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Abstract

Local projections (LPs) are often regarded as more robust to model misspecification than

impulse responses (IRs) derived from forward-iterated dynamic model estimates, as LPs im-

pose fewer restrictions on the underlying dynamics. However, because forecast errors accu-

mulate in the LP errors over the projection horizon, this robustness comes at the price of an

increase in variance. To address this, several Generalized Least Squares (GLS) estimators have

been proposed to reduce error accumulation and enhance efficiency. We demonstrate, how-

ever, that the implied conditioning on dynamic model (horizon-one LP) residuals imposes

strong restrictions on the underlying data generating process, undermining the very robust-

ness to misspecification that LPs are valued for. In fact, we show that these GLS LP estimators

tend to align more closely with forward-iterated IRs from potentially misspecified models,

than with OLS-estimated LPs. Furthermore, we find that conditioning on previous horizon

LP residuals fails to deliver efficiency improvements over OLS-estimated LPs.

JEL-codes: C22, C13, C53

Keywords: Impulse response functions, local projections, dynamic models, generalized least

squares, efficiency, robustness

1 Introduction

Since the influential work of Jordà (2005), local projections (LPs) have become a widely used tool

for estimating impulse responses (IRs). Unlike traditional methods that rely on forward iteration

of dynamic model estimates to compute IRs over extended horizons (as in the VAR approach),

LPs directly estimate IR coefficients at each forecast horizon. This feature makes LPs particularly

*Corresponding author. E-mail: gerdie.everaert@ugent.be
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robust to model misspecification, as they employ fewer restrictions on the underlying dynamics

of the data. However, this robustness comes at the cost of lower estimation accuracy (see for

instance Ramey, 2016; Li et al., 2024). This is not only because each IR coefficient is estimated

separately, but also because forecast errors accumulate in the LP error terms over the projection

horizon. Consequently, LP OLS residuals tend to be serially correlated, necessitating either lag

augmentation (Montiel Olea and Plagborg-Møller, 2021) or the use of autocorrelation-robust

standard errors to ensure valid inference.

In his seminal 2005 paper, Jordà proposed a potentially significant improvement to the efficiency

of the LP OLS estimator by suggesting that residuals from previous-horizon projections could

be recursively included as regressors in the horizon h projection. The full details of this en-

hancement were left for future exploration, which inspired Lusompa (2023) and Breitung and

Brüggemann (2023) to introduce various Generalized Least Squares (GLS) methods. These ap-

proaches condition on the residuals from the dynamic model (i.e., the horizon-one LP) to mitigate

the accumulation of forecast errors in the LP error terms. Given the clear potential for improving

estimation accuracy, these methods are poised to be widely adopted in the econometrics com-

munity. Indeed, Lusompa’s (2023) approach has already seen practical application in the recent

work of Clark et al. (2024).

In this paper, we analyze the properties of the LP GLS estimators proposed by Lusompa (2023)

and Breitung and Brüggemann (2023). We demonstrate that the efficiency gains achieved by

these estimators come from incorporating more of the assumed model’s structure into the esti-

mation process, which undermines the robustness to misspecification that is central to the LP

methodology. In fact, fully utilizing the information from the dynamic model residuals results in

an LP GLS estimator that exactly replicates the iterated impulse responses, which are considered

more sensitive to model misspecification. As a result, these LP GLS estimators should be viewed

as an alternative method for imposing model-based restrictions, rather than as a means of im-

proving LP efficiency without sacrificing robustness. Furthermore, we show that Jordà’s (2005)

suggestion to condition on residuals from previous LP horizons is asymptotically equivalent to

the standard LP OLS estimator and thus offers no improvement.

The remainder of this note is structured as follows. Section 2 introduces the data-generating

process and presents two standard methods for estimating impulse responses: forward iteration

of the dynamic model estimates and LPs estimated via OLS. Section 2.2 explores how the vari-

ous GLS-transformed LP estimates compare to both the iterated IRs and the LP OLS estimates.

For expositional purposes, all estimators will be based on a simple AR(1) specification without

deterministic terms, although the key points can easily be generalized to more complex models.

Note that the considered estimators are all consistent when the errors of the AR(1) specification

are i.i.d., but not when they are persistent. We will also allow for model misspecification with

moving average (MA) errors, as in the absence of misspecification, the optimal approach would

be to iteratively calculate IRs from the correctly specified dynamic model (or use an LP GLS es-

timator that replicates these IRs). While LPs are considered more robust to misspecification, this
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note does not aim to prove that point. Instead, we focus on how misspecification influences the

position of the various LP GLS estimators relative to iterated IR and LP OLS. Section 3 illustrates

the bias-variance trade-off between the various estimators using a simple example. Section 4

concludes. Proofs and simulation results are presented in the Appendix.

2 Estimating impulse responses in the dynamic model

Consider the following stylized univariate dynamic model

yt+1 = αyt + ε
q
t+1, for t = 1, . . . , T − 1, (1)

where |α| < 1 and ε
q
t+1 = β(q)µt+1, with β(q) = ∑

q
j=0 β jLj a stable (invertible) lag polynomial

of order q ≥ 0, with β0 = 1, and µt is an i.i.d. process with E(µt) = 0, E(µ2
t ) = σ2 > 0 and

E(µ4
t ) < ∞ for all t. Note that q controls the degree of autocorrelation in ε

q
t+1.

The aim is to estimate the response δh of yt+h to a unit impulse in µt over the horizon h = 1, . . . , H

for a fixed and finite H(< T). In the analysis below, δh will be estimated using various approaches

that start from a simple AR(1) specification assuming i.i.d. errors, which is correct if q = 0 but

misspecified if q > 0. In particular, if q = 0 then δh = αh and the IRs can be consistently estimated

using AR(1)-based methods. If q > 0, then δh = αh + Bq,h so that the IRs will also depend on a

function of the MA coefficients Bq,h = fh(β(q)), and an AR(1) specification will in general lead

to inconsistent IR estimators.1 Thus, q provides a straightforward way to control the degree of

misspecification in model (1), with B0,h = 0 when q = 0.

2.1 Benchmark impulse response estimators

2.1.1 Forward-iterated estimates

Let α̂ = (∑T−1
t=1 y2

t )
−1 ∑T−1

t=1 ytyt+1 denote the OLS estimate of α in eq.(1), obtained from regressing

yt+1 on yt. The forward-iterated estimate of δh is then given by δ̂iter
h = α̂h. This is essentially the

VAR approach to estimating IRs.

