rise to the following structure:

Theorem 1. Under Assumption 1, in a fixed-p setting allowing for local reduced-form VAR misspecifica-
tion, the horizon-h LP errors et+h,h follow a VMA process of order (h � 1), expressed as:

et+h,h = Bh�1nt+1,1 + Bh�2nt+2,2 + . . . + B1nt+h�1,h�1 + nt+h,h, (8)

where the recursively defined re-centered VAR projection errors ns,j are given by:

ns,j = hs � C jys�j �
j�1

Ầ
=1

C j�`ns�j+`,`. (9)

Theorem 1 provides the basis for an alternative class of GLS estimators that condition on LP

residuals from previous horizons, as originally suggested by Jordà (2005) and presented in Sec-

tion 2.4.2.

The VMA representation in Theorem 1 nests the result of Lusompa (2023). Under correct

reduced-form VAR specification with finite p, the misspecification terms C j are zero, while under

a sieve framework with p = p(T) ! •, they vanish asymptotically as T ! •. In both cases,

the re-centered errors ns,j in eq.(7) reduce to the VAR projection errors hs, and the pseudo-true

coefficients Bh in Lemma 1 converge to the VAR IRs Ah. Consequently, under these conditions,

the general VMA representation in Theorem 1 simplifies to the form given in eq.(7).

2.4 LP GLS Estimators

In this section, we present the different GLS transformations of LPs. These estimators share a

common structure and differ only in the choice of residuals used for conditioning, so they are

nested in the following general expression:

bBGLS
h,(�a) =

 
T�a

Â
t=1

(yt+h � Yt,h) y0
t

! 
T�a

Â
t=1

yty0
t

!�1

, for h  a  T � 1, (10)

initialized with bBGLS
1,(�a) = bB1,(�a) and maintaining the convention bBGLS

0,(�a) = Ik. The specification

of the transformation term Yt,h is what distinguishes the various GLS estimators, and we will

consider several alternatives for it below. As before, the subscript (�a) indicates that estimation

is performed over a reduced sample of T � a observations, and we again simplify notation to
bBGLS

h,(�h) = bBGLS
h when the maximum available sample is used at each horizon (such that a = h).
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2.4.1 LP GLS Estimators Based on Auxiliary VAR Residuals

Under correct reduced-form VAR specification, the VMA expression in eq.(7) allows the LP in

eq.(4) to be written as:

yVAR
t+h = Bhyt + eVAR

t+h,h = Bhyt +
h

Â
j=1

Qh�jht+j,

with Q0 = Ik. Estimates of ht+j are given by bht+j,(�a) = yt+j � bA(�a)yt+j�1 and are readily

available from the VAR in eq.(2), while the IRs (Qh�1, . . . , Q1) can be substituted with previ-

ous horizon LP estimates. This makes GLS transformations based on eq.(7) feasible. Multiple

implementations are possible, each using a different conditioning set.

Lusompa (2023) proposes conditioning on the VAR projection errors (ht+1, . . . , ht+h�1) at hori-

zon h, while excluding ht+h. The corresponding feasible GLS estimator, bBLu
h,(�a), is constructed

iteratively by setting Yt,h = Âh�1
j=1

bBLu
h�j,(�a)bht+j,(�a) in eq.(10).

Breitung and Brüggemann (2023) alternatively propose conditioning on (ht+2, . . . , ht+h), thereby

excluding ht+1. The corresponding feasible GLS estimator, bBBB
h,(�a), is constructed iteratively by

setting Yt,h = Âh
j=2
bBBB

h�j,(�a)bht+j,(�a).
1

Since there is no compelling reason to exclude either ht+1 or ht+h from the conditioning set

at horizon h, we also consider an extended LP GLS estimator that naturally conditions on the

full set of VAR residuals (ht+1, . . . , ht+h), thereby using all available information from the VAR.

The corresponding feasible GLS estimator, bBh
h,(�a), is constructed iteratively by setting Yt,h =

Âh
j=1
bBh

h�j,(�a)bht+j,(�a).

Remark 3. Although designed for a more general time series framework, the estimators pro-

posed by Perron and González-Coya (2024) and Baillie et al. (2024) — when applied to an LP,

one of their key examples — can be viewed as approximations to the approach in Lusompa

(2023). While the latter directly implements a feasible GLS transformation based on the MA

structure of the LP errors, Perron and González-Coya (2024) and Baillie et al. (2024) approximate

the same transformation using an AR(•) representation of the MA error process. This approx-

imation is made feasible by truncating the AR expansion, resulting in estimators that are only

approximately correct rather than an exact solution. Consequently, we do not explicitly consider

these estimators.
1Breitung and Brüggemann (2023) propose transforming eq.(4) by moving bht+h to the left-hand side and including

(bht+2, . . . ,bht+h�1) as additional regressors. However, re-estimating the coefficients on these projection errors is un-
necessary since they have already been estimated in previous LP horizons. To maintain alignment with the structure
of the other LP GLS estimators, we implement their estimator by moving these residuals to the left-hand side without
re-estimation.
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2.4.2 LP GLS Based on Previous-Horizon LP Residuals

Under local reduced-form VAR specification, the VMA expression in eq.(7) is no longer valid and

must be replaced by the extended VMA expression provided in Theorem 1. Using this extended

expression, the LP in eq.(4) can be written as:

yt+h = Bhyt +
h�1

Â
j=1

Bh�jnt+j,j + nt+h,h.

By replacing the population coefficients Bh�j and errors nt+j,j for j = 1, . . . , h � 1 with LP esti-

mates from the previous horizons, a feasible GLS estimator, bBn
h,(�a), can naturally be constructed

iteratively by setting Yt,h = Âh�1
j=1

bBn
h�j,(�a)bnt+j,j,(�a).

3 GLS Estimation of LPs: Efficiency–Robustness Trade-Off

This section analyzes the trade-off between efficiency and robustness that underlies the LP

GLS estimators introduced in Subsection 2.4, by examining whether they align with the low-

variance VAR estimator or retain the robustness of LP OLS. All results are derived under As-

sumption 1 in a fixed-p setting, which allows for local reduced-form VAR misspecification. We

also indicate how each result nests the correct-specification case, including the sieve setting with

p = p(T) ! • as T ! •. We distinguish between two strands of LP GLS estimators — those

based on auxiliary VAR residuals and those based on previous-horizon LP residuals — which

reflect fundamentally different properties.

3.1 Equivalence Properties of LP GLS Based on Auxiliary VAR Residuals

GLS estimation of LPs using VAR residuals achieves efficiency gains by incorporating aspects

of the VAR dynamics into the LP framework. Notably, we find that the LP GLS estimator bBh
h ,

which fully utilizes the VAR residuals, even numerically replicates the VAR IRs bAh
. This result

is formalized in the following proposition.

Proposition 1. Under Assumption 1, in a fixed-p setting allowing for local reduced-form VAR misspeci-
fication, the LP GLS estimator bBh

h, which fully incorporates VAR residuals in the GLS transformation, is
numerically identical to the VAR IR estimator bAh: bBh

h = bAh for all h = 1, . . . , H.
Proof. See Appendix A.

Intuitively, the estimated h-step-ahead forward iterated VAR

yt+h = bAh
yt +

h

Â
j=1

bAh�jbht+j,
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shows that conditioning on (bht+1, . . . ,bht+h) eliminates all error terms on the right-hand side of

the LP equation. The GLS transformation yt+h � Âh
j=1
bBh�jbht+j therefore collapses to the VAR

law of motion, ensuring by construction that bBh
h = bAh

. As a result, implementing the LP GLS

estimator bBh
h offers no additional value, as it simply reproduces the VAR IRs bAh

.

This numerical equivalence holds for any finite sample size T and lag length p, regardless of

whether the reduced-form VAR is correctly specified. Consequently, if the lag length grows with

T (a sieve, p = p(T) ! •), the result continues to hold pointwise in T, since for each sample

size the same numerical equivalence applies.

The LP GLS estimator proposed by Lusompa (2023) — henceforth LP GLS-Lu — conditions on

all available VAR residuals except the current-horizon residual bht+h. The following corollary

establishes its relationship with the LP OLS estimator bBh and the VAR IR estimator bAh
.

Corollary 1. Under Assumption 1, in a fixed-p setting allowing for local reduced-form VAR misspecifi-
cation, the LP GLS estimator bBLu

h of Lusompa (2023) deviates from the LP OLS and VAR IR estimators
bBh and bAh as T ! • for h = 2, . . . , H:

bBLu
h = bBh + yB

h + Op(T�1/2), (11)

bBLu
h = bAh

+ yA
h + Op(T�1/2), (12)

where yB
h = �Âh�1

j=1

⇣
Bh�j + yB

h�j

⌘
C j and yA

h = Ch � Âh�1
j=1 yA

h�jC j, with yB
1 = yA

1 = 0, and C j as
defined in Lemma 1.
Proof. See Appendix A.

Corollary 1 shows that with fixed lag length p, under local reduced-form VAR misspecification,

the LP GLS-Lu estimator bBLu
h asymptotically differs from both LP OLS and VAR IRs by the de-

terministic deviation terms yB
h and yA

h , plus a standard Op(T�1/2) remainder. The deviation

from LP OLS arises because bBLu
h conditions on the intermediate-horizon VAR projection errors

(ht+1, . . . , ht+h�1) in its GLS transformation, thereby imposing most, but not all, of the VAR’s dy-

namic structure. Under local misspecification, some of these projection errors may be correlated

with the regressors yt, which induces a nonzero deviation yB
h from LP OLS. The deviation from

the VAR estimator arises because bBLu
h does not condition on ht+h, which prevents it from fully

replicating the VAR dynamics. If ht+h is correlated with yt, as can occur under local misspecifi-

cation, its omission from the conditioning set yields a deviation yA
h from the VAR IRs.

Under correct reduced-form VAR specification — either exactly for finite p or along a sieve with

p = p(T) ! • — the misspecification terms C j vanish, implying that the LP GLS–Lu, LP OLS,

and VAR IR estimators are all consistent for the same impulse responses. Their asymptotic

distributions, however, need not coincide. First, residual differences typically remain of order

Op(T�1/2), leading to different asymptotic variances. Second, under a locally misspecified sieve,

the deviation terms themselves may be O(T�1/2), inducing nonzero mean shifts in the asymptotic

distribution of the LP GLS-Lu estimator relative to VAR IRs and LP OLS.
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Given the generality of Assumption 1, which imposes only reduced-form regularity, a general

characterization of the asymptotic distribution is not feasible at this stage: the limiting laws

depend on DGP-specific features (e.g., the decay of the VAR(•) tail) and on the growth rate

of p(T). We therefore confine attention here to the fixed-p results established in Corollary 1,

and turn in Section 4 to both stylized examples and empirically relevant DGPs that allow us

to analytically derive or simulate the bias and variance of VAR IRs, LP OLS, and LP GLS-Lu

estimators.

Nonetheless, based on the structure of the GLS transformation — which imposes most but not

all of the VAR dynamics — we conjecture that the LP GLS-Lu estimator typically lies between LP

OLS and VAR in terms of bias and efficiency: it is likely to be (i) less biased than VAR but more

biased than LP OLS, and (ii) more efficient than LP OLS but less so than VAR. These patterns

should be understood as general tendencies rather than universal results, since bias–variance

trade-offs ultimately depend on the underlying DGP and projection horizon. While Lusompa

(2023) does not formally prove that bBLu
h is uniformly more efficient than LP OLS, the paper does

illustrate potential efficiency gains for an AR(1) model.

