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Abstract

Local projections (LPs) are widely used for estimating impulse responses (IRs) as they are
considered more robust to model misspecification than forward-iterated IRs from dynamic
models such as VARs. However, this robustness comes at the cost of higher variance, partic-
ularly at longer horizons. To mitigate this trade-off, several GLS transformations of LPs have
been proposed. This paper analyzes two broad strands of GLS-type LP estimators: those that
condition on residuals from an auxiliary VAR, and those that condition on residuals from
previous-horizon LPs. We show that the former impose a VAR structure, which leads them to
align with VAR IRs, while the latter preserve the unrestricted nature of LPs but end up repli-
cating LP OLS estimates. Consequently, the intended efficiency gains are either not achieved
or come at the expense of the very robustness that motivates the use of LPs.

JEL-codes: C22, C32, C52
Keywords: impulse responses, local projections, VAR models, GLS estimation, efficiency, ro-
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1 Introduction

Since the seminal work of Jorda (2005), local projections (LPs) have become a widely used method
for estimating impulse responses (IRs). Unlike VAR-based approaches that extrapolate IRs from

a fixed number of sample autocovariances, LPs estimate them directly at each horizon, thereby
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imposing fewer restrictions on the data’s dynamics. This flexibility is often argued to enhance
robustness relative to VARs. Olea et al. (2024) indeed show that LP confidence intervals achieve
correct asymptotic coverage under broad conditions, while even mild misspecification can cause
severe undercoverage in VAR-based intervals. Similarly, Kolesdr and Plagborg-Meller (2024)
demonstrate that LPs retain robustness in nonlinear settings. At the same time, LP estimates
are typically more variable and can appear more erratic than VAR-based IRs (Ramey, 2016). Be-
cause each horizon is estimated separately, forecast errors accumulate across horizons, inducing
a moving-average (MA) structure in the LP residuals and inflating estimator variance, especially

at longer horizons.

This highlights a broader bias—variance trade-off. Plagborg-Meller and Wolf (2021) show that LPs
and VARs yield identical IRs in population when the VAR includes a sufficiently long lag length.
In finite samples, however, low-order VARs achieve lower variance but may suffer from misspeci-
fication bias, while LPs are more robust but less precise. Simulation evidence supports this view:
Kilian and Kim (2011) find that when the data follow a finite-order VAR, LP confidence intervals
are excessively wide, while bias-adjusted VAR bootstrap intervals are considerably narrower. Ex-
tending this to thousands of designs, Li et al. (2024) document that LPs generally deliver lower

bias but higher variance than VAR estimators.

Concerns over the finite-sample variability of LPs have motivated refinements aimed at improv-
ing efficiency. Jorda (2005) already suggested recursively incorporating previous-horizon pro-
jection errors, which later inspired Generalized Least Squares (GLS) transformations for LPs.
Lusompa (2023), for instance, shows that the autocorrelation structure of LP errors reflects the
dynamics of an auxiliary VAR, which motivates a GLS transformation based on VAR residuals.
A similar approach is explored by Breitung and Briiggemann (2023). Monte Carlo evidence in
Bruns and Liitkepohl (2022) indicates that such GLS variants often outperform LP OLS and other

LP refinements in terms of root mean squared error (RMSE), particularly at longer horizons.

However, these GLS transformations are motivated by settings where the reduced-form dynamics
are fully captured by a VAR, either exactly in a finite-order specification or asymptotically in
a sieve VAR as the lag length p grows with the sample size. In applied work, by contrast,
researchers must choose a finite lag length. Even when a sieve representation exists, the working
finite-order VAR can be locally misspecified. In this empirically relevant fixed-p regime, VAR-
residual-based GLS transformations may reduce variance but risk importing misspecification

bias, leaving the net effect unclear.

This paper builds on this notion and evaluates how LP GLS estimators perform relative to the
benchmark LP OLS and VAR IRs. In doing so, we impose only weak regularity conditions that
allow for local reduced-form VAR misspecification in a fixed-p setting, ensuring broad empirical
relevance and enabling us to assess the effectiveness of GLS-based LP estimators in managing
the bias—variance trade-off. We distinguish between two broad strands of GLS implementations.

The first strand exploits the fact that under a correct reduced-form VAR specification, whether



exact or asymptotic, LP errors follow a Vector Moving Average (VMA) process in terms of VAR
projection errors and IR coefficients (Lusompa, 2023). This motivates GLS transformations that
condition on auxiliary VAR residuals. However, we find that once all available VAR residuals
are used, the LP GLS estimator reproduces the VAR IRs mechanically, as it fully imposes the
VAR dynamics on the LPs, regardless of whether the VAR is correctly specified. The closely
related variant of Breitung and Briiggemann (2023) likewise coincides with the VAR IRs, either
numerically or up to v/T-equivalence. These VAR-residual-based GLS variants should there-
fore not be viewed as refinements of LPs, but rather as rebranded implementations of the VAR
model, with the same sensitivities as the latter. The second strand allows for local reduced-form
VAR misspecification. In such cases, we show that LP errors follow a VMA process involving
iteratively re-centered VAR projection errors and pseudo-true IRs. This motivates an alternative
GLS variant that instead conditions on previous-horizon LP residuals, as originally suggested by
Jorda (2005). However, conditioning on LP residuals replicates the LP OLS estimator, preserving

robustness and LP flexibility but forgoing efficiency gains.

Taken together, our results imply that none of these LP GLS variants generate distinct asymp-
totic distributions. They are either numerically identical to VAR IRs or to LP OLS, or are
VT —equivalent to them. These conclusions are established in a fixed-p framework, which re-
flects the empirically relevant case where applied researchers must work with a finite lag length,
but they continue to hold pointwise along a sieve sequence in which the lag length grows with

the sample size (i.e., p = p(T) — o0 as T — oo, under standard sieve regularity conditions).

The only exception is the LP GLS estimator of Lusompa (2023), which excludes the current-
horizon VAR residual from the conditioning set. As a result, it imposes most — but not all — of
the VAR dynamics on the LD, preventing full collapse to the VAR IRs and yielding a genuinely
distinct limiting distribution. Because closed-form expressions are analytically intractable un-
der our general framework, we complement the general results with structured data-generating
processes (DGPs) that allow sharper analytical and simulation-based comparisons. Specifically,
we analyze (i) a stylized example with shrinking local misspecification that delivers explicit ex-
pressions for asymptotic bias and variance, (ii) a similar DGP but with misspecification induced
by data-driven lag selection, (iii) data simulated from the empirically calibrated DSGE model of
Smets and Wouters (2005), and (iv) data generated by the dynamic factor model of Stock and
Watson (2016), following the Monte Carlo design of Li et al. (2024), which yields a large set of
empirically realistic DGPs. Across these designs, the Lusompa (2023) estimator typically lies
between LP OLS and VAR IRs along the bias—variance frontier, but seldom improves upon either
benchmark in terms of weighted RMSE.

The remainder of the paper is structured as follows. Section 2 introduces the general framework,
defines benchmark VAR and LP estimators, and derives the autocorrelation structure of LP errors
that underpins the various GLS transformations. Section 3 analyzes the bias-variance trade-
off, showing how LP GLS estimators align with, or deviate from, the benchmark methods in

this general setting. Section 4 then focuses on the Lusompa (2023) estimator and illustrates its



behavior relative to VAR and LP OLS across a wide range of DGPs. Section 5 concludes. Proofs

and supplementary material are provided in Appendices A and B.

2 Assumptions, Autocorrelation Processes, and Estimators

This section establishes the framework for evaluating LP and VAR impulse response estimators.
We begin by introducing a general reduced-form regularity condition and the Wold represen-
tation of the data. To ensure broad applicability, our framework is deliberately general and
does not restrict the process to any particular parametric or structural model. We then define
the benchmark VAR and LP estimators and analyze the autocorrelation structure of LP errors,
building on the results of Lusompa (2023) under correct reduced-form VAR specification. These
results motivate the first strand of LP GLS estimators, which condition on auxiliary VAR resid-
uals to mitigate the accumulation of projection errors. Finally, we extend the analysis to local
reduced-form VAR misspecification and introduce a new theorem that justifies a second strand

of LP GLS estimators based on previous-horizon LP residuals.

2.1 Assumptions and Reduced-Form Representation

Let y; denote a (k x 1) observed data vector. As in Plagborg-Meller and Wolf (2021), we impose

the following nonparametric regularity condition:

Assumption 1. The data {y;} are covariance stationary and purely non-deterministic, with an
everywhere nonsingular spectral density matrix, absolutely summable Wold representation co-
efficients and finite fourth moments. For notational convenience, we proceed as if {y;} were a

(strictly stationary) jointly Gaussian vector time series.

This assumption provides a general reduced-form foundation for our analysis, ensuring that
results apply to a wide class of stationary multivariate processes. Note that the Gaussianity
assumption is made without loss of generality. It allows us to replace linear projection opera-
tors with conditional expectations, but all results remain valid under Assumption 1 even in the

absence of Gaussianity.

Under Assumption 1, y; has a canonical Wold representation (see, e.g., Hamilton, 1994, Ch. 4):

yi=€e+) 0 1)
=1

where €; denotes the k x 1 vector of one-step-ahead linear prediction errors (innovations) with

E(e;) = 0k1, a positive definite covariance matrix L., and ]E(etyg_j) = Ogx forall j > 1.

The goal is to estimate population reduced-form IRs, which quantify the dynamic effects of each

shock in €; on y;,, over the horizons h = 1,..., H, where H is fixed, finite, and satisfies H < T.
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Based on the Wold representation in eq.(1), these IRs are given by the sequence of (k x k) matrices
{®h };11_1:1 :

Remark 1. (Reduced-form IRs and structural identification). Assumption 1 imposes mild reg-
ularity conditions on the reduced-form Wold representation and does not restrict the causal
(structural) model. Consequently, the IRs @) derived from the Wold representation in eq.(1)
capture the effects of reduced-form shocks and, in general, do not correspond to responses to
structural shocks. As emphasized by Plagborg-Moller and Wolf (2021), structural identification
is a population concept, logically separate from the choice of reduced-form estimation method.
Our analysis therefore focuses on estimators of reduced-form IRs. When structural IRs are of
interest, they can be obtained by post-multiplying the reduced-form IRs ®; by an appropriate
identification matrix B!, such that the structural IRs are given by ®,B~'. Specific identification
schemes — such as IV approaches and contemporaneous or long-run restrictions — amount to
imposing conditions that allow one or more columns of B~! to be recovered (see, e.g., Kilian
and Liitkepohl, 2017, Stock and Watson, 2018, Plagborg-Meller and Wolf, 2021). Issues of global
misspecification — such as structural non-invertibility or underidentification — lie outside our
maintained reduced-form framework and do not affect the validity of the reduced-form Wold

representation.

2.2 Benchmark Estimators: VAR and LP OLS

VAR. Consider the VAR model:
Vir1 = Ayt + 1,4, for t=1,...,T—1, (2)

where A is a (k x k) parameter matrix, and #,,; = yi11 — E[yi1]y:] is a (k x 1) vector of

projection errors.

The OLS estimator for A in eq.(2), based on a sample of T — a observations, is defined as:

~1
T—a T—a
Ag) = ( Yt+1Y§> (Z YtY?) ;o for 1<a<T-1, (3)
1 t=1

t=

such that the corresponding VAR IR estimator for @, is given by ﬁ;(l,a). Note that, to align with
some of the LP estimators introduced below, we allow for estimation over a reduced sample
by excluding the last a observations. When using the maximum available sample (2 = 1), we

simplify the notation to ﬁ(,l) = A.



LP OLS. Local projections estimate the IRs @, directly at each horizon through separate regres-

sions:
Yirn = Bpyt +erpn,  for h=1,...,H, (4)

where Bj, represents the coefficients of the best linear projection of y;;, onto y;, and e; ) =

Virn — E [yiinlyt] = yien — Buy: denotes the h-step-ahead projection error.

The OLS estimator for By, in eq.(4), based on a sample of T — a observations, is given by:

-1
T—a T—a
By a = (Z yt+hy£> (Z Ytyi> ,  for h<a<T-1 (5)
t=1 t=1

In similar fashion to the VAR estimator above, we accommodate a flexible use of the sample
and indicate it by the a subscript. Setting 4 = h employs the maximum available sample at
each horizon, in which case we simplify the notation to ﬁh,(_h) — Bj,. Alternatively, setting
a = H uses the same dataset for the explanatory variable y; (i.e., y1, ..., yr—H) across all horizons
h =1,...,H. This approach is often used in practice to ensure a uniform sample size and

composition, reducing variability that may arise from differing sample periods at each horizon.