If the model is correctly specified (q = 0), the limiting distribution of δ̂iter
h , for finite h, can be

derived from the limiting distribution of α̂ with the delta method

√
T(δ̂iter

h − δh)
d−→ N (0, (1 − α2)h2α2h−2). (2)

In this case, δ̂iter
h is an optimal estimate for δh in an efficiency sense. If q > 0, then δ̂iter

h is

inconsistent for δh and the asymptotic distribution will differ from eq.(2).

1For instance, if q = 1 then δh = αh + αh−1β1.
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2.1.2 Local Projections with OLS

Jordà (2005) proposes to directly estimate δh with the following local projections

yt+h = bhyt + eh
t+h, for h = 1, . . . , H, (3)

where backward iteration of eq.(1) reveals that bh = αh and eh
t+h = ∑h

j=1 αh−jε
q
t+j, irrespective of

whether the model is correctly specified.

Regressing yt+h on yt yields the corresponding LP OLS estimator:

b̂OLS
h =

(
T−h

∑
t=1

y2
t

)−1 T−h

∑
t=1

ytyt+h. (4)

If q = 0, the AR(1) model is correctly specified and yt is uncorrelated with eh
t+h = ∑h

j=1 αh−jµt+j,

which implies that b̂OLS
h is consistent for δh = αh. The limiting distribution in this case is given

by (see also Bhansali, 1997; Lusompa, 2023)

√
T(b̂OLS

h − δh)
d−→ N

(
0, (1 − α2)−1(1 + α2 − (2h + 1)α2h + (2h − 1)α2h+2)) , (5)

where we recall that h is treated as a fixed finite quantity. Since |α| < 1, the asymptotic variance

of b̂OLS
h in eq.(5) exceeds that of δ̂iter

h in eq.(2), particularly for larger values of h as more forecast

errors then accumulate in eh
t+h. Thus, for non-zero h, LP OLS is less efficient than iterated IRs. To

address this inefficiency, several GLS transformations have been proposed, which we will explore

in the next section.

When the AR(1) model in eq.(1) is misspecified (q > 0), b̂OLS
h is in general not consistent for δh.

However, following Galvao and Kato (2014), we note that b̂OLS
h then consistently estimates the

pseudo-true IR parameter δ
p
h :

δ
p
h = αh +

Cov
(

yt, ∑h
j=1 αh−jε

q
t+j

)
Var(yt)

= αh +
h

∑
j=1

αh−jcj, (6)

with cj = Cov(yt, ε
q
t+j)/Var(yt). This pseudo-true IR represents the best partial linear approxi-

mation to the true h-period ahead response δh, which underlies the commonly cited robustness

of LPs to model misspecification and is a key advantage of LPs over forward-iterated estimates.

Setting bh = δ
p
h in eq.(3), the LP errors eh

t+h are now given by eh
t+h = ∑h

j=1 αh−j(ε
q
t+j − cjyt), or

equivalently following some more algebra:

eh
t+h =

h

∑
j=1

δ
p
h−jν

j
t+j, with ν

j
t+j = ε

q
t+j − cjyt −

h−1

∑
ℓ=1

ch−ℓν
ℓ
t+ℓ, (7)

where δ
p
0 = 1. Note that the eh

t+h are by construction uncorrelated with yt for all h, and δ
p
h = δh if
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q = 0.

2.2 Local projections with GLS

The LP error term eh
t+h in eq.(3) is a moving average of forecast errors, and this structure can

be used to enhance efficiency through a GLS transformation. We will explore two alternative

approaches: (i) using residuals from the dynamic model (horizon-one LP OLS) and (ii) using

residuals from previous-horizon LP GLS estimates.

Approach suggested by Lusompa (2023)

Lusompa (2023) suggests to transform eq.(3) for h ≥ 2 by bringing the forecast errors ε
q
t+1, . . . , ε

q
t+h−1

to the left-hand side:

yt+h −
h−1

∑
j=1

bh−jε
q
t+j = bhyt + eh,Lu

t+h . (8)

When q = 0, we have that the remainder eh,Lu
t+h = ε

q
t+h = µt+h is an i.i.d. process such that

this approach indeed removes autocorrelation from the LP errors. When q > 0, however, the

structure of the LP error eh
t+h in eq.(7) shows that the GLS correction is not able to fully remove

the ν1
t+1, . . . , νh−1

t+h−1 from the LP GLS errors eh,Lu
t+h . Moreover, the suggested GLS correction will

result in correlation between yt and eh,Lu
t+h , such that the resulting GLS estimator will also no

longer be consistent for δ
p
h . We will elaborate on this below.

In practice, eq.(8) is implemented by substituting the unobserved ε
q
t+j on the left-hand side with

their estimates ε̂
q
t+j = yt+j − α̂yt+j−1 obtained from the assumed dynamic model (LP at horizon

h = 1), and by using previous-horizon LP GLS estimates for the associated LP coefficients bh−j.

Thus, bh from eq.(8) is estimated by iteratively transforming the data with the h = 1 residuals

over the full forecast horizon:

b̂GLS,Lu
h =

(
T−h

∑
t=1

y2
t

)−1 T−h

∑
t=1

yt

(
yt+h −

h−1

∑
j=1

b̂GLS,Lu
h−j ε̂

q
t+j

)
, for h = 2, . . . , H, (9)

where b̂GLS,Lu
1 = b̂OLS

1 = α̂.

If q = 0, the correct dynamic specification is an AR(1) model, so that the estimated ε̂
q
t+j corre-

spond asymptotically to the errors required for the transformation in (8), and b̂GLS,Lu
h is consistent

for δh. Lusompa (2023) shows that the limiting distribution is then given by

√
T(b̂GLS,Lu

h − δh)
d−→ N

(
0, (1 − α2)

(
1 + (h2 − 1)α2h−2

))
. (10)

A comparison of the asymptotic variance expressions in eqs.(2), (5), and (10) reveals that, under

5



correct specification, the LP GLS estimator is more efficient than LP OLS, though less efficient

than the optimal iterated IRs. The efficiency gains of the LP GLS estimator are particularly

notable when persistence (α) is high, as the accumulation of forecast errors in the LP error term

becomes more pronounced, leading to significant improvements over LP OLS.