Remark 4. Corollary 1 reflects a key nonparametric result from Plagborg-Møller and Wolf (2021),

showing that when a VAR(p) is estimated and the same p lags are included as controls in the LP,

the VAR and LP IR estimands coincide for horizons h  p, even under local reduced-form VAR

misspecification. In line with this result, Corollary 1 shows that for h  p, the deviation terms

yA
h and yB

h are zero, implying that the LP GLS-Lu estimator also coincides with the VAR and LP

OLS estimators in this case. This equivalence arises because the VAR projection errors ht+j are,

by construction, orthogonal to yt for all j  p, which implies that the misspecification terms C j

vanish for j < h. As noted in Remark 2, although our setup is expressed in terms of a VAR(1), it

naturally accommodates higher-order VAR(p) models through their standard VAR(1) companion

form.

The LP GLS estimator proposed by Breitung and Brüggemann (2023) conditions on all avail-

able VAR residuals except the horizon-1 residual, bht+1. The following corollary establishes its

equivalence to the VAR IR estimator, bAh
.

Corollary 2. Under Assumption 1 in a fixed-p setting allowing for local reduced-form VAR misspecifica-
tion, the LP GLS estimator bBBB

h,(�a) proposed by Breitung and Brüggemann (2023) exhibits the following

properties relative to the VAR IR estimate bAh
(�a), depending on the sample:

(i) a = H: bBBB
h,(�H) = bAh

(�H) for all h = 1, . . . , H.

(ii) a = h: bBBB
h = bAh

+ Op(T�1) as T ! •, for all h = 2, . . . , H.

Proof. See Appendix A.

Corollary 2 indicates that the LP GLS estimator proposed by Breitung and Brüggemann (2023) is

numerically equivalent to the VAR IR estimator bAh
when both are computed on the same aligned
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sample of T � H observations. This equivalence arises because the transformed disturbance in

the LP regression is precisely bht+1,(�H) from that window, which is orthogonal to yt by the

OLS normal equations. Hence, bBBB
h is numerically identical to bAh

. If instead the VAR residuals

bht+1 are estimated on the full VAR sample t = 1, . . . , T � 1 while the horizon-h LP uses the

shorter window t = 1, . . . , T � h, orthogonality is broken only by the tail trimming over t =

T � h+ 1, . . . , T � 1. Given that h is fixed, this induces a negligible sample–window misalignment

of order Op(T�1). The convergence rate is therefore sufficiently fast to ensure that bBBB
h shares the

same asymptotic distribution as bAh
, as already established by Breitung and Brüggemann (2023).

Consequently, bBBB
h will typically exhibit a lower variance than the LP OLS estimator bBh, but its

equivalence to bAh
highlights that this variance reduction is achieved by fully imposing the VAR

specification across the entire forecast horizon.

The results above hold irrespective of whether the reduced-form VAR is correctly specified. Ac-

cordingly, under correct specification — either exact for finite p or along a sieve with p = p(T) !
• — the equivalences in Corollary 2 continue to apply. Because the statements are finite-sample

identities (or involve only an Op(T�1) sample–window misalignment remainder, independent of

p), they also hold pointwise along a sieve, so bBBB
h and bAh

remain asymptotically equivalent with

identical limit distributions.

3.2 Equivalence Properties of LP GLS Based on Previous-Horizon LP Residuals

The LP GLS estimator using LP residuals adjusts for residual serial correlation by relying on

the LP framework itself, rather than on an auxiliary VAR. The following proposition shows its

equivalence to the LP OLS estimator.

Proposition 2. Under Assumption 1, in a fixed-p setting allowing for local reduced-form misspecification,
the LP GLS estimator bBn

h,(�a), which uses previous-horizon LP residuals in the GLS transformation,
satisfies the following properties relative to LP OLS bBh,(�a), depending on the employed sample:

(i) a = H: bBn
h,(�H) = bBh,(�H) for all h = 1, . . . , H.

(ii) a = h: bBn
h = bBh + Op(T�1) as T ! •, for all h = 2, . . . , H.

Proof. See Appendix A.

The key insight of Proposition 2 is that the LP GLS estimator bBn
h, which uses previous-horizon

LP residuals, replicates the LP OLS estimator bBh. This result holds irrespective of whether the

reduced-form VAR is correctly specified. When all LPs are estimated on exactly the same re-

duced sample of T � H observations across the projection horizon, the orthogonality property of

OLS ensures exact numerical equivalence. When instead the longest available sample of T � h
observations is used, the difference between the two estimators again arises only from a sam-

ple–window misalignment of order Op(T�1). Hence bBn
h and bBh are asymptotically equivalent
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and share the same asymptotic distribution. These equivalences persist under correct specifica-

tion, including along a sieve, so bBn
h and bBh remain asymptotically indistinguishable. As a result,

GLS estimation using LP residuals offers no practical advantage over standard LP OLS.

4 Illustrative Examples

This section focuses on the Lusompa (2023) estimator, the only LP GLS variant in our analysis

with a genuinely distinct asymptotic distribution, and studies its behavior relative to VAR and

LP OLS benchmarks under different illustrative designs. As shown in Section 3, all other LP GLS

variants are either numerically identical or
p

T–equivalent to VAR IRs or LP OLS. Because their

simulated behavior was correspondingly indistinguishable from their benchmark counterparts,

we do not report them here to avoid redundancy.

Our evaluation focuses on point estimators, reporting bias, variance, and a weighted RMSE of the

IR point estimators. We do not report coverage or interval length, which also reflect properties of

the inference procedure (point estimator plus standard errors) rather than the pure bias–variance

trade-off of the estimators themselves. Large-scale Monte Carlo evidence on coverage and inter-

val length is already provided by Lusompa (2023). Our results are complementary, isolating the

bias–variance mechanisms that help explain those patterns.

4.1 A Stylized Example of Local Misspecification

To complement the general framework of Section 3, we now consider a more specific setting that

permits explicit analytical results. We adopt the local misspecification framework of Schorfheide

(2005), Li et al. (2024), and Olea et al. (2024), in which the degree of misspecification vanishes

at rate T�1/2, allowing for a tractable fixed-lag asymptotic analysis. We also explore a closely

related simulation design based on a similar DGP but using lag selection rules to determine

model complexity. This more conventional empirical setup allows us to evaluate whether the

results from the stylized example extend to more realistic conditions.

4.1.1 Local Misspecification via Vanishing MA Distortion

We consider the following autoregressive moving average (ARMA) process with a shrinking MA

component:

wt+1 = rwt + bµ1,t + µ2,t+1 +
ap
T

µ2,t, (13)

where |r| < 1, µt = (µ1,t, µ2,t)0 is a bivariate zero-mean i.i.d. white noise process with Var(µt) =

diag(s2
1 , s2

2 ) and finite fourth moments. We assume that yt = (µ1,t, wt)0 is observed, while µ2,t
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remains latent. The same locally misspecified model — up to timing and normalization conven-

tions — is also used by Li et al. (2022) to compare LP OLS to VAR IRs.

As T ! •, the a/
p

T term shrinks to zero, causing the MA component µ2,t to vanish asymp-

totically. In the limit, the DGP in eq.(13) thus converges to a stationary AR(1) process driven

by the exogenous regressor µ1,t and the innovation µ2,t+1. The observed process yt is then well

approximated by a correctly specified VAR(1) model of the form in eq.(2), with

A =

 
0 0

b r

!
, and ht+1 =

 
µ1,t+1

µ2,t+1

!
.

This local misspecification setup captures the idea that finite-order dynamic models provide

useful but imperfect representations of the true DGP in finite samples. By introducing a van-

ishing deviation from the AR(1) benchmark, the framework delivers a tractable approximation

that allows us to derive closed-form asymptotic distributions for estimators while retaining the

essential features of the bias-variance trade-off caused by misspecification.

Our objective is to estimate the response of wt+h, for h � 1, to a one-unit innovation in µ1,t. The

true IR function is given by qh = e02Ahe1 = rh�1b, for h � 1, where ej denotes the 2 ⇥ 1 unit

vector with a one in position j and a zero in the other entry, for j = 1, 2.

Note that the shock µ1,t enters eq.(13) with a one-period lag, such that it affects wt+1 rather

than wt. This ensures that the reduced-form IRs qh coincide with the structural IRs. The timing

convention is without loss of generality: µ1,t can always be interpreted — or recorded in the

dataset — as a one-period lead of a structural shock, such that it contemporaneously affects the

system while remaining exogenous. This allows for a structural interpretation of the reduced-

form IRs without imposing additional identifying restrictions.

The estimators considered in Section 2 follow from specifying yt = (µ1,t, wt)0. The VAR IR

estimator for qh is given by bqVAR
h = e02 bAhe1 = brh�1bb, the LP OLS estimator by bqLP

h = e02bBhe1 and

the LP GLS-Lu estimator by bqLu
h = e02bBLu

h e1, with bA, bBh and bBLu
h defined in Section 2. We then

obtain the following result:

Proposition 3. Consider the DGP in eq.(13), with |r| < 1 and a 2 R. Assume s2
j > 0 and E(µ4

j,t) < •

for j = 1, 2, and define s2
w = (b2s2

1 + s2
2 )/(1 � r2). Then, as T ! •

p
T
⇣
bqest

h � qh

⌘
d�! N (best

h , Vest
h ),

for est 2 {VAR, LP, Lu}, where the asymptotic bias and variance terms best
h and Vest

h are given as follows.
For all h � 1,

bVAR
h = (h � 1) rh�2b

as2
2

s2
w

, VVAR
h = r2(h�1) s2

2
s2

1
+ (h � 1)2 s2

2
s2

w
r2(h�2)b2,

bLP
h = 0, VLP

h =
⇣

1 � r2h
⌘ s2

w
s2

1
� r2(h�1)b2.
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For all h � 2,

bLu
h = (h � 2) rh�2b

as2
2

s2
w

,

VLu
h =

⇣
1 + r2(h�1)

⌘ s2
2

s2
1
+

✓
1 + h (h � 2)

s2
2

s2
w

◆
r2(h�2)b2 + (h � 2)2 r2(h�3)b4 s2

1
s2

w
.

For h = 1, 2, we have bqLu
h = bqLP

h .
The ranking in terms of bias magnitude and variance is as follows for h > 2:

|bVAR
h | > |bLu

h | > |bLP
h | = 0, for a 6= 0, r 6= 0, b 6= 0,

VLP
h > VLu

h > VVAR
h , for (r, b) 6= (0, 0).

If any of a = 0, b = 0, or r = 0, then bVAR
h = bLu

h = bLP
h = 0. If r = b = 0, then VVAR

h = 0 and
VLu

h = VLP
h = s2

2 /s2
1 .

Proof. See Appendix B (Online Supplementary Material).

The bias ranking reflects the fact that the VAR estimator fully imposes the misspecified dynamic

structure, thereby inducing the largest bias, while LP OLS remains unbiased in this setting be-

cause the misspecification term is not correlated with µ1,t. The LP GLS–Lu estimator imposes

most — but not all — of the VAR dynamics on the LP, resulting in a bias that is typically closer

to that of the VAR than to LP OLS. Similarly, the variance ranking mirrors the extent to which

model structure is imposed: the VAR achieves the lowest variance, LP GLS–Lu attains an inter-

mediate level by partially exploiting VAR dynamics, and LP OLS exhibits the highest variance

owing to its minimal structure. Figure 1 plots the asymptotic bias and standard deviation across

horizons under low and high persistence (r = 0.6 and r = 0.9), visualizing these trade-offs.