Remark 2 (Companion-form shorthand, fixed lag length, and sieve asymptotics). The first-order
models in eqs.(2) and (4) should be understood as companion-form representations of VAR and
LP models with a fixed lag length p. The companion form is purely a notational shorthand: any
VAR or LP with a fixed number of lags can be written this way with appropriately defined state
variables (cf. Liitkepohl, 2005, Ch. 2), so the notation does not restrict the choice of p, beyond
assuming it is fixed. We adopt a fixed-p framework because it naturally captures local misspec-
ification, which arises when the chosen lag length is too short to approximate the reduced-form
dynamics. Moreover, it yields exact population and finite-sample identities without invoking
asymptotic approximations. Where asymptotic arguments are used, they serve only to attach
explicit remainder orders arising from estimation-window misalignment in this fixed-lag setting.
Links to sieve asymptotics, where the lag length grows with the sample size, are provided where

relevant.

2.3 Autocorrelation Structures of LP Errors

Because projection errors accumulate in e, the LP errors are serially correlated, and the vari-
ance of the LP OLS estimator increases with the horizon h. This is reflected in the limiting
distribution of the LP OLS estimator, as derived in Bhansali (1997) and Lusompa (2023), which
shows that the variance grows with h. As such, understanding the autocorrelation structure of
LP errors is crucial for analyzing the properties of LP estimators and developing GLS transfor-

mations aimed at avoiding the error accumulation process.



To that end, it is helpful to forward iterate the VAR in eq.(2). This yields the decomposition:

h
Vern = Ay + ) Ah_]ﬂt+]’- (6)
j=1
Since the LP error e, is defined as the projection error from regressing y; ., onto y;, eq. (6)
shows that its behavior is determined by the autocorrelation structure in the forward VMA term
2?21 Al 1t+; and by how this term relates to y;. The properties of the VAR projection errors #,
are therefore central for understanding the autocorrelation structure of LP errors. Because these
properties differ under correct and locally misspecified reduced-form VARs, we first formalize

this distinction and then characterize the resulting VMA representations of LP errors.

2.3.1 Correct versus Locally Misspecified Reduced-Form VAR Specification

By Assumption 1, y; admits a canonical invertible Wold representation, so the process can always
be expressed as a projection VAR(co) (cf. Hamilton, 1994, Plagborg-Meller and Wolf, 2021). In
practice, however, researchers estimate finite-order VARs, truncating the infinite-order represen-
tation at some lag length p. This truncation is the source of local reduced-form misspecification: if
p is too short to capture the reduced-form dynamics, the finite-order VAR only approximates
the projection VAR(c0). Local misspecification is common when rich autoregressive dynamics
or moving-average components are compressed into a short VAR, or when degrees-of-freedom
constraints force the use of a limited number of lags (see, e.g., Braun and Mittnik, 1993; Stock
and Watson, 2018).

By contrast, a correctly specified reduced-form VAR requires a lag length p that is sufficiently
long to capture the reduced-form dynamics. This holds exactly when the true process is itself a
finite-order VAR(p), and more generally asymptotically under a sieve where the lag length tends
to infinity in function of T, i.e. p = p(T) — o0 as T — oo, under standard sieve regularity

conditions.

Our analysis of the autocorrelation structure of LP errors therefore distinguishes between two
cases: the empirically relevant scenario of local reduced-form VAR misspecification, where the
VAR lag order is insufficient, and the case of correct reduced-form VAR specification. For brevity,

we will often refer to these simply as local misspecification and correct specification, respectively.

2.3.2 VMA Representation of LP Errors under Correct Specification

Lusompa (2023) shows that, under Assumption 1 and correct reduced-form VAR specification,
the VAR projection errors #, coincide with the Wold innovations €;. Under this condition, the
forward-iterated VAR representation in eq. (6) implies that the LP projection error in eq.(4) equals

the forward VMA term. In population, the LP error e;,,) can therefore be expressed as a VMA



process of these innovations and the IRs:

exéiﬁh =Opatf 1 + O o o+ + Oy g 1y, @)

where the superscript “VAR’ indicates that this representation underlies the GLS transformations

based on VAR residuals, as discussed in Subsection 2.4.1.

2.3.3 VMA Representation of LP Errors under Local Misspecification

Under local misspecification, the decomposition in eq. (6) continues to hold, but the VAR projec-
tion errors #, are no longer orthogonal to y;. Consequently, the forward VMA term Z?:l Al Niyj
exhibits forward dependence, such that terms as E[z, +jy,ﬁ] are generally nonzero for j > 1. This
forward dependence implies two important departures from the correctly specified case. First,
the VAR projection errors #, no longer coincide with the Wold innovations €; and become serially
correlated. Second, the LP coefficients B;, no longer equal the true impulse responses O, (i.e.,
Bj, # ©y,). However, following Galvao and Kato (2014), B, can still be interpreted as a pseudo-true
IR, defined as the best linear projection of y;,, onto y;. In this sense, Bj, provides the optimal
linear approximation to the true h-period-ahead response ®;, even if the underlying model is
locally misspecified. Nonetheless, it is important to recognize that By, is not necessarily closer
to ®; than ;lh, as discussed in Kilian and Kim (2011). The relative accuracy of these estima-
tors depends on the degree and nature of misspecification, meaning that LPs do not universally

dominate VAR-based estimators in terms of bias.

The following lemma provides an explicit expression for the pseudo-true IRs By,:

Lemma 1. Under Assumption 1, allowing for local reduced-form VAR misspecification, pseudo-true IRs

By, are given by:
h .
B,=A"+) A",
j=1

where C; = qul"*l, ¢; = 1E[11t+]-y§] and T = E [y;y}].
Proof. See Appendix A.

Lemma 1 shows that the LP coefficients B;, deviate from the VAR IRs A" whenever Ci #0

for some j < h. This occurs under local misspecification, where future VAR errors are

Mivj
correlated with current regressors y;. These forward dependence terms ¢; = E[y, +]-y;] give
rise to misspecification terms C; = cpjl“*l, which accumulate over j < I and generate a wedge
between the LP-based pseudo-true IRs and the VAR-implied IRs. Intuitively, the deviation arises
because LPs impose orthogonality at each horizon, whereas VARs impose it only through their

finite lag structure.

An implication of Lemma 1 is that, under local reduced-form VAR misspecification, the LP errors

8



e,y cannot be expressed purely as a VMA process of Wold innovations and IRs. Instead, the

misspecification terms C; generate additional dependence, giving rise to the following structure:

Theorem 1. Under Assumption 1, in a fixed-p setting allowing for local reduced-form VAR misspecifica-

tion, the horizon-h LP errors e, follow a VMA process of order (h — 1), expressed as:

e nph = Bp1Vit11 + By oViiop+ .o+ BV i1+ Vi 8)

where the recursively defined re-centered VAR projection errors v ; are given by:

ji—1

]
Vgj=1MHs — Cij—j - Z Cj—le—]'+M- )
(=1

Theorem 1 provides the basis for an alternative class of GLS estimators that condition on LP
residuals from previous horizons, as originally suggested by Jorda (2005) and presented in Sec-
tion 2.4.2.

The VMA representation in Theorem 1 nests the result of Lusompa (2023). Under correct
reduced-form VAR specification with finite p, the misspecification terms C; are zero, while under
a sieve framework with p = p(T) — oo, they vanish asymptotically as T — co. In both cases,
the re-centered errors v;; in eq.(7) reduce to the VAR projection errors 7, and the pseudo-true
coefficients B, in Lemma 1 converge to the VAR IRs A". Consequently, under these conditions,

the general VMA representation in Theorem 1 simplifies to the form given in eq.(7).

2.4 LP GLS Estimators

In this section, we present the different GLS transformations of LPs. These estimators share a
common structure and differ only in the choice of residuals used for conditioning, so they are

nested in the following general expression:

~GLS T—a . T—a . -1
By = [ 1 ern =¥y | ( Loyeyi| , for h<a<T-1, (10)
t=1 t=1

... 5GLS = o . =GILS e

initialized with By (_,) = By (_;) and maintaining the convention B, _,) = I;. The specification
of the transformation term ¥, is what distinguishes the various GLS estimators, and we will
consider several alternatives for it below. As before, the subscript (—a) indicates that estimation
is performed over a reduced sample of T — a observations, and we again simplify notation to

~GLS ~GLS . . . .
By, (_y) = B, when the maximum available sample is used at each horizon (such that a = h).



2.4.1 LP GLS Estimators Based on Auxiliary VAR Residuals

Under correct reduced-form VAR specification, the VMA expression in eq.(7) allows the LP in

eq.(4) to be written as:

h
VAR VAR
Yiin = Bnyt + Crinn = Byy: + Z (“)hfj”tﬂr
=1

~

with @9 = Ij. Estimates of #, ; are given by #,,; ;) = Y+j — A(_y)¥i+j—1 and are readily
available from the VAR in eq.(2), while the IRs (©;_1,...,01) can be substituted with previ-
ous horizon LP estimates. This makes GLS transformations based on eq.(7) feasible. Multiple

implementations are possible, each using a different conditioning set.

Lusompa (2023) proposes conditioning on the VAR projection errors (1, q,...,#,,,_1) at hori-
zon h, while excluding #, ;. The corresponding feasible GLS estimator, E;}Z,a), is constructed

iteratively by setting ¥, ) = Z;Z;ll IASEE i(—a) e +i,(—a) in €q.(10).

Breitung and Briiggemann (2023) alternatively propose conditioning on (7, ,,,...,#,,;), thereby

excluding #, ;. The corresponding feasible GLS estimator, EEE_LI), is constructed iteratively by

. h ABB ~
setting ¥, , = ijz Bhfj,(—a)’7if+j,(fu)‘1

Since there is no compelling reason to exclude either #, ; or 5, , from the conditioning set
at horizon h, we also consider an extended LP GLS estimator that naturally conditions on the
full set of VAR residuals (#, 1o My +h), thereby using all available information from the VAR.
The corresponding feasible GLS estimator, ﬁZ,(fu), is constructed iteratively by setting ¥;; =

) 1Bh] 4 (—a)"

Remark 3. Although designed for a more general time series framework, the estimators pro-
posed by Perron and Gonzélez-Coya (2024) and Baillie et al. (2024) — when applied to an LP,
one of their key examples — can be viewed as approximations to the approach in Lusompa
(2023). While the latter directly implements a feasible GLS transformation based on the MA
structure of the LP errors, Perron and Gonzélez-Coya (2024) and Baillie et al. (2024) approximate
the same transformation using an AR(co) representation of the MA error process. This approx-
imation is made feasible by truncating the AR expansion, resulting in estimators that are only
approximately correct rather than an exact solution. Consequently, we do not explicitly consider

these estimators.

!Breitung and Briiggemann (2023) propose transforming eq.(4) by moving 7, _p, to the left-hand side and including
(140, -+ -+ 7y 1p—1) as additional regressors. However, re-estimating the coefficients on these projection errors is un-
necessary since they have already been estimated in previous LP horizons. To maintain alignment with the structure
of the other LP GLS estimators, we implement their estimator by moving these residuals to the left-hand side without
re-estimation.

10



2.4.2 LP GLS Based on Previous-Horizon LP Residuals

Under local reduced-form VAR specification, the VMA expression in eq.(7) is no longer valid and
must be replaced by the extended VMA expression provided in Theorem 1. Using this extended

expression, the LP in eq.(4) can be written as:

h—1
Yish = Bpyt + Y Bu_jViyjj 4+ Vi
=1
By replacing the population coefficients B;_; and errors v;,;; for j = 1,...,h — 1 with LP esti-
mates from the previous horizons, a feasible GLS estimator, EZ,(fa)/ can naturally be constructed

iteratively by setting ¥, = Z Bh i )vtﬂ',j,(_a).

3 GLS Estimation of LPs: Efficiency-Robustness Trade-Off

This section analyzes the trade-off between efficiency and robustness that underlies the LP
GLS estimators introduced in Subsection 2.4, by examining whether they align with the low-
variance VAR estimator or retain the robustness of LP OLS. All results are derived under As-
sumption 1 in a fixed-p setting, which allows for local reduced-form VAR misspecification. We
also indicate how each result nests the correct-specification case, including the sieve setting with
p = p(T) — o as T — oo. We distinguish between two strands of LP GLS estimators — those
based on auxiliary VAR residuals and those based on previous-horizon LP residuals — which

reflect fundamentally different properties.