Under misspecification, the estimated ε̂
q
t+j are not consistent for the errors in (7), meaning that

(9) transforms the data for each h according to a model that does not reflect the true underly-

ing dynamics. To assess the consequences for LP GLS in such cases, we compare it with two

benchmark IR estimators: b̂OLS
h , generally considered the most robust to misspecification, and

the forward iterated IR δ̂iter
h , typically the least robust. In the Appendix, we demonstrate that the

differences between these estimators are given by:

b̂GLS,Lu
h − b̂OLS

h = BLu
h + Op(T−1/2), BLu

h = −Γ−1
h−1

∑
j=1

(
δ

p
h−j + BLu

h−j

)
ϕj, (11)

b̂GLS,Lu
h − δ̂iter

h = CLu
h + Op(T−1/2), CLu

h = Γ−1

(
ϕh −

h−1

∑
j=1

CLu
h−jϕj

)
, (12)

as T → ∞, where ϕj = E(ytε
q
t+j)− c1E(ytyt+j−1) and BLu

1 = CLu
1 = 0. When eq.(1) is correctly

specified, yt is uncorrelated with ε
q
t+j for all j, leading to BLu

h = CLu
h = 0 such that all approaches

are consistent for δh. When q > 0, however, yt is correlated with ε
q
t+j, resulting in BLu

h ̸= 0 and

CLu
h ̸= 0. As a result, b̂GLS,Lu

h will differ from both b̂OLS
h and δ̂iter

h for h ≥ 2, even asymptotically,

indicating that the use of the h = 1 residuals induces a loss of some of the robustness to mis-

specification inherent in LP OLS. The extent of this deviation, and whether it aligns more closely

with one estimator or the other, depends on both the underlying data-generating process and the

projection horizon.

Approach suggested by Breitung and Brüggemann (2023)

Breitung and Brüggemann (2023) suggest an alternative GLS transformation that conditions on

a different set of errors ε
q
t+2, . . . , ε

q
t+h.2 Bringing these errors to the left-hand side of eq.(3) yields

yt+h −
h

∑
j=2

bh−jε
q
t+j = bhyt + eh,BB

t+h . (13)

When q = 0, eh,BB
t+h = αh−1ε

q
t+1 = αh−1µt+1 is an i.i.d. process, meaning that also this transforma-

tion prevents the accumulation of forecast errors and eliminates autocorrelation in the LP errors.

However, similar to the approach by Lusompa (2023), this is no longer the case when the model

is misspecified.

2Note that Breitung and Brüggemann (2023) suggest to transform eq.(3) by bringing ε
q
t+h to the left-hand side

and include ε
q
t+2, . . . , ε

q
t+h−1 as additional regressors. However, it is not needed to re-estimate the coefficients on these

forecasting errors as they were already estimated in the previous LP horizons. For expositional purposes, we therefore
also brought ε

q
t+2, . . . , ε

q
t+h−1 to the left-hand side of eq.(3).
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Substituting the unobserved ε
q
t+j with the h = 1 dynamic model estimates ε̂

q
t+j, and using pre-

vious horizon estimates for the associated LP coefficients bh−j, the bh from eq.(13) is iteratively

estimated as

b̂GLS,BB
h =

(
T−h

∑
t=1

y2
t

)−1 T−h

∑
t=1

yt

(
yt+h −

h

∑
j=2

b̂GLS,BB
h−j ε̂

q
t+j

)
, for h = 2, . . . , H, (14)

where b̂GLS,BB
1 = α̂ and b̂GLS,BB

0 = 1.

Since the ε̂
q
t+j are again used to transform the data for all h ≥ 2, this effectively extrapolates the

model for h = 1 across the entire forecast horizon, similar to the approach behind δ̂iter
h . In fact,

as we confirm in the Appendix, the statement by Breitung and Brüggemann (2023) that b̂GLS,BB
h

only differs from δ̂iter
h by an asymptotically negligible term holds true,

b̂GLS,BB
h = δ̂iter

h + Op(T−1), (15)

such that both estimators are equivalent as T → ∞, regardless of whether the model is cor-

rectly specified. The rate of convergence is also sufficiently fast to see that b̂GLS,BB
h has the same

asymptotic distribution as δ̂iter
h . Consequently, b̂GLS,BB

h has a lower variance than b̂OLS
h , but its

asymptotic equivalence to δ̂iter
h indicates that this variance reduction is achieved by imposing the

AR(1) specification over the entire forecast horizon. This, in turn, eliminates the robustness of

LPs and reintroduces the well-known sensitivity of forward-iterated estimators like δ̂iter
h .

Full GLS transformation

The argument that the GLS transformation eliminates the robustness of the LP estimator can

be pushed further by also removing the forecast errors ε
q
t+h and ε

q
t+1, which are still present

in the LP errors of the GLS transformations proposed by Lusompa (2023) and Breitung and

Brüggemann (2023), respectively. In fact, there is no compelling reason to retain these errors, as

their estimates can also be readily obtained from the assumed dynamic model. Specifically, the

full set of forecast errors ε
q
t+1, . . . , ε

q
t+h can be subtracted from the left-hand side of eq.(3) from

h = 2 onward. Upon replacing unknown quantities by sample estimates, a b̂GLS, f ull
h estimate for

bh can be iteratively obtained from the following transformed model

yt+h −
h

∑
j=1

b̂GLS, f ull
h−j ε̂

q
t+j = bhyt + eh, f ull

t+h , for h ≥ 2, (16)

with b̂GLS, f ull
0 = 1 and b̂GLS, f ull

1 = α̂. It is easy to show that yt+h − ∑h
j=1 b̂GLS, f ull

h−j ε̂
q
t+j = α̂hyt, such

that the LP GLS estimator b̂GLS, f ull
h in eq.(16) is given by

b̂GLS, f ull
h =

(
T−h

∑
t=1

y2
t

)−1 T−h

∑
t=1

(
yt+h −

h

∑
j=1

b̂GLS, f ull
h−j ε̂

q
t+j

)
yt = α̂h ∑T−h

t=1 y2
t

∑T−h
t=1 y2

t
= α̂h = δ̂iter

h . (17)
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Thus, a GLS transformation that fully utilizes the available h = 1 residuals is even numeri-

cally identical to δ̂iter
h , regardless of the sample size or whether the model is correctly specified.

We have thus moved from a large sample equivalence as in eq.(15) to a finite sample identity

b̂GLS, f ull
h ≡ δ̂iter

h . This further confirms that the GLS transformation imposes the dynamic model

on the full forecast horizon and that the robustness of LPs is lost in the process.