To assess overall performance, we compute a weighted RMSE:

RMSEest
l,h =

q
l
�
best

h
�2

+ (1 � l)Vest
h , (14)

for each estimator est 2 {VAR, LP, Lu}, where l 2 [0, 1] determines the weight placed on squared

bias relative to variance.

Figure 2 displays the estimator that achieves the lowest weighted RMSE across projection hori-

zons h = 1, . . . , 20 and bias weights l 2 [0, 1]. Color intensity reflects the strength of domi-

nance, measured by the percentage RMSE reduction relative to the second-best estimator: darker

shades indicate stronger dominance, while lighter shades reflect smaller gains. Black dots mark

regions where specifically the LP GLS-Lu estimator ranks second-best. The results show that the

preferred estimator depends on the weight assigned to bias: VAR dominates when bias is not

weighted too heavily and at longer horizons, while LP OLS is favored when bias receives a high

weight, particularly at shorter horizons. The LP GLS-Lu estimator typically ranks second-best

and only occasionally emerges as the top performer, with rather minor RMSE improvements in
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Figure 1: Asymptotic Bias and Standard Deviation — Shrinking Local Misspecification
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(a) Asymptotic Bias
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(b) Asymptotic Standard Deviation

VAR LP OLS LP GLS-Lu (ω = 0.6)

VAR LP OLS LP GLS-Lu (ω = 0.9)

Notes: Reported are the asymptotic bias and standard deviation of the VAR, LP OLS, and LP GLS-Lu IRs estimators
for the DGP in eq.(13), computed using the expressions in Proposition 3 under parameter values b = s2

1 = s2
2 = 1,

r 2 {0.6, 0.9} and a misspecification term of a = 5. The horizontal axis denotes the projection horizon h = 1, . . . , 20.

those cases. Overall, under this stylized local misspecification, the LP GLS-Lu estimator offers

no improvement over the benchmark VAR and LP OLS estimators.

Figure 2: Estimator Dominance by Weighted RMSE — Shrinking Local Misspecification
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(b) r = 0.9

Notes: The heatmaps visualize estimator dominance across forecast horizons (h = 1, . . . , 20), plotted on the x-axis, and
squared-bias weights (l 2 [0, 1]), plotted on the y-axis. Each cell color corresponds to the estimator — VAR IR, LP
OLS, or LP GLS-Lu — minimizing the weighted RMSE defined in eq.(14), computed from data simulated from eq.(13)
with parameters b = s2

1 = s2
2 = 1, r 2 {0.6, 0.9} and a misspecification term a = 5. Color intensity reflects the relative

dominance strength, measured as the percentage RMSE reduction compared to the second-best estimator: darker
shades indicate stronger dominance, and lighter shades weaker dominance. Black dots highlight regions where LP
GLS-Lu ranks second-best. For visual clarity, they are shown only every third weight step.
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4.1.2 Local Misspecification with Data-Driven Lag Selection

To bridge the gap between the stylized setup and standard practice, we now consider a finite-

sample simulation based on the following DGP:

wt+1 = rwt + bµ1,t + µ2,t+1 + aµ2,t�4, (15)

which replaces the vanishing misspecification term a/
p

T from eq.(13) with a fixed a. As a

result, the DGP no longer converges to a finite-order AR model, reflecting the more realistic case

where model misspecification persists in large samples. In practice, such complexity is typically

addressed by selecting the lag length using data-driven rules, such as the Akaike Information

Criterion (AIC), or by increasing lag length with sample size according to rule-of-thumb formulas

like p = bT1/4c.

Simulation results for T = 250 are reported in Appendix B. Results are shown for both a low-

persistence setting (r = 0.6) and a high-persistence setting (r = 0.9), with the misspecification

parameter fixed at a = 0.5. We report the bias and standard deviation of each estimator and

provide heatmaps indicating, for each horizon h = 1, . . . , 20 and each bias weight l 2 [0, 1],

which method minimizes the weighted RMSE. Under AIC selection, the median lag is 3 for

r = 0.6 and 1 for r = 0.9. To evaluate robustness, we also consider the rule-of-thumb lag length

p = bT1/4c = 4 and a larger fixed lag length p = 8. We apply the selected lag length uniformly

across all three estimators.

The results confirm that the core features of the bias-variance trade-off persist: LP OLS remains

less biased but more variable, while VAR is more precise but exhibits greater bias. The LP

GLS-Lu estimator continues to interpolate between the two but tends to lie closer to VAR, with

slightly reduced bias and slightly increased variance. It seldom outperforms either benchmark,

and when it does, the RMSE gains are modest. The choice between data-driven and fixed lag

length does not materially alter the qualitative ranking among estimators. Consistent with the

findings of Plagborg-Møller and Wolf (2021) and the discussion in Remark 4, the estimated IRs

align closely up to horizon h = p, but begin to diverge at longer horizons.

4.2 Simulations Based on the Smets and Wouters (2005) DSGE Model

To assess the finite-sample properties of the estimators in a more realistic macroeconomic setting,

we simulate data from the DSGE model developed by Smets and Wouters (2005). This model is

widely recognized for its ability to capture key nominal and real rigidities underlying U.S. busi-

ness cycle fluctuations. We use Dynare (Adjemian et al., 2024) to solve the model at its estimated

posterior mode and obtain its state-space representation, which includes seven structural shocks

that propagate through twenty state variables, jointly driving the dynamics of seven observed

macroeconomic indicators.

19



Following Olea et al. (2024), we focus on a subset of four variables from the simulated data —

inflation, wages, hours worked, and the wage cost-push shock — and examine the dynamic re-

sponse of inflation to the wage cost-push shock. In Smets and Wouters (2005), this shock follows

an ARMA(1,1) process, implying that any finite-order VAR is inherently misspecified. However,

because we treat the shock as observed and include it in the system, the misspecification is lo-

cal: it results from approximating a process with VMA dynamics using a finite-lag VAR. As the

lag length increases with the sample size, this approximation improves and the misspecification

vanishes asymptotically.

To identify structural responses, we place the wage cost-push shock first in a recursive VAR,

following standard practice. Reduced-form IRs are estimated using the VAR, LP OLS, and LP

GLS-Lu estimators. Structural IRs are then obtained by post-multiplying the reduced-form re-

sponses with the Cholesky impact matrix from the VAR.

We consider two sample sizes, T 2 {250, 1000}. The smaller sample (T = 250) reflects typical

macroeconomic applications, while the larger one (T = 1000) allows us to assess how estimator

performance evolves with increased sample size. The VAR lag order p is selected using the AIC,

subject to a maximum of bT1/4c. The same lag length is then applied to the LP OLS and LP

GLS–Lu estimators. For T = 250, the median selected p is 2; for T = 1000, it increases to 3.

Allowing the maximum lag order to grow at a faster rate or using alternative information criteria

does not materially affect the reported results.

Figure 3 summarizes the
p

T-scaled bias and standard deviation of the VAR, LP OLS, and LP

GLS-Lu estimators for the two considered sample sizes. We scale these quantities by
p

T so

that the Monte Carlo summaries align with the objects appearing in the asymptotic distribu-

tions, thereby allowing meaningful comparison across sample sizes. As in the earlier results, all

three estimators are highly similar at horizons shorter than or equal to the selected lag length,

consistent with the findings of Plagborg-Møller and Wolf (2021) and the discussion in Remark

4. Beyond these horizons, and again in line with the analytical results presented earlier, the LP

OLS estimator exhibits lower bias than VAR and LP GLS-Lu. The biases of VAR and LP GLS-Lu

remain similar, although LP GLS-Lu shows a slightly lower bias at shorter horizons. In terms of

variability, LP OLS consistently exhibits a higher standard deviation compared to both VAR and

LP GLS-Lu, while LP GLS-Lu has a higher standard deviation than VAR.

Figure 4 visualizes the estimator achieving the lowest weighted RMSE across projection horizons

h = 0, . . . , 40 and squared-bias weights l 2 [0, 1]. The VAR and LP OLS estimators are most

frequently preferred: VAR dominates for moderate bias weights, while LP OLS is favored when

bias receives a higher weight. The LP GLS-Lu estimator seldomly improves compared to the

benchmarks, achieving the lowest weighted RMSE only in a few isolated cases, and then with

minimal dominance. The dot-markers indicate that LP GLS-Lu tends to align more closely with

VAR, typically ranking second-best when VAR dominates. Conversely, when LP OLS is pre-

ferred, VAR is generally the runner-up. This pattern reflects the fact that LP GLS-Lu has a bias
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similar to VAR but generally exhibits higher variance. An exception occurs at shorter horizons

when T = 250, where LP GLS-Lu has slightly lower bias than VAR and thus ranks second to LP

OLS when bias is heavily weighted.

Figure 3: Scaled Bias and Standard Deviation — Smets-Wouters DSGE Model

0 5 10 15 20 25 30 35 40

�2

�1.5

�1

�0.5

0

0.5

(a)
p
T -scaled sampling bias

0 5 10 15 20 25 30 35 40

1.5

2

2.5

3

3.5

(b)
p
T -scaled sampling standard deviation

VAR LP OLS LP GLS-Lu (T = 250)

VAR LP OLS LP GLS-Lu (T = 1, 000)

Notes: Displayed are the
p

T-scaled bias and standard deviation, computed from 10,000 Monte Carlo replications
based on data simulated from the Smets–Wouters DSGE model for T 2 {250, 1,000}. The VAR lag length is selected
using the AIC and applied uniformly across the VAR, LP OLS, and LP GLS–Lu estimators. The horizontal axis
indicates the projection horizon h = 0, . . . , 40.

Figure 4: Estimator Dominance by Weighted RMSE — Smets-Wouters DSGE Model
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Notes: Displayed are heatmaps of the estimator minimizing the weighted RMSE defined in eq.(14), computed from
10,000 Monte Carlo replications based on data simulated from the Smets–Wouters DSGE model for T 2 {250, 1,000}.
The VAR lag length is selected using the AIC and applied uniformly across the VAR, LP OLS, and LP GLS–Lu
estimators. The horizontal axis indicates the forecast horizon h = 0, . . . , 40; the vertical axis varies the squared-bias
weight l 2 [0, 1]. For interpretation of color shading and dots, see notes to Figure 2.
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4.3 Simulations Based on the Stock and Watson (2016) Dynamic Factor Model

Our final simulation study generates data from the DFM of Stock and Watson (2016), estimated

on 207 quarterly U.S. time series for 1959Q1–2014Q4. This DFM is considered to be sufficiently

rich to capture the key time series properties of macroeconomic data and has become the bench-

mark for large-scale Monte Carlo designs (see e.g. Lazarus et al., 2018; Li et al., 2024). We follow

the setup in Li et al. (2024), replicating their framework for comparing VAR IR and LP OLS esti-

mators and extending the analysis by including the LP GLS–Lu estimator.2 We briefly summarize

the main elements of this design below.

The DFM is specified with six latent factors. We consider both a specification in differences and

in levels. In the differenced version, both the factor process and idiosyncratic components are

estimated with two lags, whereas in the levels version, the factor process is estimated as a VECM

with four lags and the idiosyncratic components as AR(4) processes. Since our theoretical frame-

work assumes stationarity, the differenced specification aligns most closely with our analysis, but

we also include the levels specification for comparability with Li et al. (2024).

We then define the set of DGPs by randomly selecting subsets of variables from the 207-series

DFM. For each specification (differences and levels), we construct 6,000 DGPs: 3,000 fiscal policy

VARs, which always include government spending, and 3,000 monetary policy VARs, which

always include the federal funds rate. In addition to the policy variable, four other distinct series

are randomly drawn, subject to the restriction that at least one series must measure real activity

and at least one must measure prices. One of these four is then randomly chosen as the response

variable of interest. This procedure yields a total of 12,000 DGPs across the two specifications.