3.1 Equivalence Properties of LP GLS Based on Auxiliary VAR Residuals

GLS estimation of LPs using VAR residuals achieves efficiency gains by incorporating aspects
of the VAR dynamics into the LP framework. Notably, we find that the LP GLS estimator EZ,
which fully utilizes the VAR residuals, even numerically replicates the VAR IRs A". This result

is formalized in the following proposition.

Proposition 1. Under Assumption 1, in a fixed-p setting allowing for local reduced-form VAR misspeci-
fication, the LP GLS estimator EZ, which fully incorporates VAR residuals in the GLS transformation, is
numerically identical to the VAR IR estimator A" B] = A" forallh=1,...,H.

Proof. See Appendix A.

Intuitively, the estimated h-step-ahead forward iterated VAR

~h—j
Yirn = A YtJrZA My jr
j=

11



shows that conditioning on (#,4,...,7,,,) eliminates all error terms on the right-hand side of

the LP equation. The GLS transformation y;.j, — 2}1:1 B)_ jii+j therefore collapses to the VAR

law of motion, ensuring by construction that EZ = A" Asa result, implementing the LP GLS

estimator EZ offers no additional value, as it simply reproduces the VAR IRs ﬁh.

This numerical equivalence holds for any finite sample size T and lag length p, regardless of
whether the reduced-form VAR is correctly specified. Consequently, if the lag length grows with
T (a sieve, p = p(T) — o0), the result continues to hold pointwise in T, since for each sample

size the same numerical equivalence applies.

The LP GLS estimator proposed by Lusompa (2023) — henceforth LP GLS-Lu — conditions on
all available VAR residuals except the current-horizon residual 7, ,,. The following corollary
establishes its relationship with the LP OLS estimator B;, and the VAR IR estimator A"

Corollary 1. Under Assumption 1, in a fixed-p setting allowing for local reduced-form VAR misspecifi-
cation, the LP GLS estimator §;u of Lusompa (2023) deviates from the LP OLS and VAR IR estimators
IAS'h and?lhus T —ocoforh=2,... H:

B, =By + 9B +0,(T?), (11)
B = A"+ g +0,(T1/?), (12)

where t[JE = —Z;’:_ll <Bh,]‘ + IPE_].) Cjand tpﬁ =Cy— 2;7:_11 lp,‘j_jC]-, with t[:lf = l[)? =0, and C; as
defined in Lemma 1.
Proof. See Appendix A.

Corollary 1 shows that with fixed lag length p, under local reduced-form VAR misspecification,
the LP GLS-Lu estimator E;:u asymptotically differs from both LP OLS and VAR IRs by the de-
terministic deviation terms ¢} and ¢, plus a standard Op( T~1/2) remainder. The deviation
from LP OLS arises because §],:u conditions on the intermediate-horizon VAR projection errors
(#4414, - -+ M,4 1) in its GLS transformation, thereby imposing most, but not all, of the VAR’s dy-
namic structure. Under local misspecification, some of these projection errors may be correlated
with the regressors y;, which induces a nonzero deviation P from LP OLS. The deviation from
the VAR estimator arises because IAS'Eu does not condition on 7, ;, which prevents it from fully
replicating the VAR dynamics. If %, is correlated with y;, as can occur under local misspecifi-

cation, its omission from the conditioning set yields a deviation 7' from the VAR IRs.

Under correct reduced-form VAR specification — either exactly for finite p or along a sieve with
p = p(T) — co — the misspecification terms C; vanish, implying that the LP GLS-Lu, LP OLS,
and VAR IR estimators are all consistent for the same impulse responses. Their asymptotic
distributions, however, need not coincide. First, residual differences typically remain of order
O,(T~1/2), leading to different asymptotic variances. Second, under a locally misspecified sieve,
the deviation terms themselves may be O(T~!/2), inducing nonzero mean shifts in the asymptotic
distribution of the LP GLS-Lu estimator relative to VAR IRs and LP OLS.
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Given the generality of Assumption 1, which imposes only reduced-form regularity, a general
characterization of the asymptotic distribution is not feasible at this stage: the limiting laws
depend on DGP-specific features (e.g., the decay of the VAR(c0) tail) and on the growth rate
of p(T). We therefore confine attention here to the fixed-p results established in Corollary 1,
and turn in Section 4 to both stylized examples and empirically relevant DGPs that allow us
to analytically derive or simulate the bias and variance of VAR IRs, LP OLS, and LP GLS-Lu

estimators.

Nonetheless, based on the structure of the GLS transformation — which imposes most but not
all of the VAR dynamics — we conjecture that the LP GLS-Lu estimator typically lies between LP
OLS and VAR in terms of bias and efficiency: it is likely to be (i) less biased than VAR but more
biased than LP OLS, and (ii) more efficient than LP OLS but less so than VAR. These patterns
should be understood as general tendencies rather than universal results, since bias—variance
trade-offs ultimately depend on the underlying DGP and projection horizon. While Lusompa
(2023) does not formally prove that ﬁiu is uniformly more efficient than LP OLS, the paper does

illustrate potential efficiency gains for an AR(1) model.

Remark 4. Corollary 1 reflects a key nonparametric result from Plagborg-Meller and Wolf (2021),
showing that when a VAR(p) is estimated and the same p lags are included as controls in the LP,
the VAR and LP IR estimands coincide for horizons i < p, even under local reduced-form VAR
misspecification. In line with this result, Corollary 1 shows that for & < p, the deviation terms
¢ and ¢P are zero, implying that the LP GLS-Lu estimator also coincides with the VAR and LP
OLS estimators in this case. This equivalence arises because the VAR projection errors 7, 4j are,
by construction, orthogonal to y; for all j < p, which implies that the misspecification terms C;
vanish for j < h. As noted in Remark 2, although our setup is expressed in terms of a VAR(1), it
naturally accommodates higher-order VAR(p) models through their standard VAR(1) companion

form.

The LP GLS estimator proposed by Breitung and Briiggemann (2023) conditions on all avail-

able VAR residuals except the horizon-1 residual, 7, ;. The following corollary establishes its

equivalence to the VAR IR estimator, A .

Corollary 2. Under Assumption 1 in a fixed-p setting allowing for local reduced-form VAR misspecifica-
tion, the LP GLS estimator Eﬁf,u) proposed by Breitung and Briiggemann (2023) exhibits the following
properties relative to the VAR IR estimate ﬁ?_u), depending on the sample:

(i) a=H: By ) = A(_gp forallh=1,..., H.
(i) a=h: By =A"+0,(T"V)as T — o, forallh =2,..., H.

Proof. See Appendix A.

Corollary 2 indicates that the LP GLS estimator proposed by Breitung and Briiggemann (2023) is

numerically equivalent to the VAR IR estimator A" when both are computed on the same aligned
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sample of T — H observations. This equivalence arises because the transformed disturbance in
the LP regression is precisely #,,, (_y from that window, which is orthogonal to y; by the
OLS normal equations. Hence, IAS’EB is numerically identical to A". If instead the VAR residuals
7,,, are estimated on the full VAR sample t = 1,...,T — 1 while the horizon-h LP uses the
shorter window t = 1,...,T — h, orthogonality is broken only by the tail trimming over t =
T—h+1,...,T—1. Given that / is fixed, this induces a negligible sample-window misalignment
of order O,(T~!). The convergence rate is therefore sufficiently fast to ensure that EEB shares the
same asymptotic distribution as ﬁh, as already established by Breitung and Briiggemann (2023).
Consequently, ﬁEB will typically exhibit a lower variance than the LP OLS estimator By, but its
equivalence to A" highlights that this variance reduction is achieved by fully imposing the VAR

specification across the entire forecast horizon.

The results above hold irrespective of whether the reduced-form VAR is correctly specified. Ac-
cordingly, under correct specification — either exact for finite p or along a sieve with p = p(T) —
co — the equivalences in Corollary 2 continue to apply. Because the statements are finite-sample
identities (or involve only an O,(T~!) sample-window misalignment remainder, independent of
. . . BB ~h . . . .
p), they also hold pointwise along a sieve, so B, and A" remain asymptotically equivalent with

identical limit distributions.

3.2 Equivalence Properties of LP GLS Based on Previous-Horizon LP Residuals

The LP GLS estimator using LP residuals adjusts for residual serial correlation by relying on
the LP framework itself, rather than on an auxiliary VAR. The following proposition shows its

equivalence to the LP OLS estimator.

Proposition 2. Under Assumption 1, in a fixed-p setting allowing for local reduced-form misspecification,
the LP GLS estimator EZ,(,Q), which uses previous-horizon LP residuals in the GLS transformation,

satisfies the following properties relative to LP OLS ﬁh,(_u), depending on the employed sample:
(i) a=H: By, (g =By, (g forallh=1,...,H.

(i) a = h: ﬁZ:IAS’h—{—Op(T*l) asT — oo, forallh=2,..., H.

Proof. See Appendix A.

The key insight of Proposition 2 is that the LP GLS estimator B}, which uses previous-horizon
LP residuals, replicates the LP OLS estimator Bj,. This result holds irrespective of whether the
reduced-form VAR is correctly specified. When all LPs are estimated on exactly the same re-
duced sample of T — H observations across the projection horizon, the orthogonality property of
OLS ensures exact numerical equivalence. When instead the longest available sample of T — h
observations is used, the difference between the two estimators again arises only from a sam-

ple-window misalignment of order O,(T~'). Hence B, and B, are asymptotically equivalent
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and share the same asymptotic distribution. These equivalences persist under correct specifica-
tion, including along a sieve, so IABZ and Bj, remain asymptotically indistinguishable. As a result,

GLS estimation using LP residuals offers no practical advantage over standard LP OLS.

4 Illustrative Examples

This section focuses on the Lusompa (2023) estimator, the only LP GLS variant in our analysis
with a genuinely distinct asymptotic distribution, and studies its behavior relative to VAR and
LP OLS benchmarks under different illustrative designs. As shown in Section 3, all other LP GLS
variants are either numerically identical or v/ T-equivalent to VAR IRs or LP OLS. Because their
simulated behavior was correspondingly indistinguishable from their benchmark counterparts,

we do not report them here to avoid redundancy.

Our evaluation focuses on point estimators, reporting bias, variance, and a weighted RMSE of the
IR point estimators. We do not report coverage or interval length, which also reflect properties of
the inference procedure (point estimator plus standard errors) rather than the pure bias—variance
trade-off of the estimators themselves. Large-scale Monte Carlo evidence on coverage and inter-
val length is already provided by Lusompa (2023). Our results are complementary, isolating the

bias—variance mechanisms that help explain those patterns.

4.1 A Stylized Example of Local Misspecification

To complement the general framework of Section 3, we now consider a more specific setting that
permits explicit analytical results. We adopt the local misspecification framework of Schorfheide
(2005), Li et al. (2024), and Olea et al. (2024), in which the degree of misspecification vanishes
at rate T~1/2, allowing for a tractable fixed-lag asymptotic analysis. We also explore a closely
related simulation design based on a similar DGP but using lag selection rules to determine
model complexity. This more conventional empirical setup allows us to evaluate whether the

results from the stylized example extend to more realistic conditions.

4.1.1 Local Misspecification via Vanishing MA Distortion

We consider the following autoregressive moving average (ARMA) process with a shrinking MA

component:
o
Wiyl = PWi + Bl + Hope1 + T (13)

where |p| < 1, u, = (p14, pos) is a bivariate zero-mean i.i.d. white noise process with Var(u,) =

diag((flz, 037) and finite fourth moments. We assume that y; = (p1, w;)’ is observed, while p
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remains latent. The same locally misspecified model — up to timing and normalization conven-
tions — is also used by Li et al. (2022) to compare LP OLS to VAR IRs.

As T — oo, the a/+/T term shrinks to zero, causing the MA component y; to vanish asymp-
totically. In the limit, the DGP in eq.(13) thus converges to a stationary AR(1) process driven
by the exogenous regressor y1; and the innovation yy11. The observed process y; is then well

approximated by a correctly specified VAR(1) model of the form in eq.(2), with

0 0
A= ( ) , and 7, = (Vl t+1> .
oo Hot+1

This local misspecification setup captures the idea that finite-order dynamic models provide
useful but imperfect representations of the true DGP in finite samples. By introducing a van-
ishing deviation from the AR(1) benchmark, the framework delivers a tractable approximation
that allows us to derive closed-form asymptotic distributions for estimators while retaining the

essential features of the bias-variance trade-off caused by misspecification.

Our objective is to estimate the response of w;,j, for h > 1, to a one-unit innovation in 1 ;. The
true IR function is given by 6, = e,Ale; = p"~!8, for h > 1, where e; denotes the 2 x 1 unit

vector with a one in position j and a zero in the other entry, for j = 1, 2.

