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Abstract

Local projections (LPs) are widely used for estimating impulse responses and are often
considered more robust to model misspecification than forward-iterated IRs from dynamic
models such as VARs. However, this robustness comes at the cost of higher variance, par-
ticularly at longer horizons. To mitigate this trade-off, several GLS transformations of LPs
have been proposed. This paper analyzes two broad strands of such GLS-type LP estima-
tors: those that condition on residuals from an auxiliary VAR, and those that condition on
residuals from previous-horizon LPs. We show that the former impose a VAR structure and
reproduce VAR impulse responses, while the latter preserve the unrestricted nature of LPs
and return the original LP OLS estimates. Consequently, the intended efficiency gains are
either not achieved or come at the expense of the robustness that motivates the use of LPs in
the first place, leaving the bias—variance trade-off unresolved.

JEL-codes: C22, C13, C53
Keywords: Impulse response functions, local projections, dynamic models, generalized least
squares, efficiency, robustness

1 Introduction

Since the seminal work of Jorda (2005), local projections (LPs) have become a widely adopted

method for estimating impulse responses (IRs). Unlike traditional VAR-based approaches that
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extrapolate IRs from a limited number of sample autocovariances, LPs estimate them directly at
each forecast horizon. This provides greater flexibility, as fewer restrictions are imposed on the
data’s dynamic structure. Jorda (2005) argues that this flexibility enhances the robustness of LPs
to misspecification of the underlying data-generating process (DGP) compared to VAR-based
methods. However, the extent of this robustness has been the subject of continued investigation

in the literature.

Olea et al. (2024) offer a theoretical justification for Jorda’s claim by showing that, within a gen-
eral framework consistent with most linearized structural macroeconomic models, conventional
LP confidence intervals retain correct asymptotic coverage even in the presence of substantial
misspecification. In contrast, even minor deviations from the true DGP can lead to significant un-
dercoverage in finite-order VAR-based confidence intervals. Kolesdr and Plagborg-Meller (2024)
further demonstrate that linear LPs retain a degree of robustness even when the true underlying

model is nonlinear.

Nevertheless, LP estimates exhibit greater variability than VAR IRs and can sometimes appear
erratic (Ramey, 2016). This variability arises because the LP method estimates each IR coefficient
separately using ordinary least squares (OLS), thereby imposing fewer restrictions than the VAR-
based approach, which extrapolates short-run dynamics across the entire IR horizon. Moreover,
as the projection horizon increases, forecast errors accumulate, resulting in a moving average
(MA) autocorrelation structure in the LP errors and thereby inflating their variance. This, in turn,
amplifies uncertainty. Consequently, while LPs are often more robust to model misspecification,

this robustness typically comes at the cost of reduced precision.

The trade-off between robustness and variability reflects a broader bias-variance spectrum in
IR estimation. Plagborg-Moller and Wolf (2021) show that in population, LPs and VARs yield
identical IRs when the VAR includes a sufficiently long lag length, implying equal robustness to
misspecification in theory. In finite samples, however, lag selection reintroduces a trade-off: low-
order VARs tend to have lower variance but can suffer from substantial bias if the lag length is
insufficient, while LPs are more robust to misspecification but typically exhibit higher variance.
Olea et al. (2024) similarly emphasize that robustness in VAR-based inference requires including
enough lags to approximate LP behavior; reducing lag length may yield tighter confidence in-
tervals, but at the expense of robustness. More broadly, LPs and VARs—along with regularized
variants such as shrinkage estimators—can be viewed as points along a spectrum of methods

that estimate the same IRs but differ in how they trade off bias and variance in finite samples.

Simulation studies offer practical insight into these theoretical trade-offs. Kilian and Kim (2011)
show that when the data follow a finite-order VAR process, LP confidence intervals tend to be
excessively wide, while bias-adjusted VAR bootstrap intervals are considerably narrower, making
VAR-based methods preferable in such settings. Li et al. (2024) extend this analysis through large-
scale simulations across thousands of DGPs and identification schemes. Their results confirm that

LPs generally exhibit lower bias but higher variance than VAR-based estimators—particularly at



longer horizons—implying that LPs are preferable when minimizing bias is the primary concern,

whereas VARs are more attractive when estimation precision is a priority.

Concerns over the finite-sample variability of LPs have motivated refinements aimed at improv-
ing their efficiency. In his seminal 2005 paper, Jorda already suggested that accuracy could
potentially be enhanced by recursively incorporating previous-horizon projection errors as re-
gressors in the current horizon projection. While the specifics were left for future work, this
idea later inspired the development of Generalized Least Squares (GLS) transformations for LPs.
Conditional on the Wold representation of the data being invertible into a VAR process, Lusompa
(2023) shows that the autocorrelation pattern of LP errors can be traced to the dynamic structure
of the VAR, motivating the use of GLS transformations to improve efficiency. Building on a gen-
eral time series framework, Perron and Gonzéalez-Coya (2024) and Baillie et al. (2024) propose
related approaches that, when applied to LPs, can be viewed as approximations of the method
introduced by Lusompa (2023). Similarly, Breitung and Briiggemann (2023) propose a distinct
GLS-style transformation that, while differing in implementation from Lusompa (2023), likewise

seeks to improve the efficiency of the conventional LP OLS estimator.

However, since the GLS transformations proposed by Lusompa (2023) and Breitung and Briigge-
mann (2023) rely on a correctly specified auxiliary VAR—in the sense that the VAR projection
errors are serially uncorrelated—the practical value of LP GLS remains uncertain. In an ideal
scenario with no misspecification, it would be optimal to compute IR estimates directly from the
correctly specified VAR model or to use a GLS estimator specifically designed to replicate those
IRs. In that sense, Breitung and Briiggemann (2023) argue that one of their proposed GLS-type LP
estimators is asymptotically equivalent to the iterative VAR approach. Despite this, Lusompa’s
method has already found application in the recent work of Clark et al. (2024). Yet, in empirical
contexts where misspecification is likely, the trade-off between lower variance and potential loss

of robustness due to conditioning on a misspecified auxiliary VAR remains not fully understood.

This paper addresses this gap by evaluating how different versions of LP GLS perform relative
to benchmark LPs and VAR-based IRs. To ensure that our results remain relevant across a wide
range of empirical settings, we impose only weak regularity conditions, which allow for both
local and global forms of misspecification. Accounting for such misspecification is essential to
assess the practical value of GLS-based LP estimators. While earlier work has examined the
absolute robustness of LPs under specific forms of misspecification, our focus is on the relative
performance of LP GLS estimators, providing new insights into their effectiveness in managing

the bias—variance trade-off.

We analyze two distinct strands of LP GLS estimators, each derived under a different assump-
tion about whether the auxiliary VAR correctly represents the underlying DGP. The first strand
exploits the fact that, under correct specification, LP errors follow a Vector Moving Average
(VMA) process in terms of VAR residuals and impulse responses (see Lusompa, 2023). This

motivates GLS transformations that use residuals from an auxiliary VAR to improve efficiency.



When fully implemented—meaning they condition on all available VAR residuals—these esti-
mators reproduce forward-iterated VAR impulse responses, regardless of whether the VAR is
correctly specified. This occurs because conditioning on all available VAR residuals effectively
imposes the VAR’s full dynamic structure on the impulse response estimates. Accordingly, such
GLS estimators should not be viewed as enhancing LP efficiency while preserving robustness,

but rather as rebranded implementations of the VAR model.

The second strand is derived for settings where the auxiliary VAR is misspecified. In such cases,
we show that LP errors follow a VMA process involving iteratively re-centered VAR projection
errors and pseudo-true impulse responses. This motivates an alternative class of GLS estima-
tors that instead condition on LP residuals from previous horizons, as originally suggested by
Jorda. However, we show that these estimators coincide with LP OLS, either in large samples or
numerically, and therefore do not deliver efficiency gains. Thus, these GLS estimators retain LP

flexibility but fail to reduce estimation variance.

Importantly, these equivalence results hold under general nonparametric conditions and do not
rely on a correct specification of the VAR. The limiting behavior of LP GLS estimators is driven
by the structure of the residuals used in the GLS transformation. Conditioning on VAR residuals
mechanically aligns the LP GLS estimator with VAR IRs, improving precision but sacrificing
robustness—even when the VAR is misspecified. Conditioning on LP residuals, by contrast,
leads to convergence to LP OLS, preserving robustness but forgoing efficiency gains. In this
sense, LP GLS estimators replicate the performance of the benchmark estimator whose residuals
they rely on, and therefore cannot outperform it in terms of both bias and variance. Accordingly,

LP GLS fails to resolve the bias—variance trade-off.

The estimators proposed by Lusompa (2023) and Breitung and Briiggemann (2023) both rely on
VAR residuals but differ in their implementation by excluding a specific residual from the full
GLS transformation discussed above. Nevertheless, the estimator of Breitung and Briiggemann
(2023) remains equivalent to the VAR IRs, as the excluded horizon-1 residual is orthogonal to the
LP regressors. By contrast, the estimator of Lusompa (2023) excludes the current-horizon resid-
ual, which is not orthogonal to the regressors. This makes the estimator generally asymptotically
distinct from both VAR and LP OLS, with its own asymptotic bias and variance. More broadly,
the extent and nature of conditioning on VAR residuals determine where an estimator lies along
the bias—variance spectrum: omitting all residuals recovers LP OLS; including all yields the VAR;
and partial conditioning produces intermediate estimators, whose properties depend on which

residuals are included, the DGP, and the forecast horizon.

While our general nonparametric framework ensures broad applicability, it leaves the projec-
tion error covariances unrestricted, rendering closed-form asymptotic distributions analytically
intractable and of limited practical insight. For this reason, we complement the general results
with structured DGPs that allow for sharper analytical and simulation-based comparisons. First,

we analyze a stylized example with shrinking local misspecification—that is, a model where the



deviation from correct specification vanishes at rate T~!/2>—which allows us to derive explicit
expressions for asymptotic bias and variance. Second, we simulate data from the empirically
calibrated DSGE model of Smets and Wouters (2005). Across these settings, the GLS estimator
of Lusompa (2023) typically lies between LP OLS and VAR IRs along the bias—variance frontier,
though it often tends to align more closely with the latter. However, it rarely dominates either
benchmark in terms of weighted root mean squared error, suggesting limited benefits in applica-
tions. To illustrate how these insights translate to applied work, we conclude with an empirical
application on the transmission of U.S. monetary policy shocks, using the external instrument

and macroeconomic specification of Gertler and Karadi (2015).

The remainder of the paper is structured as follows. Section 2 introduces the general framework,
defines benchmark VAR and LP estimators, and derives the autocorrelation structure of LP er-
rors that underpins the construction of the various GLS transformations. Section 3 analyzes the
bias-variance trade-off, showing how LP GLS estimators align with or deviate from the bench-
mark methods. Section 4 provides illustrative evidence from a stylized example, a DSGE-based
simulation, and an empirical application to U.S. monetary policy shocks. Section 5 concludes.

