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Abstract

We estimate the latent factors in high-dimensional non-Gaussian panel data using the eigenvalue

decomposition of the product between the higher-order multi-cumulant and its transpose. The

proposed Higher order multi-cumulant Factor Analysis (HFA) approach comprises an eigenvalue

ratio test to select the number of non-Gaussian factors and uses the eigenvector to estimate the

factor loadings. Unlike covariance-based approaches, HFA remains reliable for estimating the non-

Gaussian factors in weak factor models with Gaussian error terms. Simulation results confirm that

HFA estimators improve the accuracy of factor selection and estimation compared to covariance-

based approaches. We illustrate the use of HFA to detect and estimate the factors for the FRED-

MD data set and use them to forecast the monthly S&P 500 equity premium.

Keywords: Higher-order multi-cumulants, High-dimensional factor models, Weak factors,

Consistency, Eigenvalues

JEL: G11, G12, G15

1. Introduction

Factor models are widely used to characterize the low dimensional common structure from

large panels of economic data (Stock & Watson, 2002). Factor model approaches differ in how they

estimate the latent structure. The most common approach is to use principal component analysis

(PCA) (Bai, 2003; Bai & Ng, 2013). Recently, the Gaussian quasi-maximum likelihood estimator

has been developed to reach a higher efficiency than the PCA estimator (Bai et al., 2012; Bai &
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Li, 2016). However, as mentioned in De Mol et al. (2008) and Onatski (2012), when the factors

have weak influential power, the PCA estimators have a slow convergence rate and can even be

inconsistent. This poor performance is due to the low signal-to-noise ratio of the factors when their

explanatory power decreases. As mentioned in Fan et al. (2022), the selection of common factors

based on the difference between the eigenvalues of the covariance (correlation) matrix becomes

inconsistent when the factors’ explanatory power is smaller than a threshold value, which they

refer to as the minimal signal strength.

In this study, we propose to exploit the information in the higher-order multi-cumulants to

characterize the dependence structure when the data have underlying weak non-Gaussian factors.

Under the proposed framework, we assume that the non-Gaussianity of the observed variables

only comes from the factors and set up a linear factor model with non-Gaussian factors and

Gaussian idiosyncratic errors. We use an eigenvalue-based approach to conduct factor analysis with

(N, T )→∞, labeled as Higher-order multi-cumulant Factor Analysis (HFA). We contribute to the

extant literature in two ways. First, we propose an eigenvalue ratio-based test for determining the

number of non-Gaussian factors consistently, especially the weak factor case. Second, we present

a computationally convenient factor estimation approach based on eigenvalue decomposition. We

study the asymptotic properties of the HFA estimators and prove the efficiency gain of HFA

estimators compared to PCA estimators on non-Gaussian factors.

To determine the number of non-Gaussian factors, we develop a statistical test based on the

eigenvalues of the product between the higher-order multi-cumulant and its transpose. A few recent

studies have considered the problem of determining the number of factors for the modeling of higher-

order multi-cumulants. However, this research differs from these studies significantly. Jondeau

et al. (2018) use a threshold method to identify the factors that drive co-skewness and co-kurtosis

structures across a large set of time series. Boudt et al. (2020) suggests using the information

criteria AIC or BIC based on the nearest-distance estimation between the factor models implied by

the higher-order co-moments and their sample version to select an appropriate factor model. Their

framework assumes a strict factor model only suitable for a small N . Lu & Huang (2022) propose

a higher-order cumulant test to identify the number of non-Gaussian factors in the observed factor

model. We determine the number of non-Gaussian factors by selecting the number of singular values

that drive the higher-order multi-cumulants. Ahn & Horenstein (2013) exploit the well-known fact

that the R largest eigenvalues of the covariance matrix of N observed variables grow unboundedly

as N increases to infinity, whereas the other eigenvalues remain bounded. A similar property

holds for the higher-order multi-cumulants — the R largest singular values of the k-th order multi-

cumulant tensor are unbounded when N increases to infinity, but the others remain bounded.
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Interestingly, this property in higher-order multi-cumulants holds in the weak factor model but

disappears in the covariance matrix. We exploit this to estimate the number of factors and show

how this differs from estimating R by using the covariance matrix. For asymmetric distributions,

the third-order test is sufficient to estimate R. For symmetric non-Gaussian distributions, we need

the fourth-order test to obtain a consistent estimate of R. The proposed Generalized Eigenvalue

Ratio (GER) estimator is obtained by maximizing the ratio of two adjacent singular values of the

higher-order sample multi-cumulant arranged in descending order. We show the consistency of the

proposed factor number estimator with (N, T ) → ∞. Our extensive simulation results indicate

that the GER estimator performs adequately in finite samples.

Further, we contribute to the literature on non-Gaussian factor estimation. We propose a

tractable eigenvalue-based approach to estimate factors and loadings. The HFA approach guaran-

tees the consistency and asymptotic normality of the estimated non-Gaussian factors and factor

loadings in the weak factor model. It is easy to implement because it only depends on the eigenval-

ue decomposition of the product between the higher-order multi-cumulant and its transpose. The

proposed HFA framework estimates latent factors based on the k-th order cumulants. When k = 2,

HFA coincides with PCA. In the case of weak non-Gaussian factors, we recommend considering the

higher order cumulants (k = 3, 4). Thus, the proposed HFA approach nests PCA as a special case.

An alternative approach to extract non-Gaussian factors is the independent component analysis

(ICA), which is based on minimizing the statistical dependence between factors (see e.g. Cardoso

& Souloumiac, 1993; Bonhomme & Robin, 2009). It is widely used in signal processing, image

processing, and neural recognition (Bonhomme & Robin, 2009). In high-dimensional ICA, PCA

is usually applied prior to classic ICA (Risk et al., 2019). Consequently, the ICA estimator is a

rotation of the PCA estimator. Therefore, ICA does not improve the efficiency for estimating the

factors and factor loadings.

The remainder of this paper is organized as follows. Section 2 provides the factor model assumed

in HFA and the notations, and Section 3 presents the tests to determine the number of factors.

Further, Section 4 introduces the HFA estimates and their properties, and Section 5 gives the

prediction framework using an HFA factor-augmented regression. Subsequently, Section 6 reports

our simulation experiments and findings, and Section 7 presents an application to market premium

prediction. Finally, Section 8 provides the concluding remarks. Furthermore, a Supplementary

Appendix provides additional details about this study, including several alternative factor estima-

tion and selection approaches, computational issues, HFA estimates in the presence of Gaussian

factors, more robustness checks, and the R code for the HFA estimator, which is available publicly

in the hofa package.
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2. Factor model

Throughout the paper, we use σr(A) to denote the r-th largest singular value of real value

matrix A and ψr(B) to represent the r-th largest eigenvalue of positive semi-definite matrix B.

The Frobenius norm of a matrix A is denoted by ‖A‖ =
√

tr(A′A), where tr(·) is the trace of

matrix. We use the notation a � b to denote a = O(b) and b = O(a). We use a � b to denote

a = o(b) and a � b to denote b = o(a). . (or &) to present ≤ (or ≥) up to a positive constant.

A⊗k = A⊗ . . .⊗︸ ︷︷ ︸
k

A, where ⊗ is the Kronecker product. [z] is the integer part of a real number z.

2.1. The model

This subsection introduces the main model that will be used throughout the paper. Let xit be

the observed variable for i = 1, . . . , N cross-sectional units at time t = 1, . . . , T . Assume that the

observed data are generated by an R × 1 vector of common factors, ft = [f1t, f2t, . . . , fRt]
′. The

factor model is as follows:

xit = λ′ift + eit, (1)

where λi = (λi1, λi2, . . . , λiR)′ is the R× 1 vector of factor loading for variable i, and eit represents

the idiosyncratic components of variable i at time t. The factors, factor loadings, and idiosyncratic

errors are not observable. For convenience, the time series model (1) can be written as complete

panel data:

X = FΛ′ + E, (2)

where X = (x1, . . . , xi, . . . , xN) and xi = (xi1, . . . , xiT ), Λ = (λ1, λ2, . . . , λN)′, F = (f1, f2, . . . ,fT )′,

and E = (e1, . . . , ei, . . . , eN) and ei = (ei1, . . . , eiT ). Following Bai & Ng (2002), we treat the entries

in Λ as parameters and those in F as random variables.

Unlike the existing literature, we use the information of higher-order multi-cumulants — instead

of the covariance matrix — to identify the factor structure. Further, we study the properties of

the eigenvalue decomposition of the product of the higher-order multi-cumulant and its transpose.

Subsequently, we find the efficiency of this method in estimating weak factor models. We first give

a short introduction of the higher-order multi-cumulant and its singular values and eigenvalues.

Working with multi-cumulants is convenient in a linear factor model with independence assump-

tions between ft and et. For instance, the multi-cumulants for the second-, third-, and fourth-order
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moments of zt = (z1t, z2t, . . . , zQt) ∈ RQ×1 with zero means are

κz,i1i2,t = mz,i1i2,t,

κz,i1i2i3,t = mz,i1i2i3,t,

κz,i1i2i3i4,t = mz,i1i2i3i4,t −mz,i1i2,tmz,i3i4,t −mz,i1i3,tmz,i2i4,t −mz,i1i4,tmz,i2i3,t,

(3)

where κz,i1i2...ik,t is the k-th order multi-cumulant of zi1t, zi2t, . . . , zikt, iq ∈ {1, 2, . . . , Q} for 1 ≤
q ≤ k and k = 2, 3, 4, and mz,i1i2...ik,t = E(zi1tzi2t . . . zikt). Following Kolda & Bader (2009), we can

express the k-th order multi-cumulant tensor of zt in a matrix form:

C
(k)
z,t = {κz,i1j,t} ∈ RQ×Qk−1

, (4)

where j = 1 +
∑k

p=2(ip − 1)Qp−2. We define

C(k)
z ≡ lim

T→∞

1

T

T∑
t=1

C
(k)
z,t , (5)

if the constant matrix C
(k)
z exists. The matrix C

(k)
z is labeled as the (population) k-th order

multi-cumulant for the sequence {zt}Tt=1 as T →∞.

Furthermore, with the available observations {zt}Tt=1, we define

C̃(k)
z ≡

1

T

T∑
t=1

C̃
(k)
z,t . (6)

where C̃
(k)
z,t is defined similarly by using the notations in (3) and (4) and replacing mz,i1i2...ik,t with

m̃z,i1i2...ik,t = zi1tzi2t . . . zikt. The matrix C̃
(k)
z is labeled as the sample k-th order multi-cumulant

for the sequence {zt}Tt=1. In this paper, zt represents either xt, ft, or et.

In this study, we propose to identify the factors and loadings by performing HFA on the higher-

order multi-cumulant matrix instead of PCA on the sample covariance matrix. Now, for the

factors in HFA to be identified successfully, we need to make some assumptions on the higher-order

moments of the factors as follows:

ASSUMPTION A: The factors

(i) E‖ft‖2K < C1 for a real integer K ≥ 3, where C1 is a finite constant.

(ii) For the sequence {ft}Tt=1, its k-th order sample multi-cumulant (2 ≤ k ≤ K) defined in

(6) satisfies C̃
(k)
f

p−→ C
(k)
f as T → ∞, where C

(k)
f is a constant matrix defined in (5). Let
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φ
(k)
j = σj(C

(k)
f ), 0 < φ

(k)
j <∞ for 2 ≤ k ≤ K and j = 1, 2, . . . , R.

(iii) The variables ft and et are mutually independent.

Assumptions A(i) is common in factor analysis. Assumptions A(ii) require the sample k-th

order multi-cumulant of the sequence {ft}Tt=1 converge to a constant matrix as T → ∞, which

is also common in static factor model when k = 2, see e.g. Bai (2003) and Ahn & Horenstein

(2013). Moreover, we require all the singular value of C
(k)
f are nonzero for k ≥ 3, which adds

a non-Gaussian feature to the factors. Therefore, we refer to the factors satisfying Assumption

A(ii) as “non-Gaussian factors”. The non-Gaussian factor assumption is common in Independent

Component Analysis (see in Cardoso & Souloumiac, 1993; Bonhomme & Robin, 2009). When

Gaussian factors exist, we propose a two-stage procedure in the Supplementary Appendix to solve

this problem. If the Gaussian factors and non-Gaussian factors are mutually dependent, they can

be identified directly because the matrix C
(k)
f is still of full rank. Specifically , let f1t ∼ i.i.d.N (0, 1)

and f2t = (f1t)
2. The third-order multi-cumulant C

(3)
f has the following form:

C
(3)
f =

(
E[f 3

1t] E[f 2
1tf2t] E[f 2

1tf2t] E[f1tf
2
2t]

E[f 2
1tf2t] E[f1tf

2
2t] E[f1tf

2
2t] E[f 3

2t]

)
=

(
0 3 3 0

3 0 0 15

)

The singular values σ1(C
(3)
f ) =

√
234 and σ2(C

(3)
f ) =

√
18 are nonzero; therefore, Assumption A(ii)

still holds. Nonlinear dependence between the Gaussian and non-Gaussian factors also provides

singular values of C
(k)
f , only when the factors are Gaussian and independent of non-Gaussian

factors, then C
(k)
f is not full rank. Therefore, we cannot use the higher-order multi-cumulant to

identify them. Overall, Assumption A(ii) is required for the HFA framework. However, when

Assumption A(ii) is violated, we need a two-stage procedure to estimate all factors in the presence

of independent Gaussian factors, see in the Supplementary Appendix. Assumption A(iii) requires

exogenous idiosyncratic errors. This assumption is common in latent factor modelling (see, for

example, Bonhomme & Robin, 2009; Boudt et al., 2020; Chen et al., 2021). The assumption is

needed to derive the theoretical properties of the HFA approach.

For factor loadings, we treat them as parameters like Bai (2003) and Ahn & Horenstein (2013).

The assumptions on factor loadings are as follows:

ASSUMPTION B: The factor loadings

(i) ‖λi‖ < C2 for all i = 1, 2, . . . , N with a finite constant C2.

(ii) limN→∞
1

N1−αΛ′Λ = ΣΛ for some constant α ∈ [0, 1].

Assumption B requires that Λ is column full rank and that Λ
′
Λ/N1−α converges to a positive

definite matrix. Following the assumptions of De Mol et al. (2008), Onatski (2012), Bailey et al.
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(2021), and Freyaldenhoven (2022), we allow the eigenvalues of Λ′Λ to diverge at rate N1−α,

α ∈ [0, 1].1 Standard strong factor models typically assume that the eigenvalues of Λ′Λ diverge

at rate N and the largest eigenvalue of the covariance matrix of error terms eit are bounded by

a finite constant. If α > 0, we describe the factor model as a weak factor case. Onatski (2012)

studies the special case of α = 1. Under this assumption, the eigenvalues of the covariance matrix

of cit (cit = λ′ift) are O(1). We refer to this case as Onatski (2012)’s weak factor model.