Note that the shock pi; enters eq.(13) with a one-period lag, such that it affects w;,; rather
than w;. This ensures that the reduced-form IRs 6} coincide with the structural IRs. The timing
convention is without loss of generality: j; can always be interpreted — or recorded in the
dataset — as a one-period lead of a structural shock, such that it contemporaneously affects the
system while remaining exogenous. This allows for a structural interpretation of the reduced-

form IRs without imposing additional identifying restrictions.

The estimators considered in Section 2 follow from specifying y; = (p1,+, w¢)’. The VAR IR
estimator for 0, is given by éVAR = e, 'Ale ﬁ’HB, the LP OLS estimator by @%P = e’zﬁhel and
the LP GLS-Lu estimator by A,I;u = ezB};uel, with K, ﬁh and ]AS}ZH defined in Section 2. We then

obtain the following result:

Proposition 3. Consider the DGP in eq.(13), with [p| < 1and a € R. Assume o7 > 0 and E(p},) < o
fOTj = 112/ and deﬁne (,32 + (Tz) (]. — pZ) Then, as T — oo

ﬁ(gest h)_>N—(best est),

for est € {VAR, LP, Lu}, where the asymptotic bias and variance terms b$** and V' are given as follows.
Forallh > 1,

2 2 2
thAR = (h—1) phfz ngz ) VhVAR _ pZ(hfl)% Y (h— 1)2 (@T’% pz(h*Z)ﬁz,
w 1 w
2
LP _ P _ (1 _ 20\ % _ 2(h-1)p2
by =0, Vi (1 P ) ;12 P B
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Forallh > 2,

2

b = (h—2) " 22,
2 2 2
Vit = (1) 24 <1 +h(h—2) ‘75) PB4 (1 —2)7 2L
1 w w

For h = 1,2, we have 5,[;“ = 5,[;1’.

The ranking in terms of bias magnitude and variance is as follows for h > 2:
BYAR| > [BEY] > [BEP| =0, for a #0, p #0, B £0,

VP > ylu S yVAR - for (o, 8) # (0,0).

Ifanyof a =0, B =0, 0r p = 0, then byAR = blv = bL¥ = 0. If p = B = 0, then VYAR = 0 and

VLo = VIP = 2/02.
Proof. See Appendix B (Online Supplementary Material).

The bias ranking reflects the fact that the VAR estimator fully imposes the misspecified dynamic
structure, thereby inducing the largest bias, while LP OLS remains unbiased in this setting be-
cause the misspecification term is not correlated with pj;. The LP GLS-Lu estimator imposes
most — but not all — of the VAR dynamics on the LP, resulting in a bias that is typically closer
to that of the VAR than to LP OLS. Similarly, the variance ranking mirrors the extent to which
model structure is imposed: the VAR achieves the lowest variance, LP GLS-Lu attains an inter-
mediate level by partially exploiting VAR dynamics, and LP OLS exhibits the highest variance
owing to its minimal structure. Figure 1 plots the asymptotic bias and standard deviation across

horizons under low and high persistence (0 = 0.6 and p = 0.9), visualizing these trade-offs.

To assess overall performance, we compute a weighted RMSE:

RMSES = (/2 (bs) + (1— )V, (14)

for each estimator est € {VAR,LP, Lu}, where A € [0, 1] determines the weight placed on squared

bias relative to variance.

Figure 2 displays the estimator that achieves the lowest weighted RMSE across projection hori-
zons h = 1,...,20 and bias weights A € [0,1]. Color intensity reflects the strength of domi-
nance, measured by the percentage RMSE reduction relative to the second-best estimator: darker
shades indicate stronger dominance, while lighter shades reflect smaller gains. Black dots mark
regions where specifically the LP GLS-Lu estimator ranks second-best. The results show that the
preferred estimator depends on the weight assigned to bias: VAR dominates when bias is not
weighted too heavily and at longer horizons, while LP OLS is favored when bias receives a high
weight, particularly at shorter horizons. The LP GLS-Lu estimator typically ranks second-best

and only occasionally emerges as the top performer, with rather minor RMSE improvements in
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Figure 1: Asymptotic Bias and Standard Deviation — Shrinking Local Misspecification
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Notes: Reported are the asymptotic bias and standard deviation of the VAR, LP OLS, and LP GLS-Lu IRs estimators
for the DGP in eq.(13), computed using the expressions in Proposition 3 under parameter values p = 07 = 03 = 1,
p € {0.6,0.9} and a misspecification term of « = 5. The horizontal axis denotes the projection horizon h =1, .. .,20.

those cases. Overall, under this stylized local misspecification, the LP GLS-Lu estimator offers

no improvement over the benchmark VAR and LP OLS estimators.

Figure 2: Estimator Dominance by Weighted RMSE — Shrinking Local Misspecification
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Notes: The heatmaps visualize estimator dominance across forecast horizons (h = 1, .. .,20), plotted on the x-axis, and
squared-bias weights (A € [0,1]), plotted on the y-axis. Each cell color corresponds to the estimator — VAR IR, LP
OLS, or LP GLS-Lu — minimizing the weighted RMSE defined in eq.(14), computed from data simulated from eq.(13)
with parameters § = 012 = 022 =1, p € {0.6,0.9} and a misspecification term « = 5. Color intensity reflects the relative
dominance strength, measured as the percentage RMSE reduction compared to the second-best estimator: darker
shades indicate stronger dominance, and lighter shades weaker dominance. Black dots highlight regions where LP
GLS-Lu ranks second-best. For visual clarity, they are shown only every third weight step.
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4.1.2 Local Misspecification with Data-Driven Lag Selection

To bridge the gap between the stylized setup and standard practice, we now consider a finite-

sample simulation based on the following DGP:

Wip1 = PWr + PU1e + Uopr1 + KH2 4, (15)

which replaces the vanishing misspecification term a/+/T from eq.(13) with a fixed a. As a
result, the DGP no longer converges to a finite-order AR model, reflecting the more realistic case
where model misspecification persists in large samples. In practice, such complexity is typically
addressed by selecting the lag length using data-driven rules, such as the Akaike Information
Criterion (AIC), or by increasing lag length with sample size according to rule-of-thumb formulas
like p = [TV/4].

Simulation results for T = 250 are reported in Appendix B. Results are shown for both a low-
persistence setting (0 = 0.6) and a high-persistence setting (0 = 0.9), with the misspecification
parameter fixed at « = 0.5. We report the bias and standard deviation of each estimator and
provide heatmaps indicating, for each horizon & = 1,...,20 and each bias weight A € [0,1],
which method minimizes the weighted RMSE. Under AIC selection, the median lag is 3 for
p = 0.6 and 1 for p = 0.9. To evaluate robustness, we also consider the rule-of-thumb lag length
p = |T'*] = 4 and a larger fixed lag length p = 8. We apply the selected lag length uniformly

across all three estimators.

The results confirm that the core features of the bias-variance trade-off persist: LP OLS remains
less biased but more variable, while VAR is more precise but exhibits greater bias. The LP
GLS-Lu estimator continues to interpolate between the two but tends to lie closer to VAR, with
slightly reduced bias and slightly increased variance. It seldom outperforms either benchmark,
and when it does, the RMSE gains are modest. The choice between data-driven and fixed lag
length does not materially alter the qualitative ranking among estimators. Consistent with the
findings of Plagborg-Moller and Wolf (2021) and the discussion in Remark 4, the estimated IRs

align closely up to horizon h = p, but begin to diverge at longer horizons.

4.2 Simulations Based on the Smets and Wouters (2005) DSGE Model

To assess the finite-sample properties of the estimators in a more realistic macroeconomic setting,
we simulate data from the DSGE model developed by Smets and Wouters (2005). This model is
widely recognized for its ability to capture key nominal and real rigidities underlying U.S. busi-
ness cycle fluctuations. We use Dynare (Adjemian et al., 2024) to solve the model at its estimated
posterior mode and obtain its state-space representation, which includes seven structural shocks
that propagate through twenty state variables, jointly driving the dynamics of seven observed

macroeconomic indicators.
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Following Olea et al. (2024), we focus on a subset of four variables from the simulated data —
inflation, wages, hours worked, and the wage cost-push shock — and examine the dynamic re-
sponse of inflation to the wage cost-push shock. In Smets and Wouters (2005), this shock follows
an ARMAC(1,1) process, implying that any finite-order VAR is inherently misspecified. However,
because we treat the shock as observed and include it in the system, the misspecification is lo-
cal: it results from approximating a process with VMA dynamics using a finite-lag VAR. As the
lag length increases with the sample size, this approximation improves and the misspecification

vanishes asymptotically.

To identify structural responses, we place the wage cost-push shock first in a recursive VAR,
following standard practice. Reduced-form IRs are estimated using the VAR, LP OLS, and LP
GLS-Lu estimators. Structural IRs are then obtained by post-multiplying the reduced-form re-
sponses with the Cholesky impact matrix from the VAR.

We consider two sample sizes, T € {250,1000}. The smaller sample (T = 250) reflects typical
macroeconomic applications, while the larger one (T = 1000) allows us to assess how estimator
performance evolves with increased sample size. The VAR lag order p is selected using the AIC,
subject to a maximum of |T'/#|. The same lag length is then applied to the LP OLS and LP
GLS-Lu estimators. For T = 250, the median selected p is 2; for T = 1000, it increases to 3.
Allowing the maximum lag order to grow at a faster rate or using alternative information criteria

does not materially affect the reported results.

Figure 3 summarizes the \/T-scaled bias and standard deviation of the VAR, LP OLS, and LP
GLS-Lu estimators for the two considered sample sizes. We scale these quantities by /T so
that the Monte Carlo summaries align with the objects appearing in the asymptotic distribu-
tions, thereby allowing meaningful comparison across sample sizes. As in the earlier results, all
three estimators are highly similar at horizons shorter than or equal to the selected lag length,
consistent with the findings of Plagborg-Meller and Wolf (2021) and the discussion in Remark
4. Beyond these horizons, and again in line with the analytical results presented earlier, the LP
OLS estimator exhibits lower bias than VAR and LP GLS-Lu. The biases of VAR and LP GLS-Lu
remain similar, although LP GLS-Lu shows a slightly lower bias at shorter horizons. In terms of
variability, LP OLS consistently exhibits a higher standard deviation compared to both VAR and
LP GLS-Lu, while LP GLS-Lu has a higher standard deviation than VAR.

Figure 4 visualizes the estimator achieving the lowest weighted RMSE across projection horizons
h =0,...,40 and squared-bias weights A € [0,1]. The VAR and LP OLS estimators are most
frequently preferred: VAR dominates for moderate bias weights, while LP OLS is favored when
bias receives a higher weight. The LP GLS-Lu estimator seldomly improves compared to the
benchmarks, achieving the lowest weighted RMSE only in a few isolated cases, and then with
minimal dominance. The dot-markers indicate that LP GLS-Lu tends to align more closely with
VAR, typically ranking second-best when VAR dominates. Conversely, when LP OLS is pre-
ferred, VAR is generally the runner-up. This pattern reflects the fact that LP GLS-Lu has a bias
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similar to VAR but generally exhibits higher variance. An exception occurs at shorter horizons
when T = 250, where LP GLS-Lu has slightly lower bias than VAR and thus ranks second to LP
OLS when bias is heavily weighted.

Figure 3: Scaled Bias and Standard Deviation — Smets-Wouters DSGE Model
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Notes: Displayed are the V/T-scaled bias and standard deviation, computed from 10,000 Monte Carlo replications
based on data simulated from the Smets—Wouters DSGE model for T € {250,1,000}. The VAR lag length is selected
using the AIC and applied uniformly across the VAR, LP OLS, and LP GLS-Lu estimators. The horizontal axis
indicates the projection horizon i =0, ..., 40.

Figure 4: Estimator Dominance by Weighted RMSE — Smets-Wouters DSGE Model
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Notes: Displayed are heatmaps of the estimator minimizing the weighted RMSE defined in eq.(14), computed from
10,000 Monte Carlo replications based on data simulated from the Smets-Wouters DSGE model for T € {250,1,000}.
The VAR lag length is selected using the AIC and applied uniformly across the VAR, LP OLS, and LP GLS-Lu
estimators. The horizontal axis indicates the forecast horizon h = 0, ...,40; the vertical axis varies the squared-bias
weight A € [0,1]. For interpretation of color shading and dots, see notes to Figure 2.
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4.3 Simulations Based on the Stock and Watson (2016) Dynamic Factor Model

Our final simulation study generates data from the DFM of Stock and Watson (2016), estimated
on 207 quarterly U.S. time series for 1959Q1-2014Q4. This DFM is considered to be sufficiently
rich to capture the key time series properties of macroeconomic data and has become the bench-
mark for large-scale Monte Carlo designs (see e.g. Lazarus et al., 2018; Li et al., 2024). We follow
the setup in Li et al. (2024), replicating their framework for comparing VAR IR and LP OLS esti-
mators and extending the analysis by including the LP GLS-Lu estimator.> We briefly summarize

the main elements of this design below.