Iterative GLS LP with LP GLS residuals

We have argued that using estimated h = 1 residuals for GLS corrections imposes the assumed

model’s dynamics over the entire projection horizon, thereby eliminating the robustness of LPs to

misspecification. This raises the question of whether Jordà’s suggestion to use previous horizon

LP GLS residuals for the correction can mitigate this issue. That is, Jordà (2005) suggests the

following sequence of GLS transformations

yt+h −
h−1

∑
j=1

bh−jν
j
t+j = bhyt + νh

t+h, (18)

with νh
t+h as defined in eq.(7), and operationalized by replacing bh−j and ν

j
t+j (for j = 1, . . . , h − 1)

by estimates obtained at the previous horizon. The suggested GLS estimator is therefore

b̂GLS,LPe
h =

(
T−h

∑
t=1

y2
t

)−1 T−h

∑
t=1

yt

(
yt+h −

h−1

∑
j=1

b̂GLS,LPe
h−j ν̂

j
t+j

)
,

where b̂GLS,LPe
0 = 1, b̂GLS,LPe

1 = α̂ and ν̂
j
t+j = yt+j − b̂GLS,LPe

j yt. To assess its behavior, we again

consider the difference from b̂OLS
h as T → ∞ (see the Appendix for proof):

b̂GLS,LPe
h − b̂OLS

h = −
h−1

∑
j=1

b̂GLS,LPe
h−j

∑T−h
t=1 ytν̂

j
t+j

∑T−h
t=1 y2

t

 = Op(T−1). (19)

The rate of convergence in eq.(19) implies that b̂GLS,LPe
h shares the same asymptotic distribution

as b̂OLS
h for T → ∞, meaning that the proposed GLS transformation does not harm robustness but

also does not result in efficiency gains over OLS. Intuitively, this is because the transformation

terms on the left-hand side of eq.(18) must be estimated, which increases the variance to the same

level as that of the original LP OLS estimator.
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3 Illustrative Example

To illustrate the bias-variance trade-off between the estimators under consideration, we generate

5,000 samples using the following simple data-generating process:

yt+1 = αyt + µt+1 + β1µt−1 + β2µt−3, (20)

with µt ∼ N (0, 1). The first 100 observations are discarded as burn-in. We set α = 0.8 and

consider two scenarios: one where the AR(1) model is correctly specified (q = β1 = β2 = 0) and

another where it is misspecified (q > 0, β1 = −0.5, β2 = 0.4).

We estimate the impulse responses δh for h = 1, . . . , 12 using the δ̂iter
h , b̂OLS

h , b̂GLS,Lu
h , b̂GLS,BB

h

and b̂GLS,LPe
h estimators, all based on an AR(1) model. Thus, they are correctly specified when

β1 = β2 = 0 but misspecified when β1 = −0.5 and β2 = 0.4. We do not report results for the

b̂GLS, f ull
h estimator, as it is numerically equivalent to δ̂iter

h . Tables B-1-B-2 in Appendix B report

the bias and the standard deviation of the considered estimators for T ∈ {25, 250}. Figure 1

illustrates these results for the misspecified model, estimated with a sample size of T = 250

Figure 1: Numerical illustration, trading robustness for efficiency

2 4 6 8 10 12
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(a) Average
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(b) Standard deviation

True IR δ̂iter b̂OLS b̂GLS,Lu b̂GLS,BB b̂GLS,e

Notes: Data samples of size T = 250 are generated from eq.(20) setting α = 0.8, β1 = −0.5 and β2 = 0.4. Reported
are averages and standard deviations across 5,000 Monte Carlo draws of the various considered IR estimators. The
horizontal axis represents the projection horizon h = 1, . . . , 12.

The results confirm the conclusions made above. All estimators are biased but consistent when

the model is correctly specified, whereas they are biased and inconsistent in the misspecified

case. In the latter setting, the LP OLS estimator b̂OLS is closer to the true impulse response

than the iterated estimator δ̂iter, although not uniformly across the entire projection horizon.

This illustrates the inherent higher robustness to misspecification by LP OLS, and the sensitivity

of δ̂iter. Conversely, b̂OLS exhibits a much larger variance compared to δ̂iter, especially as the

projection horizon increases. This is true irrespective of whether the model is correctly specified

or not.
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The LP GLS estimator b̂GLS,Lu of Lusompa (2023) has a smaller variance than the LP OLS es-

timator, but this comes at the cost of a higher bias, which, in some cases along the projection

horizon, even surpasses the bias of δ̂iter. Overall, b̂GLS,Lu strikes a middle ground between b̂OLS

and δ̂iter in terms of both bias and variance. Clearly, the GLS transformation has indeed resulted

in sacrificing some of the robustness of LP OLS for efficiency.

The LP GLS estimator b̂GLS,BB of Breitung and Brüggemann (2023) takes things a step further, and

we confirm that the differences with δ̂iter are negligibly small, as evidenced by the overlapping

lines in Figure 1, regardless of whether the model is well-specified or misspecified. This is

consistent with their asymptotic equivalence, as demonstrated in Section 2.

Lastly, the differences between the LP GLS estimator b̂GLS,LPe, which uses LP residuals, and the

LP OLS estimator are also minimal, with their lines similarly overlapping in Figure 1. This aligns

with the asymptotic equivalence discussed in Section 2, showing that this transformation indeed

does not lead to any improvements. For T = 25, b̂GLS,LPe tends to slightly inflate the variance.

4 Conclusion

This paper highlights the crucial trade-off between efficiency and robustness when estimating

LPs using GLS. Depending on the specific implementation, GLS estimators either converge to

the iterated LP estimator or the original LP OLS estimator.

GLS transformations that rely on dynamic model residuals – as in the approaches proposed

by Lusompa (2023) and Breitung and Brüggemann (2023), and full GLS – achieve efficiency by

imposing the dynamic model’s structure over the entire projection horizon. While this results in

estimators that are either close to or identical to forward-iterated IRs, it also makes them highly

sensitive to misspecification. This trade-off should be a significant concern for researchers, as it

undermines the very robustness that LPs are valued for.

On the other hand, iterative GLS LP methods, which use LP GLS residuals from previous hori-

zons, fail to provide the expected efficiency improvements over LP OLS. The asymptotic distri-

bution of these estimators remains equivalent to that of LP OLS, indicating that GLS corrections

do not bring efficiency gains in this setting.

Although we have used a simple AR(1) setting for illustrative purposes, the conclusions natu-

rally extend to higher-order, multivariate, and panel data models, where the same efficiency-

robustness trade-off will arise when incorporating estimated forecast errors. It is crucial to em-

phasize that this trade-off disappears when LPs are augmented with ex-post observed forecast

errors, as is for instance done by Faust and Wright (2013) and Teulings and Zubanov (2014).

When these observed forecast errors are, in population, uncorrelated with the original regres-

sors, they preserve the robustness of the LPs while simultaneously enhancing their efficiency.