The assumptions on the idiosyncratic errors are as follows:

ASSUMPTION C: The idiosyncratic errors

Let E = (eit)T×N = UG
1/2
N , where U = (uit)T×N . GN is a N ×N matrix, and G

1/2
N is its symmetric

square roots.

(i) For each i, {uit}Tt=1 is a strong mixing Gaussian sequence such that E(uit) = 0 and E(u2
it) <∞.

The mixing coefficients ᾱi(·) for {uit}Tt=1 satisfies maxi ᾱi(n) ≤ Cᾱτ
n for some Cᾱ > 0 and τ ∈ (0, 1).

{uit}Tt=1 are independent across i.

(ii) σ1(GN) < C3 uniformly in N with a finite constant C3.

Assumption C models the idiosyncratic errors E as a weighted combination of the strong mixing

sequence {uit}Tt=1. The specification allows accommodation for serial and cross-sectional correlation

in the idiosyncratic errors. The strong mixing setting is common to characterize serial dependence

of time series, see e.g. Su et al. (2016), Chang et al. (2018). The matrix GN is used to characterize

cross-sectional dependence.

Remark 2.1. Assumption C(i) follows Su et al. (2016)’s Assumption A1(i). This strong mixing

assumption is needed for all asymptotic results presented in this paper. Onatski (2010) and Ahn

& Horenstein (2013) specify E = R
1/2
T U∗G

1/2
N , where U∗ = (u∗it)T×N are i.i.d. standard normal

random variables, R
1/2
T and G

1/2
N are the symmetric square root of T × T and N × N positive

semidefinite matrices RT and GN , respectively. We thus have a different approach in describing

the serial dependence which has the following properties: (i) we allow heterogeneity in the serial de-

pendence of {eit}Tt=1 and characterize it using the mixing coefficient ᾱi(·); (ii) the serial dependence

is characterized by maxi ᾱi(n) ≤ Cᾱτ
n, which is more strict than the assumption σ1(RT ) < ∞ in

Onatski (2010) and Ahn & Horenstein (2013).

The normality assumption on the error terms in Assumption C(i) implies different divergence

rates of the singular values of the higher-order multi-cumulant of the factors and errors, which

1Generally, a factor can be weak in two ways: (i) it can affect all outcomes weakly as in De Mol et al. (2008)
and Onatski (2012); (ii) it can affect only a subset of the outcomes as in Bailey et al. (2021) and Freyaldenhoven
(2022).
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is part of the conditions needed to show the consistency of the proposed HFA estimates even

when the factor strength is weak. Throughout the paper, we use this assumption to derive the

asymptotic results. However, it can be relaxed in the case of weak non-normal errors, which

depend on the structure of GN . We discuss it in subsection 4.3. Intuitively, the propagation

of the potential non-normality of uit on eit is dampened because of the aggregation involved in

its definition as E = UG
1/2
N . Bai (2003), Fan et al. (2022), and Freyaldenhoven (2022) account

for the cross-sectional correlation on error terms, which implies G
1/2
N is not a diagonal matrix.

In the Supplementary Appendix, we show that when E[|uit|2K ] < ∞ for all i and the number

of nonzero non-diagonal elements in G
1/2
N diverges to infinity as N → ∞, we have et = G

1/2
N ut

being asymptotically normal according to the Lyapunov Central Limit Theorem (CLT) under mild

assumptions on G
1/2
N . This is not satisfied in cases where G

1/2
N has a limited number of non-zero

elements, such as when G
1/2
N is a block diagonal matrix with finite block size. By the Cauchy-

Schwarz inequality, we can, also in such cases, still expect eit to be nearer normal than uit if uit are

independent and identically distributed, see for example in Theorem 3.1 of Granger (1976). If uit

are independent but not identically distributed, as mentioned in Theorem 5.1 of Granger (1976),

we can expect eit to be nearer normal than the least normal uit. In the simulation study, we provide

Monte Carlo evidence that the HFA approach remain reliable in the case of weak non-Gaussian

errors if G
1/2
N has a sufficiently large number of nonzero non-diagonal elements.

2.2. Identification conditions

In this subsection, we first derive the population covariance and higher-order multi-cumulants

of xt as implied by Assumptions A – C. Then we show that the columns of the factor loading

matrix Λ in (2) are the eigenvectors to C
(k)
x C

(k)′
x (3 ≤ k ≤ K) up to a rotation matrix.

First, based on the factor model (1) and Assumption A and B, the k-th order multi-cumulant

of xi1t, xi2t, . . . , xikt (3 ≤ k ≤ K) with im ∈ {1, 2, . . . , N} and m ∈ {1, . . . , k}, can be expressed as

κx,i1...ik,t = λ′i1C
(k)
f,t (λi2 ⊗ . . .⊗ λik) + κe,i1...ik,t, (7)

where C
(k)
f,t is the k-th order multi-cumulant matrix of ft defined in (4), and κe,i1...ik,t is the k-

th order multi-cumulant of ei1t, ei2t, . . . , eikt. By Assumption C, the idiosyncratic errors et are

Gaussian distributed. It follows that κe,i1...ik,t = 0 for im ∈ {1, 2, . . . , N} and m ∈ {1, . . . , k}.
Therefore, we can rewrite (7) in matrix form as follows

C
(k)
x,t = ΛC

(k)
f,t (Λ

′⊗(k−1)). (8)
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For a given N and T → ∞, under Assumption A - C, the population k-th order multi-cumulant

C
(k)
x (3 ≤ k ≤ K) can be expressed as

C(k)
x = lim

T→∞

1

T

T∑
t=1

C
(k)
x,t = ΛC

(k)
f (Λ′⊗(k−1)), (9)

where C
(k)
f = limT→∞

1
T

∑T
t=1 C

(k)
f,t defined in (5) is the population k-th order multi-cumulant matrix

of ft.

It is well known that the factor F and the factor loading matrix Λ are not uniquely determined

by (2), as we may replace (F,Λ) by (F ∗,Λ∗) = (FH ′−1,ΛH) for any invertible matrix H. Hence,

as mentioned in Stock & Watson (2002), Bai (2003) and Bai & Ng (2013), we can only identify

and estimate (F,Λ) up to a rotation matrix. To this end, we impose the normalization restrictions

1

N
Λ∗′Λ∗ = IR, C

(k)
f∗C

(k)′

f∗ is diagonal, (10)

where C
(k)
f∗ is defined in the same manner as C

(k)
f in (5) but with replacing F by F ∗. Under

Assumption A - C, together with (9) and (10), it follows that

C(k)
x C(k)′

x = Λ∗C
(k)
f∗ (Λ∗′Λ∗)⊗(k−1)C

(k)′

f∗ Λ∗′

= Λ∗(Nk−1C
(k)
f∗ C

(k)′

f∗ )Λ∗′.
(11)

Therefore, Λ∗ is
√
N times the eigenvectors corresponding to the R largest eigenvalues of C

(k)
x C

(k)′
x .

3. Estimation of the number of non-Gaussian factors

We estimate R based on the eigenvalues of the sample multi-cumulants of xt. In subsection

3.1, we introduce the generalized eigenvalue ratio (GER) estimator for the case of non-Gaussian

factors. In subsection 3.2, we interpret the better finite sample properties of the GER estimator

compared to Ahn & Horenstein (2013)’s ER estimator in weak factor models.

3.1. Generalized eigenvalue ratio estimator

We propose to estimate the number of factors R based on the sample higher-order multi-

cumulant of the data {xt}Tt=1. We define

µ̃
(k)
NT,r ≡ σr(C̃

(k)
x ), (12)
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for r = 1, 2, . . . , N , where the sample k-th order multi-cumulant C̃
(k)
x is defined in (6). By maximiz-

ing the ratio of the two adjacent singular values of C̃
(k)
x , we can determine the number of factors.

The criterion function is defined as follows:

GER(k)(r) ≡
µ̃

(k)
NT,r

µ̃
(k)
NT,r+1

, r = 1, 2, . . . , Rmax, (13)

where Rmax denotes the maximum possible number of factors, µ̃
(k)
NT,r is defined in equation (12), and

3 ≤ k ≤ K, with K being the maximum order considered. We call it the GER estimator because

it is an extension of Ahn & Horenstein (2013)’s eigenvalue ratio (ER) estimator. Our proposed

estimator for R is the maximizer of GER(k)(r):

R̂
(k)
GER = max

1≤r≤Rmax

GER(k)(r). (14)

Our main theoretical results for selecting the number of factors are as follows.

Theorem 1. Suppose that Assumptions A–C hold with R ≥ 1. If Nα/T → 0 as (N, T )→∞ and

tr(GN) = o
(
N

k
k−1

(1−α)T
1

k−1 (logN)−
1

k−1

)
, then,

(i) if all factors are skewed (φ
(3)
j > 0, ∀j ∈ {1, 2, . . . , R}), we have

lim
(N,T )→∞

Prob(R̂
(3)
GER = R) = 1,

(ii) if all factors are kurtotic (φ
(4)
j > 0, ∀j ∈ {1, 2, . . . , R}), we have

lim
(N,T )→∞

Prob(R̂
(4)
GER = R) = 1,

where Rmax ∈ (R,N −R− 1].

We provide the proof in the Supplementary Appendix. Notice that the GER estimators depend

on the quantity tr(GN) to detect the number of the non-Gaussian factors. Therefore, we need to

study tr(GN) to derive the asymptotic properties rather than only assuming σ1(GN) < ∞ as in

the existing PCA literatures (Onatski, 2010; Ahn & Horenstein, 2013). Indeed, as also mentioned

in Ahn & Horenstein (2013), for many types of high-dimensional datasets, some variables my be

almost perfectly correlated with (linear combinations of) others, and thus introduce eigenvalues

that are close to zero. This can be further formalized using conditions on the decay of the smallest

eigenvalues. Remark 3.1 discusses this condition with some empirical evidence.
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Remark 3.1. Consider the case where GN has a polynomial rate decaying eigenvalue spectrum

given by σj(GN) ≤ C0j
−ρ for some ρ ≥ 0. We refer to ρ as “the decay rate of the spectrum” as in

Braun (2006) and Li et al. (2021). Then tr(GN) = O(N1−ρ) for 0 ≤ ρ < 1, tr(GN) = O(logN)

for ρ = 1 and tr(GN) = O(1) for some ρ > 1. In Figure 1, we illustrate that this assumption is

realistic. We plot for two empirical datasets the eigenvalues of the sample covariance matrix of

error terms after extracting the PCA factors, with the number of PCA factors determined by Ahn

& Horenstein (2013)’s Eigenvalue Ratio (ER) estimator. The first one is the FRED-MD dataset

of 124 macroeconomic indicators (N = 124, T = 720) in the US (McCracken & Ng, 2016), and

the second one is the daily returns of S&P 500 component stocks (N = 449, T = 2263).1 The

eigenvalues of both datasets are fitted by the polynomial decaying function and represented using

blue dashed lines. The parameter ρ in two datasets are 0.753 and 0.718, respectively. The decay

rates remain 0.544 and 0.510 after we remove the first ten PCA factors. Therefore, the polynomial

decay assumption of the spectrum of GN is supported by empirical evidence.

∼ Insert Figure 1 Here ∼
The following corollary gives the sample size conditions which are required to ensure the con-

sistency of the GER estimators for a polynomial rate decaying eigenvalue spectrum GN .

Corollary 1. Under the conditions in Theorem 1, if GN has a polynomial rate decaying eigenvalue

spectrum such that σj(GN) ≤ C0j
−ρ for some ρ ≥ 0 and positive constant C0, then we need

N(α−ρ)k logN
N1−ρT

= o(1) and Nα/T = o(1) for 0 ≤ ρ < 1, and Nα/T = o(1) and N ≥ (logN)k for ρ ≥ 1

to guarantee the consistency of R̂
(k)
GER.

For ρ = 0 such that tr(GN) = O(N), e.g. GN = IN , we need the time dimension T �
Nk−1 logN to detect the extreme weak factors (α = 1). If GN has a polynomial rate decay

spectrum, the requirement of the time dimension T is reduced as σj(GN) has a sharper tail.

Remark 3.2. (i) The parameter K denotes the maximum order considered in the test. As rule

of thumb, we recommend K = 4 and then consider k = 3, 4 in this paper.

(ii) We recommend setting Rmax similar to Ahn & Horenstein (2013). Please refer to the Sup-

plementary Appendix for more details.

(iii) We present a generalization of the ER estimator of the number of factors, as introduced

1The sample period of the FRED-MD data used ranges from January 1959 to December 2018, approximately
60 years of monthly data. The sample period of S&P 500 stocks ranges from July 1, 2010, to June 30, 2019, about
10 years of daily data. We omit several delisted stocks during this period.
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by Ahn & Horenstein (2013). They also present a growth ratio estimator, and we give the

Generalized Growth Ratio (GGR) estimator in the Supplementary Appendix.

(iv) In real data analysis, it is difficult to have a priori information on the non-normality of the

factors. Hence, we should conduct both GER(3) and GER(4) and take R̂∗ = max(R̂
(3)
GER, R̂

(4)
GER)

to avoid R̂
(3)
GER and underestimate R when the factors are symmetric.

3.2. Finite sample properties of the GER versus the ER of Ahn & Horenstein (2013)

In this section, we use a stylized setup to show that the GER estimator has better finite sample

properties than Ahn & Horenstein (2013)’s ER estimator on detecting weak non-Gaussian factors.

We consider a two-factor model xit = λi1f1t + λi2f2t + eit with E(ft) = E(eit) = 0, f1t, f2t, and

eit being mutually independent,
√
N1−αλi ∼ N(0, IR), et ∼ N(0, GN), where σj(GN) = j−ρ with

ρ ≥ 0 for j = 1, 2, . . . , N . We denote the standard deviation of the factors by sdj ≡
√
E(f 2

jt) and

the standardized skewness of factors sk∗j ≡ skj/sd
3
j for j = 1, 2, where skj ≡ E(f 3

jt). We first study

the power of the ER estimator based on the eigenvalue decomposition of Σ̃x,N . We can show that

σ1(Σ̃x,N)/σ2(Σ̃x,N) � sd2
1

sd2
2

,

σ2(Σ̃x,N)/σ3(Σ̃x,N) � Op(N
1−α)sd2

2.