Proofs not included in the main text are provided in Appendix A and Appendix B.

2 Assumptions, Autocorrelation Processes, and Estimator Construc-

tion

This section establishes the framework for evaluating LP and VAR impulse response estimators.
We begin by introducing the assumptions and the Wold representation of the data. We then
define the benchmark VAR and LP estimators and analyze the autocorrelation structure of LP
errors, building on the results of Lusompa (2023) for correctly specified VARs. These results
motivate the first strand of LP GLS estimators, which condition on VAR residuals to mitigate
the accumulation of projection errors. Finally, we extend the analysis to misspecified VARs
and introduce a new theorem that justifies a second strand of LP GLS estimators based on LP

residuals from previous horizons.

2.1 Assumptions and Wold Representation

Let y; denote a (k x 1) observed data vector. As in Plagborg-Meller and Wolf (2021), we impose

the following nonparametric regularity condition:

Assumption 1. The data {y;} are covariance stationary and purely non-deterministic, with an
everywhere nonsingular spectral density matrix, absolutely summable Wold representation co-
efficients, and finite fourth moments. For notational convenience, we proceed as if {y;} were a

(strictly stationary) jointly Gaussian vector time series.



Note that the Gaussianity assumption is made without loss of generality. It allows us to replace
linear projection operators with conditional expectations, but all results remain valid under As-

sumption 1 even in the absence of Gaussianity.

Under Assumption 1, y; has a Wold representation:

(o]
yi=€+)_ 0Ojej, (1)
j=1
where €; is a (k x 1) vector white noise process with E(g;) = 01 and a positive definite covari-

ance matrix X..

The goal is to estimate IRs, which quantify the dynamic effects of each shock in €; on y;.y,
over the horizons h = 1,...,H, where H is fixed, finite, and satisfies H < T. Based on the
Wold representation in eq.(1), the true IRs at these horizons are given by the sequence of (k x k)

matrices {©) }/1 .

Remark 1. Assumption 1 imposes only mild regularity conditions and does not constrain the un-
derlying causal structure of the data. Consequently, the IRs @), derived from the Wold represen-
tation in eq.(1) capture the effects of reduced-form shocks and, in general, do not correspond to
responses to structural shocks. As noted by Plagborg-Moller and Wolf (2021), structural identifi-
cation is inherently a population concept and is logically distinct from the choice of finite-sample
estimation techniques. Therefore, our analysis mainly focuses on the relative performance of
estimators for the reduced-form IRs. When structural IRs are of interest, they can often be ob-
tained by post-multiplying the reduced-form IRs @), by an appropriate identification matrix B~1,
such that the structural IRs are given by ©,B ~1. The choice of B depends on the identification
strategy employed. Specific identification strategies are discussed in Plagborg-Meller and Wolf

(2021), some of which are implemented in the empirical illustrations in Section 4.

2.2 Benchmark estimators: VAR and LP OLS

VAR. Consider the VAR model:
Vit1 = Ayt + €141, for t=1,...,T—1, (2)

where A is a (k x k) parameter matrix, and &1 = yi+1 — E [yi11|ye] is a (k x 1) vector of

projection errors.

The OLS estimator for A in eq.(2), based on a sample of T — a observations, is defined as:

t=1 t=1

-1
T—a T—a
Ay = ( ytHy;) <Z yty§> , for 1<a<T-1, (3)

such that the corresponding VAR IR estimator for @}, is given by ﬁ}(l,u). Note that, to align with
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some of the LP estimators introduced below, we allow for estimation over a reduced sample
by excluding the last a observations. When using the maximum available sample (@ = 1), we
simplify the notation to ?1(,1) = A.

Remark 2. The use of a VAR(1) model is purely for notational simplicity and does not restrict
the lag length, as any finite-order VAR(p) can be expressed in its companion form as a VAR(1)
with appropriately defined state variables. For this reason, we can generally refer to eq.(2) as a
VAR model rather than specifically a VAR(1).

LP OLS. Local projections estimate the IRs @, directly at each horizon through separate regres-

sions:
Yi+h = Byt + einn, for h=1,...,H, 4)

where Bj, represents the coefficients of the best linear projection of y;,j, onto y;, and e;,;,; =

Virn — E [yiin|yt] = Vien — Buy: denotes the h-step-ahead projection error.
The OLS estimator for By, in eq.(4), based on a sample of T — a observations, is given by:

T—a T—a

-1
B (o = (tzl yt+hy£> (; yfy£> ,  for h<a<T-1. (5)
In similar fashion to the VAR estimator above, we accommodate a flexible use of the sample
and indicate it by the a subscript. Setting a = h employs the maximum available sample at
each horizon, in which case we simplify the notation to Eh,(_h) — Bj,. Alternatively, setting
a = H uses the same dataset for the explanatory variable y; (i.e., y1, ..., yr—H) across all horizons
h =1,...,H. This approach is often used in practice as it ensures a uniform sample size and

composition, reducing variability that may arise from differing sample periods at each horizon.

2.3 Autocorrelation Structures of LP Errors

The accumulation of projection errors in e, ), leads to serial correlation and causes the variance
of the LP OLS estimator to increase with the horizon h. This phenomenon is reflected in the
limiting distribution of the LP OLS estimator, as derived in Bhansali (1997) and Lusompa (2023),
which shows that the variance grows with h. As such, understanding the autocorrelation struc-
ture of LP errors is crucial for analyzing the properties of LP estimators and developing GLS

transformations aimed at avoiding the error accumulation process.

To that end, note that forward iteration of the VAR model in eq.(2) yields:

h .
yern =AMy + Y AV e (6)
=1



With eq.(6) we can analyze how the VMA structure in the term 2?21 Al &;+j shapes the autocor-
relation structure of the LP errors. We consider two scenarios: when the VAR model is correctly

specified and when it is misspecified.

2.3.1 Correctly Specified VAR

To formalize the conditions for correct specification of the VAR model in eq.(2), we introduce the

following assumption:

Assumption 2. The Wold representation in eq.(1) is invertible.

This assumption ensures that the process y; admits a VAR representation, which forms the basis
for defining correct specification in the VAR-based framework. Specifically, a correctly specified
VAR model requires that the true DGP either follows a finite-order VAR or is well approximated
by a truncated version of the infinite-order VAR obtained by inverting the Wold representation
in eq.(1). When this condition holds, the VAR projection errors &; coincide with the Wold inno-

vations €;.

Under Assumptions 1 and 2, the LP error e;,j , can be expressed as a VMA process of VAR pro-
jection errors g, and IRs, where the VAR projection errors coincide with the Wold innovations
€. This representation, originally established in Theorem 1 of Lusompa (2023), takes the form:

e n = On_1841 + Op_2e 0+ + Orer 1 + & )
Here, the superscript ‘inv’ indicates that this representation relies on the invertibility assumption

(Assumption 2). This result provides the theoretical foundation for the GLS transformations of

LPs based on VAR residuals, as presented in Subsection 2.4.1.

2.3.2 Misspecified VAR

A VAR is misspecified when it fails to fully capture the Wold representation of the underlying

DGP. Two main types of misspecification can be distinguished: local and global.

Local misspecification arises when the VAR lag length is insufficient to approximate the true,
possibly infinite-order VAR implied by an invertible Wold representation. As the sample size
increases and the lag length grows accordingly, the approximation improves and the misspec-
ification vanishes asymptotically. This type of misspecification is common when the DGP is
approximated by a finite-order VAR due to degrees-of-freedom constraints or when the true
process is MA-type and approximated by a VAR (see, e.g., Braun and Mittnik, 1993). Another
example is measurement error: when the true series follows a finite-order VAR, classical i.i.d.
measurement error induces an MA component in the observed data, leading to local misspecifi-

cation that diminishes with longer lags (see, e.g., Stock and Watson, 2018).
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Global misspecification, on the other hand, arises when the dynamics of the system cannot be
recovered from the available data, even asymptotically. This typically occurs when the system is
not invertible or when the number of structural shocks exceeds the number of observable vari-
ables. In such cases, no VAR based on observables, regardless of lag length, can recover the true
structural dynamics. A prominent example involves anticipated shocks or ‘news shocks’, where
agents respond to future policy before it materializes, leading to non-invertible MA structures,
which prevent recovery of the structural shocks using only observable data (see, e.g., Sims, 2012;
Leeper et al., 2013; Forni et al., 2019). Similarly, in DSGE models like Smets and Wouters (2005),
omitting variables or shocks that drive the system can induce global misspecification because the

remaining observables do not capture the full structure of the DGP.

In both cases, the VAR residuals &; exhibit serial correlation and differ from the Wold errors
€;. Misspecification further implies that the LP parameters Bj, generally do not coincide with
the true IRs @, (i.e., By, # ©y). However, following Galvao and Kato (2014), Bj, can still be
interpreted as a pseudo-true IR, defined as the best linear projection of y;,; onto y;. In this sense,
By, provides the optimal linear approximation to the true h-period-ahead response ©j, even if
the underlying model is misspecified. Nonetheless, it is important to recognize that By, is not
necessarily closer to @, than ;lh, as discussed in Kilian and Kim (2011). The relative accuracy of
these estimators depends on the degree and nature of misspecification, meaning that LPs do not

universally dominate VAR-based estimators in terms of bias.

The following lemma provides an explicit expression for the pseudo-true IRs By,:

Lemma 1. Under Assumption 1, pseudo-true IRs By, are given by:

h .
B,=A"+)" A",
j=1
where Cj = gb]-l"*l, ¢; =E [eryjy;] and T = E [y:yj].
Proof. See Appendix A.

Lemma 1 shows that the LP coefficients Bj, deviate from the VAR IRs A" whenever C; #0
for some j < h. This occurs under VAR misspecification, where future VAR errors gyj are
correlated with current regressors y;. These forward dependence terms ¢; = Ele;,jy;| give
rise to misspecification terms C; = ¢ ]-l"_l, which accumulate over j < h and generate a wedge
between the LP-based pseudo-true IRs and the VAR-implied IRs. Intuitively, the deviation arises
because LPs impose orthogonality at each horizon, whereas VARs impose it only through their

finite lag structure.

An implication of Lemma 1 is that the LP errors e, ;, cannot be written purely as a VMA process
of Wold innovations and IRs but instead follow a more complex autocorrelation structure. The

following theorem formalizes this structure under misspecified VARs.