For each DGP, the corresponding true impulse responses {qh}H
h=0 are computed up to horizon

H = 20 from the state-space representation of the DFM. In line with our focus on reduced-

form estimation, we adopt the observed shock identification scheme, which treats the observed

fiscal or monetary policy shock as directly entering the VAR and allows impulse responses to be

defined without imposing additional structural assumptions.

In each Monte Carlo replication, we simulate T = 200 observations from the full 207-variable

DFM and, for each DGP, retain the relevant subset of variables. The observed fiscal or monetary

policy shock is constructed from the simulated data following the procedure in Li et al. (2024),

and placed as the first variable in the system. The sampling distribution of the estimators around

the true impulse responses is approximated using 5,000 Monte Carlo replications. We consider

two lag-length choices: a fixed lag length of p = 4 and selection by AIC. The AIC almost always

chooses a very short lag length (one or two), whereas practitioners working with quarterly data

typically include at least four lags. For this reason, as in Li et al. (2024), we report the results for

p = 4 in the main text and relegate the AIC results to Appendix B

2We gratefully use the replication package of Li et al. (2024) to implement the Stock and Watson (2016) DFM and
Monte Carlo design, extending it to incorporate the LP GLS-Lu estimator.
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Figure 5 depicts the bias–variance trade-off across horizons. Displayed are the medians across

the 6,000 DGPs of the absolute bias |E(q̂h)� qh| and the standard deviation of q̂h for the different

estimation procedures, scaled by
q

1
21 Â20

h=0 q2
h to remove the units of the response variable. As

before, a clear bias–variance trade-off emerges: LP OLS typically exhibits lower bias than VAR

IRs, but this comes at the cost of substantially higher variance at intermediate and longer hori-

zons. The LP GLS–Lu estimator tends to fall between these two benchmarks in terms of both

bias and variance.

Figure 6 summarizes overall performance in terms of weighted RMSE across horizons and loss-

function weights. The heatmaps show which estimator dominates most frequently across the

6,000 DGPs, with shading indicating the strength of dominance and dots marking cases where

LP GLS–Lu is the runner-up. Note that the dark-green regions indicate cases where the VAR

uniformly dominates across all horizons and weights, leaving no meaningful runner-up. This

comparison confirms that GLS–Lu almost never provides a clear improvement in overall perfor-

mance, reinforcing the patterns already documented in the preceding designs.

Similar patterns emerge when lag length is selected by AIC. These results, reported in Appendix

B, are somewhat more favorable to LP OLS since the AIC typically chooses a shorter lag length

(one or two rather than four). Nevertheless, LP GLS–Lu again fails to deliver a consistent im-

provement in overall performance.

Figure 5: Scaled Bias and Standard Deviation — Stock–Watson DFM (lag length fixed at 4)
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Notes: Displayed are the medians (across 6,000 DGPs) of the absolute bias |E(q̂h)� qh| and the standard deviation of q̂h

for the different estimation procedures, scaled by
q

1
21 Â20

h=0 q2
h, i.e., the root mean squared value of the true impulse

responses {qh}20
h=0. For each DGP, bias and standard deviation are computed from 5,000 Monte Carlo replications

based on data simulated from the Stock and Watson (2016) DFM, as implemented in Li et al. (2024), with T = 200.
The VAR lag length is fixed at p = 4 and applied uniformly across the VAR, LP OLS, and LP GLS–Lu estimators. The
horizontal axis indicates the projection horizon h = 0, . . . , 20.
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Figure 6: Estimator Dominance by Weighted RMSE — Stock–Watson DFM (lag length fixed at 4)
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Notes: Displayed are heatmaps of the estimator that attains the lowest weighted RMSE defined in eq.(14). For each
(h, l) combination, the “winner” is the estimator that most frequently minimizes the loss across the 6,000 DGPs
simulated from the Stock and Watson (2016) DFM, following the design of Li et al. (2024). Color shading indicates the
strength of dominance, with darker colors corresponding to higher frequencies and the darkest shade indicating that
the estimator always wins. Dots mark cases where the LP GLS–Lu estimator is the second-best procedure. Results are
based on 5,000 Monte Carlo replications per DGP with T = 200. The VAR lag length is fixed at p = 4 for the VAR, LP
OLS, and LP GLS–Lu estimators. The horizontal axis indicates the projection horizon h = 0, . . . , 20; the vertical axis
varies the squared-bias weight l 2 [0, 1].

5 Conclusion

This paper evaluates the use of GLS transformations in the estimation of IRs via LPs. While GLS

is often motivated by the goal of improving finite-sample efficiency, we show that its application

entails a fundamental trade-off between efficiency and robustness — one that depends on the

residuals used in the transformation. We distinguish two broad strands of LP GLS estimators:

the first relies on residuals from an auxiliary VAR, the second uses previous-horizon LP residuals.

The central insight of our analysis is that these two strands of GLS implementations do not

produce estimators that are genuinely distinct from the benchmark approaches; instead, they

tend to align with VAR IRs or LP OLS. Conditioning on all VAR residuals imposes the dynamic

structure of the VAR onto the LP framework, causing the LP GLS estimator to collapse to the

VAR IRs — gaining precision under correct specification but losing robustness. Conditioning on

LP residuals, by contrast, retains the flexibility of the LP framework but yields estimators that

are equivalent to LP OLS. These equivalence results are derived under minimal reduced-form

assumptions and therefore hold for a broad class of stationary multivariate processes, regardless

of whether the auxiliary VAR is correctly specified or locally misspecified.

The only exception is the LP GLS estimator proposed by Lusompa (2023), which conditions

only on a subset of VAR residuals. This hybrid structure yields an estimator that is generally

asymptotically distinct from both benchmarks. In a stylized local misspecification framework,

we show that it strikes a balance between the bias of the VAR and the variance of LP OLS but

rarely dominates either benchmark in terms of weighted root mean squared error. These patterns
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persist in simulations based on the Smets and Wouters (2005) DSGE model and the Stock and

Watson (2016) DFM.

It is worth noting that the efficiency–robustness trade-off may still be mitigated by augmenting

LPs with observed structural shocks instead of estimated residuals, as proposed by Faust and

Wright (2013) and Teulings and Zubanov (2014). When these shocks are exogenous, such aug-

mentations can preserve robustness while partially improving efficiency. Yet, since the observed

shocks rarely span the full LP error term, a full GLS correction remains infeasible—unless residu-

als are substituted for unobserved components, which reintroduces the trade-off. Note also that

Teulings and Zubanov (2014) primarily use this augmentation approach to address incidental

parameter bias in panel LPs with fixed effects. Such bias-corrections are, however, beyond the

scope of this paper and left for future work.

In conclusion, researchers should exercise caution when applying GLS to LPs. While GLS trans-

formations may appear promising at first glance, most implementations either replicate the VAR

or LP OLS benchmark, without resolving the bias–variance trade-off. Rather than providing a

third alternative, LP GLS estimators merely shift the balance between robustness and efficiency

depending on the residuals used.
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Appendix A Proofs and Supporting Results for Sections 2–3

Throughout the proofs we maintain Assumption 1. All Op(·) terms involving matrices or vectors

are understood to be with respect to the spectral norm. For simplicity and clarity, explicit norm

notation is omitted. Additionally, we assume that H is finite, ensuring that h/T ! 0 as T ! •

for all h = 1, . . . , H.

A.1 Preliminaries: Notation and Useful Results

Backward iteration identities. For the VAR(1) in eq.(2), estimated on t = 1, . . . , T � a, repeated

substitution yields, for any h � 1,

yt+h = bA(�a) yt+h�1 + bht+h,(�a), (A-1a)

= bA h�1
(�a)yt+1 +

h

Â
j=2

bA h�j
(�a)bht+j,(�a), (A-1b)

= bA h
(�a)yt +

h

Â
j=1

bA h�j
(�a)bht+j,(�a). (A-1c)

Here bA0
(�a) = Ik. For notational simplicity, we adopt the convention of omitting the subscript

(�a) when using the full sample, corresponding to a = 1 when estimating the VAR(1) in eq.(2).

Sample second moments and inverse. Under Assumption 1 (stationarity, finite fourth mo-

ments, absolutely summable Wold coefficients), it holds for fixed h (see, e.g., Hamilton, 1994;

Lütkepohl, 2005),

bGT�h =
1
T

T�h

Â
t=1

yty
0
t = G + Op(T�1/2), bG�1

T�h = G�1 + Op(T�1/2), (A-2)

where G = E(yty
0
t) is positive definite with eigenvalues bounded away from 0 and •.

OLS
p

T–consistency. For fixed h � 1, the OLS normal equations give

bBh =
⇣

1
T

T�h

Â
t=1

yt+hy0
t

⌘
bG�1

T�h = Bh +
⇣

1
T

T�h

Â
t=1

et+h,hy0
t

⌘
bG�1

T�h,

where, under Assumption 1, 1
T ÂT�h

t=1 et+h,hy0
t = Op(T�1/2) and, by eq.(A-2), bG�1

T�h = Op(1). Hence

bBh = Bh + Op(T�1/2), bA = A + Op(T�1/2), (A-3)

with the second relation obtained by setting h = 1 so that bA = bB1.
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Fixed tail trim. Consider the OLS estimator defined in eq.(3), estimated with T� a observations:

bA(�a) =

 
1
T

T�a

Â
t=1

yt+1y0
t

! 
1
T

T�a

Â
t=1

yty0
t

!�1

= bgT�a
bG�1

T�a, for 1  a  T � 1.

For any fixed and finite 2  a  H, we can write:

bGT�a =
1
T

"
T�1

Â
t=1

yty0
t �

a�1

Ầ
=0

yT�1�`y0
T�1�`

#
= bGT�1 �

1
T

a�1

Ầ
=0

yT�1�`y0
T�1�` = bGT�1 + Op(T�1),

bgT�a =
1
T

"
T�1

Â
t=1

yt+1y0
t �

a�1

Ầ
=0

yT�`y0
T�1�`

#
= bgT�1 �

1
T

a�1

Ầ
=0

yT�`y0
T�1�` = bgT�1 + Op(T�1).

Under Assumption 1, the terms Âa�1
`=0 yT�1�`y0

T�1�` and Âa�1
`=0 yT�`y0

T�1�` are Op(1) since a is

fixed and finite. Substituting these results back into the expression for bA(�a), we have:

bA(�a) = bgT�a
bG�1

T�a = bgT�1
bG�1

T�1 + Op(T�1) = bA + Op(T�1). (A-4)

VAR residual forward moments. Using bht+j = ht+j � (bA � A) yt+j�1, for any j � 1,

bfj =
1
T

T�h

Â
t=1
bht+jy

0
t =

1
T

T�h

Â
t=1

ht+jy
0
t � (bA � A)

⇣ 1
T

T�h

Â
t=1

yt+j�1y0
t

⌘
.

By (A-3), bA � A = Op(T�1/2), and under Assumption 1 1
T ÂT�h

t=1 yt+j�1y0
t = Op(1). Similarly,

with fj = E[ht+jy
0
t] and by standard results for series with finite 4th moments and absolutely

summable Wold coefficients, we have 1
T ÂT�h

t=1 ht+jy
0
t = fj + Op(T�1/2). Therefore

bfj = fj + Op(T�1/2), j � 1, (A-5)

and since f1 = 0 we have bf1 = Op(T�1/2).