(15)

When α = 0, we can detect two factors because σ2(Σ̃x,N)/σ3(Σ̃x,N) → ∞ as N → ∞. However,

when 0 < α < 1, for finite N , when f2t is a weaker factor (sd2
2 << sd2

1), it may hold that

sd2
1/sd

2
2 & Op(N

1−α)sd2
2. When α = 1, sd2

1/sd
2
2 & Op(1)sd2

2 can hold even if N → ∞. Therefore,

the ER estimator has a low efficiency in the weak factor model (α > 0) because it can detect only

the strong factor.

Consider now the GER estimator based on the eigenvalue decomposition of the third-order

multi-cumulant of xt. We can show that

σ1(C̃
(3)
x,N)/σ2(C̃

(3)
x,N) � |sk1|

|sk2|
=
|sk∗1|
|sk∗2|

sd3
1

sd3
2

,

σ2(C̃
(3)
x,N)/σ3(C̃

(3)
x,N) � Op(min(

√
TN1+2ρ−3α/ logN,

√
TN−α))|sk∗2|sd3

2.

(16)

The singular value ratio of C̃
(3)
x,N considers the skewness of factors, the first singular value ratio is

determined by the skewness ratio of the factors, and the second singular value ratio diverges to

infinity as Op(min(
√
TN1+2ρ−3α/ logN,

√
TN−α)) → ∞. When α = 1, the second singular value

ratio still diverges to infinity if min(N
2−2ρ logN

T
, N
T

)→ 0 as (N, T )→∞. For a specific sample size,

12



if |sk∗2|2/|sk∗1| � O
(

max(
√

N3−2α

T
,
√

N2−2ρ logN
T

)
)

holds, we have

σ1(Σ̃x,N)/σ2(Σ̃x,N) � σ2(Σ̃x,N)/σ3(Σ̃x,N),

σ1(C̃
(3)
x,N)/σ2(C̃

(3)
x,N)� σ2(C̃

(3)
x,N)/σ3(C̃

(3)
x,N),

(17)

which implies that the GER estimator can detect weaker non-Gaussian factors when the ER esti-

mator has low efficiency. The simulations in the Supplementary Appendix confirm this proposition

for the finite sample size. As the eigenvalues of GN increase, the average maximum eigenvalue

ratio of the ER estimator changes from the second one to the first one, which indicates that only

the first strong factor is detected. Conversely , the average maximum eigenvalue ratio of the GER

estimator remains the second one. As shown in section 8 of the Supplementary Appendix, our

proposed GER estimator can also deal with this case efficiently.

4. Estimation of the non-Gaussian factors and loadings

Principal component analysis is the workhorse approach to estimating factors using the eigenval-

ue decomposition of the sample covariance matrix. We show that this approach can be extended to

obtain factors based on an eigenvalue decomposition of C̃
(k)
x C̃

(k)′
x (3 ≤ k ≤ K). More precisely, the

HFA estimate of the factor loadings, denoted by Λ̂(k), are the first R eigenvectors of C̃
(k)
x C̃

(k)′
x . Giv-

en Λ̂(k), the HFA factors are estimated by regression F̂ (k) = XΛ̂(k)(Λ̂(k)′Λ̂(k))−1 = XΛ̂(k)/N . When

k = 2, the approach nests the PCA-based approach of Bai (2003) as a special case. The estimation

of latent factor model parameters based on minimizing the distance of sample and model-based

moments is also considered in Jondeau et al. (2018) and Boudt et al. (2020). Their approaches

do not lead to an explicit solution. For the approach by Jondeau et al. (2018), the asymptotic

properties of factors and factor loadings are unknown. We describe these two approaches in section

5 of the Supplementary Appendix.

In subsection 4.1, we derive the estimates of factors and factor loadings. Subsequently, we

establish the convergence rate and the limiting distributions of the estimated factors and factor

loadings. In subsection 4.2, we show that the limiting distributions and convergence rates of the

HFA estimators obtain an efficiency gain over the PCA estimators in the case of weak non-Gaussian

factors. In subsection 4.3, we discuss the feasibility of HFA without the normality of errors. In

section 7 of the Supplementary Appendix, we show that the computational cost of the algorithm

is moderate when computing the eigenvectors of C̃
(k)
x C̃

(k)
x
′.
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4.1. HFA estimators and their asymptotic properties

In this subsection, we give the estimates of the factors and loadings and show they have at-

tractive asymptotic properties. We assume that the number of factors R is known (or estimated

consistently). Following (11), we estimate the factor loading matrix Λ up to a rotation matrix by

using the following optimization problem:

Λ̂(k) = arg max
Λ∗

tr
{

Λ∗′(C̃(k)
x C̃(k)′

x )Λ∗
}

(18)

subject to the constraint 1
N

Λ∗′Λ∗ = IR. Notably, this is the same optimization problem as finding

the eigenvectors of the matrix C̃
(k)
x C̃

(k)′
x . Given Λ̂(k), the factors can be obtained by least squares

regression leading to F̂ (k) = XΛ̂(k)(Λ̂(k)′Λ̂(k))−1 = XΛ̂(k)/N .

Remark 4.1. (i) The constraint of Λ is widespread in covariance-based factor analysis, such as

PCA and maximum likelihood analysis. In standard PCA, we maximize tr(Λ∗′C̃
(2)
x Λ∗) sub-

ject to the constraint 1
N

Λ∗′Λ∗ = IR, which is equivalent to maximizing tr
{

Λ∗′(C̃
(2)
x C̃

(2)′
x )Λ∗

}
.

Therefore, PCA can be regarded as a special case of HFA when k = 2.

(ii) For any different k ≥ 3, we have different loadings Λ̂(k) and different factors F̂ (k). To

choose an optimal order k, we suggest using the goodness of fit criterion for the C
(k)
x -model

in (9). Therefore, we can choose the optimal k by minimizing the partial loss function

k̂ = arg mink{‖C̃(k)
x − Λ̂(k)Ĉ

(k)
f (Λ̂(k)′)⊗(k−1)‖2/‖C̃(k)

x ‖2}, where Ĉ
(k)
f is the k-th order multi-

cumulant of F̂ (k). In addition, as shown in the following theorem, the smaller k, the faster

the convergence rate of the HFA estimators. Hence, without any prior knowledge, setting up

k = 3 is a reasonable choice.

The following theorem provides the rate of convergence of the HFA estimators.

Theorem 2. Under Assumptions A–C, for any 3 ≤ k ≤ K such that φ
(k)
j > 0(∀ j ∈ {1, 2, . . . , R}),

there exists an R×R invertible matrix H(k) for which

1√
N
‖Λ̂(k) − ΛH(k)‖ = Op(

√
tr(GN)k−1 logN

N (1−α)kT
) +Op(

√
Nα

T
),

1√
T
‖F̂ (k) − F (H(k))−1‖ = Op(

1√
N

) +Op(
1√

TN1−α
) +Op(

√
tr(GN)k−1 logN

N (1−α)k+1T
).

We provide the proof in the Supplementary Appendix. Theorem 2 shows that the convergence

rate of the estimated factors and factor loadings of HFA depend on the factor strength α and

tr(GN). The following corollary establishes the consistency of the HFA estimates with specific GN .
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Corollary 2. Under the conditions in Theorem 2, if σj(GN) ≤ C0j
−ρ for some ρ ≥ 0 and positive

constant C0 and N ≥ (logN)k, then

1√
N
‖Λ̂(k) − ΛH(k)‖ =


Op(

√
N (α−ρ)k logN

TN1−ρ ) +Op(

√
Nα

T
) , 0 ≤ ρ < 1,

Op(

√
Nα

T
) , 1 ≤ ρ.

(19)

1√
T
‖F̂ (k) − F (H(k))−1‖ =


Op(

√
N (α−ρ)k logN

TN2−ρ ) +Op(
1√
N

) , 0 ≤ ρ < 1,

Op(
1√
N

) , 1 ≤ ρ.

(20)

When α = 0, namely a strong factor model as in Bai (2003), the convergence rates of F̂ (k)

and Λ̂(k) are mainly dominated by Op(T
−1/2) and Op(N

−1/2). For the case α > 0, F̂ (k) and Λ̂(k)

are remain consistent under mild conditions with respect to sample size (N, T ), factor strength α,

and decay rate ρ. Notably, the rotation matrix H(k) is different from the rotation matrix in Bai

(2003). H(k) contains the higher-order multi-cumulants of the non-Gaussian factors. Moreover,

H(k) depends on the parameter k (3 ≤ k ≤ K), the order of the multi-cumulant we used in the

estimation.

To derive the limit distributions of f̂
(k)
t and λ̂

(k)
i , we require the following additional assumptions:

ASSUMPTION D: Central limit theorem

(i) Let k (3 ≤ k ≤ K) be such that it satisfies Assumption A(ii). Subsequently, for each i, as

T →∞,

1√
T

T∑
t=1

ζ
(k)
t eit

d−→ N (0,Θ
(k)
i ),

where ζ
(k)
t ∈ RRk−1

is the t-th row of the matrix H̄(k)
f and Θ

(k)
i = p limT→∞

1
T

∑T
t=1

∑T
s=1 E(ζ

(k)
t ζ

(k)
s
′eiteis).

The matrix H̄(k)
f ∈ RT×Rk−1

satisfies T−1F ′H̄(k)
f = C̃

(k)
f . The explicit form of matrix H̄(k)

f (k = 3, 4)

is given in Remark 4.2.

(ii) For each t, as N →∞,

1√
N1−α

N∑
i=1

λieit
d−→ N (0,Φt),

where Φt = limN→∞
1

N1−α

∑N
i=1

∑N
j=1 E(λiλ

′
jeitejt) and α ∈ [0, 1].

Assumption D(i) requires the asymptotic normality of the cross product between ζ
(k)
t and eit,

which depends on the order k. When k = 2, Remark 4.2 implies that H̄(2)
f = F . Hence, this
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assumption is equivalent to Bai (2003)’s Assumption F. Notice that Θ
(k)
i is an Rk−1×Rk−1 matrix,

and Φt is an R × R matrix. Assumption D(ii) requires the asymptotic normality of the cross

product between λi and eit, and the CLT for the factor loadings when α = 0 has the same form as

in Bai (2003)’s Assumption F. If α > 0, we allow for a slower convergence rate than
√
N . This is

because ‖λi‖ = O(N−
α
2 ) by Assumptions B(ii). Subsequently, the following result holds:

Theorem 3. Under Assumptions A–D, for any 3 ≤ k ≤ K such that φ
(k)
j > 0(∀ j ∈ {1, 2, . . . , R}),

then

(i) if Nα/T → 0 and tr(GN) = o(N
k
k−1
−α(logN)−

1
k−1 ), we have

√
TN−α

(
λ̂

(k)
i −H(k)′λi

)
d−→ N

(
0, (D(k))−1Q(k)′C

(k)
f (ΣΛ)⊗k−1Θ

(k)
i (ΣΛ)⊗k−1C

(k)′

f Q(k)(D(k))−1
)
,

(ii) if Nα/T → 0 and tr(GN) = o(T
1

k−1N
k
k−1

(1−α)(logN)−
1

k−1 ), we have

√
N
(
f̂

(k)
t − (H(k))−1ft

)
d−→ N

(
0, (Q(k)′)−1Φt(Q

(k))−1
)
,

where Q(k) = (Ψ(k))−1/2Γ(k)(D(k))1/2, Ψ(k) = C
(k)
f (ΣΛ)⊗(k−1)C

(k)′

f , D(k) is the diagonal eigenvalue

matrix of (Ψ(k))1/2ΣΛ(Ψ(k))1/2, ΣΛ = limN→∞ Λ′Λ/N1−α, Γ(k) is the corresponding eigenvector

matrix such that Γ(k)′Γ(k) = IR.

We provide the proof in the Supplementary Appendix. The limit distribution of the HFA

estimators has a more generalized form and depends on the order k. Theorem 3 has two noteworthy

points. First, the asymptotic normality of the estimated factors f̂
(k)
t holds for all α ∈ [0, 1] if time

dimension T sufficiently larger than cross section dimension N . However, the estimated factor

loadings λ̂
(k)
i share the asymptotic normality only when tr(GN) and factor strength α satisfies

specific conditions, e.g., if tr(GN) = O(N), then λ̂
(k)
i is asymptotically normal for α < 1

k−1
if

we ignore the logarithmic term. Second, if GN has a polynomial decaying spectrum such that

tr(GN) = o(N), the demand of T to guarantee the normality of estimated factors is smaller.

Additionally, the limit distribution of HFA estimators shares the same form as Bai & Ng (2013)’s

PC1 when k = 2 and α = 0.

Remark 4.2. The matrices H̄(k)
f and H̄(k)

e share the same form. Thus, we use zt ∈ RQ×1 to derive

the matrix H̄(k)
z that satisfies T−1Z ′H̄(k)

z = C̃
(k)
z for k = 3, 4. When k = 3, which is implied by

Lemma 2, the matrix H̄(3)
z can be written as

H̄(3)
z =

(
z1 ◦ z1, z1 ◦ z2, . . . , z1 ◦ zQ| . . . |zQ ◦ z1, zQ ◦ z2, . . . , zQ ◦ zQ

)
∈ RT×Q2

,
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where zi = (zi1, zi2, . . . , ziT ) and ◦ denote the Hadamard product. When k = 4, according to Lemma

2, the matrix H̄(4)
z can be written as

H̄(4)
z =

(
z1 ◦ z1 ◦ z1 − m̃z,11z1 − m̃z,11z1 − m̃z,11z1, . . . ,

zi2 ◦ zi3 ◦ zi4 − m̃z,i3i4zi2 − m̃z,i2i4zi3 − m̃z,i2i3zi4 , . . . ,

zQ ◦ zQ ◦ zQ − m̃z,QQzQ − m̃z,QQzQ − m̃z,QQzQ
)
∈ RT×Q3

,

(21)

where m̃z,i2i3 = 1
T

∑T
t=1 zi2tzi3t is the sample covariance of zi2 and zi3. Note that {zi2 ◦ zi3 ◦ zi4 −

m̃z,i3i4zi2 − m̃z,i2i4zi3 − m̃z,i2i3zi4} is the {i2 + (i3 − 1)Q+ (i4 − 1)Q2}-th column of H̄(4)
z .

Remark 4.3. Let us rotate the underlying factors and loadings to satisfy the normalization con-

ditions such that 1
N

Λ′Λ = IR and C̃
(k)
f C̃

(k)′

f is diagonal. In the Supplementary Appendix, we show

that the rotation matrix H(k) → IR. Thus, the results of Theorem 2 can be simplified as

1√
N
‖Λ̂(k) − Λ‖ = Op(

√
tr(GN)k−1 logN

N (1−α)kT
) +Op(

√
Nα

T
),

1√
T
‖F̂ (k) − F‖ = Op(

1√
N

) +Op(
1√

TN1−α
) +Op(

√
tr(GN)k−1 logN

N (1−α)k+1T
).