Theorem 1. Under Assumption 1, the horizon-h LP errors e, follow a VMA process of order (h — 1),

9



expressed as:

erinh = Bp1Vit11 + Br oV + .o+ BV 11+ Vignn 8)

where the recursively defined re-centered VAR projection errors v ; are given by:

-1
vsj =& — Cjysj— ; Ci Vs jru0- )
-1

Proof. We begin with substituting the expression for Bj, from Lemma 1 into the definition of the

LP errors. This gives

e = Yirnh — Byt = Yepn — (Ah + Z Alic; > yi = Z A (e — Ciyy), (10)
j=1

where the final equality makes use of eq.(6) to substitute y;,;. Using Lemma 1, A"/ can be

expressed dynamically as

h
A =B, ;- Y Afc.;. (11)
(=j+1

Accordingly, setting j = 1 in eq.(11) allows substitution of A"~ into eq.(10) to obtain

erinh = Bp-1vir11 + ZA (e11j — Ciyt — Cj_avit11),
j=2

where v;, 11 = €41 — C1y:. In similar fashion, substituting A2 using eq.(11) and continuing

recursively in this way yields

erinh = Bp1Vit11 + Br oV + ..+ BV 1+ Vignn

where each v, is recursively defined as:
j—1
Viyjj = €j— Cjyi — Z CitVeroe-

O

Theorem 1 provides the basis for an alternative class of GLS estimators that condition on LP
residuals from previous horizons, as originally suggested by Jorda (2005) and presented in Sec-
tion 2.4.2.
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2.4 LP GLS Estimators

In this section, we present the various GLS transformations of LPs. Since these estimators share
the same structure and differ only in whether they condition on VAR or recursive LP residuals,

they are nested in the following general expression:

t=1

~GLS T=a !
By Coy= | X (yran — ¥en) Z yiy: | , for h<a<T-1, (12)

initialized with IAi’lc,(LEg) = IABL(,Q) and maintaining the convention IAS’OG,(LEH) = I). The specification
of the transformation term ¥, is what distinguishes the various GLS estimators, and we will
consider several alternatives for it below. As before, the subscript (—a) indicates that estimation
is performed over a reduced sample of T — a observations, and we again simplify notation to

ﬁ?{s = EE;LS when the maximum available sample is used at each horizon (such that a = h).

2.4.1 LP GLS Estimators Based on VAR Residuals

When the VAR is correctly specified, the VMA expression in eq.(7) allows the LP in eq.(4) to be
written as:
h
Yﬂvh Byy: + et+h n = Bny: + Z O i€+,
j=1

~

with @9 = I;. Estimates of &.; are given by & ;) = yi+j — A(_4)Yt+j-1 and are readily
available from the VAR in eq.(2), while the IRs (®;,_1,...,01) can be substituted with previ-
ous horizon LP estimates. This makes GLS transformations based on eq.(7) feasible. Multiple

implementations are possible, each using a different conditioning set.

Lusompa (2023) proposes conditioning on the VAR projection errors (&t1,...,&.+4-1) at hori-
zon h, while excluding &;,;. The corresponding feasible GLS estimator, IAS'E,L(I,H), is constructed

iteratively by setting ¥, = Zh 'B B i(—a)Et4j(—a) 0 €q.(12).

Breitung and Briiggemann (2023) alternatively propose conditioning on (&1, ..., &), thereby
. . . . ~BB . . .
excluding &;41. The corresponding feasible GLS estimator, B), (_,), is constructed iteratively by

~BB
setting ¥, = 2] 2B )stﬂ-,(,a).l
Since there is no compelling reason to exclude either &1 or &) from the conditioning set at
horizon h, we also consider an extended LP GLS estimator that conditions on the full set of

VAR residuals (&t41,...,&+p). The corresponding feasible GLS estimator, IABZ,(_Q), is constructed

IBreitung and Briiggemann (2023) propose transforming eq.(4) by moving & to the left-hand side and including
(8142, ...,€,_1) as additional regressors. However, re-estimating the coefficients on these projection errors is unnec-
essary since they have already been estimated in previous LP horizons. To maintain alignment with the structure of
the other LP GLS estimators, we implement their estimator by moving these residuals to the left-hand side without
re-estimation.

11



iteratively by setting ¥, = Z;’:l EZ,]-,(, )€t (~a)-

Remark 3. Although designed for a more general time series framework, the estimators pro-
posed by Perron and Gonzélez-Coya (2024) and Baillie et al. (2024)—when applied to an LD, one
of their key examples—can be viewed as approximations to the approach in Lusompa (2023).
While the latter directly implements a feasible GLS transformation based on the MA structure of
the LP errors, Perron and Gonzélez-Coya (2024) and Baillie et al. (2024) approximate the same
transformation using an AR(o) representation of the MA error process. This approximation
is made feasible by truncating the AR expansion, resulting in estimators that are only approxi-
mately correct rather than an exact solution. Consequently, we do not explicitly consider these

estimators.

2.4.2 LP GLS Based on LP Residuals

When the VAR is misspecified, the VMA expression in eq.(7) is no longer valid and must be re-
placed by the extended VMA expression provided in Theorem 1. Using this extended expression,
the LP in eq.(4) can be written as:

h—1

Ye+n = Byt + Z By_jVitjj+ Vesnp-

j=1
By replacing the population coefficients B;_; and errors vy, for j = 1,...,h — 1 with estimates
from the previous horizons, a feasible GLS estimator, EZ,(_Q), can naturally be constructed itera-

. . —1 BV ~
tively by setting ¥, ), = 2;7:11 By i (—a)Vitj)(—a)

3 GLS Estimation of LPs: Efficiency-Robustness Trade-Off

This section analyzes the trade-off between efficiency and robustness that underlies the LP GLS
estimators introduced in Subsection 2.4, by examining whether they align with the efficient VAR
estimator or retain the robustness of LP OLS. All results are derived under model misspecifi-
cation (Assumption 1), but continue to hold under correct specification as a special case. We
distinguish two strands of LP GLS estimators—those based on VAR residuals and those based

on LP residuals—reflecting fundamentally different properties.

3.1 LP GLS Based on VAR Residuals

GLS estimation of LPs using VAR residuals achieves efficiency gains by incorporating aspects of
the VAR dynamics into the LP framework. Notably, the LP GLS estimator EZ, which fully utilizes
the VAR residuals, even numerically replicates the VAR IRs A". This result is formalized in the

following proposition.

12



Proposition 1. Under Assumption 1, the LP GLS estimator IASZ, which fully incorporates VAR residuals
in the GLS transformation, is numerically identical to the VAR IR estimator A B, = A" forall h =
1,...,H.

Proof. Consider that the estimated h-step-ahead forward iterated VAR is given by

(13)

=
_|_
1=
o)
T
o
Ny

~h
Yien = A

Substituting this VAR expansion into the implemented GLS transformation yi_ , =y, — ¥y of
eq.(12), with ¥, ), = 2}1:1 E;_ ]-’s\tﬂ-, gives in turn:

h .
~h ~h— =& ~
Vi =Ayi+ ) (A" =B ). (14)
=1

We can then proceed by mathematical induction to show that IASZ = ;lh forallh =1,..., H.
Note that from the initialization in eq.(12), it follows directly for & = 1 that B =B; = 4, and
eq.(14) implies that further equivalence at any & follows directly from that obtained at previous
horizons. That is, assume as the (strong) inductive hypothesis for & — 1 that B,_ i = A" for all
j=1,...,hand any h > 2, and note that in this case the summation term in eq.(14) cancels,
leaving y; , = ﬁhyf. Accordingly, substituting this into the expression for the LP GLS estimator
in eq.(12) gives as the result for h:

. [Tk T—h ot T—h L
! ! ! !
By=| Y viovi| | Lyyi] =YX Ay | Lwyi| =A4.
=1 t=1

t=1 =1

We can therefore conclude that EZ = ﬁh forallh =1,...,H. O

Intuitively, the forward-iterated estimated VAR in eq.(13) demonstrates that by conditioning on
€441, .-, €1y, the LP GLS transformation, y; ), — Z?:l B, j€t+j, eliminates any error term on the
right-hand side of the LP equation, which iteratively ensures that B, = A" by construction. This
numerical equivalence holds regardless of the sample size or whether the VAR model is correctly
specified. As a result, implementing the LP GLS estimator IABZ offers no additional value, as it
merely replicates the VAR IRs A",

The LP GLS estimator E’ku proposed by Lusompa (2023)—hereafter LP GLS-Lu—is a variant
of the B), estimator that conditions on all available VAR residuals except the current-horizon

residual &, The following corollary outlines its properties relative to the LP OLS estimator, By,
and the VAR IR estimator, z?lh.

Corollary 1. Under Assumption 1, as T — oo, the LP GLS estimator Eku of Lusompa (2023) deviates

13



) - ~h
from the LP OLS and VAR IR estimators B, and A" as follows for h = 2,..., H:

~L -~
B, =B, +y5+ O,(T71?), (15)
B' = A"+ g+ 0,(T717?), (16)

where P8 = — 2;7;11 (Bh_j + ngij) Cjand P =Cp,— 2;7;11 tphAijj, with ¢¥ = ¢ = 0, and Cjas
defined in Lemma 1.
Proof. See Appendix A.

Corollary 1 shows that when the VAR is misspecified—reflected in nonzero misspecification
terms C; for some j < h—the LP GLS-Lu estimator IASIPZU asymptotically deviates from both the LP
OLS estimator By, and the VAR estimator A". These deviations are captured by the terms ¢? and
;), respectively. In contrast, under correct specification—when the VAR includes a sufficient
number of lags such that the forward dependence terms ¢; = E[e; jy;] vanish for all j > 1—the

misspecification terms C; are zero, and all three estimators consistently estimate the true IRs.

The deviation from LP OLS arises because E’ku conditions on the intermediate-horizon VAR pro-
jection errors (&41,...,&4y—1) in its GLS transformation, thereby partially imposing the VAR'’s
dynamic structure. If these projection errors are correlated with the regressors y;, this induces a
deviation P from the LP OLS estimator. The deviation from the VAR estimator arises because
B’,&u does not condition on &;,,, which prevents it from fully replicating the VAR dynamics. If

&1 is correlated with y;, this omission results in a nonzero deviation 2.

Corollary 1 establishes limit expressions of the LP GLS-Lu estimator relative to the LP OLS and
VAR estimates, identifying the values to which it converges under general conditions. However,
it does not characterize the full asymptotic distribution. Importantly, unlike the other LP GLS es-
timators considered in this paper—which are numerically or asymptotically equivalent to either
VAR or LP OLS—the LP GLS-Lu estimator remains asymptotically distinct. Even when all three
estimators are consistent for the same IRs, their asymptotic variances typically differ, reflecting
persistent efficiency differences that remain relevant for inference. Moreover, asymptotic bias
may still arise when convergence is only local or when the DGP induces slowly vanishing bias

terms.

Given the generality of Assumption 1, any expression for the asymptotic distribution would nec-
essarily involve unspecified projection error covariances, precluding a general characterization
of the estimators’ relative bias-variance properties. Nonetheless, based on the structure of the
GLS transformation, we conjecture that the LP GLS-Lu estimator typically lies between LP OLS
and VAR in terms of bias and efficiency: it is likely (i) less biased than VAR but more biased
than LP OLS, and (ii) more efficient than LP OLS but less so than VAR. These patterns should
be understood as general tendencies rather than universal results, since bias—variance trade-offs
ultimately depend on the underlying DGP and projection horizon. While Lusompa (2023) does

not formally prove that E’;u is uniformly more efficient than LP OLS, the paper does illustrate
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potential efficiency gains for an AR(1) model. To make these trade-offs more concrete, Section 4
turns to specific, empirically relevant DGPs that allow us to analytically derive or simulate the
bias and variance of VAR, LP OLS, and LP GLS estimators.