The DFM is specified with six latent factors. We consider both a specification in differences and
in levels. In the differenced version, both the factor process and idiosyncratic components are
estimated with two lags, whereas in the levels version, the factor process is estimated as a VECM
with four lags and the idiosyncratic components as AR(4) processes. Since our theoretical frame-
work assumes stationarity, the differenced specification aligns most closely with our analysis, but

we also include the levels specification for comparability with Li et al. (2024).

We then define the set of DGPs by randomly selecting subsets of variables from the 207-series
DFM. For each specification (differences and levels), we construct 6,000 DGPs: 3,000 fiscal policy
VARs, which always include government spending, and 3,000 monetary policy VARs, which
always include the federal funds rate. In addition to the policy variable, four other distinct series
are randomly drawn, subject to the restriction that at least one series must measure real activity
and at least one must measure prices. One of these four is then randomly chosen as the response

variable of interest. This procedure yields a total of 12,000 DGPs across the two specifications.

For each DGP, the corresponding true impulse responses {6, }/1 ; are computed up to horizon
H = 20 from the state-space representation of the DFM. In line with our focus on reduced-
form estimation, we adopt the observed shock identification scheme, which treats the observed
fiscal or monetary policy shock as directly entering the VAR and allows impulse responses to be

defined without imposing additional structural assumptions.

In each Monte Carlo replication, we simulate T = 200 observations from the full 207-variable
DFM and, for each DGP, retain the relevant subset of variables. The observed fiscal or monetary
policy shock is constructed from the simulated data following the procedure in Li et al. (2024),
and placed as the first variable in the system. The sampling distribution of the estimators around
the true impulse responses is approximated using 5,000 Monte Carlo replications. We consider
two lag-length choices: a fixed lag length of p = 4 and selection by AIC. The AIC almost always
chooses a very short lag length (one or two), whereas practitioners working with quarterly data
typically include at least four lags. For this reason, as in Li et al. (2024), we report the results for

p = 4 in the main text and relegate the AIC results to Appendix B

2We gratefully use the replication package of Li et al. (2024) to implement the Stock and Watson (2016) DFM and
Monte Carlo design, extending it to incorporate the LP GLS-Lu estimator.
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Figure 5 depicts the bias—variance trade-off across horizons. Displayed are the medians across
the 6,000 DGPs of the absolute bias |E(f),) — ;| and the standard deviation of 8, for the different
estimation procedures, scaled by 1/ Y2, 02 to remove the units of the response variable. As
before, a clear bias-variance trade-off emerges: LP OLS typically exhibits lower bias than VAR
IRs, but this comes at the cost of substantially higher variance at intermediate and longer hori-
zons. The LP GLS-Lu estimator tends to fall between these two benchmarks in terms of both

bias and variance.

Figure 6 summarizes overall performance in terms of weighted RMSE across horizons and loss-
function weights. The heatmaps show which estimator dominates most frequently across the
6,000 DGPs, with shading indicating the strength of dominance and dots marking cases where
LP GLS-Lu is the runner-up. Note that the dark-green regions indicate cases where the VAR
uniformly dominates across all horizons and weights, leaving no meaningful runner-up. This
comparison confirms that GLS-Lu almost never provides a clear improvement in overall perfor-

mance, reinforcing the patterns already documented in the preceding designs.

Similar patterns emerge when lag length is selected by AIC. These results, reported in Appendix
B, are somewhat more favorable to LP OLS since the AIC typically chooses a shorter lag length
(one or two rather than four). Nevertheless, LP GLS-Lu again fails to deliver a consistent im-

provement in overall performance.

Figure 5: Scaled Bias and Standard Deviation — Stock-Watson DFM (lag length fixed at 4)
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(a) Scaled sampling bias (b) Scaled sampling standard deviation
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Notes: Displayed are the medians (across 6,000 DGPs) of the absolute bias |E(6},) — 6| and the standard deviation of 6,
for the different estimation procedures, scaled by 4/ % 2%0:0 9%, i.e., the root mean squared value of the true impulse

responses {Gh}iozo. For each DGP, bias and standard deviation are computed from 5,000 Monte Carlo replications
based on data simulated from the Stock and Watson (2016) DFM, as implemented in Li et al. (2024), with T = 200.
The VAR lag length is fixed at p = 4 and applied uniformly across the VAR, LP OLS, and LP GLS-Lu estimators. The
horizontal axis indicates the projection horizon h =0, ..., 20.
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Figure 6: Estimator Dominance by Weighted RMSE — Stock—-Watson DFM (lag length fixed at 4)
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Notes: Displayed are heatmaps of the estimator that attains the lowest weighted RMSE defined in eq.(14). For each
(h,A) combination, the “winner” is the estimator that most frequently minimizes the loss across the 6,000 DGPs
simulated from the Stock and Watson (2016) DFM, following the design of Li et al. (2024). Color shading indicates the
strength of dominance, with darker colors corresponding to higher frequencies and the darkest shade indicating that
the estimator always wins. Dots mark cases where the LP GLS-Lu estimator is the second-best procedure. Results are
based on 5,000 Monte Carlo replications per DGP with T = 200. The VAR lag length is fixed at p = 4 for the VAR, LP
OLS, and LP GLS-Lu estimators. The horizontal axis indicates the projection horizon h = 0, ...,20; the vertical axis
varies the squared-bias weight A € [0,1].

5 Conclusion

This paper evaluates the use of GLS transformations in the estimation of IRs via LPs. While GLS
is often motivated by the goal of improving finite-sample efficiency, we show that its application
entails a fundamental trade-off between efficiency and robustness — one that depends on the
residuals used in the transformation. We distinguish two broad strands of LP GLS estimators:

the first relies on residuals from an auxiliary VAR, the second uses previous-horizon LP residuals.

The central insight of our analysis is that these two strands of GLS implementations do not
produce estimators that are genuinely distinct from the benchmark approaches; instead, they
tend to align with VAR IRs or LP OLS. Conditioning on all VAR residuals imposes the dynamic
structure of the VAR onto the LP framework, causing the LP GLS estimator to collapse to the
VAR IRs — gaining precision under correct specification but losing robustness. Conditioning on
LP residuals, by contrast, retains the flexibility of the LP framework but yields estimators that
are equivalent to LP OLS. These equivalence results are derived under minimal reduced-form
assumptions and therefore hold for a broad class of stationary multivariate processes, regardless

of whether the auxiliary VAR is correctly specified or locally misspecified.

The only exception is the LP GLS estimator proposed by Lusompa (2023), which conditions
only on a subset of VAR residuals. This hybrid structure yields an estimator that is generally
asymptotically distinct from both benchmarks. In a stylized local misspecification framework,
we show that it strikes a balance between the bias of the VAR and the variance of LP OLS but

rarely dominates either benchmark in terms of weighted root mean squared error. These patterns
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persist in simulations based on the Smets and Wouters (2005) DSGE model and the Stock and
Watson (2016) DEM.

It is worth noting that the efficiency-robustness trade-off may still be mitigated by augmenting
LPs with observed structural shocks instead of estimated residuals, as proposed by Faust and
Wright (2013) and Teulings and Zubanov (2014). When these shocks are exogenous, such aug-
mentations can preserve robustness while partially improving efficiency. Yet, since the observed
shocks rarely span the full LP error term, a full GLS correction remains infeasible—unless residu-
als are substituted for unobserved components, which reintroduces the trade-off. Note also that
Teulings and Zubanov (2014) primarily use this augmentation approach to address incidental
parameter bias in panel LPs with fixed effects. Such bias-corrections are, however, beyond the

scope of this paper and left for future work.

In conclusion, researchers should exercise caution when applying GLS to LPs. While GLS trans-
formations may appear promising at first glance, most implementations either replicate the VAR
or LP OLS benchmark, without resolving the bias—variance trade-off. Rather than providing a
third alternative, LP GLS estimators merely shift the balance between robustness and efficiency

depending on the residuals used.
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Appendix A Proofs and Supporting Results for Sections 2-3

Throughout the proofs we maintain Assumption 1. All O,(-) terms involving matrices or vectors
are understood to be with respect to the spectral norm. For simplicity and clarity, explicit norm
notation is omitted. Additionally, we assume that H is finite, ensuring that #1/T — 0 as T — oo
forallh=1,...,H.

A.1 Preliminaries: Notation and Useful Results

Backward iteration identities. For the VAR(1) in eq.(2), estimated on t =1,..., T — a, repeated
substitution yields, for any & > 1,

Yitn = A(—a) Yith—1 +ﬁt+h,(—a)' (A-1a)
~h—1 ho h—j .
= Alqyt Z;A<_a)m+j,(_a), (A-1b)
]:
= Al gyt Y A gl () (A-1¢)

Here K?ﬁ) = I;. For notational simplicity, we adopt the convention of omitting the subscript

(—a) when using the full sample, corresponding to 2 = 1 when estimating the VAR(1) in eq.(2).

Sample second moments and inverse. Under Assumption 1 (stationarity, finite fourth mo-
ments, absolutely summable Wold coefficients), it holds for fixed / (see, e.g., Hamilton, 1994;
Liitkepohl, 2005),

. 1 T—h B ~ B -
Tro=g Yy =T +0,(T"1%), Tl =T"+0,(T"), (A-2)
t=1

where I = E(y,y}) is positive definite with eigenvalues bounded away from 0 and oo.

OLS \/T—consistency. For fixed i > 1, the OLS normal equations give
B L Np-1 s Np-1
B, = (T )y yt+hyt> I'rop=Bn+ (T )3 et+h,hyt>rihr
t=1 t=1
where, under Assumption 1, % ZtT;lh erinny; = Op(T_l/ 2) and, by eq.(A-2), f;lh = Op(1). Hence

By, =B, +0,(T"%), A=A+0,(T"?), (A-3)

with the second relation obtained by setting & = 1 so that A = By.
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Fixed tail trim. Consider the OLS estimator defined in eq.(3), estimated with T — a observations:

. 1 T—a 1 T—a -1 1
/ / ~
Ao =g Lymyi | |7 Lyvi| =¥rlre for 1<a<T-1
=1 t=1
For any fixed and finite 2 < a < H, we can write:

a—

- 1 T-1 1 =N 1 a—1 = 3
Tro=— | Y Vit — Y ¥ 1-o¥r1—e| =T — 7 ) yra-¥r—1¢ =11+ Op(T7Y),
= =0 Ti=

N 1 T-1 a—1 N 1 a—1 N B
VYT—a = T [Z Yir1y; — Z yT—fle—l—él = Yr-1— T Z yT—fy/T—l—é =Yr1t Op(T 1)-
t=1 (=0 £=0

Under Assumption 1, the terms 0"  yr-1-/¥5__, and Y0_yr—¢yr_,_, are Op(1) since a is

fixed and finite. Substituting these results back into the expression for ;1(_,1), we have:

N S | _ ~ _
Ay =Vr—alr—a = ¥7-1T121 + Op(T DN=A+0,(T). (A-4)

~

VAR residual forward moments. Using ﬁt+j =y — (A—A)yiyj-1,forany j>1,

R R R 1 T=h
¢]~ =7 ; ”t-i-jy;‘ =T ; ’7t+jY; - (A-A) (T t; yt”_ly;)'

By (A-3), A—A = 0,(T1/?), and under Assumption 1 %ZtT;]h Yi+i—1y; = Op(1). Similarly,
with ¢; = E[, ;y}] and by standard results for series with finite 4th moments and absolutely
summable Wold coefficients, we have % ZtT:]h My jy; =¢;+ Op(T_l/ 2). Therefore

¢ =¢;+0,(T?), j>1, (A-5)

and since ¢; = 0 we have ¢, = O, (T~1/2).

A.2 Proof of Lemmal

First note that from the definition of Bj, as the coefficients of the best linear projection of y;

onto y;, we have:

E[yiin | yi] = Bry:. (A-6)

Taking the conditional expectation given y; of the forward-iterated VAR representation in eq.(6),

we have:

h , h ‘
Elyen | yi = A'yi+ ) A"TE [’7t+j | Yt} = (Ah +y A" Cj) yi- (A7)
j=1 j=1

29



where we used that the conditional expectation of #,,; given y; is the linear projection of 7, ;
onto y;, given by E |:11t+j | yt} = Cjy:, with C; = 47].1"*1, ¢;=E {qtﬂ.y;] and I' = E [y;y}].