Further note that Teulings and Zubanov (2014) primarily use this LP augmentation to mitigate

10



the incidental parameter bias of the Fixed-Effects LP estimator. In our analysis, we avoided such

biases by excluding deterministic terms from the specifications, focusing solely on improving

efficiency and leaving bias correction for future research.

In conclusion, this paper serves as a warning for researchers to carefully consider the use of GLS

transformations in LPs, particularly in settings where robustness to misspecification is crucial.
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Appendices

Appendix A Proofs

Assumption 1. Let in eq.(1) |α| < 1 and µt be an i.i.d. process with E(µt) = 0, E(µ2
t ) = σ2 > 0

and E(µ4
t ) < ∞ for all t, and β(q) is stable and invertible for all q ≥ 0.

A.1 Lemmas

Lemma 1. Γ̂T−h = 1
T ∑T−h

t=1 y2
t = Γ + Op(T−1/2) and Γ̂−1

T−h = Γ−1 + Op(T−1/2), with Γ = E(y2
t ) =

O(1) as T → ∞.

Proof: Assumption 1 implies that yt is a mean 0, weakly dependent stationary series with finite

4th moments, from which follows that Γ = E(y2
t ) = Var(yt) = O(1) for all t, with Γ > 0, and we

have by standard results Γ̂T−h = Γ + Op(T−1/2). Since Γ > 0 and rk(Γ̂T−h)− rk(Γ) → 0, we also

have that Γ̂−1
T−h = Γ−1 + Op(T−1/2) with Γ−1 = O(1).

Lemma 2. b̂OLS
h − δ

p
h = Op(T−1/2) as T → ∞ for h ≥ 1 and q ≥ 0.

Proof: Consider (4) and the pseudo-true IR parameter defined in (6): δ
p
h = αh + ∑h

j=1 αh−jcj, with

cj = Cov(yt, ε
q
t+j)/Var(yt). Then, the backward iterated LP is

yt+h = δ
p
h yt + eh

t+h, eh
t+h =

h

∑
j=1

αh−j(ε
q
t+j − cjyt), (A-1)

where Cov(yt, eh
t+h) = 0 by construction for all h and we note that eh

t+h can also be written as in

eq.(7). Accordingly, substituting (A-1) and Γ̂T−h = 1
T ∑T−h

t=1 y2
t into (4) yields

b̂OLS
h =

(
1
T

T−h

∑
t=1

y2
t

)−1
1
T

T−h

∑
t=1

yt(δ
p
h yt + eh

t+h) = δ
p
h + Γ̂−1

T−h
1
T

T−h

∑
t=1

yteh
t+h, (A-2)

from which follows the required

∣∣∣b̂OLS
h − δ

p
h

∣∣∣ ≤ ∣∣∣Γ̂−1
T−h

∣∣∣ ∣∣∣∣∣ 1
T

T−h

∑
t=1

yteh
t+h

∣∣∣∣∣ = Op(T−1/2), (A-3)

because |Γ̂−1
T−h| = Op(1) and ∣∣∣∣∣ 1

T

T−h

∑
t=1

yteh
t+h

∣∣∣∣∣ = Op(T−1/2), (A-4)

since yt and eh
t+h are uncorrelated and stationary variables with finite 4th moments by Assump-
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tion 1. Given that convergence is to the pseudo-true parameter, we note that the result holds

irrespective of the misspecification parameter q ≥ 0.

A.2 Proof of eq.(11)

The GLS estimator in eq.(9) can by substituting in (A-1) be written as

b̂GLS,Lu
h =

(
1
T

T−h

∑
t=1

y2
t

)−1
1
T

T−h

∑
t=1

yt

(
yt+h −

h−1

∑
j=1

b̂GLS,Lu
h−j ε̂

q
t+j

)
,

= Γ̂−1
T−h

1
T

T−h

∑
t=1

yt

(
δ

p
h yt + eh

t+h −
h−1

∑
j=1

b̂GLS,Lu
h−j ε̂

q
t+j

)
,

= δ
p
h + Γ̂−1

T−h

[
1
T

T−h

∑
t=1

yteh
t+h −

h−1

∑
j=1

b̂GLS,Lu
h−j

1
T

T−h

∑
t=1

yt ε̂
q
t+j

]
,

= δ
p
h − Γ̂−1

T−h

h−1

∑
j=1

b̂GLS,Lu
h−j

(
1
T

T−h

∑
t=1

yt ε̂
q
t+j

)
+ Op(T−1/2),

= δ
p
h − Γ̂−1

T−h

h−1

∑
j=1

b̂GLS,Lu
h−j ϕ̂j + Op(T−1/2), (A-5)

where we defined ϕ̂j =
1
T ∑T−h

t=1 yt ε̂
q
t+j and used Γ̂T−h = 1

T ∑T−h
t=1 y2

t = Op(1) by Lemma 1 together

with
∣∣∣ 1

T ∑T−h
t=1 yteh

t+h

∣∣∣ = Op(T−1/2) obtained in (A-4).

Consider next that the estimated one-period ahead forecast errors are given by ε̂
q
t+j = yt+j −

α̂yt+j−1 = yt+j − b̂OLS
1 yt+j−1 since by definition α̂ = b̂OLS

1 . In turn, setting h = 1 in (A-1) and

shifting the time index reveals that yt+j = δ
p
1 yt+j−1 + e1

t+j with e1
t+j = ε

q
t+j − c1yt+j−1 and c1 =

Cov(yt, ε
q
t+1)/Var(yt). Accordingly, substituting the latter into the former yields

ε̂
q
t+j = e1

t+j − (b̂OLS
1 − δ

p
1 )yt+j−1, (A-6)

which results in the following decomposition of ϕ̂j:

ϕ̂j =
1
T

T−h

∑
t=1

yt(e1
t+j − (b̂OLS

1 − δ
p
1 )yt+j−1) =

1
T

T−h

∑
t=1

yte1
t+j − (b̂OLS

1 − δ
p
1 )

1
T

T−h

∑
t=1

ytyt+j−1,

=
1
T

T−h

∑
t=1

yte1
t+j + Op(T−1/2),

where the final line follows from |T−1 ∑T−h
t=1 ytyt+j−1| = Op(1) by the stationarity in Assumption

1 and because |b̂OLS
1 − δ

p
1 | = Op(T−1/2) by setting h = 1 in Lemma 2. Define next ϕj = E(yte1

t+j),

and note that ϕ1 = 0 by definition for j = 1, and ϕj = O(1) in general by the stationarity

in Assumption 1. Given that yt and e1
t+j are covariance stationary variables with finite fourth
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moments, we have that |T−1 ∑T−h
t=1 yte1

t+j − ϕj| = Op(T−1/2), from which follows

ϕ̂j = ϕj + Op(T−1/2). (A-7)