Remark 4. Corollary 1 reflects a key nonparametric result from Plagborg-Meller and Wolf (2021),
who show that when a VAR(p) is estimated and p lags are included as controls in the LP, the IR
estimands of the VAR and LP methods coincide for projection horizons i < p, even if the VAR
is misspecified. In line with this result, Corollary 1 shows that for 1 < p, the deviation terms
¢ and P are zero, implying that the LP GLS-Lu estimator also coincides with the VAR and LP
OLS estimators in this case. This equivalence arises because the VAR projection errors &;,; are,
by construction, orthogonal to y; for all j < p, which implies that the misspecification terms C;
vanish for j < h. As noted in Remark 2, although our setup is expressed in terms of a VAR(1), it
naturally accommodates higher-order VAR(p) models through their standard VAR(1) companion

form.

Turning to the LP GLS estimator IABEB proposed by Breitung and Briiggemann (2023), this is
likewise a restricted version of ﬁ; as it conditions on all VAR residuals except the horizon-1

residual, €:1. The following corollary establishes its equivalence to the VAR IR estimator, A"

Corollary 2. Under Assumption 1, the LP GLS estimator EE}?_@ proposed by Breitung and Briiggemann
(2023) exhibits the following properties relative to the VAR IR estimate ?1?, a), depending on the sample:
(i) a=H: Byy_yy) = A(_gp forallh =1,..., H.

(ii) a=h: By = A" +0,(T") forall h =2,..., H.
Proof. See Appendix A.

Corollary 2 indicates that the LP GLS estimator proposed by Breitung and Briiggemann (2023)
is numerically equivalent to the VAR IR estimator A" when both are estimated using a reduced
sample of T — H observations. This equivalence arises because, at each horizon h, the trans-
formed LP error term equals €, (_f), which is orthogonal to y: due to the properties of OLS
estimation. When both estimators are computed using the longest available sample, the covari-
ance between y; and the transformed LP error term &1 is O,(T~!). In this case, EEB and A"
are asymptotically equivalent as T — oo, as already established by Breitung and Briiggemann
(2023). This result holds irrespective of whether the model is correctly specified. The rate of
convergence is sufficiently fast to ensure that EEB shares the same asymptotic distribution as A
Consequently, IASEB exhibits a lower variance than the LP OLS estimator By, but its asymptotic
equivalence to A" highlights that this variance reduction is achieved by fully imposing the VAR

specification across the entire forecast horizon.

3.2 LP GLS Based on LP Residuals

The LP GLS estimator using LP residuals adjusts for residual serial correlation by relying on the

LP framework itself. The following proposition shows its equivalence to the LP OLS estimator.
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Proposition 2. Under Assumption 1, the LP GLS estimator lAS’Z,(,a), which fully incorporates LP residu-
als in the GLS transformation, satisfies the following properties relative to the LP OLS estimator ﬁh,(_a),
depending on the employed sample:

() a=H: By =By forallh=1,... H.

(i) a=h: B, = By, +0,(T!) forallh =2,...,H.

Proof. The difference between the GLS estimator, Ezl(,a), and the OLS estimator, ﬁh,(,a), is given
by:

h-1 _ T -1
Biy(—a) — Bi(—a) = — Z; By ( Z; Vit~ ) (zlr tE nyt> : (17)
i = -
Case (i): a = H. When a reduced sample of T — H observations is used, ¥, ; _p) and y; are
orthogonal by construction. This orthogonality is a numerical property of OLS estimation in the
transformed LPs, where y; serves as the explanatory variable and v, ;;_p) is the error term
forj =1,...,h — 1. Making use of this orthogonality in eq.(17) shows that EZ,(— H) = Eh,(— H)s
proving part (i).

Case (ii): 2 = h. When the longest available sample of T — h observations is used at each horizon
h, ?Hlﬁf and y; are orthogonal by construction over the sample period t = 1,...,T — j, but the
summation in the numerator of eq.(17) runs over t = 1,..., T — h with h > j. Therefore, we can

decompose the summation as follows:

- h—j .
o ~J /
Z VYt ZZ:VT—h+E+jYT—h+f
=1

=l

1 /
*ZVJrj,th:
T

=

1 - .
— ] /
= 7?23 VT b4 Y T—ht-t7

where the first term is zero due to orthogonality over t = 1,..., T —j. Noting that ﬁ]%_h ot jy/T_h =

O, (1) for each ¢, and that 1 — j is a fixed, finite integer, it follows that:
1% 1
7 Z Viyjye = Op(T7). (18)
t=1

From Lemma 2 in Appendix A, we know that ( Y ytyt> =TI 14 Op(Tfl/z), with I' =
E(y,y,) = O(1). Substituting this into eq.(17) and using the initial conditions By = I; and
B] = By, we iteratively find from using eq.(18) that:

B, — B, =0,(T™),
for each h = 2,..., H. This proves part (ii). O
The key insight of Proposition 2 is that the LP GLS estimator IAS’Z, which uses LP residuals, repli-
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cates the LP OLS estimator By, This result holds irrespective of whether the model is correctly
specified. When the same reduced sample size of T — H observations is used for each projection
horizon h, the orthogonality property of OLS ensures numerical equivalence between the two
estimators. When the longest available sample of T — h observations is used for each projection
horizon h, the orthogonality between the explanatory variable y; and the LP GLS error terms
only holds up to an O,(T ') term. This occurs because the LP is estimated on slightly different
samples across horizons. Consequently, in this case, EZ and By, are asymptotically equivalent
as T — oo, with a rate of convergence that is sufficiently fast to ensure that B}, shares the same
asymptotic distribution as Bj,. As a result, GLS estimation using LP residuals offers no practical

advantages over standard LP OLS.

4 TIllustrative Examples

To clarify the asymptotic properties of the LP GLS-Lu estimator—the only LP GLS variant that
is asymptotically distinct from both LP OLS and VAR—we turn to specific DGPs that allow for
analytical and simulation-based comparisons. We begin with a stylized example under shrinking
local misspecification, where closed-form bias and variance expressions can be derived. We then
extend this setting to a simulation design that retains the same DGP but replaces shrinking
misspecification with lag selection via standard empirical criteria. Next, we examine whether
the observed patterns persist under richer dynamics in simulations based on the DSGE model
of Smets and Wouters (2005). Finally, we assess empirical relevance in an application to U.S.

monetary policy using external instruments a la Gertler and Karadi (2015).

4.1 A Stylized Example of Local Misspecification

To complement the general framework of Section 3, we now consider a more specific setting that
permits explicit analytical results. We adopt the local misspecification framework of Schorfheide
(2005), Li et al. (2024), and Olea et al. (2024), in which the degree of misspecification vanishes
at rate T~1/2, allowing for a tractable fixed-lag asymptotic analysis. We also explore a closely
related simulation design based on a similar DGP but using lag selection rules to determine
model complexity. This more conventional empirical setup allows us to evaluate whether the

results from the stylized example extend to more realistic conditions.
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4.1.1 Local Misspecification via Vanishing MA Distortion

We consider the following autoregressive moving average (ARMA) process with a shrinking MA

component:
«
Wit = PWi + Pps + po 1 + ﬁﬂz,tl (19)
where |p| < 1, u, = (p1, H2t) is a zero-mean iid. white noise process with Var(u,) =

diag(alz, (722) and finite fourth moments. We assume that y; = (u1,,w;)’ is observed, while iy

remains latent.

As T — oo, the term a/+/T shrinks to zero, causing the MA component y; to vanish asymp-
totically. In the limit, the DGP in eq.(19) converges to a stationary AR(1) process driven by the
exogenous regressor yi; and the innovation 1. The observed process y; is then well approx-

imated by a correctly specified VAR(1) model of the form in eq.(2), with

00
A= ( ) , and &1 = (Vl’tH) .
B o M2, t+1

This local misspecification setup captures the idea that finite-order VARs provide useful but
imperfect representations of the true DGP in finite samples. By introducing a vanishing deviation
from the VAR(1) benchmark, the framework delivers a tractable approximation that allows us to
derive closed-form asymptotic distributions for estimators while retaining the essential features

of the bias-variance trade-off caused by misspecification.

Our objective is to estimate the response of w;,j, for h > 1, to a one-unit innovation in yq;. The
true IR function is given by 6, = e,Ale; = p"~!8, for h > 1, where e; denotes the 2 X 1 unit

vector with a one in position j and a zero in the other entry, for j = 1, 2.

Note that the shock y1; enters eq.(19) with a one-period lag, such that it affects w;; rather than
w;. This ensures that the reduced-form IRs 6, coincide with the structural IRs. The timing
convention is without loss of generality: p;; can always be interpreted—or recorded in the
dataset—as a one-period lead of a structural shock, such that it contemporaneously affects the
system while remaining exogenous. This allows for a structural interpretation of the reduced-

form IRs without imposing additional identifying restrictions.

The estimators considered in Section 2 follow from specifying y; = (p1, we)’. The VAR IR
estimator for 6y, is given by é}{AR — e)Ale; = p" 1B, the LP OLS estimator by 5,?’ = e,Bje; and
the LP GLS-Lu estimator by @};u = e’zﬁkuel, with A, ﬁh and /Bku defined in Section 2. We then

obtain the following result:

Proposition 3. Consider the DGP in eq.(19), with |p| < 1and « € R. Assume (7]-2 > 0 and IE(‘u;-l’t) < oo
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for j =1,2. Define o5, = (B*0f +03)/(1 — p?). Then, as T — o0
ﬁ <§Zst ) LN N(best est)’

for est € {VAR, LP, Lu}, where the asymptotic bias and variance terms b§™ and V=t are given as follows.
Forallh > 1,

e, 02 02 Lo
thAR = (h—1)p"2 ?2”2, V}}/AR :p2(h 1)0%2 I (h—1)2 épz(h 2),’52,
2
LP P _ (1_ 20\ % _ 2(h-1)p2
by =0, Vi (1 9)0_12 TR
Forallh > 2,
2

u 5 QO

bt = (h—2)p" 2.5072/

2 0.2
v (1+p(h 1))022+<1+h(h—2)a§) 2=2)g2 4 (b —2)* p?— 3)ﬁ02.
1 w

For h = 1,2, we have g,[;u = @\,';P.

Proof. See Appendix B (Online Supplementary Material).

When p # 0 and B # 0, Proposition 3 establishes the following ranking in terms of bias magni-

tude and variance:

|thAR| > ‘blgu‘ > ’b}ZP’ =0, VVAR VhLu <V forh > 2.