A.2 Proof of Lemma 1

First note that from the definition of Bh as the coefficients of the best linear projection of yt+h

onto yt, we have:

E [yt+h | yt] = Bhyt. (A-6)

Taking the conditional expectation given yt of the forward-iterated VAR representation in eq.(6),

we have:

E [yt+h | yt] = Ahyt +
h

Â
j=1

Ah�jE
h
ht+j | yt

i
=

 
Ah +

h

Â
j=1

Ah�jC j

!
yt. (A-7)
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where we used that the conditional expectation of ht+j given yt is the linear projection of ht+j

onto yt, given by E
h
ht+j | yt

i
= C jyt, with C j = fjG

�1, fj = E
h
ht+jy

0
t

i
and G = E [yty0

t].

Hence, equating (A-7) to the projection definition in eq.(A-6) reveals that:

Bh = Ah +
h

Â
j=1

Ah�jC j.

A.3 Proof of Theorem 1

We begin with substituting the expression for Bh from Lemma 1 into the definition of the LP

errors. This gives

et+h,h = yt+h � Bhyt = yt+h �
 

Ah +
h

Â
j=1

Ah�jC j

!
yt =

h

Â
j=1

Ah�j(ht+j � C jyt), (A-8)

where the final equality makes use of eq.(6) to substitute yt+h. Using Lemma 1, Ah�j can be

expressed dynamically as

Ah�j = Bh�j �
h

Â
`=j+1

Ah�`C`�j. (A-9)

Accordingly, setting j = 1 in eq.(A-9) allows substitution of Ah�1 into eq.(A-8) to obtain

et+h,h = Bh�1nt+1,1 +
h

Â
j=2

Ah�j(ht+j � C jyt � C j�1nt+1,1),

where nt+1,1 = ht+1 � C1yt. In similar fashion, substituting Ah�2 using eq.(A-9) and continuing

recursively in this way yields

et+h,h = Bh�1nt+1,1 + Bh�2nt+2,2 + . . . + B1nt+h�1,h�1 + nt+h,h,

where each nt+j,j is recursively defined as:

nt+j,j = ht+j � C jyt �
j�1

Ầ
=1

C j�`nt+`,`.
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A.4 Proofs for the Results in the Propositions

A.4.1 Proof of Proposition 1

Consider that the estimated h-step-ahead forward iterated VAR is given by

yt+h = bAh
yt +

h

Â
j=1

bAh�jbht+j. (A-10)

Substituting this VAR expansion into the implemented GLS transformation yh
t+h = yt+h � Yt,h of

eq.(10), with Yt,h = Âh
j=1
bBh

h�jbht+j, gives in turn:

yh
t+h = bAh

yt +
h

Â
j=1

⇣
bAh�j � bBh

h�j

⌘
bht+j. (A-11)

We can then proceed by mathematical induction to show that bBh
h = bAh

for all h = 1, . . . , H.

Note that from the initialization in eq.(10), it follows directly for h = 1 that bBh
1 = bB1 = bA, and

eq.(A-11) implies that further equivalence at any h follows directly from that obtained at previous

horizons. That is, assume as the (strong) inductive hypothesis for h � 1 that bBh
h�j = bAh�j

for all

j = 1, . . . , h and any h � 2, and note that in this case the summation term in eq.(A-11) cancels,

leaving yh
t+h = bAh

yt. Accordingly, substituting this into the expression for the LP GLS estimator

in eq.(10) gives as the result for h:

bBh
h =

 
T�h

Â
t=1

yh
t+hy0

t

! 
T�h

Â
t=1

yty0
t

!�1

=

 
T�h

Â
t=1

bAh
yty0

t

! 
T�h

Â
t=1

yty0
t

!�1

= bAh
.

We can therefore conclude that bBh
h = bAh

for all h = 1, . . . , H.

A.4.2 Proof of Proposition 2

The difference between the GLS estimator, bBn
h,(�a), and the OLS estimator, bBh,(�a), is given by:

bBn
h,(�a) � bBh,(�a) = �

h�1

Â
j=1

bBn
h�j,(�a)

 
1
T

T�a

Â
t=1
bnt+j,j,(�a)y0

t

! 
1
T

T�a

Â
t=1

yty0
t

!�1

. (A-12)

Case (i): a = H. When a reduced sample of T � H observations is used, bnt+j,j,(�H) and y0
t are

orthogonal by construction. This orthogonality is a numerical property of OLS estimation in the

transformed LPs, where yt serves as the explanatory variable and nt+j,j,(�H) is the error term

for j = 1, . . . , h � 1. Making use of this orthogonality in eq.(A-12) shows that bBn
h,(�H) = bBh,(�H),

proving part (i).

Case (ii): a = h. When the longest available sample of T � h observations is used at each horizon
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h, bnt+j,j and yt are orthogonal by construction over the sample period t = 1, . . . , T � j, but the

summation in the numerator of eq.(A-12) runs over t = 1, . . . , T � h with h > j. Therefore, we

can decompose the summation as follows:

1
T

T�h

Â
t=1
bnt+j,jy0

t =
1
T

"
T�j

Â
t=1
bnt+j,jy0

t �
h�j

Ầ
=1
bnj

T�h+`+jy
0
T�h+`

#
= � 1

T

h�j

Ầ
=1
bnj

T�h+`+jy
0
T�h+`,

where the first term is zero due to orthogonality over t = 1, . . . , T� j. Noting that bnj
T�h+`+jy

0
T�h+` =

Op(1) for each `, and that h � j is a fixed, finite integer, it follows that:

1
T

T�h

Â
t=1
bnt+j,jy0

t = Op(T�1). (A-13)

From eq.(A-2) we know that
⇣

1
T ÂT�h

t=1 yty0
t

⌘�1
= G�1 + Op(T�1/2), with G = E(yty

0
t) = O(1).

Substituting this into eq.(A-12) and using the initial conditions bBn
0 = Ik and bBn

1 = bB1, we itera-

tively find from using eq.(A-13) that:

bBn
h � bBh = Op(T�1),

for each h = 2, . . . , H. This proves part (ii).

A.5 Proofs for the Results in the Corollaries

A.5.1 Proof of eq.(11) in Corollary 1

By setting Yt,h = Âh�1
j=1

bBLu
h�jbht+j in eq.(10), and the shorthand bGT�h = 1

T ÂT�h
t=1 yty0

t, the bBLu
h esti-

mator can be written as:

bBLu
h =

 
1
T

T�h

Â
t=1

 
yt+h �

h�1

Â
j=1

bBLu
h�jbht+j

!
y0

t

!
bG�1

T�h,

= bBh �
 

h�1

Â
j=1

bBLu
h�jbfj

!
bG�1

T�h, (A-14)

where bfj =
1
T ÂT�h

t=1 bht+jy
0
t.

For h = 1, bBLu
1 = bB1, so by eq.(A-3)

bBLu
1 = B1 + Op(T�1/2). (A-15)

For h = 2, eq.(A-14) gives

bBLu
2 = bB2 � bB

Lu
1 bf1

bG�1
T�2.
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Using eq.(A-15), eq.(A-2) and eq.(A-5) (with j = 1 and f1 = E[ht+1y0
t] = 0) yields

bBLu
2 = bB2 + Op(T�1/2) = B2 + Op(T�1/2). (A-16)

For h = 3, eq.(A-14) gives

bBLu
3 = bB3 � bB

Lu
2 bf1

bG�1
T�3 � bB

Lu
1 bf2

bG�1
T�3.

where substituting in the result for bBLu
2 and proceeding as above results in

bBLu
3 = bB3 � B1f2G�1 + Op(T�1/2).

Accordingly, by iterating the steps above for general h > 1, the recursive structure of eq.(A-14)

implies that

bBLu
h = bBh + yB

h + Op(T�1/2),

where the deviation term yB
h is defined recursively as:

yB
h = �

h�1

Â
j=1

⇣
Bh�j + yB

h�j

⌘
fjG

�1,

with initialization yB
1 = 0 and where yB

2 = 0 because f1 = E[ht+1y0
t] = 0.

A.5.2 Proof of eq.(12) in Corollary 1

Substituting eq.(A-1c) into the expression for bBLu
h , we have for h � 2:

bBLu
h =

 
1
T

T�h

Â
t=1

 
yt+h �

h�1

Â
j=1

bBLu
h�jbht+j

!
y0

t

!
bG�1

T�h,

=

 
1
T

T�h

Â
t=1

 
bAh

yt +
h�1

Â
j=1

⇣
bAh�j � bBLu

h�j

⌘
bht+j + bht+h

!
y0

t

!
bG�1

T�h,

= bAh
+

 
1
T

T�h

Â
t=1

 
h�1

Â
j=1

⇣
bAh�j � bBLu

h�j

⌘
bht+j + bht+h

!
y0

t

!
bG�1

T�h,

= bAh
+

 
bfh �

h�1

Â
j=1

⇣
bBLu

h�j � bAh�j⌘ bfj

!
bG�1

T�h, (A-17)

where bfj =
1
T ÂT�h

t=1 bht+jy
0
t and bGT�h = 1

T ÂT�h
t=1 yty0

t.

We start with h = 2. Since bBLu
1 = bA by definition, applying eqs.(A-2) and (A-5) with f1 = 0
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yields:

bBLu
2 � bA2

= bf2
bG�1

T�2 = yA
2 + Op(T�1/2),

where yA
2 = f2G�1.

For h = 3, we can substitute the result for h = 2 into the recursion, and apply eqs.(A-2) and (A-5)

as above:

bBLu
3 � bA3

= (f3 � yA
2 f1)G

�1 + Op(T�1/2) = yA
3 + Op(T�1/2).

Hence, by recursively substituting back into the expression (A-17), we obtain the following result

for general h � 2:

bBLu
h � bAh

= yA
h + Op(T�1/2),

where yA
h is defined recursively as:

yA
h =

 
fh �

h�2

Â
j=1

yA
h�jfj

!
G�1.

A.6 Proof of Corollary 2

Substituting eq.(A-1b) into the expression for bBBB
h,(�a), we have:

bBBB
h,(�a) =

 
T�a

Â
t=1

 
bAh�1
(�a)yt+1 �

h�2

Â
j=2

⇣
bBBB

h�j,(�a) � bAh�j
(�a)

⌘
bht+j,(�a)

!
y0

t

! 
T�a

Â
t=1

yty0
t

!�1

, (A-18)

where we used that by definition bBBB
0,(�a) = bA0

(�a) = Ik and bBBB
1,(�a) = bA(�a).

Case 1 (a = H): The LP is estimated over the fixed sample t = 1, . . . , T � H.

We shall proceed by induction. For h = 1, we have by construction that bBBB
1,(�H) = bA(�H).

Assume then as the strong inductive hypothesis for h � 1 that bBBB
h�j,(�H) = bAh�j

(�H) holds for all

j = 2, . . . , h � 2 and h > 1. Substituting this hypothesis into eq.(A-18) gives for h that:

bBBB
h,(�H) =

 
T�H

Â
t=1

bAh�1
(�H)yt+1y0

t

! 
T�H

Â
t=1

yty0
t

!�1

= bAh�1
(�H)

bA(�H) = bAh
(�H).

Hence, by mathematical induction, the result bBBB
h,(�H) = bAh

(�H) holds for all h = 1, . . . , H.

Case 2 (a = h): The LP is estimated over the longest possible sample t = 1, . . . , T � h.

In this case, A is estimated using the full sample t = 1, . . . , T � 1, so that bAj
(�a) = bAj

(�1). By our
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adopted convention, bAj
(�1) = bAj

, the (�a) subscripts can be omitted from eq.(A-18). For h = 1,

we have by construction that bBBB
1 = bA. For h = 2, substituting into eq.(A-18), we obtain:

bBBB
2 = bA

 
T�2

Â
t=1

yt+1y0
t

! 
T�2

Â
t=1

yty0
t

!�1

= bAbA(�2) = bA2
+ Op(T�1),

with the simplification in the last step following from bA(�2) = bA + Op(T�1) by eq.(A-4).