Hence, equating (A-7) to the projection definition in eq.(A-6) reveals that:

h
— Al h—j
B,=A +Z%A ic;.
]:

A.3 Proof of Theorem 1

We begin with substituting the expression for Bj, from Lemma 1 into the definition of the LP

errors. This gives

erinh = Yirh — Byt = Yipn — (Ah + ZAh I ) yt = ZAh (147 — Cjye), (A-8)
j=1

where the final equality makes use of eq.(6) to substitute y;,;. Using Lemma 1, A"/ can be

expressed dynamically as

) h
A =B, ;- Y Afc.;. (A-9)
(=j+1

Accordingly, setting j = 1 in eq.(A-9) allows substitution of A"~! into eq.(A-8) to obtain

erinh = Bp-1vir11 + ZA 17t+] Ciyt — Ci_1viy11),
]_

where v;.11 = 17,1 — C1y:. In similar fashion, substituting A2 using eq.(A-9) and continuing

recursively in this way yields

erinh = Bp1Vit11 + B oV + .o+ BV -1+ Vignn,

where each v, is recursively defined as:

j-1
Vitjj = Metj — Ciy: — Z CiVirip.
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A.4 Proofs for the Results in the Propositions
A.4.1 Proof of Proposition 1

Consider that the estimated h-step-ahead forward iterated VAR is given by

~h—j
Yerh = AYt+ZA Ty (A-10)
j=

Substituting this VAR expansion into the implemented GLS transformation yf on = Yern — Yy of
eq.(10), with ¥, ), = 2;7:1 E’Z,ﬂit +j» gives in turn:

h

" T
Yin=Aye+ Z; (A B Bh_i) Upyj (A-11)
]:

We can then proceed by mathematical induction to show that Bl = A" for all h = 1,...,H.
Note that from the initialization in eq.(10), it follows directly for h = 1 that B! = B, = A, and
eq.(A-11) implies that further equivalence at any & follows directly from that obtained at prev1ous
horizons. That is, assume as the (strong) inductive hypothesis for 1 — 1 that B i = = A" for all
j=1,...,hand any i > 2, and note that in this case the summation term in eq.(A-11) cancels,
leaving y'Z h = ﬁhyt. Accordingly, substituting this into the expression for the LP GLS estimator
in eq.(10) gives as the result for h:

T—h N (= ren AWZ=1 -
=\ vl [ vyt =X Awyi| | Lyyi|] =4
=1 t=1 =1 =1

We can therefore conclude that IASZ = z?lh forallh=1,...,H. O

A.4.2 Proof of Proposition 2

The difference between the GLS estimator, IASZ/(_Q), and the OLS estimator, ﬁhl(,a), is given by:

—1
~ 1 T—a 1 T—
BZ,(*ﬂ) Z Bh Ji( ( Z Vivji(— ) (T Z Yth> . (A-12)

t=1

Case (i): a = H. When a reduced sample of T — H observations is used, v;,;_p) and y; are
orthogonal by construction. This orthogonality is a numerical property of OLS estimation in the
transformed LPs, where y; serves as the explanatory variable and v;,;; ) is the error term
forj =1,...,h — 1. Making use of this orthogonality in eq.(A-12) shows that IASZ,(_ H) = IAS’h,(_ H)s
proving part (i).

Case (ii): 2 = h. When the longest available sample of T — h observations is used at each horizon
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h, vy, ;; and y; are orthogonal by construction over the sample period ¢t = 1,...,T — j, but the
summation in the numerator of eq.(A-12) runs over t = 1,...,T — h with h > j. Therefore, we

can decompose the summation as follows:

=i 1 [1 =
~ = / _ ~ = [_ /\] ! .

) Uyt = T Z; VitjjYi ; VTt YTt | = Z 7h_ e YTt

=1 = =1

~l -

where the first term is zero due to orthogonality over t = 1,..., T —j. Noting that ?]T_ P jy’T_h =

Oy (1) for each ¢, and that 1 — j is a fixed, finite integer, it follows that:

2 Viryyi = Op(T7). (A-13)
t=1

i

From eq.(A-2) we know that ( v ytyt) =T 1+0,(T"?), with T = E(y,y;) = O(1).
Substituting this into eq.(A-12) and using the initial conditions IABS — Iy and B] = By, we itera-
tively find from using eq.(A-13) that:

B, — B, =0,(T™"),

foreach h = 2,..., H. This proves part (ii). O

A.5 Proofs for the Results in the Corollaries
A.5.1 Proof of eq.(11) in Corollary 1
By setting ¥;;, = Z Bh ]qt i in eq.(10), and the shorthand I"T W= T Zt 1 yty;, the E;u esti-

sLu 1 T=n hl =Lu / 1
B, = T Yt+h_2Bh—j”t+j y: l"T hr

t j=1

mator can be written as:

||
/\i

(%8 i‘”ﬁb]) Il (A-14)
:l

2 _ 1 vT-h
where ¢; = 73 ’7t+])’t

Forh =1, Elfu — By, so by eq.(A-3)

BI" = By +0,(T2). (A-15)

For h = 2, eq.(A-14) gives



Using eq.(A-15), eq.(A-2) and eq.(A-5) (with j = 1 and ¢; = E[y,,,y;] = 0) yields

By = By+0,(TV2) = By + 0,(T/2). (A-16)

For h = 3, eq.(A-14) gives
~Lu = sLu~ ~_ sLu~ ~_
By =B;—B; ¢\I715— By ¢I7l;
e e . =L . .
where substituting in the result for B, and proceeding as above results in

~L ~
B; =B;— B, I 1 +0,(T7V?).

Accordingly, by iterating the steps above for general i > 1, the recursive structure of eq.(A-14)
implies that

~L ~
B, =B+ ¢} +0,(T1?),

where the deviation term 9P is defined recursively as:

h—1

pl=—Y (Bij+ol ) or ",

=1

with initialization ] = 0 and where ¢5 = 0 because ¢, = Ely,,,y;] = 0. O

A.5.2 Proof of eq.(12) in Corollary 1

Substituting eq.(A-1c) into the expression for ﬁtu, we have for h > 2:

h—1
~Lu ~Lu ~_
B, = (T Z <Yt+h - Z th’h+j> y{) rTih,
j=1

=1
o VTTh (e oy R “ 1
=A + (T t (Z (A - Bh*i) Moy T | 9 | Trop
~h ~ ~Lu ~h=j\ ~ | =
Sy (zph -y (B -a") ¢j> 7l (A-17)

~ 1w T—hzs ot = _1vT—hy ot
where (,bj = 7YX N1 Yt and I'r_j = T i1 YtVi

We start with i = 2. Since IAS'?u = A by definition, applying eqs.(A-2) and (A-5) with ¢p; = 0

33



yields:
ELu _ 22 _ 5 i:fl _ A +0 (T71/2>
2 $lr =1, p ’
where 5 = ¢,I 1.

For h = 3, we can substitute the result for & = 2 into the recursion, and apply egs.(A-2) and (A-5)

as above:

~Lu

B; - A = (¢5— ‘/”?Gbl)r_l + OV<T_1/2) = ‘I’? + Op(T_l/z).

Hence, by recursively substituting back into the expression (A-17), we obtain the following result

for general h > 2:
~Lu ~h _
B, —A =y +0,(T?,

where 32 is defined recursively as:

h—2
P = <¢h -3 ¢ﬁ_j¢j> r!
j=1

A.6 Proof of Corollary 2

Substituting eq.(A-1b) into the expression for EEE_ a), we have:
~BB =0 h=2 , _pp ~h—j !
~ / /
By o= | Y |Acay1— ) (Bh—j,(—u) - A(—a)) Tevjea | YO | oyt | . (A-18)
1 =2

where we used that by definition ng,u) =A _q) = Iy and E]i?,a) = ﬁ(_a).

Case 1 (@ = H): The LP is estimated over the fixed sample t =1,...,T — H.
We shall proceed by induction. For i = 1, we have by Constructlon that Bl( H) = ﬁ(_H).
Assume then as the strong inductive hypothesis for & — 1 that Bh “i(-H) = A( p) holds for all

j=2,...,h—2and h > 1. Substituting this hypothesis into eq.(A-18) gives for & that:

-1
ABB - = She1 o ~h
( Z Yt+1Yt> ( t_Zl vyt | =ArmAcn =ACn):

Hence, by mathematical induction, the result EE}?, H) = ﬁ?, ) holds forallh =1,..., H.

Case 2 (a = h): The LP is estimated over the longest possible sample t =1,...,T — h.
In this case, A is estimated using the full sample t = 1,...,T — 1, so that ;lj(fa) = A(_4). By our
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adopted convention, /Ai{_l) = /Alj , the (—a) subscripts can be omitted from eq.(A-18). For h = 1,

~BB ~
we have by construction that By = A. For h = 2, substituting into eq.(A-18), we obtain:

e . [T2 T—2 - A2 :
B, =A (Z yt+1y£> (Z Yty£> =AA( ) =A"+0,(T),
t=1 t=1
with the simplification in the last step following from ﬁ(,z) = A+ Op(Tfl) by eq.(A-4).

Now assume for h — 1 and 1 > 3 that By-; = A" + 0,(T~") holds for all j = 2,....,} — 2, and
substitute the hypothesis into eq.(A-18). Using eq.(A-4), we thus obtain for / that:

~h

By =A" A,y +0,(T") =4 (21 + op(rl)) — A +0,(T).

Hence, by mathematical induction, the result ﬁEB ~ A" + Op(Tfl) holds forallh =2,...,H. O

Appendix B Supplementary Material

The online Supplementary Material contains all derivations and additional simulation results

supporting the illustrations in Section 4.
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Supplementary Material for GLS Estimation of

Local Projections: Trading Robustness for Efficiency

Ignace De Vos™’ and Gerdie Everaert®

VU Amsterdam, Department of Econometrics and Data Science
bTinbergen Institute

¢Ghent University, Department of Economics

This supplement contains two sections. Supplement 1 provides the derivations underlying
Proposition 3 in Section 4.1.1 of the main text. Supplement 2 presents additional simulation
results. In Section S2.1, we report results for the local misspecification setting with data-
driven lag selection, complementing Section 4.1.2 of the main text. Section S2.2 reports
additional simulation results related to the design based on the Stock and Watson (2016)

dynamic factor model introduced in Section 4.3 of the main text.

Supplement 1 Proof of Proposition 3 from the Main Paper

The derivation of the asymptotic distributions for the LP OLS and VAR IR estimators fol-
lows arguments similar to those in Li et al. (2022), which analyzes the same locally misspec-

ified framework up to timing and normalization.

For convenience, we restate the DGP from eq.(13):

®
Wi = PWt + BU1,t + Yorr1 + ﬁ}lz,t, (S51.1)

along with the accompanying assumptions: namely, that |p| < 1 and that g, = (p1,4, pos)’

follows an i.i.d. white noise process with variance Var(y,) = diag(c?,03) and finite fourth

*Corresponding author. E-mail: gerdie.everaert@ugent.be



moments. Furthermore, wy is drawn from its stationary distribution. Recall that e; denotes

a 2 x 1 vector with a one in the j-th position and zeros elsewhere, for j =1, 2.

We begin by establishing several preliminary results that will be instrumental in deriving
the asymptotic distributions of the VAR, LP OLS and the LP GLS-Lu estimators.

S1.1 Some Preliminary Results

By the Law of Large Numbers for stationary processes, the sample covariance matrix of

y: = (1,1, we)' satisfies

%i yi =T +0,(1), (512)

where we define the population covariance matrix I' as the limiting second moment of y;

as T — oo:
2
o 0
I = lim Ely;y)]= | !
T1—>oo [yth] [0 U'Z%] ’

with 02 = (B?07 + 03) /(1 — p?). This result is unaffected by the local misspecification term
a/+/T, which vanishes asymptotically.

Another useful result follows from the properties of the innovation terms. Since 1 ; and o s
are ii.d. white noise with finite fourth moments, and w; follows the stationary process in
eq.(13), independence implies E [p4sp1,] = 0 for all s > 0. By stationarity, [E [paw¢] = 03.
Moreover, since i ;1 is independent of past terms for s > 0, it follows that [E [y 1 sw¢| = 0.