(22)

Furthermore, the results of Theorem 3 can be simplified as

√
TN−α

(
λ̂

(k)
i − λi

)
d−→ N

(
0, (D(k))−1C

(k)
f Θ

(k)
i C

(k)′

f (D(k))−1
)
,

√
N
(
f̂

(k)
t − ft

)
d−→ N

(
0,Φt

)
,

(23)

where D(k) is a diagonal matrix and {D(k)}ii = σ2
i (C

(k)
f ) for i = 1, 2, . . . , R.

4.2. Efficiency gain of HFA estimators

The HFA estimators are more efficient than the PCA estimators in the case of the weak factor

model in estimating non-Gaussian factors (α > 0 and rank(C
(k)
f ) = R). We illustrate the effi-

ciency gain of HFA estimators compared to PCA estimators in terms of the convergence rate and

asymptotic variance. As both the HFA and PCA estimators are the rotation of true factors and

factor loadings, we use the normalization 1
N

Λ′Λ = IR and C̃
(k)
f C̃

(k)′

f being diagonal to compare

them without rotation. Denote the PCA estimators as (f̂PCAt , λ̂PCAi ). Assumptions A – C imply
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the following convergence rate for the PCA estimators:

1√
N
‖Λ̂PCA − Λ‖ = Op(

1√
TN−α

) +Op(
1

N1−α ),

1√
T
‖F̂ PCA − F‖ = Op(

1√
N

) +Op(
1

N1−α ) +Op(
1√

TN−α
).

(24)

The convergence rate of the PCA estimator shares the same form as that of the HFA estimator

when α = 0, which implies that the PCA and HFA estimators have the same convergence rate in

the classical strong factor model. However, when α > 0, the HFA estimators converge faster than

the PCA estimators if tr(GN) = o
(√

TN1−α(logN)−
1
2

)
. In particular, in the case of α = 1, the

PCA estimators are inconsistent. Nevertheless, the HFA estimators remain consistent as shown in

Theorem 2.

In the case of asymptotic distribution, the PCA estimators (Bai & Ng, 2013) have the form as

follows when (N, T )→∞,
√
N/T → 0, and

√
T/N → 0 in a classical strong factor model (α = 0):

√
T
(
λ̂PCAi − λi

) d−→ N
(
0, (D)−1Θi(D)−1

)
,

√
N
(
f̂PCAt − ft

) d−→ N
(
0,Φt

)
,

(25)

where D = p limT→∞ F
′F/T , Θi = p limT→∞ T

−1
∑T

t=1

∑T
s=1 E(ftf

′
seiteis), and Φt = limN→∞

N−1
∑N

i=1

∑N
j=1 E(λiλ

′
jeitejt). We already showed that the HFA estimators in strong factor model

(α = 0) satisfies:

√
T
(
λ̂

(k)
i − λi

) d−→ N
(
0, (D(k))−1C

(k)
f Θ

(k)
i C

(k)′

f (D(k))−1
)
,

√
N
(
f̂

(k)
t − ft

) d−→ N
(
0,Φt

)
,

(26)

where {D(k)}ii = σ2
i (C

(k)
f ) and Θ

(k)
i = p limT→∞

1
T

∑T
t=1

∑T
s=1 E(ζ

(k)
t ζ

(k)′
s eiteis).

We mainly compare the asymptotic variance of the estimated factors and factor loadings of

PCA and HFA. By Assumption D(ii) and the definition of Φt, we have f̂
(k)
t and f̂PCAt converge to

the same distribution. However, as shown in Theorem 2, f̂
(k)
t converges faster to this distribution

than f̂PCAt when 0 < α < 1. Conversely, the variances of λ̂
(k)
i and λ̂PCAi share the sandwich

structure, whereas Θ
(k)
i and Θi have a different form. Generally, if we set k = 2, we have Θ

(k)
i = Θi.

Therefore, the PCA estimators can be regarded as a special case of the HFA estimator when k = 2.

The structure of Θ
(k)
i mainly depends on the random variable H̄(k)′

f ei. When ei is heteroscedastic

and time-series correlated, it is difficult to give an explicit form of Θ
(k)
i and compare it with Θi.

To better understand the variance difference between λ̂
(k)
i and λ̂PCAi , we consider independently
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and identically distributed eit with E(eit) = 0 and E(e2
it) = sd2

e (i = 1, 2, . . . , N). Similarly, denote

sd2
j ≡ E(f 2

jt), sk
∗
j ≡ E(f 3

jt), and ktj ≡ E(f 4
jt) (j = 1, 2, . . . , R). The order k = 3 is used for HFA

estimators. Therefore, the variance of
√
T (λ̂PCAij − λij) is

(D−1ΘiD
−1)jj = (sd2

j)
−1(sd2

jsd
2
e)(sd

2
j)
−1 = sd2

e/sd
2
j , (27)

which indicates that the variance of j-th factor loading is equal to the inverse of Signal-Noise Ratio.

For HFA estimators, the variance of
√
T (λ̂

(3)
ij − λij) is

((D(3))−1C
(3)
f Θ

(3)
i C

(3)′

f (D(3))−1)jj = (skj)
−2(skjktjsd

2
eskj)(skj)

−2

= ktjsd
2
e/(skj)

2.
(28)

Notice that the Hölder inequality E(f 2
j )E(f 4

j ) ≥ E(f 3
j )2 always holds. Thus, we have Var(λ̂PCAij )≤

Var(λ̂
(k)
ij ) for j = 1, 2, . . . , R. Hence, the estimated factor loadings of HFA have a larger asymptotic

variance than the PCA estimators.

To summarize, we find that the HFA factors f̂
(k)
t are consistent irrespective of the value of α. The

PCA f̂PCAt and HFA f̂
(k)
t factors converge to the same distribution, but the HFA factors converge

much faster than the PCA factors when α > 0 under mild conditions. Similarly, λ̂
(k)
i always

guarantees consistency and converges faster than λ̂PCAi when α > 0. Although the asymptotic

variance of λ̂
(k)
i is larger than λ̂PCAi , we find in the simulation analysis in subsection 6.3 that λ̂

(k)
i

has better finite sample accuracy as α > 0 because the advantage of the faster convergence rate

dominates.

4.3. The case of non-Gaussian errors

The results of Theorem 1-3 are all based on the sufficient assumption that the error terms

are normally distributed. In this subsection, we discuss the feasibility of HFA in identifying non-

Gaussian factors without the normality of uit in Assumption C.

Following the same argument in subsection 2.2, we can derive C
(k)
x = ΛC

(k)
f Λ′⊗(k−1) + C

(k)
e for

3 ≤ k ≤ K under Assumption A and B. By Weyl’s inequality, we have

σj
(
C(k)
x

)
� σj

(
ΛC

(k)
f Λ′⊗(k−1)

)
+ σ1

(
C(k)
e

)
, j = 1, . . . , N. (29)

Notice that rank(ΛC
(k)
f Λ′⊗(k−1)) = R. It follows that

σj
(
C(k)
x

)
�

{
σj
(
ΛC

(k)
f Λ′⊗(k−1)

)
+ σ1

(
C

(k)
e

)
, j = 1, . . . , R;

σ1

(
C

(k)
e

)
, j = R + 1, . . . , N.

(30)
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Under Assumption A and B, we have σj
(
N (α−1)k/2ΛC

(k)
f Λ′⊗(k−1)

)
= O(1). If we have

σR
(
ΛC

(k)
f Λ′⊗(k−1)

)
� σ1

(
C(k)
e

)
, (31)

then

σj
(
N (α−1)k/2C(k)

x

)
�

{
σj
(
N (α−1)k/2ΛC

(k)
f Λ′⊗(k−1)

)
= O(1) , j = 1, . . . , R;

o(1) , j = R + 1, . . . , N.
(32)

In other words, when the eigenvalues of the k-th order multi-cumulant of the observable xt are dom-

inated by the eigenvalues of its non-Gaussian component, then the low rank structure ΛC
(k)
f Λ′⊗(k−1)

can be detected by C
(k)
x . Therefore, (31) is the sufficient condition to detect the factors and loadings

by the the k-th order multi-cumulant C
(k)
x without the normality assumption of the error terms.

In the following proposition, we propose mild conditions under which the sufficient condition

(31) is still satisfied when the errors are non-normal. The condition depends on the factor strength

α, σ1(GN), tr(GN), the number of nonzero elements in GN and the k-th order cumulant of uit.

Proposition 1. Let {uit}Tt=1 be a strong mixing sequence such that E(uit) = 0 and E(u2K
it ) < ∞.

Let g∗1 ≥ . . . ≥ g∗N be the eigenvalues of GN and G∗N = diag(g∗1, . . . , g
∗
N). Let L = (l1, . . . , lN) be

the eigenvector matrix of GN such that GN = LG∗NL
′. Let Gi =

∑N
j=1 1{lji 6= 0} be the number

of non-zero elements of li. Assume κ
(k)
u,i = limT→∞

1
T

∑T
t=1 κ

(k)
u,i,t exists and

√
Gi|lji| = O(1) if

lji 6= 0. Let G = mini Gi and κ
(k)
u = maxi |κ(k)

u,i |. Then under Assumption A and B, we have

σR(ΛC
(k)
f Λ′⊗(k−1))� σ1(C

(k)
e ), provided that

N
(α−1)k

2 σ1(GN)[G−1tr(GN)]
k
2
−1κ(k)

u = o(1) (33)

holds for any eigenvector matrix L belonging to the eigenvector space of GN .

We provide the proof in the Supplementary Appendix. Proposition 1 nests the condition of the

Gaussian error term if we take κ
(k)
u = 0. If κ

(k)
u 6= 0, we need smaller tr(GN) and larger G to detect

weak factors. For example, tr(GN)/G = O(1), σ1(GN) <∞ and G → ∞ as N →∞ is sufficient to

detect the factors with α ∈ [0, 1). The worst case for HFA is κ
(k)
u 6= 0, G = 1, tr(GN) = O(N), e.g.

GN = IN , then HFA can only detect the factors with α ∈ [0, 2/k).

5. Forecasts in factor-augmented regressions

The important use of factors to achieve dimension reduction has been found to be empirically

useful in analyzing macroeconomic time series. Adding factors to a forecasting model is being used
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by an increasing number of researchers. See for example, Stock & Watson (2002), Bai & Ng (2006)

and McCracken & Ng (2016). In this section, we establish the rate of convergence and limiting

distribution for the estimated parameters of the factor-augmented regression with the HFA factors.

Subsequently, we derive similar results for the predicted conditional mean and the forecasting error.

For predictive inference, we also give the estimates of the variance of forecasts.

Suppose information is available on a large number of predictors xit(i = 1, 2, . . . , N ; t =

1, 2, . . . , T ) and other small set of observable variables Wt (such as lags of yt). Consider

yt+h = β′ft + γ′Wt + εt+h, (34)

where h ≥ 0 is the lag time between the dependent variable yt and available information (ft,Wt).

The vector ft is unobservable and comes from a large panel of data xit. We refer to a weak factor

model xt = Λft + et with ‖Λ′Λ‖ � N1−α and α ∈ [0, 1]. If ft is observable and assuming the

mean of εt conditional on past information is zero, the optimal prediction of yT+h on time T is the

conditional mean and is given by

yT+h|T = E[yT+h|zT , zT−1, . . .] = β′ft + γ′Wt ≡ δ′zT , (35)

where zt = (f ′t ,Wt)
′. However, this prediction is not feasible because δ and ft are all unobserved.

Replacing ft and δ by their estimates, we obtain a feasible prediction as

ŷT+h|T = β̂′f̂
(k)
T + γ̂′WT = δ̂′ẑ

(k)
T , (36)

where ẑ
(k)
t = (

√
Nαf̂

(k)′

t ,Wt)
′, and f̂

(k)
t are the HFA estimates of the factor model (2) with normal-

ization Λ̂(k)′Λ̂(k)/N = IR. β̂ and γ̂ are the least squares estimates obtained from a regression of yt+h

on f̂
(k)
t and Wt, t = 1, 2, . . . , T − h. Bai & Ng (2006) study the statistical properties of ŷT+h|T and

the estimated parameters δ̂ in a strong factor model (α = 0). Moreover, they show the asymptotic

normality of δ̂ based on PCA factors if
√
T/N → 0, and the prediction confidence interval of ŷT+h|T

is further given. Nevertheless, the asymptotic properties of the factor-augmented regression based

on weak factors have not been studied yet. To evaluate the uncertainty of a diffusion index forecast,

we need the limiting distributions of δ̂ and ŷT+h|T . In section 2 of the Supplementary Appendix,

we set up these results based on the k-th order HFA factors f̂
(k)
t . As we will see, by using the HFA

factors, the diffusion index parameters and forecasts ensure consistency and asymptotic normality

even when the factor strength is considerably weak (α→ 1).
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6. Simulation studies

This section reports the results from several Monte Carlo simulations regarding the performance

of our proposed HFA methodology in finite samples. We define the simulation set up in subsection

6.1. In subsections 6.2 and 6.3, we consider a base scenario in which all factors are non-Gaussian

because we are interested in the improvement in the case of non-Gaussian factors. In subsection 6.4,

we study the robustness of our findings in sensitivity analysis of the HFA estimators. Additional

robustness checks are presented in section 8 of the Supplementary Appendix.

6.1. Simulation set up

We consider two types of data generation processes (DGP) for the simulations. DGP1 uses the

following factor model:

xit =
R∑
r=1

λirfrt + eit, et = G
1/2
N ut,

fjt = djfjt−1 + vjt , vjt v i.i.d.SGT (0, 1, ηj, pj, qj),

uit = ξuit−1 + u∗it , u∗it v i.i.d.N (0, 1),

λij v i.i.d.N (0, Nα−1),

(37)

where σn(GN) = n−0.544, which is calibrated by the FRED-MD dataset after removing the first ten

PCA factors. DGP1 uses the eigenvalues of GN to control the signal-noise ratio. DGP2 follows the

factor model used in Bai & Ng (2002) and Ahn & Horenstein (2013):

xit =
R∑
r=1

λirfrt +
√
θieit, eit =

√
1− ξ2

1 + 2Jβ2
u∗it,

uit = ξuit−1 + u∗it +
∑i−1

h=max (i−J,1)
βu∗ht +

∑min (i+J,N)

h=i+1
βu∗ht,

fjt = djfjt−1 + vjt, vjt v i.i.d. SGT (0, 1, ηj, pj, qj),

u∗it v i.i.d.N (0, 1), λij v i.i.d.N (0, 1).