Now assume for h � 1 and h � 3 that bBBB
h�j = bAh�j

+ Op(T�1) holds for all j = 2, . . . , h � 2, and

substitute the hypothesis into eq.(A-18). Using eq.(A-4), we thus obtain for h that:

bBBB
h = bAh�1 bA(�h) + Op(T�1) = bAh�1 ⇣bA + Op(T�1)

⌘
= bAh

+ Op(T�1).

Hence, by mathematical induction, the result bBBB
h = bAh

+Op(T�1) holds for all h = 2, . . . , H.

Appendix B Supplementary Material

The online Supplementary Material contains all derivations and additional simulation results

supporting the illustrations in Section 4.

35



Supplementary Material for GLS Estimation of
Local Projections: Trading Robustness for Efficiency

Ignace De Vosa,b and Gerdie Everaertc,*

aVU Amsterdam, Department of Econometrics and Data Science
bTinbergen Institute

cGhent University, Department of Economics

This supplement contains two sections. Supplement 1 provides the derivations underlying
Proposition 3 in Section 4.1.1 of the main text. Supplement 2 presents additional simulation
results. In Section S2.1, we report results for the local misspecification setting with data-
driven lag selection, complementing Section 4.1.2 of the main text. Section S2.2 reports
additional simulation results related to the design based on the Stock and Watson (2016)
dynamic factor model introduced in Section 4.3 of the main text.

Supplement 1 Proof of Proposition 3 from the Main Paper

The derivation of the asymptotic distributions for the LP OLS and VAR IR estimators fol-
lows arguments similar to those in Li et al. (2022), which analyzes the same locally misspec-
ified framework up to timing and normalization.

For convenience, we restate the DGP from eq.(13):

wt+1 = rwt + bµ1,t + µ2,t+1 +
ap
T

µ2,t, (S1.1)

along with the accompanying assumptions: namely, that |r| < 1 and that µt = (µ1,t, µ2,t)0

follows an i.i.d. white noise process with variance Var(µt) = diag(s2
1 , s2

2 ) and finite fourth

*Corresponding author. E-mail: gerdie.everaert@ugent.be

1



moments. Furthermore, w0 is drawn from its stationary distribution. Recall that ej denotes
a 2 ⇥ 1 vector with a one in the j-th position and zeros elsewhere, for j = 1, 2.

We begin by establishing several preliminary results that will be instrumental in deriving
the asymptotic distributions of the VAR, LP OLS and the LP GLS-Lu estimators.

S1.1 Some Preliminary Results

By the Law of Large Numbers for stationary processes, the sample covariance matrix of
yt = (µ1,t, wt)0 satisfies

bG =
1
T

T�1

Â
t=1

yty
0
t = G + op(1), (S1.2)

where we define the population covariance matrix G as the limiting second moment of yt

as T ! •:

G = lim
T!•

E[yty
0
t] =

"
s2

1 0
0 s2

w

#
,

with s2
w = (b2s2

1 + s2
2 )/(1 � r2). This result is unaffected by the local misspecification term

a/
p

T, which vanishes asymptotically.

Another useful result follows from the properties of the innovation terms. Since µ1,t and µ2,t

are i.i.d. white noise with finite fourth moments, and wt follows the stationary process in
eq.(13), independence implies E [µ2,t+sµ1,t] = 0 for all s � 0. By stationarity, E [µ2,twt] = s2

2 .
Moreover, since µ2,t+s is independent of past terms for s > 0, it follows that E [µ2,t+swt] = 0.
Hence, we obtain:

1
T

T�1

Â
t=1

µ2,t+sµ1,t = Op(T�1/2), (S1.3)

1
T

T�1

Â
t=1

µ2,t+swt = s2
2 1{s=0} + Op(T�1/2), (S1.4)

for all s � 0, where 1{s=0} is an indicator function that equals one if s = 0 and zero
otherwise. Accordingly, also µt+1 = (µ1,t+1, µ2,t+2)0 is independent of yt = (µ1,t, wt)0, so

2



that E[µt+1y
0
t] = 0, and therefore

1
T

T�1

Â
t=1

µt+1y
0
t = Op(T�1/2). (S1.5)

S1.2 Asymptotic Distributions

S1.2.1 VAR IR estimator

Defining the population coefficient matrix A0 =
⇣

0 0
b r

⌘
, the OLS estimator for A in eq.(2)

from the main paper is given by

bA = A0 +

 
1
T

T�1

Â
t=1

 "
µ1,t+1

µ2,t+1 +
ap
T

µ2,t

# h
µ1,t wt

i!!
bG�1

,

= A0 +

 
1
T

T�1

Â
t=1

µt+1y
0
t +

as2
2p
T

e2e
0
2 + Op(T�1)

!
bG�1

,

= A0 +

 
1
T

T�1

Â
t=1

µt+1y
0
t +

as2
2p
T

e2e
0
2

!
bG�1

+ Op(T�1), (S1.6)

= A0 + Op(T�1/2). (S1.7)

by eqs.(S1.3)–(S1.5) together with bG�1
= Op(1). As such, bA is a consistent estimator of A0.

However, rewriting eq.(S1.6) and making use of (S1.2) gives as T ! •

p
T
⇣
bA � A0

⌘
=

1p
T

T�1

Â
t=1

µt+1y
0
tG

�1 + as2
2 e2e

0
2G�1 + op(1), (S1.8)

which given E(µt+1y
0
t) = 0 reveals that there is an asymptotic bias term when a 6= 0. To

see how this affects the distribution of the VAR IR estimator for qh = rh�1b, we first derive
the asymptotic distribution of the VAR estimator for r and b.

Using e
0
2A0 = (b, r) to select the second row of A0, applying a standard martingale differ-

ence central limit theorem to the first term in Eq.(S1.8) yields:

p
T
⇣
bA � A0

⌘0
e2

d�! N
⇣

aBias(bA0
e2), aVar(bA0

e2)
⌘

, (S1.9)
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where

aBias(bA0
e2) = G�1E

 
1p
T

T�1

Â
t=1

µt+1y
0
t + as2

2 e2e
0
2

!0

e2 =
as2

2
s2

w
e2,

from E
⇥
µt+1y

0
t
⇤
= 0.

The asymptotic variance follows from eq.(S1.8) as:

aVar(bA0
e2) = G�1E

" 
1p
T

T�1

Â
t=1

µt+1y
0
t

!0

e2e
0
2

 
1p
T

T�1

Â
t=1

µt+1y
0
t

!#
G�1,

= G�1E

"
1
T

T�1

Â
t=1

"
µ2

1,tµ
2
2,t+1 µ1,twtµ2

2,t+1

µ1,twtµ2
2,t+1 µ2

2,t+1w2
t

##
G�1,

= G�1
⇣

s2
2 G
⌘

G�1 = s2
2 G�1,

where the expectation follows from independence:

E

"
µ2

1,tµ
2
2,t+1 µ1,twtµ2

2,t+1

µ1,twtµ2
2,t+1 µ2

2,t+1w2
t

#
= s2

2 G. (S1.10)

Applying the Delta Method to the function g(A0) = e
0
2A

h
0e1 = rh�1b = qh, the asymptotic

distribution of the impulse response estimator bqVAR
h = brh�1bb follows as

p
T
⇣
bqVAR

h � qh

⌘
d�! N

⇣
bVAR

h , VVAR
h

⌘
, (S1.11)

where

bVAR
h = J0

as2
2

s2
w

e2 = (h � 1)rh�2ba
s2

2
s2

w
,

VVAR
h = J0s2

2 G�1
J
0
0 = r2(h�1) s2

2
s2

1
+ (h � 1)2r2(h�2)b2 s2

2
s2

w
,

using that the Jacobian, evaluated at plim e
0
2
bA = e

0
2A0 = (b, r), is given by

J0 =
∂e

0
2
bAh

e1

∂(e02bA)

�����
e02
bA=e02A0

=
⇣

rh�1, (h � 1)rh�2b
⌘0

.
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S1.2.2 LP OLS estimator

Define the population coefficient matrix as B0,h =
⇣

0 0
rh�1b rh

⌘
for h > 0, and B0,0 = I2 for

h = 0. The scaled OLS estimator for Bh in eq.(4) from the main paper can be written as:

p
T(bBh � B0,h) =

p
T

 
1
T

T�h

Â
t=1

h�1

Â
j=0

 
B0,j

"
µ1,t+h�j

µ2,t+h�j +
ap
T

µ2,t+h�j�1

# h
µ1,t wt

i!!
bG�1

,

=
p

T

 
1
T

T�h

Â
t=1

h�1

Â
j=0

B0,jµt+h�jy
0
t + B0,h�1

as2
2p
T

e2e
0
2 + Op(T�1)

!
bG�1

,

=
p

T

 
1
T

T�h

Â
t=1

h�1

Â
j=0

B0,jµt+h�jy
0
t + rh�1 as2

2p
T

e2e
0
2

!
bG�1

+ Op(T�1/2),

=

 
1p
T

T�h

Â
t=1

h�1

Â
j=0

B0,jµt+h�jy
0
t + rh�1as2

2 e2e
0
2

!
G�1 + op(1), (S1.12)

where we use B0,h�1e2e
0
2 =

⇣
0 0

rh�2b rh�1

⌘
e2e

0
2 = rh�1

e2e
0
2 along with eqs.(S1.2), (S1.3) and

(S1.4).

Using e
0
2B0,he1 = rh�1b = qh to select the relevant element in B0,h, we have from eq. (S1.12)

p
T
�bqLP

h � qh
�
=

1p
T

T�h

Â
t=1

St,h + op(1), St,h = s�2
1 µ1,t

h�1

Â
j=0

e
0
2B0,j µt+h�j, (S1.13)

where use is made of y
0
tG

�1
e1 = s�2

1 µ1,t and the deterministic term rh�1as2
2 e2e

0
2G�1 van-

ishes after left–right selection because e
0
2G�1

e1 = 0.

Since {µt} are i.i.d. with independent components, E[µt+s µ1,t] = 0 for all s > 0, and we
have that E(St,h) = 0. In addition, since each St,h depends on µ1,t and the future innovation
block (µt+1, . . . , µt+h), the sequence is h-dependent. Therefore, with E(St,h) = 0, fixed h
and finite fourth moments for {µt}, the CLT for m-dependent sequences (e.g., Billingsley,
1995, Thm. 27.4) applies, yielding

p
T
⇣
bqLP

h � qh

⌘
d�! N

⇣
0, VLP

h

⌘
. (S1.14)

such that bLP
h = 0, and with

VLP
h = E[S2

t,h] = s�4
1 E

2

4
 

h�1

Â
j=0

e
0
2B0,jµt+h�jµ1,t

!2
3

5 ,

5



= s�4
1 E

"
h�1

Â
j=1

rj�1bµ1,t+h�jµ1,t +
h�1

Â
j=0

rjµ2,t+h�jµ1,t

#2

,

= s�2
1

 
b2s2

1

h�1

Â
j=1

r2(j�1) + s2
2

h�1

Â
j=0

r2j

!
,

= s�2
1

 ⇣
b2s2

1 + s2
2

⌘ 1 � r2h

1 � r2 � r2(h�1)b2s2
1

!
,

=
⇣

1 � r2h
⌘ s2

w
s2

1
� r2(h�1)b2,

where the expectation follows from independence and E[µt+sµ1,t] = 0 for all s > 0. The
result uses the fact that the variance of the sum (1/

p
T)ÂT�h

t=1 St,h contains no cross–time co-
variance contributions. Specifically, each score satisfies St,h = µ1,tGt,h, with Gt,h depending
only on future innovations; since µ1,t is independent of (µ1,s, µ2,s)s 6=t and has mean zero, we
have E[St,hSt+`,h] = 0 for all ` � 1. Thus the score sequence is serially uncorrelated.