Next, note that Γ̂−1
T−h = Γ−1 +Op(T−1/2) (Lemma 1) and consider that for h = 2 we have b̂GLS,Lu

1 =

b̂OLS
1 in (A-5). Lemma 2 then implies |b̂GLS,Lu

1 | = Op(1) and |b̂GLS,Lu
1 − δ

p
1 | = Op(T−1/2), such that

we obtain for h = 2

b̂GLS,Lu
2 = δ

p
2 − Γ̂−1

T−2b̂GLS,Lu
1 ϕ̂j + Op(T−1/2) = δ

p
2 − Γ−1δ

p
1 ϕ1 + Op(T−1/2), (A-8)

which indicates in turn that |b̂GLS,Lu
2 | = Op(1). Accordingly, given the latter and also |b̂GLS,Lu

1 | =
Op(1), we have for h = 3 by also substituting in (A-8)

b̂GLS,Lu
3 = δ

p
3 − Γ−1

2

∑
j=1

b̂GLS,Lu
3−j ϕj + Op(T−1/2),

= δ
p
3 − Γ−1b̂GLS,Lu

2 ϕ1 − Γ−1b̂GLS,Lu
1 ϕ2 + Op(T−1/2),

= δ
p
3 − Γ−1(δ

p
2 − Γ−1δ

p
1 ϕ1)ϕ1 − Γ−1δ

p
1 ϕ2 + Op(T−1/2),

from which it is clear that the inconsistency is defined recursively, and we obtain by iteratively

following the steps above, for general h,

b̂GLS,Lu
h = δ

p
h + BLu

h + Op(T−1/2), (A-9)

where BLu
h = −Γ−1 ∑h−1

j=1

(
δ

p
h−j + BLu

h−j

)
ϕj and we have BLu

1 = 0. The stated result then follows

from subtracting b̂OLS
h = δ

p
h + Op(T−1/2) by Lemma 2:

b̂GLS,Lu
h − b̂OLS

h = BLu
h + Op(T−1/2), (A-10)

as required.

A.3 Proof of eq.(12)

First note that backward iterating h periods yields

yt+h = α̂yt+h−1 + ε̂
q
t+h = α̂hyt +

h−1

∑
j=1

α̂h−j ε̂
q
t+j + ε̂

q
t+h.

Substituting this into the expression for b̂GLS,Lu
h , we have for h ≥ 2

b̂GLS,Lu
h = Γ̂−1

T−h

[
1
T

T−h

∑
t=1

yt

(
yt+h −

h−1

∑
j=1

b̂GLS,Lu
h−j ε̂

q
t+j

)]
,
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= Γ̂−1
T−h

[
1
T

T−h

∑
t=1

yt

(
α̂hyt +

h−1

∑
j=1

(α̂h−j − b̂GLS,Lu
h−j )ε̂

q
t+j + ε̂

q
t+h

)]
,

= α̂h + Γ̂−1
T−h

[
1
T

T−h

∑
t=1

yt

(
ε̂

q
t+h +

h−1

∑
j=1

(α̂h−j − b̂GLS,Lu
h−j )ε̂

q
t+j

)]
,

= α̂h + Γ̂−1
T−h

[
ϕ̂h −

h−1

∑
j=1

(b̂GLS,Lu
h−j − α̂h−j)ϕ̂j

]
.

Consider then that for h = 2, by making use of (b̂GLS,Lu
1 − α̂) = 0 and subsequently Γ̂−1

T−h =

Γ−1 + Op(T−1/2) (Lemma 1) and (A-7)

b̂GLS,Lu
2 − α̂2 = Γ̂−1

T−2

[
ϕ̂2 − (b̂GLS,Lu

1 − α̂)ϕ̂j

]
= Γ̂−1

T−2ϕ̂2 = CLu
2 + Op(T−1/2), (A-11)

where CLu
2 = Γ−1ϕ2.

Similarly, for h = 3, making use of (A-7) and substituting in (A-11) gives

b̂GLS,Lu
3 − α̂3 = Γ̂−1

T−3

[
ϕ̂3 −

2

∑
j=1

(b̂GLS,Lu
3−j − α̂3−j)ϕ̂j

]
= Γ̂−1

T−3

[
ϕ̂3 − (b̂GLS,Lu

2 − α̂2)ϕ̂1

]
,

= Γ−1(ϕ3 − CLu
2 ϕ1) + Op(T−1/2),

= CLu
3 + Op(T−1/2), (A-12)

where CLu
3 = Γ−1(ϕ3 − CLu

2 ϕ1).

Accordingly, iteratively substituting in expressions as above yields for general h

b̂GLS,Lu
h − α̂h = CLu

h + Op(T−1/2), f or h ≥ 1,

where CLu
h = Γ−1

(
ϕh − ∑h−1

j=1 CLu
h−jϕj

)
, with CLu

1 = 0, and where we used that h is finite. The

stated expression then substitutes in the definition δ̂iter
h = α̂h.

A.4 Proof of eq.(15)

Let α̂T−a be the OLS estimator in (1) estimated with T − a observations. That is,

α̂T−a =

(
1
T

T−a

∑
t=1

y2
t

)−1
1
T

T−a

∑
t=1

ytyt+1 = Γ̂−1
T−aγ̂T−a, f or 1 ≤ a ≤ T − 1, (A-13)

and note that we can write, for any fixed and finite 2 ≤ a ≤ H:

Γ̂T−a =
1
T

[
T−1

∑
t=1

y2
t −

a−1

∑
ℓ=0

y2
T−1−ℓ

]
= Γ̂T−1 −

1
T

a−1

∑
ℓ=0

y2
T−1−ℓ = Γ̂T−1 + Op(T−1),

γ̂T−a =
1
T

[
T−1

∑
t=1

ytyt+1 −
a−1

∑
ℓ=0

yT−1−ℓyT−ℓ

]
= γ̂T−1 −

1
T

a−1

∑
ℓ=0

yT−1−ℓyT−ℓ = γ̂T−1 + Op(T−1),
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since we have by Assumption 1 that |ytyt+i| = Op(1) for all i, so that the fixed and finite a implies

|∑a−1
ℓ=0 y2

T−1−ℓ| = Op(1) and |∑a−1
ℓ=0 yT−1−ℓyT−ℓ| = Op(1) as T → ∞. It thus follows for 2 ≤ a ≤ H:

α̂T−a = Γ̂−1
T−aγ̂T−a = Γ̂−1

T−1γ̂T−1 + Op(T−1) = α̂T−1 + Op(T−1). (A-14)

Consider then the estimator in eq.(14),

b̂GLS,BB
h =

(
T−h

∑
t=1

y2
t

)−1 T−h

∑
t=1

yt

(
yt+h −

h

∑
j=2

b̂GLS,BB
h−j ε̂

q
t+j

)
, for h = 2, . . . , H, (A-15)

which is initiated with b̂GLS,BB
1 = α̂T−1 and b̂GLS,BB

0 = 1.