(38)

The parameter ξ controls the magnitude of the serial and cross-sectional correlation, which is

governed by two parameters — β and J — which specify the magnitude of the cross-sectional

correlation and number of correlated cross-sectional units, respectively. The parameter θi is the

variance of each idiosyncratic error.

We use the skewed generalized error (SGT) distribution to describe the non-normality of the

factors and idiosyncratic errors, where the distribution SGT (µ, σ, η, p, q) is a univariate 5-parameter
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distribution introduced by Theodossiou (1998) and known for its extreme flexibility. The SGT

distribution has the probability density function

fSGT (x;µ, σ, η, p, q) =

 ζ
[
(1 + p

q−2
)v−p(1− η)−p|x−µ

σ
|p
]− q+1

p
, x < µ,

ζ
[
(1 + p

q−2
)v−p(1 + η)−p|x−µ

σ
|p
]− q+1

p
, x ≥ µ.

(39)

where ζ and v are normalizing constants ensuring that fSGT (·) is a proper probability density

function. The parameter µ is the mean, and σ is the standard deviation of the distribution. The

parameter η determines the skewness; p and q determine the kurtosis. The k-th moment exists

when pq > k.

As stated earlier, we set the number of factors to be 3 (R = 3). The distribution parameters

of the non-Gaussian factors are considered as ηj = 0.5, pj = 1, qj = ∞ such that the factors have

unit variance, 1.244 skewness and 4.920 excess-kurtosis. For DGP1, we merely need to change α to

control the strong or weak factor model. For DGP2, we fix the correlation structures of the error

terms as ξ = 0.2, β = 0.2, J = [N/10], and θi v U [1, θ] and then change θ to control the strong or

weak factor model.

6.2. Finite sample properties of the GER estimator

In this subsection, we evaluate the finite sample properties of the GER estimator. The perfor-

mances of the two estimators are compared with covariance-based estimators, for example, the PC3

estimator of Bai & Ng (2002), the ON estimator of Onatski (2010), and the ER and GR estimators

of Ahn & Horenstein (2013). We also compare with Jondeau et al. (2018)’s JJR method, which is

based on the higher-order moment (see in section 6 of the Supplementary Appendix). We focus on

how the finite sample properties of those estimators are affected by the parameters α (in DGP1)

and θ (in DGP2) — the strong or weak factor model. When α or θ is small, the influential power

of all factors is strong, and the factors are gradually weakened as α or θ increases. We set the

maximum number of factors Rmax = 10 and consider T ∈ {300, 500, 1000} and N ∈ {100, 300}.
Figure 2 reports the finite sample performances of the above estimators when α ∈ [0, 1] and

θ ∈ [1, 10]. The GER estimator is based on the third-order multi-cumulants; for each estimator, we

run 500 replications. The results in Figure 2 show that the GER estimator has good finite sample

properties in both strong or weak factor models, particularly in the weak factor case in which all

covariance-based methods have low efficiency. Additionally, the JJR method shows inefficient in

both DGP1 and DGP2 even for small α and θ.

∼ Insert Figure 2 Here ∼
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6.3. Finite sample properties of HFA factors and factor loadings

In this subsection, we evaluate the finite sample properties of the PCA and HFA estimators of

the factors and factor loadings in the previous DGPs and assume that the number of factors R = 3

are known. We denote the PCA estimators by F̂ PCA and Λ̂PCA and the HFA estimators by F̂HFA

and Λ̂HFA; the latter are obtained using the third-order multi-cumulant (k = 3). As a measure of

goodness-of-fit, we use the trace ratio (TR) to evaluate how close the estimated values Λ̂ and F̂

are to their true values. Taking F̂ as an example, the TR is defined as

TR(F̂ , F ) =
tr((F ′F̂ )(F̂ ′F̂ )−1(F̂ ′F ))

tr(F ′F )
. (40)

The measure is a generalized squared correlation coefficient in multivariate analysis and is invariant

to rotation. It is widely used as a measure of goodness-of-fit in factor analysis; see, for example, Bai

et al. (2012) and Bai & Li (2016). Figure 3 reports the average TR based on 500 repetitions for each

(N, T ) combination under α ∈ [0, 1] or θ ∈ [1, 10]. We can observe the following points. First, for

each sample size (N, T ), the PCA estimators have a lower efficiency than the HFA estimators when

α or θ is large, which is expected because the HFA estimators, as shown in Theorem 2, converge

faster than the PCA estimators. Second, when α or θ is small, Λ̂PCA show a smaller efficiency gain

than Λ̂HFA because Λ̂HFA have larger asymptotic variance than Λ̂PCA. Conversely, F̂HFA always

outperforms than F̂ PCA regardless of what α or θ is. Third, the finite sample properties of Λ̂ and

F̂ are dominated by T and N , respectively. Overall, the simulations confirm our theorems and also

the better performance of the HFA estimators, particularly in weak factor cases.

∼ Insert Figure 3 Here ∼

6.4. Sensitivity analysis

In the above simulations, we assume that the factor distributions are highly non-Gaussian

and that the error distributions are Gaussian to study the finite sample properties of the HFA

estimators. In this sensitivity analysis, we study how the finite sample properties change when

only “mild non-Gaussianity” exists in factors and when the idiosyncratic errors are non-Gaussian?

We also analyze the sensitivity of the HFA estimation performance to the decay rate of the spectrum

of GN .

First, we evaluate the sensitivity of the HFA estimators concerning the strength of the higher-

order cumulant of factors. We follow the three-factor model in (37) and change the skewness of

all factors from zero to two (for SGT distribution, we change ηj from 0 to 0.98) and α from zero

to one in DGP1. The sample size is (N, T ) = (300, 500). For each possible combination of ηj and

α, we compute the frequency of the correct estimation of the GER3 estimator, the average TR of
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estimated factors, and factor loadings. The results are reported in Figure 4. Figure 4 (a) shows that

the GER estimator can obtain a high accuracy if the skewness is larger than 1.5 when α changes.

For each skewness, the accuracy of the GER estimator decreases as α increases; this interactive

effect becomes stronger when the skewness is milder. When the skewness is larger than one, the

negative effect of α is small for the GER estimator. For the estimated factors and factor loadings,

Figure 4 (b) and Figure 4 (c) show that the estimated factors and factor loadings only need a much

smaller skewness strength to obtain a higher TR than the GER estimator needs. Approximately

one skewness can support the high efficiency of the HFA factors and factor loadings. The factors

and factor loadings also have different sensitivities for the skewness; this can be attributed to the

asymptotic variance of HFA factor loadings affected by the higher-order cumulant of factors. As

shown in Theorem 3, the variance of Λ becomes bigger as C
(k)
f decreases; thus, for each α, the TR

of Λ̂ decreases as the skewness decreases. Conversely, the variance of F is not affected by C
(k)
f ;

therefore, as observed in Figure 4 (b), when the skewness is larger than one, the TRs are close to

one irrespective of the value of α.

∼ Insert Figure 4 Here ∼
Second, we evaluate the sensitivity of the HFA estimation performance to the strength of the

higher-order cumulant of uit. We still follow the three-factor model in (37), changing the skewness

of uit from zero to two (for SGT distribution, we change ηj from 0 to 0.98) and α from zero to one

in DGP1. The sample size is (N, T ) = (300, 500). As the HFA factors and the HFA factor loadings

perform almost the same, we omit sensitivity analysis of the factor loadings here to conserve space.

Both Figure 5 (a) and Figure 5 (b) show that the impact of uit’s skewness is negligible for the HFA

estimators and the GER estimator. This is expected because Proposition 1 implies that HFA still

works for GN with enough non-zero non-diagonal elements even when uit is non-Gaussian. We give

a special case that GN is diagonal ([GN ]jj = j−0.544). At this time, the non-normality of uit has

a significant impact on the efficiency of HFA estimates. When the skewness of uit increases, HFA

loses efficiency in detecting and estimating the weak factors. This is expected since Proposition 1

implies that HFA cannot work well when N and T are comparably equal size if GN is diagonal.

∼ Insert Figure 5 Here ∼
Third, we evaluate the sensitivity of the HFA estimation accuracy to the decay rate of the

spectrum ρ such that σj(GN) = j−ρ. We still follow the three-factor model in (37), changing ρ

from zero to one and α from zero to one in DGP1. The sample size is (N, T ) = (300, 500). Figure

6 (a) and Figure 6 (b) show that the impact of ρ is important for the HFA estimators and the GER

estimator. When ρ→ 0, HFA is inefficient to detect the weak factors. This is expected since both

Theorem 1 and Theorem 2 implies that HFA cannot estimate the weak factors efficiently when N
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and T are comparably equal size if tr(GN) = O(N). Increasing the dimension of T can effectively

solve this problem, see Figure 6 (c) and (d).

∼ Insert Figure 6 Here ∼
Overall, from our sensitivity analysis of the skewness of factors and errors, we can conclude

that we need the moderate strength of the non-Gaussianity of factors to support the high accu-

racy of the GER estimator of the number of factors. For the estimation of the HFA factors and

factor loadings, we only need mild non-Gaussianity of factors to support the high efficiency. When

the skewness is larger than 1, this high efficiency exists in both strong and weak factor models

(α ∈ [0, 1]). Likewise, a moderate decay rate of the spectrum ρ ensures the HFA to work on the

sample size where N and T are comparably equal. Additionally, the impact of the error’s higher-

order cumulants is negligible for the HFA estimators and the GER estimator if GN has sufficient

large number of non-zero non-diagonal elements.

7. Equity premium forecasting

In this section, we illustrate the usefulness of HFA for predicting the U.S. equity risk premium

(ERP), defined by the excess return on the S&P 500 versus the U.S. Treasury Bill rate. It is

computed as follows:

ERPt = log(1 + rmt )− log(1 + rft ), (41)

where rmt is the total return (including capital and dividend gains) on the S&P 500 portfolio —

rmt = (Pt − Pt−1 + Dt)/Pt−1 — where Pt is the S&P 500 index value, Dt are the dividends gained

during the return period, and rft denotes the U.S. Treasury Bill rate.

We evaluate the predictive value of the HFA factors extracted using FRED-MD. FRED-MD is a

macroeconomic database of 134 monthly U.S. indicators. All series in FRED-MD are transformed

to be stationary following the transformations described in McCracken & Ng (2016) and reject the

null hypothesis of Augmented Dickey-Fuller test (Said & Dickey, 1984) at 5% significant level.1 The

series starts in January 1959 and ends in December 2018, with a total of 720 monthly observations.

The regression models used for forecasting take the form:

ERPt+1 = µ+ β(L)f̂t + γh(L)ERPt + εt+1, (42)

1Moreover, we delete the variables with more than 30 missing values (e.g., ACOGNO, TWEXAFEGSMTHx,
UMCSENTx, and VXOCLSx) and use the MissForest algorithm of Stekhoven & Bühlmann (2012) to impute the
remaining missing values. The dataset can be downloaded for free from the website http://research.stlouisfed.
org/econ/mccracken/sel/. More details about the FRED-MD dataset can be found in McCracken & Ng (2016).
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where ERPt+1 is the 1-step-ahead variable to be forecast, f̂t are the factors extracted using FRED-

MD, and βh(L) and γh(L) are finite order lag polynomials.

All models are estimated through a rolling-window estimation approach starting in January

1985 and comprising a 408 month out-of-sample. We consider two out-of-sample periods such that

the first out-of-sample prediction begins in January 1985 and ends in October 2007 (Pre-crisis

period). Further, the second out-of-sample period begins in November 2007, which is intended to

evaluate the predictability during the crisis and recovery.

To have a better idea about the factor structure of the FRED-MD data set, we give the scree

plots of the FRED-MD based on the covariance matrix (PCA), the third-order multi-cumulant

(HFA3), and the fourth-order multi-cumulant (HFA4), respectively. Figure 7 intuitively shows

the different factor structures presented by HFA and PCA. As shown in Figure 7, all scree plots

show that one strong factor exists because we can observe a significant drawdown between the first

and second singular values. It seems that no weak factors can be found from PCA’s scree plot;

conversely, two or three weak factors can be observed from the scree plots of HFA3 and HFA4

because another significant drawdown exists in Figure 7(b) and Figure 7(c).

∼ Insert Figure 7 Here ∼
Assumption C requires normality of the error terms in the factor model. We validate this

assumption on the HFA model-based residuals for the FRED-MD dataset using the normality test

proposed by Bai & Ng (2005). Using a significance level of 5%, we find that after extracting four

factors by HFA3 and HFA4, we reject the null hypothesis of normality for only 2.4% and 1.61%

of the time series, respectively.1 In addition, we measure the decay rate of the spectrum of the

error terms in FRED-MD dataset. We find that after extracting four HFA3 and HFA4 factors, the

estimated decay rate of the spectrum are 0.664 and 0.924, respectively. These results indicate that

the main assumptions ensuring the reliability of the HFA approach are satisfied.

We further compare the predictive content of the three-factor structure: the first, second, and

third ones are based on the GER, ER, and JJR criteria, respectively. For each factor structure, we

consider HFA3, HFA4, JMCA, and PCA to extract the factors and compare their predictability.

For each month, we re-estimate the number of factors using the proposed GER estimators2,

Ahn & Horenstein (2013)’s ER estimator, and Jondeau et al. (2018)’s JJR approach. We find that

the ER estimator always detects one factor that has strong influential power, and this is the same

1We also test in the rolling sample and the results are robust. See more details in section 9 of the Supplementary
Appendix.

2We set R̂∗ = max(R̂
(3)
GER, R̂

(4)
GER) as the estimation of the number of non-Gaussian factors to avoid R̂

(3)
GER

underestimating it.
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as the result in Figure 7(a). The GER estimator identifies between 1 and 4 factors, containing

one strong factor and several weak factors; this is expected in Figure 7(b) and 7(c). The JJR

approach always selects 4 factors.1 Based on these results, we re-estimate the factors each month.

The forecasting accuracy results are shown in Table 1. We use the predictive mean square error

(MSE) and out-of-sample R-squared coefficient (R2
OOS) to evaluate the performance. The R2

OOS is

defined as follows:

R2
OOS = 100× (1−

T ∗∑
t=1

(ÊRP t − ERPt)2/

T ∗∑
t=1

(ÊRP
HA

t − ERPt)2), (43)

where T ∗ is the number of out-of-sample forecasts, and ÊRP
HA

t is the historical average forecast,

namely ÊRP
HA

t+1|t = 1
t

∑t
s=1 ERPs. To avoid bias, we determine the regression structure after the

factor number is selected. To that end, we used BIC to select the number of autoregressive lags

(1 ≤ p ≤ 6) and lags of the factors (0 ≤ m ≤ 3) over the rolling-window sample. Further, to

compare the predictive difference between PCA and HFA, we use the Diebold & Mariano (1995)?s

t-type test statistic to determine whether the forecast differences are statistically significant.