Hence, we obtain:

1= _
T Z HotrsH1t = Op(T 1/2)/ (51.3)
=1
1 2 1/2
- Z H2,is0t = 03115y + O, (T71/2), (S1.4)

for all s > 0, where 14,_g, is an indicator function that equals one if s = 0 and zero

otherwise. Accordingly, also p; | = (1,641, fi2,0+2) is independent of y; = (pq,4, wy)', so



that E[s, ,y;] = 0, and therefore

1 T-1 B
T L Madt = O0p(T71) (S1.5)

S$1.2 Asymptotic Distributions
S§1.2.1 VARIIR estimator

Defining the population coefficient matrix Ag = <2 2), the OLS estimator for A in eq.(2)

from the main paper is given by

T-1
A—Ag+ (X Huet [V“ wt} =
T = \ |mp1+ JTH2 '
1T-1 no2 PR
1=l ao? ~1 ~
= Ao T =~ Piy1yi + 7;929/2> I +0,(TY, (51.6)
= Ag + 0, (T1/2). (S1.7)

by eqgs.(51.3)—(51.5) together with f_l = Op(1). As such, A is a consistent estimator of A,.

However, rewriting eq.(51.6) and making use of (51.2) gives as T — co
2 1= re—1 2. -1
VT (A~ Ag) = 7= Z% ey T+ aoderesT~1 +0,(1), (SL.8)
t=

which given E(p,,,y;) = 0 reveals that there is an asymptotic bias term when a # 0. To
see how this affects the distribution of the VAR IR estimator for 8, = o"~18, we first derive

the asymptotic distribution of the VAR estimator for p and B.

Using e5A( = (B, p) to select the second row of Ay, applying a standard martingale differ-

ence central limit theorem to the first term in Eq.(S1.8) yields:

VT (K - A0>/ er LN (aBias(K’ez),aVar(K’e2)> , (51.9)



where

.~y 1 1 = / 2 / 0‘0-22
aBias(A'ey) =T 'E | —= Y _ p,1y; +aoseres | e = 2 €2
T3 Tw

from E [p, ,y};] = 0.

The asymptotic variance follows from eq.(S1.8) as:

_ /
N - 1 I 1 = _
aVar(A'ez) = I"'E (ﬁ g f“%) e (ﬁ Y ¥t | [T
i =1 t=1

[ T—1 2 .2 2
l [ M1 M2 601 P‘l,twtl/‘z,tH” r-1

2 2 2
T3 P1iWthy i1 Hop41Wh

=17 (1)1 =31,

—TE

where the expectation follows from independence:

E 2

2 2
H1tWiHy p 1 Hop Wt

2 2 2
H1eH2 641 Vl,fwfVZ,tH] = 02T. (51.10)

Applying the Delta Method to the function g(Ag) = e,Alle; = p"~1B = ), the asymptotic
distribution of the impulse response estimator @/AR = o"~1B follows as

VT (B~ ) 4 A7 (%, 1), 1)
where

Ko 7.
thAR = 10—2262 = (h — 1)ph 2‘306—%,
Uw UZU

VAR 2r—1y/ 2(h—1) o3 2 2(h—2) 203

Vi =Joo I Jo=p —+((h-=1)% B,

o3 2

using that the Jacobian, evaluated at plim e,A = e,Aq = (8, p), is given by

B ae’zl‘;hel

Jo (e)A)

= (ph*l, (h— 1)9”2/5)/-

I'A —o
e,A=erAg




S1.2.2 LP OLS estimator

Define the population coefficient matrix as By = < 1-1g gl ) for h > 0, and Bpg = I, for

h = 0. The scaled OLS estimator for B, in eq.(4) from the main paper can be written as:

M1,t+h—j ~—1
M2, t+h—j \/_TVZ,th j—1

02
~—1
Bt in- ]Yt+BOh 1ﬁeze2+OP(T ))1‘ ,

T

|
=
=

I
_

VT(B, —Byy) = VT (

S| -
-
I
I

- o

N]
LA
= —.
|

-

S| -
-
]
I

- o

~
LA
= —.
|

o2

Sl =

t

I
—_
I
o

j

=

—hh-1
( Z Z omt+h_jy§+9h1w0§ezeé> I ' +0,(1), (S1.12)

where we use Byj_jeze}, = <phgzﬁ ph0_1) ere, = ph_leze’2 along with egs.(51.2), (51.3) and
(S1.4).

Using e,B ,e1 = ph_1 B = 0) to select the relevant element in B ;, we have from eq. (51.12)

h—1
VT (0 —6,) = f Z Sntop(1),  Sew=o07 1Y ehBojpy (S1.13)
j=0

2

where use is made of y/T le; = oy 2411 ; and the deterministic term 0" 1ac? erelT! van-

ishes after left-right selection because e, le; = 0.

Since {p,} are i.i.d. with independent components, E[pu, 1] = 0 for all s > 0, and we
have that [E(S; ;) = 0. In addition, since each S, depends on 1 ; and the future innovation
block (g, q,...,p;,y), the sequence is h-dependent. Therefore, with E(S;;) = 0, fixed h
and finite fourth moments for {p,}, the CLT for m-dependent sequences (e.g., Billingsley,
1995, Thm. 27.4) applies, yielding

VT (5,[;1’ - eh) LN (o, V,}P) . (S1.14)

such that b;l;P = 0, and with

h—1 2
V= [Sth] = o7 [(Z elzBO,]'P‘tJrh—le,t) } ’

j=0



h

2
-1 h=1
- ‘71_4]E Z P]_lﬁﬂl,tJrh—le,t + P],UZ,H—h—j.ul,t] ,
' =0

=1 j
he1 he1

o (S e,
j=1 j=0

2h

_ 1— _
=07 ? ((52‘7124"722) 1 _{;)2 —p* 1).32‘712> ,

2
1%

— (1-p*) %o _pz(h—1)ﬁ2,
( ) o?

where the expectation follows from independence and E[u, 1] = 0 for all s > 0. The

result uses the fact that the variance of the sum (1/+/T) Zth_lh S; ; contains no cross—time co-

variance contributions. Specifically, each score satisfies S;, = p1:G; j, with G, depending

only on future innovations; since i1 ; is independent of (y1 4, #12,5)s-++ and has mean zero, we

have E[S; ;S;4¢,] = 0 for all £ > 1. Thus the score sequence is serially uncorrelated.

$1.2.3 LP GLS estimator of Lusompa (2023)

Let €41 = yr+1 — Kyt be the estimated VAR error term. The LP GLS-Lu estimator ﬁ%u for

Bj, in eq.(4) from the main paper can then be written as:

~|

LA

~

Sl =
T

[y

=l gy 1
~Lu 2\ o
Yith — ZBh—j£t+j ye | T
j=1

h h—1
sLu . ~—1
Buy:+ ) Bu_jeryj— ) :Bh—jStJrj) yi) r,
j=1 j=1

T—h

1
=B —
0’h+T

hl ~Lu a1
Yo (et ) (Bh—j€t+j - Bh—j€t+j) yiL
=1

t=1

1 = hl ~Lu ~Lu ,~ a1
T Yo (ent+ ) ( (Bh—j - Bh—j) eryj+ By, j(A — A)YtJrjfl) yiL
i=1 =1

(S1.15)

USIHg §t+] = (A — K)yi»+]',1 + €t+]'.



Consider first that we can write for a j > 1 that

[ M+ ] [
o }’l].,t wt] 4
Mot + VTH2 -1

1 T—h ,
ﬁ Z iyt = Z
t=1
ﬁ Z M+ 1ijoqao3eses + 0p(T2) = Oy (1). (S1.16)

Given the sequential dependence of IAS’;I:u on previous horizon estimates, we can first estab-
lish the asymptotic bound using strong induction. The base case follows from E?‘ = A such
that from eq.(51.7) and noting that B; = A we have that E’Ifu =B; + Op(Tfl/ 2). Assuming
then that forall1 <j <h -1,

B, = By +0,(T 1), (51.17)
and substituting this in eq. (51.15), together with eq.(51.16), we obtain:
B, = By, +0,(T"1/2). (S1.18)

Thus, by induction, the bound holds for all & > 1.

We next derive the asymptotic distribution of g{;“. Using e}Bj e; = ph_1 B = 6) to select

the relevant element in B ;, we have from eq.(51.15)
\/_ Alu 1 = / h-l ~Lu ~Lu -~ ja—1
T <9h — 9]1) = ﬁ Z € | Er4p + Z ((Bh_] - Bh—j) SH_]' + Bh_](A - A)yt—l—j—l) ytl" €.
t=1 j=1

We derive each of the three terms in this expression separately.

For the first, since \/LT ZtT:_lh ey = Op(1), we can make use of eq.(51.2) to write

1 T=h a1 — _
VT L Z ererypyil e1 = Z erery T er +0p(1),
VT =

1 1 T—h

= 5= Mo pvh T —=H2t4+h— 1) it +op(1),
o2 T = ( f $

= 5= HotrnMie +0p(1).
‘712 VT (5 i b



For the second, we obtain because i < H is a finite quantity that

—nh— N o h—-1 R 1 T—h o
T ; ; /2 (Bh—f - Bk;’) et-l-]'y;r 1e1 = elz Jg (Bh —j Bku]) (ﬁ t:Zl 8t+jy;) r 1el,
= 0p(T"1?),

since T = O,(1) and because \/LT Y eyl = 0p(1) and T;kﬁj — By_j = 0,(T~1/2) for
any 1 <j <h—1by eqs.(51.16) and (51.17).

Third,
1 T=hhe 1 - 1 Tk 1
» Z ;B (A A) yiriayl T e = 2 e,B," VT (A - A> =Lyl e,
t=1 j=1 t=1
h1 , sLu VT (A 1= = ~1
= 1 eZBh —j ( ) T tZ; ] 1Yt +;Bj_1_let+l ytl" ey,
]: =
h—1 1 T—h 1 j—1 a1
= eth ]\/_( ) T Z ] 1yty I e+ ZB]-_l_leHlytl" e |,
]:1 t=1 =1
h—
_ Y (B VT (A-A) (B, Op(T71/2
= e2 h_] ]—1e1 + p( ) 4
j=1
h—1 ) 1 T—h
=) eB_; JTL Z pryi T +acgeresT1 | Bijer +0,(1),
j=1
1 T—hh-1
= Z Z esB),_ ];tt+1ytl" B] 1e1—|—0c(72 Z e’B),_ ]ezezl" B] 1e1 +0p(1), (51.19)
\/T t=1 j=1 j=2

where use is made of egs.(51.2) and (51.8), and eq.(51.16) on the 4th equality.

The first term in eq.(51.19) is given by

1 T=hh=1 )
/ 'T—
T t21 ;eZBh—jl‘tJrl}'tr Bj_ieq,
= ]:

1 T—h — — .

\/— Z 3By 1py YT o1 + T ; ; €3By_jpty 41 yiT 1B]-,1e1,
1 1 T—h —1 —2[5 /

= e3By_1— 2\/7 Z l‘t+1141t+] By ]\/T Z :ut+1Yte2/

1 1Tfh h—
J

h—3 —
B 1
= eBy_1— 72 \/T Z PP+ ; 72 eyAg T t; Bt Wt



1 1 T—h h 3ﬁ , 1
= e)B,_1— 2 Z Pt + (h— 2) o2 e24¢ Z Pt
2VT 5 VT 2

where use is made of Bo = I such that I"'Boe; = I"e; = Uf2e1 along with F_lij1e1 -
o/ 2B, %e; for j > 1 and By_j = ohi-14,,

The second term in eq.(51.19) is given by

hl hl

«w
8% -2
a3 Y e)Bj,_jeresT 'Bj_je; = ao; Y e4B;_jeresT 'B;_je = B Zp
j=1 j=2 v j=
12,003
= (h - Z)p 2 7
O-ZU

using By = I, such that e,B;,_je;e5 ' Bge; = 0.