The bias rankings reflect that the VAR estimator fully imposes the misspecified dynamic struc-
ture, thereby inducing the largest bias, while LP OLS remains unbiased in this setting because
the misspecification term is not correlated with y1;. The LP GLS-Lu estimator partially imposes
the VAR structure, resulting in an intermediate bias. Similarly, the efficiency ranking follows
from the degree of structure that is imposed: the VAR estimator achieves the highest efficiency
by fully exploiting model structure, LP GLS-Lu partially reduces noise relative to LP OLS, and
LP OLS remains the most variable due to minimal restrictions. Figure 1 plots the asymptotic bias
and standard deviation across horizons under low and high persistence (p = 0.6 and p = 0.9),

confirming these trade-offs.

To assess overall performance, we compute a weighted RMSE for each estimator est € { VAR, LP, Lu}:

RMSES = (/2 (be)2 + (1— 1) Vs, (20)

where A € [0,1] determines the weight placed on squared bias relative to variance.

Figure 2 displays the estimator that achieves the lowest weighted RMSE across projection hori-
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Figure 1: Asymptotic Bias and Standard Deviation—Shrinking Local Misspecification

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
(a) Asymptotic Bias (b) Asymptotic Standard Deviation
—— VAR —— LPOLS —— LP GLS-Lu (p=0.6)

—e— VAR —e— LPOLS —e— LPGLS-Lu (p=0.9)

Notes: Reported are the asymptotic bias and standard deviation of the VAR, LP OLS, and LP GLS-Lu IRs estimators
for the DGP in eq.(19), computed using the expressions in Proposition 3 under parameter values § = (712 =02 =1,
p € {0.6,0.9} and a misspecification term of « = 5. The horizontal axis denotes the projection horizon h =1, .. .,20.

zons h = 1,...,20 and bias weights A € [0,1]. Color intensity reflects the strength of domi-
nance, measured by the percentage RMSE reduction relative to the second-best estimator: darker
shades indicate stronger dominance, while lighter shades reflect smaller gains. Black dots mark
regions where specifically the LP GLS-Lu estimator ranks second-best. The results show that the
preferred estimator depends on the weight assigned to bias: VAR dominates when bias is not
weighted too heavily and at longer horizons, while LP OLS is favored when bias receives a high
weight, particularly at shorter horizons. The LP GLS-Lu estimator typically ranks second-best
and only occasionally emerges as the top performer, with rather minor RMSE improvements in
those cases. Overall, under this stylized local misspecification, the LP GLS-Lu estimator offers

no improvement over the benchmark VAR and LP OLS estimators.

4.1.2 Local Misspecification with Data-Driven Lag Selection

To bridge the gap between the stylized setup and standard practice, we now consider a finite-

sample simulation based on the following DGP:

Wiy = PWr + PUis + Hopr1 + Ao e—4, (21)

which replaces the vanishing misspecification term « / VT from eq.(19) with a fixed a. As a result,
the DGP no longer converges to a finite-order VAR, reflecting the more realistic case where model
misspecification persists in large samples. In practice, such complexity is typically addressed by
selecting the lag length using data-driven rules, such as the Akaike Information Criterion (AIC),

or by increasing lag length with sample size according to rule-of-thumb formulas like p = | T'/#].

20



Figure 2: Estimator Dominance by Weighted RMSE—Shrinking Local Misspecification
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Notes: The heatmaps visualize estimator dominance across forecast horizons (h = 1, .. .,20), plotted on the x-axis, and

squared-bias weights (A € [0,1]), plotted on the y-axis. Each cell color corresponds to the estimator—VAR IR, LP OLS,
or LP GLS-Lu—minimizing the weighted RMSE defined in eq.(20), computed from data simulated from eq.(19) with
parameters p = 012 = 4722 =1, p € {0.6,0.9} and a misspecification term « = 5. Color intensity reflects the relative
dominance strength, measured as the percentage RMSE reduction compared to the second-best estimator: darker
shades indicate stronger dominance, and lighter shades weaker dominance. Black dots highlight regions where LP
GLS-Lu ranks second-best. For visual clarity, they are shown only every third weight step.

Simulation results for T = 250 are reported in Appendix B. Results are shown for both a low-
persistence setting (0 = 0.6) and a high-persistence setting (0 = 0.9), with the misspecification
parameter fixed at « = 0.5. We present the v/T-scaled bias and standard deviation of each
estimator, along with heatmaps identifying the method that minimizes the weighted RMSE across
projection horizons h = 1, ..., 20 for a range of bias weights A € [0,1]. Under AIC selection, the
median lag is 3 for p = 0.6 and 1 for p = 0.9. To evaluate robustness, we also consider the rule-
of-thumb lag length p = |T'/#| = 4 and a larger fixed lag length p = 8. We apply the selected

lag length uniformly across all three estimators.

The results confirm that the core features of the bias-variance trade-off persist: LP OLS remains
less biased but more variable, while VAR is more precise but exhibits greater bias. The LP
GLS-Lu estimator continues to interpolate between the two but tends to lie closer to VAR, with
slightly reduced bias and slightly increased variance. It seldom outperforms either benchmark,
and when it does, the RMSE gains are modest. The choice between data-driven and fixed lag
length does not materially alter the qualitative ranking among estimators. Consistent with the
findings of Plagborg-Meller and Wolf (2021) and the discussion in Remark 4, the estimated IRs

align closely up to horizon h = p, but begin to diverge at longer horizons.

4.2 Simulations Based on the Smets and Wouters (2005) DSGE Model
To assess the finite-sample properties of the estimators in a realistic macroeconomic setting, we

simulate data from the DSGE model developed by Smets and Wouters (2005). This model is

widely recognized for its ability to capture key nominal and real rigidities underlying U.S. busi-
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ness cycle fluctuations. We use Dynare (Adjemian et al., 2024) to solve the model at its estimated
posterior mode and obtain its state-space representation, which includes seven structural shocks
that propagate through twenty state variables, jointly driving the dynamics of seven observed

macroeconomic indicators.

Following Olea et al. (2024), we focus on a subset of four variables from the simulated data—
inflation, wages, hours worked, and the wage cost-push shock—and examine the dynamic re-
sponse of inflation to the wage cost-push shock. In Smets and Wouters (2005), this shock follows
an ARMAC(1,1) process, implying that any finite-order VAR is inherently misspecified. However,
because the shock is observed and included in the system, the misspecification is local: it results
from approximating a process with VMA dynamics using a finite-lag VAR. As the lag length
increases with the sample size, this approximation improves and the misspecification vanishes

asymptotically.

To identify structural responses, we place the wage cost-push shock first in a recursive VAR,
following standard practice. Reduced-form IRs are estimated using the VAR, LP OLS, and LP
GLS-Lu estimators. Structural IRs are then obtained by post-multiplying the reduced-form re-
sponses with the Cholesky impact matrix from the VAR.

We consider two sample sizes, T € {250,1000}. The smaller sample (T = 250) reflects typical
macroeconomic applications, while the larger one (T = 1000) allows us to assess how estimator
performance evolves with increased sample size. The VAR lag order p is selected using the AIC,
subject to a maximum of |T'/#|. The same lag length is then applied to the LP OLS and LP
GLS-Lu estimators. For T = 250, the median selected p is 2; for T = 1000, it increases to 3.
Allowing the maximum lag order to grow at a faster rate or using alternative information criteria

does not materially affect the results.

Figure 3 summarizes the /T-scaled bias and standard deviation of the VAR, LP OLS, and LP
GLS-Lu estimators for the two considered sample sizes. As in the earlier results, all three estima-
tors are highly similar at horizons shorter than or equal to the selected lag length, consistent with
the findings of Plagborg-Moller and Wolf (2021) and the discussion in Remark 4. Beyond these
horizons, and again in line with the analytical results presented earlier, the LP OLS estimator
exhibits lower bias than VAR and LP GLS-Lu. The biases of VAR and LP GLS-Lu remain similar,
although LP GLS-Lu shows a slightly lower bias at shorter horizons. In terms of variability, LP
OLS consistently exhibits a higher standard deviation compared to both VAR and LP GLS-Lu,
while LP GLS-Lu has a higher standard deviation than VAR.

Figure 4 visualizes the estimator achieving the lowest weighted RMSE across projection horizons
h =1,...,40 and squared-bias weights A € [0,1]. The VAR and LP OLS estimators are most
frequently preferred: VAR dominates for moderate bias weights, while LP OLS is favored when
bias receives a higher weight. The LP GLS-Lu estimator seldomly improves compared to the
benchmarks, achieving the lowest weighted RMSE only in a few isolated cases, and then with

minimal dominance. The dot-markers indicate that LP GLS-Lu tends to align more closely with

22



VAR, typically ranking second-best when VAR dominates. Conversely, when LP OLS is pre-
ferred, VAR is generally the runner-up. This pattern reflects the fact that LP GLS-Lu has a bias
similar to VAR but generally exhibits higher variance. An exception occurs at shorter horizons
when T = 250, where LP GLS-Lu has slightly lower bias than VAR and thus ranks second to LP
OLS when bias is heavily weighted.

Figure 3: Scaled Bias and Standard Deviation—Smets-Wouters DSGE Model

3.5 i

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
(a) V/T-scaled sampling bias (b) v/T-scaled sampling standard deviation
—— VAR —— LP OLS —— LP GLS-Lu (T =250)

—e— VAR —e— LP OLS —e— LP GLS-Lu (T = 1,000)

Notes: Displayed are the v/T-scaled bias and standard deviation, computed from 10,000 Monte Carlo replications
based on data simulated from the Smets—Wouters DSGE model for T € {250,1,000}. The VAR lag length is selected
using the AIC and applied uniformly across the VAR, LP OLS, and LP GLS-Lu estimators. The horizontal axis
indicates the projection horizon h =1, ..., 40.

Figure 4: Estimator Dominance by Weighted RMSE—Smets-Wouters DSGE Model
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Notes: Displayed are heatmaps of the estimator minimizing the weighted RMSE defined in eq.(20), computed from
10,000 Monte Carlo replications based on data simulated from the Smets-Wouters DSGE model for T € {250,1,000}.
The VAR lag length is selected using the AIC and applied uniformly across the VAR, LP OLS, and LP GLS-Lu
estimators. The horizontal axis indicates the forecast horizon & = 1, ...,40; the vertical axis varies the squared-bias
weight A € [0,1]. For interpretation of color shading and dots, see notes to Figure 2.
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4.3 Empirical Application: Monetary Policy Transmission

We conclude by illustrating our theoretical results with an application to the transmission of
monetary policy shocks. We adopt the framework of Gertler and Karadi (2015), who use high-
frequency financial data to construct an external instrument for monetary policy shocks. The
vector of macroeconomic variables includes the one-year government bond rate, output growth
(log growth rate of industrial production), inflation (log growth rate of the CPI), and the excess

bond premium. The dataset is monthly and covers the period from January 1990 to June 2012.2

Following the empirical setup in Plagborg-Meller and Wolf (2021), we include the instrument
as the first variable in a recursive VAR a la Ramey (2011), thereby treating it as an “internal
instrument” rather than using a conventional SVAR-IV approach. This identification strategy
exploits the instrument’s exogeneity and ensures its contemporaneous effect on the remaining
variables. As in Section 4.2, we estimate reduced-form IRs using the VAR, LP OLS, and LP GLS-
Lu estimators, and obtain structural IRs by post-multiplying the reduced-form responses with
the Cholesky impact matrix from the VAR.