∼ Insert Table 1 Here ∼
The results that assess the predictive power differences are reported in Table 1. The MSE ratio

with an asterisk denotes that the DM test is significant at 10%, which implies that the prediction

of this method is better than PCA. As can be observed, regardless of whether in Panels A, B, or

C, the regression models based on HFA factors achieve the best rank compared to PCA for the

three periods under consideration. The predictive difference between PCA and HFA can also be

observed from the DM tests in Panel A and Panel B. Additionally, comparing Panel A with Panels

B and C, it is clear that the forecast models with the GER criterion factor structure outperform

the ER and the JJR criterion, especially in the crisis and post-crisis periods.

We further give the confidence interval of the S&P 500 equity risk premium of the factor-

augmented regression with the HFA factors introduced in Section 5, where the asymptotic variance

estimate of the equity risk premium is given in section 2 of the Supplementary Appendix. The

number of factors is determined by the GER estimator. Figure 8 shows 95% interval prediction

of HFA3 and HFA4 factor-augmented regressions, which cover the actual values of the equity risk

premium well.

∼ Insert Figure 8 Here ∼

1As the JJR approach always chooses the maximum number of factors Rmax as the estimates, we constrain
Rmax = 4 to simplify the regression form.
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Following Welch & Goyal (2008), we use a graphical approach to illustrate the dynamics of the

performance relative to the HFA factors versus the PCA factors during the prediction period. The

cumulative sum-squared error (CSSE) between the PCA prediction and alternative prediction is

used as the net-difference indicator. The CSSE of the HFA3 factor-based prediction is defined as

follows:

CSSEt =
t∑

s=1

(ÊRP
PCA

s − ERPs)2 − (ÊRP
HFA3

s − ERPs)2, (44)

and similarly for other prediction methods. A positive CSSE means that the alternative model is

performing better than the classical PCA prediction and vice versa. Figure 9 is the time series

of CSSE for the HFA3, HFA4, and JMCA under the GER criterion factor structure, as already

indicated in Panel A of Table 1. We smooth the time series curve with a six-month bandwidth.

The shaded areas indicate the three largest drawdowns of the S&P 500 during the out-of-sample

period. We can conclude three points from Figure 9. First, a general upward drift exists in HFA

prediction. Second, we note that, as expected, it is especially in periods of crisis that the HFA

outperforms the covariance-based approaches. This is explained by the more pronounced non-

normality in the data in these periods. Third, the drift of HFA prediction remains positive over

the most recent several decades. Overall, we can conclude that the HFA approach is more useful

than the considered alternatives (PCA, JMCA) for extracting macro-economic factors for equity

risk premium prediction.

∼ Insert Figure 9 Here ∼

8. Conclusion

This study developed a new framework for factor analysis based on the eigenvalue decompo-

sition of the product between the higher-order multi-cumulant and its transpose. The proposed

Higher-order multi-cumulant Factor Analysis (HFA) framework consistently estimates the number

of factors, factors themselves, and factor loadings for high dimensional panel non-Gaussian data

with an underlying weak factor structure. The rate of convergence and asymptotic distribution

of the estimated factors and factor loadings are derived. Subsequently, we give the asymptotic

properties of the factor-augmented regression by using the HFA factors. Our simulation studies

confirm that the HFA estimators have good finite sample properties. Finally, we illustrate the

usefulness of the HFA factors for forecasting the S&P 500 equity premium.
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Stekhoven, D. J., & Bühlmann, P. (2012). Missforest: Non-parametric missing value imputation
for mixed-type data. Bioinformatics , 28 , 112–118.

Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number
of predictors. Journal of the American Statistical Association, 97 , 1167–1179.

Su, L., Shi, Z., & Phillips, P. C. (2016). Identifying latent structures in panel data. Econometrica,
84 , 2215–2264.

31



Theodossiou, P. (1998). Financial data and the skewed generalized t distribution. Management
Science, 44 , 1650–1661.

Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance of equity
premium prediction. The Review of Financial Studies , 21 , 1455–1508.

Figure 1: The eigenvalue spectrum of the error terms in two empirical datasets

Note: This figure reports the eigenvalue spectrum of the idiosyncratic errors after extracting the PCA factors.
The black dots are the empirical eigenvalues of datasets. The blue dashed lines are the fitted distribution through
a polynomial decaying function. The number of PCA factors is determined by Ahn & Horenstein (2013)’s ER
estimator.
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(a) DGP1

(b) DGP2

Figure 2: Accuracy of methods for selecting the number of factors

Note: This figure reports the proportion of the number of correctly selected non-Gaussian factors by six different
methods: Bai & Ng (2002)’s PC3, Onatski (2010)’s ON estimator, Ahn & Horenstein (2013)’s ER and GR, Jondeau
et al. (2018)’s JJR method, and the proposed GER estimator. The DGP1 and DGP2 follow a three-factor model
in (37) and (38), respectively. α (in DGP1) and θ (in DGP2) control the factor strength. For each setting, we have
500 replications.
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(a) DGP1

(b) DGP2

Figure 3: Accuracy of PCA and HFA estimators for the factors and loadings

Note: This figure reports the trace ratio (TR) of factors and factor loadings by the HFA estimators and PCA
estimators. The DGP1 and DGP2 follow a three-factor model in (37) and (38), respectively. α (in DGP1) and θ
(in DGP2) control the factor strength. For each estimation method, we report the median for 500 replications.
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(a) Estimated factor number (b) Estimated factor (c) Estimated factor loading

Figure 4: Impact of skewness of factors on the accuracy of the HFA estimator

Note: This figure reports the sensitivity analysis of the HFA estimators to the skewness of factors in a three-factor
model. The DGP follows the model in (37), and the sample size is (N,T ) = (300, 500). The value α controls the
factor strength and increases from 0 (strong factor model) to 1 (extreme weak factor model). The skewness of all
three factors increases from 0 to 2. Figure (a) shows the accuracy of the GER estimator. Figures (b) and (c) show
the average Trace Ratio of estimated factors and the corresponding factor loadings, respectively.

Table 1: Out-of-sample MSE for equity premium forecasting

Pre-Crisis Crisis & Post-Crisis Full Sample
MSE OS R2 MSE OS R2 MSE OS R2

Panel A: GER criterion factor structure
PCA 2.115 0.120 2.734 0.086 2.318 0.107
HFA3 2.074* 0.137 2.676* 0.105 2.272* 0.125
HFA4 2.070* 0.139 2.719 0.091 2.283* 0.121
JMCA 2.110 0.122 2.734 0.086 2.315 0.109

Panel B: ER criterion factor structure
PCA 2.113 0.121 2.730 0.087 2.316 0.108
HFA3 2.075* 0.137 2.786 0.069 2.308 0.111
HFA4 2.076* 0.137 2.787 0.068 2.309 0.111
JMCA 2.108 0.123 2.730 0.087 2.313 0.109

Panel C: JJR criterion factor structure
PCA 2.177 0.094 2.847 0.048 2.397 0.077
HFA3 2.188 0.090 2.797 0.065 2.388 0.080
HFA4 2.136 0.112 2.874 0.039 2.378 0.084
JMCA 2.178 0.094 2.851 0.047 2.399 0.076

Note: This table reports the MSE and Out-of-Sample R2 of four alternative 1-month-ahead forecasting methods for
the equity premium (the best performing methods are shown in bold characters). The out-of-sample forecasting is
implemented using rolling windows with 310 observations. The full forecasting evaluation period is from 1985-01
to 2018-12, the pre-crisis period is from 1985-01 to 2007-10, and the crisis plus post-crisis period is from 2007-11
to 2018-12. The MSE ratios with an asterisk denote that the left-sided DM test is significant at 10%, and the
benchmark model of the DM test is PCA. Panels A, B, and C use the number of factors estimated by the GER,
ER, and JJR estimator, respectively.
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(a) Estimated factor number (diversified GN ) (b) Estimated factor (diversified GN )

(c) Estimated factor number (diagonal GN ) (d) Estimated factor (diagonal GN )

Figure 5: Impact of skewness of uit on the accuracy of the HFA estimator of the number of
factors (left panel) and factor values (right panel)

Note: This figure reports the sensitivity analysis of the HFA estimators concerning uit’s skewness in a three-factor
model with respect to two specific GN calibrations: (i) sufficient large number of nonzero elements and (ii) diagonal
matrix. The DGP follows the model in (37), and the sample size is (N,T ) = (300, 500). The value α controls the
factor strength and increases from 0 (strong factor model) to 1 (extreme weak factor model). The skewness of uit
increases from 0 to 2. Figure (a) and (c) in left panel shows the accuracy of the GER estimator, while Figure (b)
and (d) in right panel shows the average Trace Ratio of estimated HFA factors.
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(a) Estimated factor number (T = 500) (b) Estimated factor (T = 500)

(c) Estimated factor number (T = 2000) (d) Estimated factor (T = 2000)

Figure 6: Impact of decay rate of the spectrum of GN on the accuracy of the HFA estimator of
the number of factors (left panel) and factor values (right panel)

Note: This figure reports the sensitivity analysis of the HFA estimators concerning tr(GN ) with σj(GN ) = j−ρ in a
three-factor model. The DGP follows the model in (37), and the sample size is (N,T ) = (300, 500), (300, 2000). The
value α controls the factor strength and increases from 0 (strong factor model) to 1 (extreme weak factor model).
Decay rate of the spectrum ρ increases from 0 to 1. Figure (a) and (c) in the left panel show the accuracy of the
GER estimator, while Figure (b) and (d) in the right panel show the average Trace Ratio of estimated HFA factors.
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Figure 7: Scree plot of the FRED-MD data set

Note: This figure reports the singular values of the full sample FRED-MD database (N = 124, T = 720) based
on PCA, HFA3, and HFA4, respectively. All series in FRED-MD are transformed to be stationary following the
transformations described in McCracken & Ng (2016).

(a) HFA3 factor-augmented regression (b) HFA4 factor-augmented regression

Figure 8: Interval prediction of the S&P 500 equity premium with HFA factors

Note: This figure reports the point prediction and the 95% interval prediction of the S&P 500 equity premium
estimated by factor-augmented regression with the HFA factors. The S&P 500 equity premium is predicted on a
monthly forecasting horizon from January 1985 until December 2018.

Figure 9: Out-of-sample CSSE for forecasting the S&P 500 equity premium

Note: This figure reports the cumulative sum-squared error of the HFA3, HFA4, and JMCA forecast based on the
PCA forecast, which is defined in equation (44). The S&P 500 equity premium is predicted on a monthly forecasting
horizon from January 1985 until December 2018. Shaded regions indicate the three largest drawdown periods of the
S&P 500 during the out-of-sample period.
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1. Proofs

1.1. Lemmas

The following lemmas are useful to prove Theorem 1 - 3.

Lemma 1. A and B are p × p positive definite and positive semi-definite matrices, respectively.

Then, for any j + k − 1 ≤ i, ψi(AB) ≤ ψj(A)ψk(B); ψp−j+1(A)ψp−k+1(B) ≤ ψp−i+1(AB).

Proof : See Theorem 2.2 of Anderson & Gupta (1963).

Lemma 2. Under Assumption A and B, denote µ
(k)
NT,j ≡ σj(N

(α−1)k
2 ΛC̃

(k)
f (Λ′⊗(k−1))) for j =

1, 2, . . . , R. Then, for each j = 1, 2, . . . , R, p lim(N,T )→∞ µ
(k)
NT,j = µ

(k)
j , where (µ

(k)
j )2 = ψj(ΣΛC

(k)
f Σ

⊗(k−1)
Λ

C
(k)
f
′) and 0 < µ

(k)
j <∞.

Proof : Since E‖ft‖2K <∞ and ‖λi‖ <∞ hold, it follows by Chebychev’s Weak Law of Large

Numbers that

p lim
(N,T )→∞

ψj(N
(α−1)kΛC̃

(k)
f (Λ′Λ)⊗(k−1)C̃

(k)
f
′Λ′) = ψj(ΣΛC

(k)
f Σ

⊗(k−1)
Λ C

(k)
f
′),

where ΣΛ = limN→∞ Λ′Λ/N1−α. By Assumption A and Lemma 1, we have

µ
(k)2

NT,j =ψj(N
(α−1)kΛC̃

(k)
f (Λ′Λ)⊗(k−1)C̃

(k)
f
′Λ′)

≤ψ1(Λ′Λ/N1−α)ψ1((Λ′Λ/N1−α)⊗(k−1))ψj(C̃
(k)
f C̃

(k)
f
′)

≤ψk1(Λ′Λ/N1−α)ψj(C̃
(k)
f C̃

(k)
f
′).

Moreover, by Lemma 1 again, we have

µ
(k)2

NT,j ≥ψR(Λ′Λ/N1−α)ψR((Λ′Λ/N1−α)⊗(k−1))ψj(C̃
(k)
f C̃

(k)
f
′)

≥ψkR(Λ′Λ/N1−α)ψj(C̃
(k)
f C̃

(k)
f
′).

By Assumption A(ii) and Assumption B(ii), we have

p lim
(N,T )→∞

µ
(k)2

NT,j =µ
(k)2

j ≤ p lim
(N,T )→∞

ψk1(Λ′Λ/N1−α)ψj(C̃
(k)
f C̃

(k)
f
′) ≤ (ν1)k(φ

(k)
j )2 <∞,

p lim
(N,T )→∞

µ
(k)2

NT,j =µ
(k)2

j ≥ p lim
(N,T )→∞

ψkR(Λ′Λ/N1−α)ψj(C̃
(k)
f C̃

(k)
f
′) ≥ (νR)k(φ

(k)
j )2 > 0,

for j = 1, 2, . . . , R, where ν1, . . . , νR are the eigenvalues of ΣΛ.
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Lemma 3. Under Assumption C, for 3 ≤ k ≤ K, we have

σj(N
(α−1)k

2 C̃(k)
e ) = σj(G

1/2
N )tr(GN)

k−1
2 Op(

√
N (α−1)k logN/T )

for j = 1, . . . , N .