For h = 2, we have b̂GLS,BB
2 =

(
∑T−2

t=1 y2
t

)−1
∑T−2

t=1 yt
(
yt+2 − ε̂

q
t+2

)
, where we note that

yt+h = α̂T−1yt+h−1 + ε̂
q
t+h, (A-16)

yields for h = 2 that yt+2 − ε̂
q
t+2 = α̂T−1yt+1, and therefore

b̂GLS,BB
2 =

∑T−2
t=1 yt

(
yt+2 − ε̂

q
t+2

)
∑T−2

t=1 y2
t

= α̂T−1
∑T−2

t=1 ytyt+1

∑T−2
t=1 y2

t
= α̂T−1α̂T−2 = α̂2

T−1 + Op(T−1),

where we used |α̂T−1| = Op(1) (Lemma 2) and substituted in (A-14) with a = 2.

For h = 3, we similarly have by making use of (A-16)

yt+3 − ε̂
q
t+3 − b̂GLS,BB

1 ε̂
q
t+2 = α̂T−1yt+2 − α̂T−1 ε̂

q
t+2 = α̂2

T−1yt+1,

such that, by substituting in (A-14) with a = 3,

b̂GLS,BB
3 =

∑T−3
t=1 yt

(
yt+3 − ε̂

q
t+3 − b̂GLS,BB

1 ε̂
q
t+2

)
∑T−3

t=1 y2
t

= α̂2
T−1

∑T−3
t=1 ytyt+1

∑T−3
t=1 y2

t
= α̂2

T−1α̂T−3,

= α̂3
T−1 + Op(T−1).

For h = 4, making use of |ε̂q
t+ℓ| = Op(1) and the previous results gives

yt+4 − ε̂
q
t+4 − b̂GLS,BB

1 ε̂
q
t+3 − b̂GLS,BB

2 ε̂
q
t+2 = α̂T−1yt+3 − α̂T−1 ε̂

q
t+3 − α̂2

T−1 ε̂
q
t+2 + Op(T−1),

= α̂2
T−1yt+2 − α̂2

T−1 ε̂
q
t+2 + Op(T−1),

= α̂3
T−1yt+1 + Op(T−1),

where the second and third equalities substitute in (A-16). Accordingly, since averaging does not

alter the stochastic orders

b̂GLS,BB
4 = Γ̂−1

T−4
1
T

T−4

∑
t=1

yt

(
yt+4 − ε̂

q
t+4 − b̂GLS,BB

1 ε̂
q
t+3 − b̂GLS,BB

2 ε̂
q
t+2

)
,
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= Γ̂−1
T−4

1
T

T−4

∑
t=1

yt

(
α̂3

T−1yt+1 + Op(T−1)
)

,

= α̂3
T−1Γ̂−1

T−4γ̂T−4 + Op(T−1),

= α̂3
T−1α̂T−4 + Op(T−1),

= α̂4
T−1 + Op(T−1),

where the last step uses again (A-14).

Continuing in this fashion yields for general h

b̂GLS,BB
h =

1
T ∑T−h

t=1 yt

(
yt+h − ∑h

j=2 b̂GLS,BB
h−j ε̂

q
t+j

)
1
T ∑T−h

t=1 y2
t

= α̂h−1
T−1

1
T ∑T−h

t=1 ytyt+1
1
T ∑T−h

t=1 y2
t

+ Op(T−1),

= α̂h−1
T−1α̂T−h + Op(T−1) = α̂h

T−1 + Op(T−1),

= δ̂iter
h + Op(T−1),

as was to be proved, where we used in the final line δ̂iter
h = α̂h

T−1 by definition.

A.5 Proof of eq.(19)

Consider the difference with the OLS estimator

b̂GLS,LPe
h − b̂OLS

h = −
h−1

∑
j=1

b̂GLS,LPe
h−j

∑T−h
t=1 ytν̂

j
t+j

∑T−h
t=1 y2

t

 = −Γ̂−1
T−h

h−1

∑
j=1

b̂GLS,LPe
h−j

(
1
T

T−h

∑
t=1

ytν̂
j
t+j

)
,

and note that yt and ν̂
j
t+j are orthogonal by construction over the sample period 1, . . . , T − j

by virtue of OLS estimation, whereas the summation runs over t = 1, . . . , T − h, with h > j.

Accordingly, we can write∣∣∣∣∣ 1
T

T−h

∑
t=1

ytν̂
j
t+j

∣∣∣∣∣ =
∣∣∣∣∣ 1
T

[
T−j

∑
t=1

ytν̂
j
t+j −

h−j

∑
ℓ=1

yT−h+ℓν̂
j
T−h+ℓ+j

]∣∣∣∣∣ = 1
T

∣∣∣∣∣h−j

∑
ℓ=1

yT−h+ℓν̂
j
T−h+ℓ+j

∣∣∣∣∣ ,

= Op(T−1),

where we used |∑h−j
ℓ=1 yT−h+ℓν̂

j
T−h+ℓ+j| = Op(1) because |yT−h+ℓν̂

j
T−h+ℓ+j| = Op(1) for all ℓ and

h − j is a fixed and finite integer. Noting then that b̂GLS,LPe
0 = 1, b̂GLS,LPe

1 = α̂ and iteratively

substituting in the result above shows that |b̂GLS,LPe
h | = Op(1) for each h, and accordingly, that

|b̂GLS,LPe
h − b̂OLS

h | = Op(T−1), as required.
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Appendix B Simulation Results

Table B-1: MC results, correctly specified model

T = 25 Bias Standard deviation

h δ̂iter b̂OLS b̂GLS,Lu b̂GLS,BB b̂GLS,LPe δ̂iter b̂OLS b̂GLS,Lu b̂GLS,BB b̂GLS,LPe