Estimated IRs using a fixed lag length of p = 12 are shown in Figure 5. Qualitatively similar
results are obtained when setting p = 3, as selected by the AIC. Consistent with earlier findings,
the LP GLS-Lu estimates appear less erratic than LP OLS but exhibit greater variability compared
to the VAR IRs. It can be interpreted as a VAR-like estimator with additional variance arising
from the fact that it does not condition on &;, in the horizon-h projection. This distinction be-
comes particularly pronounced at longer horizons, where the LP OLS estimates tend to diverge,
while the LP GLS-Lu estimates remain anchored to the VAR.

2For details on the construction and motivation of the instrument, see Gertler and Karadi (2015). We use their data,
available at: https:/ /www.aeaweb.org/articles?id=10.1257 /mac.20130329.
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Figure 5: Impulse Responses to a Monetary Policy Shock—Gertler-Karadi Application
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Notes: Impulse responses to a monetary policy shock, identified using the high-frequency instrument from Gertler
and Karadi (2015), and estimated on monthly U.S. data from January 1990 to June 2012. The shock is normalized
to raise the one-year government bond rate by 100 basis points on impact. A lag length of 12 is used for all three
estimators. The horizontal axis indicates the projection horizon =1, . .., 36.
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5 Conclusion

This paper critically evaluates the use of GLS transformations in the estimation of IRs via LPs.
While GLS is often motivated by the goal of improving finite-sample efficiency, we show that its
application entails a fundamental trade-off between efficiency and robustness—one that depends
on the residuals used in the transformation. We distinguish two broad strands of LP GLS esti-
mators: the first relies on residuals from an auxiliary VAR and imposes the dynamic structure of
the VAR onto the LP framework; the second uses previous-horizon LP residuals to construct the

transformation, aiming to retain the flexibility of the LP approach.

The central insight of our analysis is that these LP GLS estimators typically do not yield distinct
asymptotic behavior, but instead replicate one of the benchmark estimators. Conditioning on
VAR residuals leads to convergence to the VAR estimator, gaining precision under correct spec-
ification but losing robustness. Conditioning on LP residuals, by contrast, preserves robustness
but offers no efficiency gains. These results hold under general nonparametric conditions and do

not require assumptions about whether the auxiliary VAR is correctly specified or misspecified.

The only exception is the LP GLS estimator proposed by Lusompa (2023), which conditions on
a subset of VAR residuals. This hybrid structure yields an estimator that is generally asymptot-
ically distinct from both benchmarks. In a stylized local misspecification framework, we show
that it strikes a balance between the bias of the VAR and the variance of LP OLS but rarely
dominates either benchmark in terms of weighted mean squared error. These patterns persist in
simulations based on the Smets and Wouters (2005) DSGE model and are echoed in an empirical

application.

It is worth noting that the efficiency-robustness trade-off may still be mitigated by augmenting
LPs with observed structural shocks instead of estimated residuals, as proposed by Faust and
Wright (2013) and Teulings and Zubanov (2014). When these shocks are exogenous, such aug-
mentations can preserve robustness while partially improving efficiency. Yet, since the observed
shocks rarely span the full LP error term, a full GLS correction remains infeasible—unless residu-
als are substituted for unobserved components, which reintroduces the trade-off. Note also that
Teulings and Zubanov (2014) primarily use this augmentation approach to address incidental
parameter bias in panel LPs with fixed effects. Such bias-corrections are, however, beyond the

scope of this paper and left for future work.

In conclusion, researchers should exercise caution when applying GLS to LPs. While GLS trans-
formations may appear promising at first glance, most implementations either replicate the VAR
or LP OLS benchmark, without resolving the bias—variance trade-off. Rather than providing a
third alternative, LP GLS estimators merely shift the balance between robustness and efficiency

depending on the residuals used.
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Appendix A Proofs and Supporting Results for Sections 2-3

A.1 Preliminaries: Notation and Useful Results

Throughout the proofs, all O,(-) terms involving matrices or vectors are understood to be with
respect to the spectral norm. For simplicity and clarity, explicit norm notation is omitted. Addi-

tionally, we assume that H is finite, ensuring that //T — 0as T — oo forallh =1,..., H.

Starting from the VAR(1) model in eq.(2), estimated via OLS on the reduced samplet =1,..., T —

a, we derive the following backward iterated representations, which are useful for the proofs that

follow:
Yt+n = ;{(—a)Yt-i-h—l + € in,(—a) (A-1)
h ,
~h—1 ~h—j
= Ayt Z A(—Zz)stﬂ‘,(—u)/ (A-2)
j=2

Bt a); (A-3)

where K?ﬂ) = I;. For notational simplicity, we adopt the convention of omitting the subscript

(—a) when using the full sample, corresponding to 2 = 1 when estimating the VAR(1) in eq.(2).

A.2 Additional Lemmas

Under Assumption 1, the following results hold as T — co:

Lemma 2. T7_, = %E;;lh vy, = T+ 0,(T"1/?) and i"\;ih =T 14+0,(T V%), with T =
E(yy;) = O(1).

Lemma3. A= A+O,(T""/2) and B, = B, + O,(T""/?) for h > 1.
Lemma 4. ﬁ(,u) = A+ Op(T™ 1) for2 <a < H.

Lemma 5. Let @ = % Zth_lh aﬂyg, where ¢; ; are the residuals from the VAR(1) model in eq.(2).
Then:

- 0 forj=1,
#i= ¢, +0,(T712) forj>2
i T .

where ¢; = E [&1+jy}], with ¢; = 0 and ¢;=0(1) forj > 2.
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A.3 Proofs of Lemmas

The proofs are organized for logical coherence. While Lemma 1 is stated first in the main text,

its proof is placed last as it refers to notation established in Lemmas 2-5.

A.3.1 Proof of Lemma 2

Under Assumption 1, y, is a zero-mean, weakly dependent stationary series with finite fourth

moments. The population second moment (covariance matrix) is given by:

I =E [y,y;] = Var(y,) = O(1),
where I' > 0 (positive definite) by assumption.

From standard results for stationary time series with finite fourth moments, the sample covari-

ance matrix satisfies

~ 1% _
Trp= Y =T+ 0,(T 1)
t=1

Because T is positive definite and bounded, its inverse I'"! is also O(1). By the continuous

mapping theorem for matrix inverses, it follows that:

T, =T 4 0,(T7'2).

A.3.2 Proof of Lemma 3
The OLS estimator for By, in eq.(4) can be written as
T—h T -1 1 T=h N -
By= ), yeuyt | | yeyi| =Bu+ T Y ecrnnyt | Tl
=1 t=1 t=1

From the definition of e, =y — E (yi11|y:) as a projection error, and under Assumption 1,

which states that y; is a vector of stationary variables with finite fourth moments, we have

Z €tth, nyt = (Tﬁl/z)-

S

30



From Lemma 2, we know that -1, = O,(1). Substituting this into the expression for B, we

obtain:
B _ lTﬁh -1~ o (T 12
B, — B, = T Yo emnyt | Tl = 0,(T712),
=1

Finally, setting i = 1, we have Bi-Bi=A—-A= Op(T_l/z). O

A.3.3 Proof of Lemma 4

Consider the OLS estimator defined in eq.(3), estimated with T — a observations:
-1
1 T—a , 1 T—a , 1
=gy ) |7 Lyyi] =Frlre for 1<a<T-1
t=1 t=1
For any fixed and finite 2 < a < H, we can write:

[Zym ZyT 1—0YT 1 /] =Tr 1—*ZyT Y71 =T+ 0,(T),
=0 (0

1|« — N 14! N _
=T [E Yir1Y; — Z yT—flelél =Yr-1— T Z YT—éY/Tfpe =911t OP(T 1)~
t=1 (=0 £=0

Under Assumption 1, the terms ZZ;(l) Yyr-1-¢y7_4_, and ZZ;& YT—¢Y7_1_p are Op(1) since a is

fixed and finite. Substituting these results back into the expression for ﬁ(_a), we have:

N S P | , ~ _
A—ay =Yr—alr—a = ¥1aT1-1 + Op(T N =A+0,(T).

A.3.4 Proof of Lemma 5

Let qb i T Zt 1 etﬂyt, where € ; are the residuals from the VAR(1) model in eq.(2).

Consider first j = 1. By definition, &1 is the projection residual of y;;; onto y;, which makes
it orthogonal to y; and implies ¢; = E [g;11y;] = 0. By the first order conditions of OLS, the

orthogonality property similarly holds for the estimated €;,1, such that the sample counterpart

~ . e - 1 T—h~o !/ __
¢, also satisfies ¢, = 7)., " €11y; = 0.

For j > 2, substituting the definition of & ; into (7)]. yields:

¢ _ 1 Tzhgtﬂ}’t : i <€t+] ( A) Yt+jfl> Vi

t=1

H

31



1 — 1 T—h
— —A) = 1Y,
T Z e ( ) T t; Yi+j-1Yt

1P

-..

eryjyt +Op(T71?)

H \

where the last line makes use of A — A = O,(T~1/2) from Lemma 3 and + y I Yirj—1y: = Op(1)
under Assumption 1. Recalling that ¢; = E [£:+jy}], and noting that &;,; and y; are covariance

stationary with finite fourth moments under Assumption 1, it follows that:

S

Z £yt — Op(T’l/Z).
t=1
Combining these results gives:

‘/)5]‘ =¢;+ OP(T*UZ) forj > 2.

A.3.5 Proof of Lemma 1 (from the main text)

First note that from the definition of B}, as the coefficients of the best linear projection of y;,

onto y;, we have:

E [y in | yi] = Buy:. (A-4)

Taking the conditional expectation given y; of the forward-iterated VAR representation in eq.(6),

we have:

h , h .
Elyin |y =A"yi+ Y A" B [ersj | yi] = (Ah + ZAh_]C]) yt. (A-5)
= =

where we used that the conditional expectation of &, ; given y; is the linear projection of & ;

onto yt, given by E [e; | yi] = Cjyt, with C; = ¢jr_1/ ¢;=E [et1jyi] and T = E [yryi].

Hence, equating (A-5) to the projection definition in eq.(A-4) reveals that:

h
— Al h—j
—A+¥A]Q
1=
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A.4 Proofs for the Results in the Corollaries
A.4.1 Proof of eq.(15) in Corollary 1

By setting ¥, ), = 2;7 1 Bh ]st+] in eq.(12), and defining the shorthand I W= T Zt 1 yiy} the

Bh estimator can be written as:

/\Lu 1 T=h ~Lu ~ =_
<T <Yt+h - Z B),_ ]5t+]) > rTlh’

=1
R h
B, —

j

where we defined g?zj =7 Zt 1 €14yt For h = 1, we have by definition that Elfu = By, such that

~

1

Lu ~ ~_
h ]¢]> I‘Tlh/ (A-6)

Il
—_

it follows from Lemma 3 that

BI" = B+ 0,(T2). (A7)
Next, setting h = 2 in eq.(A-6) gives

B, =B — B,"$,T7 ',

Making use of eq.(A-7), f;lh =T 1+ 0,(T ~1/2) by Lemma 2 and ¢] ¢+ OP(T_l/Z) by
Lemma 5, with ¢p; = Oy (1), then leads to

~L ~
B," =B, Bip,T ' + 0,(T71/2).