Proof : Since E = UG
1/2
N , we have C̃

(k)
e = G

1/2
N C̃

(k)
u (G

1/2
N )⊗(k−1). Notice that σj(C̃

(k)
e ) =√

ψj(C̃
(k)
e C̃

(k)′
e ). For ψj(C̃

(k)
e C̃

(k)′
e ), we have ψj(C̃

(k)
e C̃

(k)′
e ) ≤ ψj(GN)ψ1(C̃

(k)
u (GN)⊗(k−1)C̃

(k)′
u ) ≤

ψj(G
∗
N)ψ1(C̃

(k)
u (G∗N)⊗(k−1)C̃

(k)′
u ), where G∗N is a diagonal matrix of the eigenvalues of GN . It follows

that

C̃(k)
u (G∗N)⊗(k−1)C̃(k)′

u =
N∑
i1=1

. . .

N∑
ik−2=1

g∗i1 . . . g
∗
ik−2

B̃
(k)
u,i1i2...ik−2

G∗NB̃
(k)
u,i1i2...ik−2

,

where B̃
(k)
u,i1i2...ik−2

∈ RN×N is the (i1i2 . . . ik−2)-th block matrix of C̃
(k)
u . To be specific, when

k = 3, C̃
(3)
u (G∗N)⊗(2)C̃

(3)′
u =

∑N
i=1 g

∗
i B̃

(3)
u,iG

∗
NB̃

(3)
u,i and C̃

(3)
u = [B̃

(3)
u,1, . . . , B̃

(3)
u,N ]. When k = 4,

C̃
(4)
u (G∗N)⊗(3)C̃

(4)′
u =

∑N
i=1

∑N
j=1 g

∗
i g
∗
j B̃

(4)
u,ijG

∗
NB̃

(4)
u,ij and C̃

(4)
u = [B̃

(4)
u,11, . . . , B̃

(4)
u,1N , . . . , B̃

(4)
u,NN ].

When k = 3, we have

ψ1(C̃(k)
u (G∗N)⊗(k−1)C̃(k)′

u ) ≤
N∑
i=1

g∗iψ1(B̃
(k)
u,iG

∗
NB̃

(k)
u,i )

=
N∑
i=1

g∗i sup
‖v‖=1

‖v′B̃(k)
u,iG

∗
NB̃

(k)
u,iv‖

=
N∑
i=1

g∗i

N∑
j=1

g∗j sup
‖v‖=1

(
[B̃

(k)
u,iv]j

)2

≤ max
i

sup
‖v‖=1

‖B̃(k)
u,iv‖2

∞

N∑
i=1

N∑
j=1

g∗i g
∗
j .

Notice that
∑N

i=1

∑N
j=1 g

∗
i g
∗
j = tr(GN)2. We thus only need to bound maxi sup‖v‖=1 ‖B̃

(k)
u,iv‖2

∞. For

i = 1, . . . , N , let [B̃
(k)
u,i ]jk = ξijk = 1

T

∑T
t=1 ξijk,t, where ξijk,t = uitujtukt. Since uit, ujt and ukt are

mutually independent and normal distributed, we have E(ξijk,t) = 0 and Var(ξijk,t) ≤ E(u6
it) <∞.

Therefore, by Theorem 3.3 and Lemma 2.4 of Saulis & Statulevicius (1991), for any ‖v‖ = 1, we

have P (|
∑N

k=1 vkξijk,t| > x) ≤ exp(−c∗x 2
3 ) with some universal positive constant c∗. Notice that

the strong mixing coefficient satisfies ᾱi(n) ≤ Cᾱτ
n = Cᾱ exp(− log(1/τ)n). Now by Theorem 4.17
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and Lemma 2.4 of Saulis & Statulevicius (1991), we have

P (‖B̃(k)
u,iv‖∞ ≥ ε) = P (max

j∈[N ]

∣∣ 1

T

T∑
t=1

N∑
k=1

vkξijk,t
∣∣ ≥ ε)

≤ N max
j∈[N ]

P (
∣∣ 1

T

T∑
t=1

N∑
k=1

vkξijk,t
∣∣ ≥ ε)

≤ N max
j∈[N ]

{
exp

(
− c∗Tε2

)
+ exp

(
− c∗(Tε)

2
7

)}
≤ N exp

(
− c∗Tε2

)
for sufficient small ε. This implies maxi sup‖v‖=1 ‖B̃

(k)
u,iv‖∞ ≤

√
c∗ log(N/δ)/T with probability at

least 1−δ. The bound of ψ1(C̃
(k)
u (G∗N)⊗(k−1)C̃

(k)′
u ) for k > 3 can be derived similarly. Consequently,

we obtain

σj(N
(α−1)k

2 C̃(k)
e ) = σj(G

1/2
N )tr(GN)

k−1
2 Op(

√
N (α−1)k logN/T ). (1)

Lemma 4. Under Assumptions A and B, for 3 ≤ k ≤ K, it holds that

C̃(k)
x = ΛC̃

(k)
f Λ′

⊗(k−1)
+ C̃(k)

e + Π̃(k),

where C̃
(k)
x , C̃

(k)
f and C̃

(k)
e are, respectively, the sample k-th order multi-cumulant of xt, ft and et,

and Π̃(k) contains the cross terms between Λft and et. To be specific, Π̃(k) =
∑k−1

m=1 Π̃
(k)
m with

Π̃(k)
m =

∑
( km) permutation

1

T

T∑
t=1

cum
(
et, et, . . . ,Λft︸ ︷︷ ︸

m of Λft , k−m of et

)
, m = 1, . . . , k − 1,

where cum
(
et, et, . . . ,Λft

)
∈ RN×Nk−1

is the k-th order multi-cumulant of {et, et, . . . ,Λft}︸ ︷︷ ︸
m of Λft , k−m of et

, and

∑
( km) permutation indicates the summation of

(
k
m

)
permutation of {et, et, . . . ,Λft}.1 Moreover, under

Assumptions A – C, for 3 ≤ k ≤ K, it holds that

σ1(C̃(k)
e ) + σ1(Π̃(k)) � σ1(C̃(k)

e ) + σ1(Π̃
(k)
k−1).

1For example, when k = 3 and m = 1, we can write

Π̃
(3)
1 =

1

T

T∑
t=1

cum
(
et, et,Λft

)
+

1

T

T∑
t=1

cum
(
et,Λft, et

)
+

1

T

T∑
t=1

cum
(
Λft, et, et

)
.
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Proof : Under Assumptions A and B, for 3 ≤ k ≤ K, we have

C̃(k)
x =

1

T

T∑
t=1

cum
(
xt, . . . , xt

)
=

1

T

T∑
t=1

cum
(
Λft + et, . . . ,Λft + et

)
=

1

T

T∑
t=1

cum
(
Λft, . . . ,Λft

)
+

1

T

T∑
t=1

cum
(
et, . . . , et

)
+

k−1∑
m=1

∑
( km)

1

T

T∑
t=1

cum
(
et, et, . . . ,Λft︸ ︷︷ ︸

m of Λft , k−m of et

)

= Λ
{ 1

T

T∑
t=1

cum
(
ft, . . . , ft

)}
(Λ′
⊗(k−1)

) + C̃(k)
e + Π̃(k)

= ΛC̃
(k)
f Λ′

⊗(k−1)
+ C̃(k)

e + Π̃(k).

Hence, the first part of Lemma 4 holds. Recall et = G
1/2
N ut under Assumption C. We have

Π̃(k)
m =

∑
( km) permutation

1

T

T∑
t=1

G
1/2
N cum

(
ut, ut, . . . , ft︸ ︷︷ ︸

m of ft , k−m of ut

)
( G

1/2
N ⊗ . . .⊗ Λ′︸ ︷︷ ︸

m of Λ′ , k−m−1 of G
1/2
N

), m = 1, . . . , k − 1,

Following the proof of Lemma 3, let

C̃
(k)
m,u,f =

1

T

T∑
t=1

cum
(
ut, ut, . . . , ft︸ ︷︷ ︸

m of ft , k−m of ut

)
.

We have

σ1(Π̃(k)
m ) �

∑
( km) permutation

σ1

(
G

1/2
N C̃

(k)
m,u,f (G

1/2
N ⊗ . . .⊗ Λ′)

)
�

(
k

m

)
σ1

(
G

1/2
N C̃

(k)
m,u,f (G

1/2
N ⊗ . . .⊗ Λ′)

)
.

Notice that k ≤ K is a finite number, it follows that σ1(Π̃
(k)
m ) � σ1

(
G

1/2
N C̃

(k)
m,u,f (G

1/2
N ⊗ . . . ⊗ Λ′)

)
.

Hence,

σ2
1(Π̃(k)

m ) = ψ1(Π̃(k)
m Π̃(k)′

m ) � N (1−α)mψ1(GN)ψ1

(
C̃

(k)
m,u,f

{
(GN)⊗(k−m−1) ⊗ (Λ′Λ/N1−α)⊗m

}
C̃

(k)′

m,u,f

)
� N (1−α)mψ1(GN)ψ1

(
C̃

(k)
m,u,f

{
(G∗N)⊗(k−m−1) ⊗ (Σ∗Λ)⊗m

}
C̃

(k)′

m,u,f

)
,
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whereG∗N and Σ∗Λ are, respectively, the eigenvalue matrices ofG
1/2
N and Λ′Λ/N1−α. Whenm = k−1,

the term (G∗N)⊗(k−m−1) is vanished, the rank of C̃
(k)
k−1,u,f (Σ

∗
Λ)⊗(k−1)C̃

(k)′

k−1,u,f is Rk−1, which is a finite

number. Thus, Theorem 3.3 and Lemma 2.4 of Saulis & Statulevicius (1991) used in Lemma 3

cannot be applied, we can only derive ψ1

(
C̃

(k)
k−1,u,f (Σ

∗
Λ)⊗(k−1)C̃

(k)′

k−1,u,f

)
� Op(N/T ). Whenm < k−1,

write C̃
(k)
m,u,f = [B̃

(k)
1···1,m,u,f , . . . , B̃

(k)
1···N,m,u,f , . . . , B̃

(k)
N ···N,m,u,f ], where B̃

(k)
i1···ik−2,m,u,f

∈ RN×R is the

i1 · · · ik−2 block matrix of C̃
(k)
m,u,f . Notice that ut and ft are mutually independent by Assumption

A(iii), we can follow Theorem 3.3 and Lemma 2.4 of Saulis & Statulevicius (1991) used in Lemma

3 to derive

ψ1(Π̃(k)
m Π̃(k)′

m ) � ψ1(GN) · tr(GN)k−m−1 ·O(N (1−α)m) ·Op(logN/T ).

Overall, when k ≥ 3, we have

ψ1(Π̃(k)
m Π̃(k)′

m ) �

{
ψ1(GN) ·N (1−α)k ·Op(N

α/T ), m = k − 1;

ψ1(GN) · tr(GN)k−m−1 ·N (1−α)m ·Op(logN/T ), 1 ≤ m < k − 1.

For the terms 1 ≤ m < k−1, (i) the dominated term is ψ1(Π̃
(k)
1 Π̃

(k)′

1 ) if tr(GN) >> O(N1−α), (ii) the

dominated term is ψ1(Π̃
(k)
k−2Π̃

(k)′

k−2) if tr(GN) << O(N1−α), (iii) all terms are Op(N
(1−α)(k−1) logN/T )

if tr(GN) � O(N1−α). For the case (ii) and (iii), it is obvious that ψ1(Π̃
(k)
k−1Π̃

(k)′

k−1) dominates the

remaining terms ψ1(Π̃
(k)
m Π̃

(k)′
m ) with 1 ≤ m < k − 1. For the case (i), notice that by Lemma 3,

ψ1(C̃
(k)
e C̃

(k)′
e ) = ψ1(GN)tr(GN)k−1Op(N

α/T ) >> ψ1(Π̃
(k)
1 Π̃

(k)′

1 ). Together with cases (i)-(iii), it

follows that

σ1(C(k)
e ) + σ1(Π̃(k)) � σ1(C(k)

e ) + σ1(Π̃
(k)
k−1).

Lemma 5. Under Assumption A – C, for 3 ≤ k ≤ K, it holds that

σR+j(N
(α−1)k

2 C̃(k)
x ) = σ1(G

1/2
N )tr(GN)

k−1
2 Op(

√
N (α−1)k logN/T ) +Op(

√
Nα/T ),

for j = 1, . . . , N −R and 3 ≤ k ≤ K.

Proof : By Lemma 4, we have

C̃(k)
x = ΛC̃

(k)
f Λ′

⊗(k−1)
+ C̃(k)

e + Π̃(k), k ≥ 3.

Since rank(ΛC̃
(k)
f Λ′⊗(k−1)) = R, µ̃

(k)
NT,R+j ≤ σR+j(ΛC̃

(k)
f Λ′⊗(k−1)) + σ1(C̃

(k)
e ) + σ1(Π̃(k)) = σ1(C̃

(k)
e ) +

σ1(Π̃(k)). Lemma 4 implies that σ1(C̃
(k)
e )+σ1(Π̃(k)) � σ1(C̃

(k)
e )+σ1(Π̃

(k)
k−1). Notice that σ1(Π̃

(k)
k−1) =

N (1−α)k/2Op(
√
Nα/T ), then Lemma 3 and 4 imply the result.
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Lemma 6. Under Assumption A – C, for j = 1, 2, . . . , R and 3 ≤ k ≤ K, if

tr(GN) = o
(
N

k
k−1

(1−α)T
1

k−1 (logN)−
1

k−1

)
and Nα/T = o(1), then we have

σj(N
(α−1)k

2 C̃(k)
x ) = µ

(k)
NT,j + op(1),

where µ
(k)
NT,j is defined in Lemma 2.

Proof : Notice that µ̃
(k)
NT,j ≤ σj(ΛC̃

(k)
f Λ′⊗(k−1))+σ1(C̃

(k)
e )+σ1(Π̃(k)) = µ

(k)
NT,j+σ1(C̃

(k)
e )+σ1(Π̃(k))

for j = 1, . . . , R. By Lemma 3, 4 and 5, when tr(GN)k−1N (α−1)k logN/T = o(1) and Nα/T = o(1),

the result follows.

Lemma 7. Under Assumptions A – C, if tr(GN) = o
(
N

k
k−1

(1−α)T
1

k−1 (logN)−
1

k−1

)
and Nα/T =

o(1), we have

p lim
(T,N)→∞

Λ′Λ̂(k)

N1−α
2

= Q(k). (2)

The matrix Q(k) is invertible and is given by Q(k) = (Ψ(k))−1/2Γ(k)(D(k))1/2, where Ψ(k) = C
(k)
f Σ

⊗(k−1)
Λ C

(k)′

f ,

D(k) = diag(v1, v2, . . . , vR) are the eigenvalue of (Ψ(k))1/2ΣΛ(Ψ(k))1/2, ΣΛ = limN→∞ Λ′Λ/N1−α, and

Γ(k) is corresponding eigenvector matrix such that Γ(k)′Γ(k) = IR.