Collecting and expanding terms yields

ﬁ(@LU—e))—(h—z) h2gt% 11 i By Z
h h) = P 2 /T Mo sniire +e€3By1— 2\/— MMt

Ph_S.B e} A ~1/2
+(h-2) f Z e y0e Op(T7172),

2ty 11 B 1T
= (h—=2)p /3— + \/— Z Ho, t+hV1t+ 2 Z M1 t4+1H1,t
T o1 t—
-1 q T—h [3 T—h
T T Hopsapin + (h—2)8 Z b1t
i =1 ~
) B Tzhy wi +0p (1). (51.20)

Applying a standard martingale central limit theorem to Eq.(51.20) yields:

VT (80 —0) 5 N (), Vi) (S1.21)

Using independence, the asymptotic bias is given by

bt = tim E [VT (6"~ 6,)] = (1 - 2)p“ﬁ”;¥f-



The asymptotic variance is given by

Vi = lim Var (ﬁ (5;1,““ - 9h>> ,

T—o00

11 T h (h 2 1 —
= Tlgrc}o Fif Y Var(popinpine) + = :7 ; ar(py,e1p1,t)

Z(hl)lTh

T a{* 7T E Var(po t41p1,t)
2(h— 3) 1 _ 2(h—2) p2 1 T—h
+(h—2p2f P — 7 Z ar(p,¢41we) +(h—2)z%f ) Var(ppiawr)
w t=1 w t=1
1 o2 = 1 Tk
e (2 E ) (2 B
: =1
2 2
+ (h—

01 _
2)2%p 2(h— 3[3 0_2 (h—2)2p2(h 2)[32_%

2
2+Ph2,3+Ph1—22 -
1 w

0'1 w
‘72

o2’

<1+hm—2g§> 222 4 (1 — 2)2p=3) g4 7]

+2(h—2)p? 222

= (14p2071) &

4

0—2

’—‘qN|NI\J

using independence and noting that \/LT Zth_lh Mo prnfii = \/LT ZtT:_hl H2,t+111 t—h+1 such that

1 T—h 1 T—h 1 T-1 T—h
\/T Z H2,t+hHt ﬁ Z o t+1Wt || = TlE Z M2 t+1H1,t—h+1 Z M2, t+1We | |,
t=1

t=h t=1
=E [VZ,t+1V1,t—h+1V2,t+1wt] P

h— h—2p42 2
=p z,BlE [V%,Hl:”%,t—hﬂ] = p" "poyoq

S1.2.4 Proof of Bias and Variance Rankings

Proof of the bias ranking. For h > 2 and «, 8,p # 0,

|“|‘72 |oc|(72

BP =0, bR = (h-1)|o/" 2Bl 02, bR = (h—2)[p|"2|B

w w

which are strictly positive; since (h — 1) > (h — 2), we obtain [byAR| > |bLv| > |bIF| = 0. If

any of &, B, p equals zero, then directly from the formulas byAR = L4 = pLF = 0.

10



Proof of the variance ranking.
Step 1: Proof that V" > VVAR,

Subtracting the closed forms yields

NN RN

VAR _ ‘722 o5\ 2(h—2) g2 2 2(h—3) 407
Vit =V +(——)p P (h = 2)7p" VB 5 >0,

op i N o,
—~— Nt ~
>0 20 >0
where ¢2 > 02 implies 1 — 02/02 > 0 and the remaining factors are nonnegative (even

powers and squares). Therefore V" > VVAR,

Step 2: Proof that V¥ > VI for (p, B) # (0,0).

o2 2 2
o
First rewrite VLP using — = P 5+ 2 5> and the geometric sum:
o7 i 1-p (1—p?)oq

N 03 ¢ 2j ) 2j
vt = (1- "% — X ——22 +p2 ) 7.
71 =0 =0

2 2
o VLU yeine B271 —
Next, rewrite V"' using f3 é = (1 - p?) — 3 and combining terms:

ZU

L)+ (=222 (1 )2 (1- ).

chNN

2
Vit = (14000) G+ 0202 (14200 - 2)
Subtracting and grouping terms,

Vil — Vi = A+ Boy,
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2.2 .
For Ay, since % € [0,1) and p% is strictly decreasing for 0 < |p| < 1, we have

o2 =2
Avp > —22< 0% — (h—2)p2<h—2>> >0 for0< o] <1,
o7 M=
while if p = 0 then A, ), = 0.
For A, , since s € (0,1 — p?] and ¢ is affine with slope (h — 1)p? — (h — 2), we may bound

¢(s) by its maximum on the closed interval [0,1 — p?]:

RO = (-0, P

el 819) = ) 22 g2 2

. gl—p?) = (h=1)p*(1—p%), p* 27—

Thus g(s) < maxc,1_,2 8(s) gives the lower bounds
2 (V2 2 2\ 2(h-3 h—2
B (L oY — (=221 = p2)p*" ), < iR
Doy 2 ;:(3), .
LA - (=2 =D =), o2 jf
j=

In the second case, (1 — p?) < 1, so
h-3 h-3
Y 07— (h=2)(h = 1) (1= p*)p* "D > Y ¥ — (h—2)p*"? >,
j=0 j=0

since p? decreases in j. In the first case, writing r = (1 — p?)/p?> >0and n = h — 2,

h=3 1 — p2n B ;
Zépi =3 _'l;)z > 1?(1—p2)p? "V = (14" =1)(1+7r) —n*? >0,
]:

which holds because by the binomial lower bound
(4" = (7)) —n?r? > nr(l ey %rz),

and the bracket is a convex quadratic with negative discriminant (hence no real roots) and
value 1 atr = 0, so it is > 0 for all » > 0. Thus A, > 0 for B # 0.

Combining, A1) > 0 (strict if p # 0) and A, > 0 (strict if B # 0) give VhLP — VhLu > 0 for
h > 2, with the equality only if p = = 0. O
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Supplement 2 Additional Simulation Results

$2.1 Simulation Results for Local Misspecification with Data-Driven Lag

Selection

This section reports the simulation results that correspond to 4.1.2 of the main paper. We
evaluate estimator performance under local misspecification with data-driven lag selection.
We present results for T = 250, two levels of persistence (p = 0.6 and p = 0.9), and three
lag selection rules: AIC, the rule-of-thumb p = |T'/4| = 4, and a larger fixed lag length
p = 8. Each figure shows \/T-scaled bias and standard deviation for all estimators, as
well as heatmaps of weighted RMSE minima across horizons & = 1,...,20 for a range of

bias-variance weights A € [0, 1].

AIC Lag Selection

Figure 52.1: Bias and Standard Deviation—Local Misspecification with AIC Lag Selection

(a) v/T-scaled sampling bias (b) V/T-scaled sampling standard deviation

—— VAR —— LPOLS —— LP GLS-Lu (p=0.6)
—e— VAR —e— LPOLS —e— LP GLS-Lu (p=0.9)

Notes: Displayed are the \/T-scaled bias and standard deviation of the VAR, LP OLS, and LP GLS-Lu IRs
estimators under the DGP in eq.(15), based on 10,000 Monte Carlo replications. The simulation uses parameter
values B = 0? = 02 =1, p € {0.6,0.9}, « = 0.5, and sample size T = 250. The VAR lag length is selected using
the AIC and applied uniformly to the three estimators. The horizontal axis indicates the projection horizon
h=1,...,20.
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Figure 52.2: Estimator Dominance by Weighted RMSE — Local Misspecification with AIC
Lag Selection

1

T —
LPCLS . R LPGLS
08l sl o |
= =
2067 2067
@ ]
= LPOLS g Sorolnroinoioinoioioioiioioiioi|Mrpors
o =}
0.4 ¢ 041
(- o
E =
02r VAR 0.2¢ VAR
0 0

2 4 6 8 10 12 14 16 18 20

(@ p=0.6 (b) p =109
Notes: The heatmaps visualize estimator dominance across forecast horizons (h = 1,...,20), plotted on
the x-axis, and squared-bias weights (A € [0,1]), plotted on the y-axis. Each cell color corresponds to the
estimator—VAR IR, LP OLS, or LP GLS-Lu—minimizing the weighted RMSE defined in eq.(14), based on
10,000 Monte Carlo replications from the DGP in eq.(15) with f = (712 = 022 =1,p € {0609}, « = 0.5,
and sample size T = 250. The VAR lag length is selected using the AIC and applied uniformly to the three
estimators. Color intensity reflects the RMSE reduction relative to the second-best estimator: darker shades

indicate stronger dominance. Black dots highlight regions where LP GLS-Lu ranks second-best. For visual
clarity, they are shown only every third weight step.

Lag Length Set to 4

Figure S2.3: Bias and Standard Deviation — Local Misspecification with Lag Length Set to
4

2 4 6 8§ 10 12 14 16 18 20 2 4 6 8§ 10 12 14 16 18 20
(a) V/T-scaled sampling bias (b) VT-scaled sampling standard deviation
—— VAR —— LPOLS —— LP GLS-Lu (p=0.6)

—e— VAR —e— LPOLS —e— LP GLS-Lu (p=0.9)

Notes: See Figure S52.1, except that the lag length is fixed at p = 4 instead of being determined by the AIC.
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Figure 52.4: Estimator Dominance by Weighted RMSE — Local Misspecification with Lag
Length Set to 4

]
LP GLS-Lu LP GLS-Lu

0.8
= =
206] 2061 B ;oo
m CQ ................
o LP OLS o B W p ot
=] Q | . . . . . . . ..
5041 5041 © o2 R
o 2045 - EEEEEEEEE
= = R oo

0.2 VAR 0.2¢ - R Wik

o N S S S N

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
(@ p=06 (b) p =09

Notes: See Figure 52.2, except that the lag length is now fixed at p = 4 rather than determined by the AIC.

Lag Length Set to 8

Figure 52.5: Bias and Standard Deviation — Local Misspecification with Lag Length Set to
8

2 4 6 8§ 10 12 14 16 18 20 2 4 6 8§ 10 12 14 16 18 20

(a) v/T-scaled sampling bias (b) V/T-scaled sampling standard deviation

—— VAR — LPOLS — LP GLS-Lu (p=0.6)
—e— VAR —e— LPOLS —e— LP GLS-Lu (p=0.9)

Notes: See Figure 52.1, except that the lag length is fixed at p = 4 instead of being determined by the AIC.
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Figure 52.6: Estimator Dominance by Weighted RMSE — Local Misspecification with Lag
Length Set to 8

| 1
LP GLS-Lu LP GLS-Lu

0.8 081
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z 204 R
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oL—0v vy Ty 0“"7'7'7'7'7'7'7

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
(@ p=0.6 (b) p =109

Notes: See Figure 52.2, except that the lag length is now fixed at p = 8 rather than determined by the AIC.
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S§2.2 Additional Simulations Based on Stock and Watson (2016) Dynamic
Factor Model

This subsection complements Section 4.3 of the main text by reporting simulation results
for the case where the VAR lag length is selected by AIC rather than fixed at four. Fig-
ure 52.7 displays the median scaled bias and scaled standard deviation across DGPs, while

Figure S2.8 summarizes estimator dominance by weighted RMSE.

Figure S2.7: Scaled Bias and Standard Deviation — Stock-Watson DFM (AIC Lag Selection)

sl | 1.4
1.2
0.6 - i 1
p 0.8
0.4 8 0.6
0.4
0.2 - <
0.2
0*" - 0

| | | | | | | | | | | | | | | | | |
0 2 4 6 § 10 12 14 16 18 20 0 2 4 6 § 10 12 14 16 18 20
(a) Scaled sampling bias (b) Scaled sampling standard deviation
—— VAR —— LP OLS —— LP GLS-Lu (model in differences)

—— VAR —e— LP OLS —e— LP GLS-Lu (model in levels)
Notes: Displayed are the medians (across 6,000 DGPs) of the absolute bias [IE(f),) — 6| and the standard

deviation of  for the different estimation procedures, scaled by 1/ Z%O:() 62, i.e. the root mean squared

value of the true impulse responses {6 }%O:O. For each DGP, bias and standard deviation are computed
from 5,000 Monte Carlo replications based on data simulated from the Stock and Watson (2016) DFM, as
implemented in Li et al. (2024), with T = 200. The VAR lag length is selected by AIC and applied uniformly
across the VAR, LP OLS, and LP GLS-Lu estimators. The horizontal axis indicates the projection horizon
h=0,...,20.
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Figure 52.8: Estimator Dominance by Weighted RMSE — Stock-Watson DFM (AIC Lag
Selection)

1

1
LP GLS-Lu LP GLS-Lu

0.8 I 0‘8 F
= =
2067 5067
/M aa)
= LP OLS = LP OLS
=} =}
504 f 504¢
= =

0.2 VAR 0.2y VAR

0 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
(a) Model in differences (b) Model in levels

Notes: Displayed are heatmaps of the estimator that attains the lowest weighted RMSE defined in eq.(14).
For each (h,A) combination, the “winner” is the estimator that most frequently minimizes the loss across
the 6,000 DGPs simulated from the Stock and Watson (2016) DEM, following the design of Li et al. (2024).
Color shading indicates the strength of dominance, with darker colors corresponding to higher frequencies
and the darkest shade indicating that the estimator always wins. Dots mark cases where the LP GLS-Lu
estimator is the second-best procedure. Results are based on 5,000 Monte Carlo replications per DGP with
T = 200. The VAR lag length is selected by AIC and applied uniformly across the VAR, LP OLS, and LP

GLS-Lu estimators. The horizontal axis indicates the projection horizon h = 0, ..., 20; the vertical axis varies
the squared-bias weight A € [0, 1].
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