Thus, using Lemma 3, we have 1§§u = B, — B1¢p,I ' + O,(T~1/2), which implies in turn that IASEU

remains Oy (1).
Setting next 1 = 3 in eq.(A-6) gives
B = By BT - BT
where substituting in the result for IAS’Eu and using the same lemmas as above results in
By =Bs— (Bo—BipyT ') ;T = Bigp,T~' +0,(T7/2).
which too is a bounded quantity.

Accordingly, by iterating the steps above for general i > 1, the recursive structure of eq.(A-6)
implies that

~L ~
B, =By +yp +0,(T?),
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where the deviation term P is defined recursively as:

h—1

gl ==Y (Buj+yl,)pT ", withg?=o.

=1

A.4.2 Proof of eq.(16) in Corollary 1

Substituting eq.(A-3) into the expression for Eku, we have for h > 2:

sLu 1 T=h hl sLu o 1) -1
B, = T Yol yen— ) B, &y |y | Ty
=1

]

1
1T=h(_, h=1 i ALu N =
— <T (A yi + Z (A - Bhli]) Eryj T Ertn Y; rTlh'

h—1
U N SLu o ahf\ o ) e
=A"+ (% -y (B -a") 4;].) !,
where f[;]- = %Zf;lh &1jy; and Tr_, = %Zfz’lh Viyi-
We start with 1 = 2. Since (f)’%u — A) = 0 by definition, Lemmas 2 and 5 imply:

~2 ~ o~ _
B, —A = ‘Perlz = ‘PzA + OP(T 1/2)1

where 5 = ¢, 1.

(A-8)

For h = 3, we can substitute the result for & = 2 into the recursion, and find using the same

lemmas as above:

~Lu ~3 _ _ _
By — A" = (¢ — 9y )T 1+ O,(T V%) =95 + 0,(T 1/?).

Hence, by recursively substituting back into the expression (A-8) and making use of Lemmas 2

and 5, we obtain the following result for general 1 > 2:
~Lu ~h _
B, —A =yp+0,(T"?),

where 7' is defined recursively as:

h—2
¥ = <¢h - tpﬁ_]-rp]-) r.
j=1
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A.5 Proof of Corollary 2

Substituting eq.(A-2) into the expression for IABEE_ a), We have:

-1
BB T=a [y h=2 , pp SN T—a
By, (—a) = (Z ALYt — ) (Bh—j,(—a) - A(—i)) Ervi—a) | Ve | yeyi ] (A-9)

=

where we used that by definition ng,a) =A —q) = Ixand E]i?,a) = ﬁ(,a).

Case 1 (a = H): The LP is estimated over the fixed sample t =1,...,T — H.

We shall proceed by induction. For i = 1, we have by construction that ﬁ?,]?_ H) = ;1(_ H)-

Assume then as the strong inductive hypothesis for & — 1 that EE?M, H) = z?l(jq) holds for all
j=2,...,h—2and h > 1. Substituting this hypothesis into eq.(A-9) gives for & that:

BB T=H 1 AN =C R ol
By (_p) = t; ACHY+1Yi t; yiY: =ACmArn) =ACH):

Hence, by mathematical induction, the result E’E}?, H) = ﬁ?, gy holds forallh =1,..., H.

Case 2 (a = h): The LP is estimated over the longest possible sample t =1,...,T — h.
In this case, A is estimated using the full sample t =1,...,T — 1, so that ?lj(fa) = ﬁj(fl). By our

adopted convention, ﬁ]('_l) = ﬁj , the (—a) subscripts can be omitted from eq.(A-9). For h =1,

we have by construction that I§]13B = A. For I = 2, substituting into eq.(A-9), we obtain:
-1
T AW A ) »
By =A( )Y yiyi | | Lyyi| =AAp=A"+0,(T),
t=1 t=1
with the simplification in the last step following from ;1(_2) = A+ O,(T~1) of Lemma 4.

Now assume for h — 1 and h > 3 that EE:- = ;lh_j + Op(T_l) holds forall j = 2,...,h — 2, and
substitute the hypothesis into eq.(A-9). Using Lemma 4, we thus obtain for & that:

By = A" Ay +0,(r=2a"" (21 + op(T—l)) = A"+ 0,(T).

Hence, by mathematical induction, the result ﬁEB = ﬁh + Op(T_l) holdsforallh =2,...,H. O
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Appendix B Supplementary Material

The online Supplementary Material contains all derivations and additional simulation results

supporting the illustrations in Section 4.
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Supplementary Material for GLS Estimation of

Local Projections: Trading Robustness for Efficiency

Ignace De Vos*? and Gerdie Everaert®

VU Amsterdam, Department of Econometrics and Data Science
bTinbergen Institute

¢Ghent University, Department of Economics

This supplement contains two sections. Supplement 1 provides the derivations underlying
Proposition 3 in Section 4.1.1 of the main text. Supplement 2 reports simulation results for
the local misspecification setting with data-driven lag selection, as discussed in Section 4.1.2

of the main text.

Supplement 1 Proof of Proposition 3 from the Main Paper

The proofs in this section rely on the DGP and assumptions introduced in Subsection 4.1.1
of the main paper. The derivation of the asymptotic distributions for the LP OLS and
VAR IR estimators follows similar arguments to the proofs provided in the working paper
version of Li et al. (2022).

For convenience, we restate the DGP from eq.(19):
!
Wer1 = pwt + Ppre + o1 + Wl (51.1)

along with the accompanying assumptions: namely, that |p| < 1 and that p, = (py, pios)’
follows an i.i.d. white noise process with variance Var(u,) = diag(0?, 07). Furthermore, wy
is drawn from its stationary distribution. Recall that e; denotes a 2 X 1 vector with a one in

the j-th position and zeros elsewhere, for j = 1,2.

*Corresponding author. E-mail: gerdie.everaert@ugent.be
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We begin by establishing several preliminary results that will be instrumental in deriving
the asymptotic distributions of the VAR, LP OLS and the LP GLS-Lu estimators.

S1.1 Some Preliminary Results

By the Law of Large Numbers for stationary processes, the sample covariance matrix of

y: = (1,1, we)' satisfies

~

P %i vyl =T +0,(1), (51.2)

where we define the population covariance matrix I' as the limiting second moment of y;

as T — oo:

0 o3

70
I = lim Elyy}] = [01 ,
T—o0
w
with 02 = (B?0? + 03)/ (1 — p?). This result is unaffected by the local misspecification term
a/+/T, which vanishes asymptotically.

Another useful result follows from the properties of the innovation terms. Since 1 ; and o
are ii.d. white noise with finite fourth moments, and w; follows the stationary process in
eq.(19), independence implies E [p4sp1,4] = 0 for all s > 0. By stationarity, [E [paw¢] = 03.
Moreover, since i ;15 is independent of past terms for s > 0, it follows that [E [y 1 sw¢| = 0.

Hence, we obtain:

1 1= _
T Z o i4spie = Op(T 172y, (51.3)
t=1
1 2 1/2
T Z U2, t4+sWt = 0'21{5:0} + OP(T_ / ), (814)

for all s > 0, where 14,_g is an indicator function that equals one if s = 0 and zero
otherwise. Accordingly, also p; = (p1,t41, fi2,0+2) is independent of y; = (pq,4, wy)', so
that E[u, . ,y;] = 0, and therefore

=

Z eyt = Op(T1/2). (S1.5)



S$1.2 Asymptotic Distributions
S§1.2.1 VARIR estimator

Defining the population coefficient matrix Ay = (2 g), the OLS estimator for A in eq.(2)

from the main paper is given by

R 1 T-1 o
A=Ag+ (= H1t+1 0, i 1,
T o ]’ll,t
=1 \ [H2t+1 T 5H2t
1 Tl w03 1 1
= Ao + T & yt+1y;+ﬁe2e’2+op(T )| T,
1 = wo3 1 .
=Aot |7 Lyt e |T 40T, (51.6)
= Ao+ O0,(T"1/?). (51.7)

by eqgs.(51.3)—(51.5) together with ' = Op(1). As such, A is a consistent estimator of A.

However, rewriting eq.(51.6) and making use of (51.2) gives as T — co

R 1 Tl

VT <A — A0> = NG Z% pe Vi T+ aogere T +o0,(1), (S1.8)
=

which given E(p, ,,y;) = 0 reveals that there is an asymptotic bias term when a # 0. To

see how this affects the distribution of the VAR IR estimator for 8, = o"~18, we first derive

the asymptotic distribution of the VAR estimator for p and B.

Using e,A( = (B, p) to select the second row of A, applying a standard martingale central
limit theorem to Eq.(51.8) yields:

N / R R
VT (A - Ao> e LN (aBias(A’ez),aVar(A’e2)> : (51.9)
where
/
aBias(A'e;) = T'E . Tz_lﬂ yi +acsexe) | e = @ez
\/T = t+1>t 2 2 0_?% ’

from E [p, ,y;] = 0.



The asymptotic variance follows from eq.(51.8) as

T—o00

r /
. 1 T-1 1 T-1
aVar(A'e;) =T ' Im E || —= Y .1y | e2eh | —= Y 0yt | | T,
\r et ) e | g 2 et

[ T-1 2 .2 2
— 1! lim E l [ P12 1 Vl,twfﬂz,wrl” 1

2 2 2
T—eo _Tt: HLtWtHs s Mo Wi

— 1! <(7221"> ! =ort,

where the expectation follows from independence:

E

2 .2 2
W M1, twip
R A 2'f2+1] = o3T. (S1.10)
H1tWiHy p o1 Hop Wy

Applying the Delta Method to the function g(Ag) = e,Alle; = p" 18 = ), the asymptotic

distribution of the impulse response estimator éVAR Ah_lﬁ follows as

VT (0YAR g, ) 4 A7 (pVAR yVARY) (S1.11)
h h h
where
VAR ‘sz h—2 022
b,"" = ]O—ez =(h—-1)p IB’XU_Z’
w w
VAR 2(h—1 22 2 2(h—2 2‘7§
VAR = Joo3T ™~ J_P ) 2+(h—1)p(_),30—2/
]_ w

using that the Jacobian, evaluated at plim e, A = e,A¢ = (B,p), is given by

desAle

2(LA) = (" (h-1)0" %) .