S1.2.3 LP GLS estimator of Lusompa (2023)

Let b#t+1 = yt+1 � bAyt be the estimated VAR error term. The LP GLS-Lu estimator bBLu
h for

Bh in eq.(4) from the main paper can then be written as:

bBLu
h =

 
1
T

T�h

Â
t=1

 
yt+h �

h�1

Â
j=1

bBLu
h�jb#t+j

!
y
0
t

!
bG�1

,

=

 
1
T

T�h

Â
t=1

 
Bhyt +

h

Â
j=1

Bh�j#t+j �
h�1

Â
j=1

bBLu
h�jb#t+j

!
y
0
t

!
bG�1

,

= B0,h +
1
T

T�h

Â
t=1

 
#t+h +

h�1

Â
j=1

⇣
Bh�j#t+j � bB

Lu
h�jb#t+j

⌘!
y
0
tbG

�1
,

= B0,h +
1
T

T�h

Â
t=1

 
#t+h +

h�1

Â
j=1

⇣ ⇣
Bh�j � bB

Lu
h�j

⌘
#t+j + bB

Lu
h�j(bA � A)yt+j�1

⌘!
y
0
tbG

�1
,

(S1.15)

using b#t+j = (A � bA)yt+j�1 + #t+j.
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Consider first that we can write for a j � 1 that

1p
T

T�h

Â
t=1

#t+jy
0
t =

1p
T

T�h

Â
t=1

"
µ1,t+j

µ2,t+j +
ap
T

µ2,t+j�1

# h
µ1,t wt

i
,

=
1p
T

T�1

Â
t=1

µt+jy
0
t + 1{j=1}as2

2 e2e
0
2 + Op(T�1/2) = Op(1). (S1.16)

Given the sequential dependence of bBLu
h on previous horizon estimates, we can first estab-

lish the asymptotic bound using strong induction. The base case follows from bBLu
1 = bA such

that from eq.(S1.7) and noting that B1 = A we have that bBLu
1 = B1 + Op(T�1/2). Assuming

then that for all 1  j  h � 1,

bBLu
h�j = Bh�j + Op(T�1/2), (S1.17)

and substituting this in eq. (S1.15), together with eq.(S1.16), we obtain:

bBLu
h = B0,h + Op(T�1/2). (S1.18)

Thus, by induction, the bound holds for all h � 1.

We next derive the asymptotic distribution of bqLu
h . Using e

0
2B0,he1 = rh�1b = qh to select

the relevant element in B0,h, we have from eq.(S1.15)

p
T
⇣
bqLu

h � qh

⌘
=

1p
T

T�h

Â
t=1

e
0
2

 
#t+h +

h�1

Â
j=1

⇣⇣
Bh�j � bB

Lu
h�j

⌘
#t+j + bB

Lu
h�j(bA � A)yt+j�1

⌘!
y
0
tbG

�1
e1.

We derive each of the three terms in this expression separately.

For the first, since 1p
T ÂT�h

t=1 #t+hy
0
t = Op(1), we can make use of eq.(S1.2) to write

1p
T

T�h

Â
t=1

e
0
2#t+hy

0
tbG

�1
e1 =

1p
T

T�h

Â
t=1

e
0
2#t+hy

0
tG

�1
e1 + op(1),

=
1
s2

1

1p
T

T�h

Â
t=1

✓
µ2,t+h +

ap
T

µ2,t+h�1

◆
µ1,t + op(1),

=
1
s2

1

1p
T

T�h

Â
t=1

µ2,t+hµ1,t + op(1).
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For the second, we obtain because h  H is a finite quantity that

1p
T

T�h

Â
t=1

h�1

Â
j=1

e
0
2

⇣
Bh�j � bB

Lu
h�j

⌘
#t+jy

0
tbG

�1
e1 = e

0
2

h�1

Â
j=1

⇣
Bh�j � bB

Lu
h�j

⌘ 1p
T

T�h

Â
t=1

#t+jy
0
t

!
bG�1

e1,

= Op(T�1/2),

since bG�1
= Op(1) and because 1p

T ÂT�h
t=1 #t+jy

0
t = Op(1) and bBLu

h�j � Bh�j = Op(T�1/2) for
any 1  j  h � 1 by eqs.(S1.16) and (S1.17).

Third,

1p
T

T�h

Â
t=1

h�1

Â
j=1

e
0
2bB

Lu
h�j

⇣
bA � A

⌘
yt+j�1y

0
tbG

�1
e1 =

h�1

Â
j=1

e
0
2bB

Lu
h�j

p
T
⇣
bA � A

⌘ 1
T

T�h

Â
t=1

yt+j�1y
0
tbG

�1
e1,

=
h�1

Â
j=1

e
0
2bB

Lu
h�j

p
T
⇣
bA � A

⌘ 1
T

T�h

Â
t=1

 
Bj�1yt +

j�1

Â
l=1

Bj�1�l#t+l

!
y
0
tbG

�1
e1,

=
h�1

Â
j=1

e
0
2bB

Lu
h�j

p
T
⇣
bA � A

⌘ 1
T

T�h

Â
t=1

 
Bj�1yty

0
tbG

�1
e1 +

j�1

Â
l=1

Bj�1�l#t+ly
0
tbG

�1
e1

!
,

=
h�1

Â
j=1

⇣
e
0
2bB

Lu
h�j

p
T
⇣
bA � A

⌘ ⇣
Bj�1e1 + Op(T�1/2)

⌘⌘
,

=
h�1

Â
j=1

e
0
2Bh�j

 
1p
T

T�h

Â
t=1

µt+1y
0
tG

�1 + as2
2 e2e

0
2G�1

!
Bj�1e1 + op(1),

=
1p
T

T�h

Â
t=1

h�1

Â
j=1

e
0
2Bh�jµt+1y

0
tG

�1Bj�1e1 + as2
2

h�1

Â
j=2

e
0
2Bh�je2e

0
2G�1Bj�1e1 + op(1), (S1.19)

where use is made of eqs.(S1.2) and (S1.8), and eq.(S1.16) on the 4th equality.

The first term in eq.(S1.19) is given by

1p
T

T�h

Â
t=1

h�1

Â
j=1

e
0
2Bh�jµt+1y

0
tG

�1Bj�1e1,

=
1p
T

T�h

Â
t=1

e
0
2Bh�1µt+1y

0
tG

�1
e1 +

1p
T

T�h

Â
t=1

h�1

Â
j=2

e
0
2Bh�jµt+1y

0
tG

�1Bj�1e1,

= e
0
2Bh�1

1
s2

1

1p
T

T�h

Â
t=1

µt+1µ1,t +
h�1

Â
j=2

rj�2b

s2
w

e
0
2Bh�j

1p
T

T�h

Â
t=1

µt+1y
0
te2,

= e
0
2Bh�1

1
s2

1

1p
T

T�h

Â
t=1

µt+1µ1,t +
h�1

Â
j=2

rh�3b

s2
w

e
0
2A0

1p
T

T�h

Â
t=1

µt+1wt,
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= e
0
2Bh�1

1
s2

1

1p
T

T�h

Â
t=1

µt+1µ1,t + (h � 2)
rh�3b

s2
w

e
0
2A0

1p
T

T�h

Â
t=1

µt+1wt,

where use is made of B0 = I2 such that G�1B0e1 = G�1
e1 = s�2

1 e1 along with G�1Bj�1e1 =

rj�2bs�2
w e2 for j > 1 and Bh�j = rh�j�1A0.

The second term in eq.(S1.19) is given by

as2
2

h�1

Â
j=1

e
0
2Bh�je2e

0
2G�1Bj�1e1 = as2

2

h�1

Â
j=2

e
0
2Bh�je2e

0
2G�1Bj�1e1 = b

as2
2

s2
w

h�1

Â
j=2

rh�2,

= (h � 2)rh�2b
as2

2
s2

w
,

using B0 = I2 such that e
0
2Bh�1e2e

0
2G�1B0e1 = 0.

Collecting and expanding terms yields

p
T
⇣
bqLu

h � qh

⌘
= (h � 2)rh�2b

as2
2

s2
w

+
1
s2

1

1p
T

T�h

Â
t=1

µ2,t+hµ1,t + e
0
2Bh�1

1
s2

1

1p
T

T�h

Â
t=1

µt+1µ1,t

+ (h � 2)
rh�3b

s2
w

e
0
2A0

1p
T

T�h

Â
t=1

µt+1wt + Op(T�1/2),

= (h � 2)rh�2b
as2

2
s2

w
+

1
s2

1

1p
T

T�h

Â
t=1

µ2,t+hµ1,t +
rh�2b

s2
1

1p
T

T�h

Â
t=1

µ1,t+1µ1,t

+
rh�1

s2
1

1p
T

T�h

Â
t=1

µ2,t+1µ1,t + (h � 2)
rh�3b2

s2
w

1p
T

T�h

Â
t=1

µ1,t+1wt

+ (h � 2)
rh�2b

s2
w

1p
T

T�h

Â
t=1

µ2,t+1wt + op (1) . (S1.20)

Applying a standard martingale central limit theorem to Eq.(S1.20) yields:

p
T
⇣
bqLu

h � qh

⌘
d�! N

⇣
bLu

h , VLu
h

⌘
. (S1.21)

Using independence, the asymptotic bias is given by

bLu
h = lim

T!•
E
hp

T
⇣
bqLu

h � qh

⌘i
= (h � 2)rh�2b

as2
2

s2
w

.
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The asymptotic variance is given by

VLu
h = lim

T!•
Var

⇣p
T
⇣
bqLu

h � qh

⌘⌘
,

= lim
T!•

1
s4

1

1
T

T�h

Â
t=1

Var(µ2,t+hµ1,t) +
r2(h�2)b2

s4
1

1
T

T�h

Â
t=1

Var(µ1,t+1µ1,t)

+
r2(h�1)

s4
1

1p
T

T�h

Â
t=1

Var(µ2,t+1µ1,t)

+ (h � 2)2 r2(h�3)b4

s4
w

1
T

T�h

Â
t=1

Var(µ1,t+1wt) + (h � 2)2 r2(h�2)b2

s4
w

1
T

T�h

Â
t=1

Var(µ2,t+1wt)

+ 2
1
s2

1
(h � 2)

rh�2b

s2
w

E

" 
1p
T

T�h

Â
t=1

µ2,t+hµ1,t

! 
1p
T

T�h

Â
t=1

µ2,t+1wt

!#
,

=
s2

2
s2

1
+ r2(h�2)b2 + r2(h�1) s2

2
s2

1
+ (h � 2)2r2(h�3)b4 s2

1
s2

w
+ (h � 2)2r2(h�2)b2 s2

2
s2

w

+ 2(h � 2)r2(h�2)b2 s2
2

s2
w

,

=
⇣

1 + r2(h�1)
⌘ s2

2
s2

1
+

 
1 + h(h � 2)

s2
2

s2
w

!
r2(h�2)b2 + (h � 2)2r2(h�3)b4 s2

1
s2

w
,

using independence and noting that 1p
T ÂT�h

t=1 µ2,t+hµ1,t =
1p
T ÂT�1

t=h µ2,t+1µ1,t�h+1 such that

E

" 
1p
T

T�h

Â
t=1

µ2,t+hµ1,t

! 
1p
T

T�h

Â
t=1

µ2,t+1wt

!#
=

1
T

E

" 
T�1

Â
t=h

µ2,t+1µ1,t�h+1

! 
T�h

Â
t=1

µ2,t+1wt

!#
,

= E [µ2,t+1µ1,t�h+1µ2,t+1wt] ,

= rh�2bE
h
µ2

2,t+1µ2
1,t�h+1

i
= rh�2bs2

2 s2
1 .