1 -0.05 -0.05 -0.05 -0.05 -0.05 0.14 0.14 0.14 0.14 0.14

2 -0.06 -0.08 -0.08 -0.06 -0.08 0.19 0.22 0.22 0.19 0.22

3 -0.05 -0.09 -0.07 -0.06 -0.08 0.21 0.27 0.24 0.21 0.27

4 -0.04 -0.09 -0.07 -0.04 -0.08 0.21 0.31 0.26 0.21 0.31

5 -0.02 -0.08 -0.05 -0.03 -0.07 0.21 0.34 0.26 0.20 0.34

6 -0.01 -0.07 -0.05 -0.01 -0.06 0.20 0.36 0.26 0.19 0.38

7 0.01 -0.07 -0.03 -0.00 -0.05 0.19 0.39 0.26 0.18 0.41

8 0.02 -0.06 -0.03 0.01 -0.04 0.18 0.41 0.26 0.17 0.45

9 0.02 -0.04 -0.02 0.01 -0.02 0.17 0.44 0.26 0.16 0.50

10 0.03 -0.03 -0.02 0.02 0.00 0.16 0.47 0.26 0.15 0.56

11 0.03 -0.02 -0.01 0.02 0.02 0.16 0.51 0.27 0.14 0.63

12 0.04 -0.01 -0.02 0.02 0.04 0.15 0.54 0.27 0.13 0.72

T = 250 Bias Standard deviation

h δ̂iter b̂OLS b̂GLS,Lu b̂GLS,BB b̂GLS,LPe δ̂iter b̂OLS b̂GLS,Lu b̂GLS,BB b̂GLS,LPe

1 -0.01 -0.01 -0.01 -0.01 -0.01 0.04 0.04 0.04 0.04 0.04

2 -0.01 -0.01 -0.01 -0.01 -0.01 0.06 0.06 0.06 0.06 0.06

3 -0.01 -0.01 -0.01 -0.01 -0.01 0.07 0.08 0.08 0.07 0.08

4 -0.01 -0.01 -0.01 -0.01 -0.01 0.08 0.10 0.08 0.08 0.10

5 -0.00 -0.01 -0.01 -0.00 -0.01 0.08 0.11 0.08 0.07 0.11

6 -0.00 -0.01 -0.01 -0.00 -0.01 0.07 0.12 0.08 0.07 0.12

7 -0.00 -0.01 -0.00 -0.00 -0.01 0.07 0.12 0.08 0.07 0.12

8 0.00 -0.01 -0.00 0.00 -0.01 0.06 0.12 0.07 0.06 0.12

9 0.00 -0.01 -0.00 0.00 -0.01 0.06 0.13 0.07 0.06 0.13

10 0.00 -0.01 -0.00 0.00 -0.01 0.05 0.13 0.06 0.05 0.13

11 0.00 -0.01 -0.00 0.00 -0.01 0.04 0.13 0.06 0.04 0.13

12 0.00 -0.01 -0.00 0.00 -0.01 0.04 0.13 0.06 0.04 0.13

Notes: Data samples of size T ∈ {25, 250} are generated from equation (20), with parameters set to α = 0.8, β1 = β2 = 0.

The reported values are the average bias and standard deviation across the projection horizon h = 1, . . . , 12, based on

5,000 Monte Carlo simulations for the various impulse response estimators considered.
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Table B-2: MC results, correctly specified model

T = 25 Bias Standard deviation

h δ̂iter b̂OLS b̂GLS,Lu b̂GLS,BB b̂GLS,LPe δ̂iter b̂OLS b̂GLS,Lu b̂GLS,BB b̂GLS,LPe

1 -0.22 -0.22 -0.22 -0.22 -0.22 0.18 0.18 0.18 0.18 0.18

2 0.22 0.06 0.06 0.22 0.06 0.20 0.32 0.32 0.20 0.32

3 0.13 0.16 0.24 0.13 0.16 0.18 0.28 0.24 0.18 0.29

4 -0.22 -0.03 -0.10 -0.22 -0.03 0.16 0.26 0.23 0.16 0.26

5 -0.19 -0.04 -0.13 -0.19 -0.04 0.14 0.28 0.22 0.14 0.29

6 -0.16 -0.04 -0.11 -0.16 -0.03 0.12 0.30 0.21 0.12 0.32

7 -0.13 -0.03 -0.14 -0.13 -0.02 0.10 0.32 0.21 0.10 0.35

8 -0.11 -0.04 -0.13 -0.11 -0.02 0.09 0.34 0.20 0.09 0.38

9 -0.09 -0.04 -0.13 -0.09 -0.01 0.08 0.36 0.20 0.08 0.41

10 -0.07 -0.03 -0.11 -0.07 0.01 0.07 0.38 0.21 0.07 0.46

11 -0.05 -0.01 -0.09 -0.06 0.03 0.06 0.41 0.21 0.06 0.50

12 -0.04 -0.01 -0.07 -0.05 0.04 0.06 0.44 0.22 0.05 0.57

T = 250 Bias Standard deviation

h δ̂iter b̂OLS b̂GLS,Lu b̂GLS,BB b̂GLS,LPe δ̂iter b̂OLS b̂GLS,Lu b̂GLS,BB b̂GLS,LPe

1 -0.18 -0.18 -0.18 -0.18 -0.18 0.06 0.06 0.06 0.06 0.06

2 0.25 0.13 0.13 0.25 0.13 0.07 0.11 0.11 0.07 0.11

3 0.13 0.22 0.29 0.13 0.22 0.07 0.10 0.08 0.07 0.10

4 -0.23 0.02 -0.05 -0.23 0.02 0.06 0.08 0.07 0.06 0.08

5 -0.21 0.01 -0.11 -0.21 0.01 0.05 0.09 0.06 0.05 0.09

6 -0.19 0.01 -0.11 -0.19 0.01 0.04 0.10 0.06 0.04 0.10

7 -0.16 0.01 -0.16 -0.16 0.01 0.03 0.10 0.05 0.03 0.10

8 -0.13 0.00 -0.15 -0.13 0.00 0.02 0.10 0.05 0.02 0.10

9 -0.11 0.00 -0.13 -0.11 0.00 0.02 0.10 0.05 0.02 0.10

10 -0.09 -0.00 -0.11 -0.09 0.00 0.01 0.11 0.05 0.01 0.11

11 -0.07 0.00 -0.08 -0.07 0.00 0.01 0.11 0.05 0.01 0.11

12 -0.06 -0.00 -0.06 -0.06 -0.00 0.01 0.11 0.05 0.01 0.11

Notes: Data samples of size T ∈ {25, 250} are generated from equation (20), with parameters set to α = 0.8, β1 = −0.5,

and β2 = 0.4. The reported values are the average bias and standard deviation across the projection horizon h = 1, . . . , 12,

based on 5,000 Monte Carlo simulations for the various impulse response estimators considered.
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