I'AN—al
ezA—ezAO

Jo=

S1.2.2 LP OLS estimator

Define the population coefficient matrix as By = < ph91 8 p0h> for h > 0, and Bop = I, for

h = 0. The scaled OLS estimator for B, in eq.(4) from the main paper can be written as:

1 T—hh— . o
VT(B, — Byy) = ( Y ) (BO [ m’t:h ] ] [“U wt])) T
M2, t4+h—j

=1 j=0 -j T pH2tn—j-1

4



T (1 T—hh—l 02 -
=VvT| = 0l n_iYi T Bop1—=ees + O, (T 1) | T 7,
Bojtiin_i¥i 2
T t=1 j=0 i \/T
1 T—hh-1 0(0_2 4
=VT| 7 Bojpy g iy + 0" —Zeres | T +0,(T73),
T =53 I t+h—j )t \/T 2 4
1 T—hh-1 .
|\ /T Bo it - ]Yt+P acseses | T1+0,(1), (51.12)
T t=1 j=0

where we use B ;,_1exe} = <ph92’3 pth ) = p"~lese} along with egs.(S1.2), (51.3) and (S1.4).

Using e,By e = ph’1 B = 6, to select the relevant element in By, applying a standard
martingale central limit theorem to Eq.(51.12) yields:

VT (67‘,;1’ . eh) AN (o, v,}P) . (S1.13)

The absence of asymptotic bias follows from eq.(51.12) as:

bt = 11m E [\/Teé (ﬁh - Bo,h> el] = Tlgl(}o]E

1 T—hh-1 . )
T )3 ZezBo,fP‘thjﬂl,t o | =0,

t=1 j=0

using [E [ﬂH_sPll,t] =0 forall s > 0.

The asymptotic variance follows from eq.(51.12) as
VP = %EIgOVar (\/Te’z <§h - Bo,h) e1> ,

2
L 1 —hh—

T—o00 t 1 /=0

4hm—Z]E

T—oo T

. 71 .
=o7” ( ‘o7 Z P+ a3 Yy ,02]> ,
j=1 j=0
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_ 1-— _
=0 ? ((:52‘712 +Ui2> 1 _‘(;,2 _Pz(h 1),32‘712> /

_ (1 _p2h> U_zzz —pz(h_l)ﬁz,
o1

h-1 2
Z o ﬁﬂl,uhﬂﬂu +) P]Vz,t+hj,u1,t] ,
i=0

where the expectation follows from independence and E[u, , i1, = 0 for all s > 0.



$1.2.3 LP GLS estimator of Lusompa (2023)

Let €41 = yt41 — Kyt be the estimated VAR error term. The LP GLS-Lu estimator ﬁku for

B, in eq.(4) from the main paper can then be written as:

~Lu 1 T —1
B, = Z Yi+n — ZBh ]€t+] Yt ’

ﬁ

t=1 j=
1% SLu -1
—\T Z Bry: + ZBh &t Z B,_j&ry; yi /
t=1 j=1 j=1
1 T—h h—1 L o
= Bo + T tZI <€t+h + & (Bhf]€t+] B, ]€t+]> yiIL -,
- j=
1 T=h hl =sLu sLu , ~ A—l
=Bt tzl (8”’1 T L ((Bij=BY)) sy + B (A= Ayija) |y,
= ]:
(S1.14)
using &, = (A — K)ytﬂ_l + &y
Consider first that we can write for a j > 1 that
1 = / Hi,t+j
LY i s ]
VT t:zl P Z [Plz b+ JpH 1 it
\/T Z l”t-i—]Yt + 1{] 1}01(72e2e2 +0 (T_l/z) = Op(l). (S1.15)

Given the sequential dependence of IAS’;I:u on previous horizon estimates, we can first estab-
lish the asymptotic bound using strong induction. The base case follows from E?‘ = A such
that from eq.(S1.7) and noting that B; = A we have that EIfu =B+ Op(Tfl/ 2). Assuming
then that forall1 <j <h—1,

B, = By +0,(T"12), (51.16)
and substituting this in eq. (51.14), together with eq.(51.15), we obtain:
B, = By, +0,(T"1/2). (51.17)

Thus, by induction, the bound holds for all & > 1.



We next derive the asymptotic distribution of (?;[;“. Using e}Bge; = " 18 = 0, to select

the relevant element in B ;, we have from eq.(51.14)
\/_ Alu 1 = , h=1 ~Lu ~Lu ,~ ja—1
T (01’1 — 9h> = ﬁ Z e2 8t+h + Z ((Bh,] — Bh—j) SH_]‘ —+ Bh_](A — A)Yt+j—1> ytr €e1.
t=1 j=1

We derive each of the three terms in this expression separately.

For the first, since \/LT Zth_lh er+ny; = Op(1), we can make use of eq.(S1.2) to write

—= ) eegyill e = 2€t+hYtr_ e1 +0p(1),
VT 3 VT =
1 1 T—h
= 5= Mo t+h + —=MH2t+h— 1) i +op(1),
%f = ( f g
1 T—h
= —5—= Mo tintie +0p(1).
27T 5 *’

For the second, we obtain because I < H is a finite quantity that

— -] / SLu ra—1 ,hfl SLu 1 = ARSI

Z Z e, <Bh_j — Bh,]-> &yl e =e Z (Bh —j— By ]) ﬁ Z &+jyr | T ey,

t=1 j=1 j=1 =
= 0,(T71/?),

S\

since T = O, (1) and because \/LT Yt &4y; = Op(1) and Ek; —By_j = O,(T~1/2) for
any 1 <j < h—1 by eqgs.(51.15) and (51.16).

Third,
1 Thhd yslu [+ a1 h1 ; sLu -~ a1
Vs eBy,_; (A - A) Visjo1y X e =) B, VT (A - A) Z Virj1yll er,
=1 j=1 =1
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, Llu ~ 1 Tk 1 ya—1
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t=1 j=1 j=2

where use is made of eqs.(51.2) and (S1.8), and eq.(51.15) on the 4th equality.

The first term in eq.(51.18) is given by

—hh—1

—1
Z Y esBy_jp, 1 yiT'Bj_1eq,
t=1 :1

3\

—hh-1

1 =k 1 _
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%f = a2 VT 5
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12\/_ = P o2 VT & t4+1

where use is made of By = I, such that ["'Bye; = I "le; = Ul_zel along with I'_lB]-_lel =
p/72Bo,%e; for j > 1 and By_; = p" /71 A,.

The second term in eq.(51.18) is given by

h—1 h—1 2 h—1
2 / /-1 2 / /-1 ) h—2
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J=1 =2 w j=2

2

= (h—2)p"2p22
(h=2)p" B3

using By = I, such that e,B;,_;e;e,T ' Bge; = 0.

Collecting and expanding terms yields
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03 VT i
Applying a standard martingale central limit theorem to Eq.(51.19) yields:

VT (8 =) 5 N (o} vie). (S1.20)

Using independence, the asymptotic bias is given by

bt = lim E |VT (05" — 60, ) | = (h —2)p" 2 a0y
= B B VT (0 - )] = 02008
The asymptotic variance is given by
Lu __ alu
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using independence and noting that \/LT Zth_lh Mo prnfil = \/LT ZtT:_hl H2,t+111 t—h+1 such that
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Supplement 2 Simulation Results for Local Misspecification

with Data-Driven Lag Selection

This section reports the simulation results that correspond to Section 4.1.2 of the main
paper. We evaluate estimator performance under local misspecification with data-driven
lag selection. We present results for T = 250, two levels of persistence (o = 0.6 and p = 0.9),
and three lag selection rules: AIC, the rule-of-thumb p = |T'/4| = 4, and a larger fixed lag
length p = 8. Each figure shows +/T-scaled bias and standard deviation for all estimators,
as well as heatmaps of weighted RMSE minima across horizons h = 1, ..., 20 for a range of

bias-variance weights A € [0, 1].

S2.1 AIC Lag Selection

Figure S2.1: Bias and Standard Deviation—Local Misspecification with AIC Lag Selection

(a) V/T-scaled sampling bias (b) V/T-scaled sampling standard deviation

—— VAR —— LPOLS —— LP GLS-Lu (p=0.6)
—e— VAR —e— LP OLS —e— LP GLS-Lu (p=0.9)

Notes: Displayed are the /T-scaled bias and standard deviation of the VAR, LP OLS, and LP GLS-Lu IRs
estimators under the DGP in eq.(21), based on 10,000 Monte Carlo replications. The simulation uses parameter
values B = 0? = 02 =1, p € {0.6,0.9}, « = 0.5, and sample size T = 250. The VAR lag length is selected using
the AIC and applied uniformly to the three estimators. The horizontal axis indicates the projection horizon
h=1,...,20.
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Figure 52.2: Estimator Dominance by Weighted RMSE—Local Misspecification with AIC
Lag Selection

1
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Notes: The heatmaps visualize estimator dominance across forecast horizons (h = 1,...,20), plotted on
the x-axis, and squared-bias weights (A € [0,1]), plotted on the y-axis. Each cell color corresponds to the
estimator—VAR IR, LP OLS, or LP GLS-Lu—minimizing the weighted RMSE defined in eq.(20), based on
10,000 Monte Carlo replications from the DGP in eq.(21) with f = (712 = 022 =1,p € {0609}, « = 0.5,
and sample size T = 250. The VAR lag length is selected using the AIC and applied uniformly to the three
estimators. Color intensity reflects the RMSE reduction relative to the second-best estimator: darker shades

indicate stronger dominance. Black dots highlight regions where LP GLS-Lu ranks second-best. For visual
clarity, they are shown only every third weight step.

S$2.2 Lag Length Set to 4

Figure S2.4: Bias and Standard Deviation—Local Misspecification with Lag Length Set to 4
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2 4 6 8§ 10 12 14 16 18 20 2 4 6 8§ 10 12 14 16 18 20
(a) VT-scaled sampling bias (b) V/T-scaled sampling standard deviation
—— VAR —— LP OLS —— LP GLS-Lu (p=10.6)

—e— VAR —e— LP OLS —e— LP GLS-Lu (p=0.9)

Notes: See Figure 52.1, except that the lag length is fixed at p = 4 instead of being determined by the AIC.
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Figure S2.5: Estimator Dominance by Weighted RMSE—Local Misspecification with Lag
Length Set to 4
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Notes: See Figure 52.2, except that the lag length is now fixed at p = 4 rather than determined by the AIC.

S$2.3 Lag Length Set to 8

Figure S2.7: Bias and Standard Deviation—Local Misspecification with Lag Length Set to 8

2 4 6 8§ 10 12 14 16 18 20 2 4 6 8§ 10 12 14 16 18 20
(a) VT-scaled sampling bias (b) VT-scaled sampling standard deviation
—— VAR —— LP OLS —— LP GLS-Lu (p=0.6)

—e— VAR —e— LP OLS —e— LP GLS-Lu (p=0.9)

Notes: See Figure S2.1, except that the lag length is fixed at p = 4 instead of being determined by the AIC.
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Figure S52.8: Estimator Dominance by Weighted RMSE—Local Misspecification with Lag
Length Set to 8
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Notes: See Figure 52.2, except that the lag length is now fixed at p = 8 rather than determined by the AIC.
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