S1.2.4 Proof of Bias and Variance Rankings

Proof of the bias ranking. For h > 2 and a, b, r 6= 0,

bLP
h = 0, |bVAR

h | = (h � 1)|r|h�2|b| |a|s
2
2

s2
w

, |bLu
h | = (h � 2)|r|h�2|b| |a|s

2
2

s2
w

,

which are strictly positive; since (h � 1) > (h � 2), we obtain |bVAR
h | > |bLu

h | > |bLP
h | = 0. If

any of a, b, r equals zero, then directly from the formulas bVAR
h = bLu

h = bLP
h = 0.
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Proof of the variance ranking.

Step 1: Proof that VLu
h > VVAR

h .

Subtracting the closed forms yields

VLu
h � VVAR

h =
s2

2
s2

1|{z}
>0

+
⇣

1 � s2
2

s2
w

⌘
r2(h�2)b2

| {z }
�0

+ (h � 2)2r2(h�3)b4 s2
1

s2
w| {z }

�0

> 0,

where s2
w � s2

2 implies 1 � s2
2 /s2

w � 0 and the remaining factors are nonnegative (even
powers and squares). Therefore VLu

h > VVAR
h .

Step 2: Proof that VLP
h > VLu

h for (r, b) 6= (0, 0).

First rewrite VLP
h using

s2
w

s2
1
=

b2

1 � r2 +
s2

2
(1 � r2)s2

1
and the geometric sum:

VLP
h = (1 � r2h)

s2
w

s2
1
� r2(h�1)b2 =

s2
2

s2
1

h�1

Â
j=0

r2j + b2
h�2

Â
j=0

r2j.

Next, rewrite VLu
h using b2 s2

1
s2

w
= (1 � r2)� s2

2
s2

w
and combining terms:

VLu
h =

⇣
1 + r2(h�1)

⌘
s2

2
s2

1
+ r2(h�2)b2

⇣
1 + 2(h � 2) s2

2
s2

w

⌘
+ (h � 2)2r2(h�3)(1 � r2)b2

⇣
1 � s2

2
s2

w

⌘
.

Subtracting and grouping terms,

VLP
h � VLu

h = D1,h + D2,h,

with

D1,h =
s2

2
s2

1

 
h�2

Â
j=1

r2j � (h � 2)r2(h�2) b2s2
1

s2
w

!
, D2,h = b2

 
h�3

Â
j=0

r2j � (h � 2)r2(h�3)g(s)

!
,

where s = s2
2 /s2

w and

g(s) = (h � 2)(1 � r2) +
�
(h � 1)r2 � (h � 2)

�
s.
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For D1,h, since b2s2
1

s2
w

2 [0, 1) and r2j is strictly decreasing for 0 < |r| < 1, we have

D1,h � s2
2

s2
1

⇣ h�2

Â
j=1

r2j � (h � 2)r2(h�2)
⌘

> 0 for 0 < |r| < 1,

while if r = 0 then D1,h = 0.
For D2,h, since s 2 (0, 1 � r2] and g is affine with slope (h � 1)r2 � (h � 2), we may bound
g(s) by its maximum on the closed interval [0, 1 � r2]:

max
s2[0,1�r2]

g(s) =

8
><

>:

g(0) = (h � 2)(1 � r2), r2  h � 2
h � 1

,

g(1 � r2) = (h � 1)r2(1 � r2), r2 � h � 2
h � 1

.

Thus g(s)  maxs2[0,1�r2] g(s) gives the lower bounds

D2,h �

8
>>>><

>>>>:

b2
⇣ h�3

Â
j=0

r2j � (h � 2)2(1 � r2)r2(h�3)
⌘

, r2  h�2
h�1 ,

b2
⇣ h�3

Â
j=0

r2j � (h � 2)(h � 1)(1 � r2)r2(h�2)
⌘

, r2 � h�2
h�1 .

In the second case, (1 � r2)  1
h�1 , so

h�3

Â
j=0

r2j � (h � 2)(h � 1)(1 � r2)r2(h�2) �
h�3

Â
j=0

r2j � (h � 2)r2(h�2) > 0,

since r2j decreases in j. In the first case, writing r = (1 � r2)/r2 > 0 and n = h � 2,

h�3

Â
j=0

r2j =
1 � r2n

1 � r2 > n2(1 � r2)r2(n�1) ()
�
(1 + r)n � 1

�
(1 + r)� n2r2 > 0,

which holds because by the binomial lower bound

(1 + r)n+1 � (1 + r)� n2r2 � nr
⇣

1 � n�1
2 r + (n�1)(n+1)

6 r2
⌘

,

and the bracket is a convex quadratic with negative discriminant (hence no real roots) and
value 1 at r = 0, so it is > 0 for all r > 0. Thus D2,h > 0 for b 6= 0.
Combining, D1,h � 0 (strict if r 6= 0) and D2,h � 0 (strict if b 6= 0) give VLP

h � VLu
h � 0 for

h > 2, with the equality only if r = b = 0.
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Supplement 2 Additional Simulation Results

S2.1 Simulation Results for Local Misspecification with Data-Driven Lag

Selection

This section reports the simulation results that correspond to 4.1.2 of the main paper. We
evaluate estimator performance under local misspecification with data-driven lag selection.
We present results for T = 250, two levels of persistence (r = 0.6 and r = 0.9), and three
lag selection rules: AIC, the rule-of-thumb p = bT1/4c = 4, and a larger fixed lag length
p = 8. Each figure shows

p
T-scaled bias and standard deviation for all estimators, as

well as heatmaps of weighted RMSE minima across horizons h = 1, . . . , 20 for a range of
bias-variance weights l 2 [0, 1].

AIC Lag Selection

Figure S2.1: Bias and Standard Deviation—Local Misspecification with AIC Lag Selection

2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

(a)
p
T -scaled sampling bias

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

(b)
p
T -scaled sampling standard deviation

VAR LP OLS LP GLS-Lu (⇢ = 0.6)

VAR LP OLS LP GLS-Lu (⇢ = 0.9)

Notes: Displayed are the
p

T-scaled bias and standard deviation of the VAR, LP OLS, and LP GLS-Lu IRs
estimators under the DGP in eq.(15), based on 10,000 Monte Carlo replications. The simulation uses parameter
values b = s2

1 = s2
2 = 1, r 2 {0.6, 0.9}, a = 0.5, and sample size T = 250. The VAR lag length is selected using

the AIC and applied uniformly to the three estimators. The horizontal axis indicates the projection horizon
h = 1, . . . , 20.
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Figure S2.2: Estimator Dominance by Weighted RMSE — Local Misspecification with AIC
Lag Selection
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(b) r = 0.9
Notes: The heatmaps visualize estimator dominance across forecast horizons (h = 1, . . . , 20), plotted on

the x-axis, and squared-bias weights (l 2 [0, 1]), plotted on the y-axis. Each cell color corresponds to the
estimator—VAR IR, LP OLS, or LP GLS-Lu—minimizing the weighted RMSE defined in eq.(14), based on
10,000 Monte Carlo replications from the DGP in eq.(15) with b = s2

1 = s2
2 = 1, r 2 {0.6, 0.9}, a = 0.5,

and sample size T = 250. The VAR lag length is selected using the AIC and applied uniformly to the three
estimators. Color intensity reflects the RMSE reduction relative to the second-best estimator: darker shades
indicate stronger dominance. Black dots highlight regions where LP GLS-Lu ranks second-best. For visual
clarity, they are shown only every third weight step.

Lag Length Set to 4

Figure S2.3: Bias and Standard Deviation — Local Misspecification with Lag Length Set to
4
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→
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(b)
→
T -scaled sampling standard deviation

VAR LP OLS LP GLS-Lu (ω = 0.6)

VAR LP OLS LP GLS-Lu (ω = 0.9)

Notes: See Figure S2.1, except that the lag length is fixed at p = 4 instead of being determined by the AIC.

14



Figure S2.4: Estimator Dominance by Weighted RMSE — Local Misspecification with Lag
Length Set to 4
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Notes: See Figure S2.2, except that the lag length is now fixed at p = 4 rather than determined by the AIC.

Lag Length Set to 8

Figure S2.5: Bias and Standard Deviation — Local Misspecification with Lag Length Set to
8

2 4 6 8 10 12 14 16 18 20
→1.4

→1.2

→1

→0.8

→0.6

→0.4

→0.2

0

(a)
→
T -scaled sampling bias

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

(b)
→
T -scaled sampling standard deviation

VAR LP OLS LP GLS-Lu (ω = 0.6)

VAR LP OLS LP GLS-Lu (ω = 0.9)

Notes: See Figure S2.1, except that the lag length is fixed at p = 4 instead of being determined by the AIC.
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Figure S2.6: Estimator Dominance by Weighted RMSE — Local Misspecification with Lag
Length Set to 8
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Notes: See Figure S2.2, except that the lag length is now fixed at p = 8 rather than determined by the AIC.
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S2.2 Additional Simulations Based on Stock and Watson (2016) Dynamic

Factor Model

This subsection complements Section 4.3 of the main text by reporting simulation results
for the case where the VAR lag length is selected by AIC rather than fixed at four. Fig-
ure S2.7 displays the median scaled bias and scaled standard deviation across DGPs, while
Figure S2.8 summarizes estimator dominance by weighted RMSE.

Figure S2.7: Scaled Bias and Standard Deviation — Stock-Watson DFM (AIC Lag Selection)
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Notes: Displayed are the medians (across 6,000 DGPs) of the absolute bias |E(q̂h) � qh| and the standard

deviation of q̂h for the different estimation procedures, scaled by
q

1
21 Â20

h=0 q2
h, i.e. the root mean squared

value of the true impulse responses {qh}20
h=0. For each DGP, bias and standard deviation are computed

from 5,000 Monte Carlo replications based on data simulated from the Stock and Watson (2016) DFM, as
implemented in Li et al. (2024), with T = 200. The VAR lag length is selected by AIC and applied uniformly
across the VAR, LP OLS, and LP GLS–Lu estimators. The horizontal axis indicates the projection horizon
h = 0, . . . , 20.
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Figure S2.8: Estimator Dominance by Weighted RMSE — Stock–Watson DFM (AIC Lag
Selection)
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Notes: Displayed are heatmaps of the estimator that attains the lowest weighted RMSE defined in eq.(14).
For each (h, l) combination, the “winner” is the estimator that most frequently minimizes the loss across
the 6,000 DGPs simulated from the Stock and Watson (2016) DFM, following the design of Li et al. (2024).
Color shading indicates the strength of dominance, with darker colors corresponding to higher frequencies
and the darkest shade indicating that the estimator always wins. Dots mark cases where the LP GLS–Lu
estimator is the second-best procedure. Results are based on 5,000 Monte Carlo replications per DGP with
T = 200. The VAR lag length is selected by AIC and applied uniformly across the VAR, LP OLS, and LP
GLS–Lu estimators. The horizontal axis indicates the projection horizon h = 0, . . . , 20; the vertical axis varies
the squared-bias weight l 2 [0, 1].
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