Proof : Multiply the identityN−(1−α)kC̃
(k)
x C̃

(k)′
x Λ̂(k) = Λ̂(k)D̃

(k)
NT on both sides by (C̃

(k)
f (Λ′Λ/N1−α)

⊗(k−1)C̃
(k)′

f )1/2Λ′/N1−α/2 to obtain

(C̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f )1/2 Λ′

N1−α/2 (
C̃

(k)
x C̃

(k)′
x

N (1−α)k
)Λ̂(k) = (C̃

(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f )1/2 Λ′Λ̂(k)

N1−α/2 D̃
(k)
NT .

(3)

Notice that ψj(
C̃

(k)
x C̃

(k)′
x

N(1−α)k ) = ψj(ΛC̃
(k)
f ( Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f Λ′/N1−α) + op(1) for j = 1, 2, . . . , N − R by

Lemma 6. We can rewrite (3) as

(C̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f )1/2(
Λ′Λ

N1−α )(C̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f )(
Λ′Λ̂(k)

N1−α/2 )

= (C̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f )1/2(
Λ′Λ̂(k)

N1−α/2 ){D̃(k)
NT + op(1)}.

(4)

Let Ψ
(k)
NT = C̃

(k)
f ( Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f , thenB
(k)
NT = (Ψ

(k)
NT )1/2( Λ′Λ

N1−α )(Ψ
(k)
NT )1/2, and J

(k)
NT = (Ψ

(k)
NT )1/2( Λ′Λ̂

N1−α/2 ).
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Then we can rewrite (4) as

{B(k)
NT + op(1)}J (k)

NT = J
(k)
NT D̃

(k)
NT . (5)

Thus each column of J
(k)
NT is the eigenvector of B

(k)
NT + op(1) without standardization. Let D̃

(k)†
NT be

the eigenvalue matrix of J
(k)
NT
′J

(k)
NT . Denote Γ

(k)
NT = J

(k)
NT D̃

(k)†− 1
2

NT so that each column of Γ
(k)
NT has a

unit length, and we have

{B(k)
NT + op(1)}Γ(k)

NT = Γ
(k)
NT D̃

(k)†
NT . (6)

Thus Γ
(k)
NT is the eigenvector matrix of B

(k)
NT + op(1). Note that B

(k)
NT + op(1) converges to B(k) =

(Ψ(k))1/2ΣΛ(Ψ(k))1/2 by Assumption A and B. In addition, the eigenvalues of B
(k)
NT is distinct by

Lemma 2. Following Bai (2003)’s proofs of Proposition 1, there exists a unique eigenvector matrix

Γ(k) of B(k) such that ‖Γ(k) − Γ
(k)
NT‖ = op(1). From

Λ′Λ̂(k)

N1−α/2 = (Ψ
(k)
NT )−1/2Γ

(k)
NT (D̃

(k)†
NT )1/2, (7)

we have
Λ′Λ̂(k)

N1−α/2 → (Ψ(k))−1/2Γ(k)(D(k))1/2 (8)

by Assumptions A - B and D̃
(k)†
NT →p D

(k).

Lemma 8. Define the rotation matrix

H(k) = C̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f (
Λ′Λ̂(k)

N1−α )(D̃
(k)
NT )−1. (9)

Under Assumptions A – C and if tr(GN) = o
(
N

k
k−1

(1−α)T
1

k−1 (logN)−
1

k−1

)
and Nα/T = o(1),

(
Λ′Λ̂(k)

N
)′H(k) = IR + op(1), (10)

where D̃
(k)
NT is R × R diagonal matrix of the first R largest eigenvalues of 1

N(1−α)k C̃
(k)
x C̃

(k)′
x in de-

creasing order.
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Proof : We have

(
Λ′Λ̂(k)

N
)′H(k) =(

Λ̂(k)′Λ

N
)C̃

(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f (
Λ′Λ̂(k)

N1−α )(D̃
(k)
NT )−1

=(
Λ̂(k)′
√
N

)(
1

N1−αΛC̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f Λ′)(
Λ̂(k)

√
N

)D̃
(k)−1
NT .

Notice that ψj(
C̃

(k)
x C̃

(k)′
x

N(1−α)k ) = ψj(
1

N1−αΛC̃
(k)
f ( Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f Λ′) + op(1) for j = 1, 2, . . . , N − R by

Lemma 6. It follows that

(
Λ̂(k)′
√
N

)(
1

N1−αΛC̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f Λ′)(
Λ̂(k)

√
N

) = D̃
(k)
NT + op(1).

Therefore,

(
Λ′Λ̂(k)

N1−α )′H(k) = {D̃(k)
NT + op(1)}D̃(k)−1

NT

= IR + op(1).

1.2. Proof of Theorem 1

The proof of Theorem 1 follows the same strategy as that in Ahn & Horenstein (2013). The

main results are based on the asymptotic properties of µ̃
(k)
NT,r: If limT→∞ C̃

(k)
f is full rank R, we

have µ̃
(k)
NT,r/µ̃

(k)
NT,r+1 = Op(1) for r 6= R and µ̃

(k)
NT,R/µ̃

(k)
NT,R+1 →∞ as (N, T )→∞. Indeed, while the

ratio of the R-th and (R + 1)-th singular values of C̃
(k)
x diverge to infinity, all other ratios of the

two adjacent singular values are asymptotically bounded. All lemmas used to prove the theorem

can be found in this Supplementary Appendix.

By Lemma 6, for j = 1, 2, . . . , R − 1, if tr(GN) = o
(
N

k
k−1

(1−α)T
1

k−1 (logN)−
1

k−1

)
and Nα/T =

o(1) holds, then we have µ̃
(k)
NT,j/µ̃

(k)
NT,j+1 = µ

(k)
NT,j/µ

(k)
NT,j+1 + op(1) = Op(1). Subsequently, by Lemma

5, µ̃
(k)
NT,R/µ̃

(k)
NT,R+1 =

(
µ

(k)
NT,R + op(1)

)
/op(1)→∞ as (N, T )→∞. By Lemma 3, for j = 1, . . . , N −

R− 1, µ̃
(k)
NT,R+j/µ̃

(k)
NT,R+j+1 = Op(1). Thus, we have

p lim
(N,T )→∞

µ̃
(k)
NT,j/µ̃

(k)
NT,j+1 =

∞ , j = R,

O(1) , j 6= R.
(11)

Subsequently, the consistency of the GER estimator follows from (11).
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1.3. Proof of Theorem 2

Our proof follows the same strategy as that in Bai (2003) for the estimation of Λ using C̃
(2)
x =

1
T
X ′X. The proof mainly comprises the following steps. First, we state the identity between

the proposed estimator Λ̂(k) and the sample higher-order multi-cumulant C̃
(k)
x . Subsequently, we

generalize the rotation matrix H(k) in Bai (2003) and give the explicit form of the estimation errors

of factor loadings Λ̂(k)−ΛH(k) and factors F̂ (k)−F (H(k)′)−1. Finally, we give the convergence rate

of the estimators based on that of the estimation errors.

Let D̃
(k)
NT be an R × R diagonal matrix of the first R largest eigenvalues of 1

N(1−α)k C̃
(k)
x C̃

(k)′
x in

decreasing order. By the definition of eigenvectors and eigenvalues, we have 1
N(1−α)k C̃

(k)
x C̃

(k)′
x Λ̂(k) =

Λ̂(k)D̃
(k)
NT or

Λ̂(k) =
1

N (1−α)k
C̃(k)
x C̃(k)′

x Λ̂(k)(D̃
(k)
NT )−1. (12)

Recall the rotation matrix in (9),

H(k) = C̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f (
Λ′Λ̂(k)

N1−α )(D̃
(k)
NT )−1.

By Lemma 6, ‖D̃(k)
NT‖ ≤

∑R
j=1 µ̃

(k)2
NT,j = Op(1). Under Assumptions A and B, we have ‖ Λ′Λ

N1−α‖ =

O(1), ‖C̃(k)
f ‖ = Op(1) and ‖ Λ′Λ̂(k)

N1−α/2‖ = Op(1). Subsequently, ‖H(k)‖ ≤ N
α
2 ‖C̃(k)

f ‖2 · ‖ Λ′Λ
N1−α‖k−1 ·

‖ Λ′Λ̂(k)

N1−α/2‖ · ‖D̃
(k)−1
NT ‖ = Op(N

α
2 ).

Therefore, the estimation error between Λ̂(k) and Λ is

Λ̂(k) − ΛH(k) =
1

N (1−α)k
C̃(k)
x C̃(k)′

x Λ̂(k)(D̃
(k)
NT )−1 − ΛC̃

(k)
f (

Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f (
Λ′Λ̂(k)

N1−α )(D̃
(k)
NT )−1

=
√
N
{ 1

N (1−α)k
C̃(k)
x C̃(k)′

x − 1

N (1−α)k
ΛC̃

(k)
f (Λ′Λ)⊗(k−1)C̃

(k)′

f Λ′
}

(
Λ̂(k)

√
N

)(D̃
(k)
NT )−1.

Notice that AA′ −BB′ = (A−B)A′ +B(A−B)′ for two matrices A,B ∈ Rp×q, we have

∥∥C̃(k)
x C̃(k)′

x − ΛC̃
(k)
f (Λ′Λ)⊗(k−1)C̃

(k)′

f Λ′
∥∥ ≤ σ1

(
C̃(k)
x − ΛC̃

(k)
f Λ′

⊗(k−1)
)
(∥∥C̃(k)

x

∥∥+
∥∥ΛC̃

(k)
f Λ′

⊗(k−1)∥∥).
Since

∥∥ 1
N(1−α)k/2 C̃

(k)
x

∥∥ � ∥∥ 1
N(1−α)k/2 ΛC̃

(k)
f Λ′⊗(k−1)

∥∥ = Op(1). It suffice to bound 1
N(1−α)k/2σ1(C̃

(k)
x −

ΛC̃
(k)
f Λ′⊗(k−1)). Notice that

1

N (1−α)k/2
C̃(k)
x −

1

N (1−α)k/2
ΛC̃

(k)
f (Λ′)⊗(k−1) =

1

N (1−α)k/2
C̃(k)
e +

1

N (1−α)k/2
Π̃(k),
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where Π̃(k) is defined in Lemma 4. By Lemma 3 and 4, we have

1

N (1−α)k/2
σ1(C̃(k)

x − ΛC̃
(k)
f Λ′

⊗(k−1)
) ≤ σ1(

1

N (1−α)k/2
C̃(k)
e ) + σ1(

1

TN (1−α)k/2
Π̃(k))

= Op(
√

tr(GN)k−1N (α−1)k logN/T ) +Op(
√
Nα/T ).

Together with ‖ Λ̂(k)
√
N
‖ = 1 and ‖(D̃(k)

NT )−1‖ = Op(1), the average convergence rate of Λ̂(k) is

1√
N
‖Λ̂(k) − ΛH(k)‖ = Op(

√
tr(GN)k−1N (α−1)k logN/T ) +Op(

√
Nα/T ). (13)

For the estimated factors F̂ (k), we have F̂ (k) = XΛ̂(k)/N = FΛ′Λ̂(k)/N + EΛH(k)/N + E(Λ̂(k) −
ΛH(k))/N . Lemma 8 implies that Λ′Λ̂(k)/N → (H(k)′)−1. Therefore, when (N, T )→∞, substitut-

ing (H(k)′)−1 for Λ′Λ̂(k)/N to obtain

1√
T
‖F̂ (k) − F (H(k)′)−1‖ ≤ 1√

T
‖EΛH(k)/N‖+

1√
T
‖E(Λ̂(k) − ΛH(k))/N‖.

The first part holds 1√
T
‖EΛH(k)/N‖ ≤ 1√

N1+α
( 1√

T
‖EΛ/

√
N1−α‖) ·Op(N

α/2) = Op(
1√
N

)Op(1). The

second part holds as 1√
T
‖E(Λ̂(k) − ΛH(k))/N‖ ≤ σ1( 1√

NT
E) 1√

N
‖Λ̂(k) − ΛH(k)‖ = Op(

1√
TN1−α ) +

Op(

√
tr(GN )k−1N(α−1)k logN

NT
). Overall, we have

1√
T
‖F̂ (k) − F (H(k)′)−1‖ = Op(

1√
N

) +Op(
1√

TN1−α
) +Op(

√
tr(GN)k−1N (α−1)k logN

NT
).

1.4. Proof of Theorem 3

The proof of Theorem 3 follows the same strategy as that of Theorem 2. For each λ̂
(k)
i and f̂

(k)
t ,

we give the explicit form of the estimation error. Subsequently, we find the dominant term and use

the sandwich formula to derive the asymptotic distribution of the proposed estimators. We use the

same notation as that in the proof of Theorem 2. We denote [A]i as the i-th column of matrix A.

To derive the distribution of λ̂
(k)
i , we need define a new rotation matrix as follows

H̄(k) =
1

N (1−α)k
C̃

(k)
f Λ′

⊗(k−1)
C̃(k)′

x Λ̂(k)(D̃
(k)
NT )−1. (14)

11



Notice that

H̄(k) =
1

N (1−α)k
C̃

(k)
f Λ′

⊗(k−1)(
Λ′
⊗(k−1)

C̃
(k)′

f Λ′ + C̃(k)′

e + Π̃(k)
)
Λ̂(k)(D̃

(k)
NT )−1

= H(k) +
1

N (1−α)k
C̃

(k)
f Λ′

⊗(k−1)(
C̃(k)′

e + Π̃(k)
)
Λ̂(k)(D̃

(k)
NT )−1

= H(k) + op(1),

provided that tr(GN) = o
(
N

k
k−1

(1−α)T
1

k−1 (logN)−
1

k−1

)
and Nα/T = o(1). First, we derive the

distribution of λ̂
(k)
i . By the definitions of H̄(k) and equation (12), we have

λ̂
(k)
i − H̄(k)′λi = D̃

(k)−1
NT (

1√
N

Λ̂(k)′)(
1

N (1−α)k/2
C̃(k)
x )

√
N

N (1−α)k/2
[C̃(k)′

x − (Λ)⊗(k−1)C̃
(k)
f Λ′]i. (15)

Notice that [C̃
(k)′
x − Λ⊗(k−1)C̃

(k)
f Λ′]i � [Π̃

(k)′

k−1 + C̃
(k)′
e ]i by Lemma 4. By Lemma 3, we have

σ1( 1
N(1−α)k/2 C̃

(k)′
e ) = tr(GN)

k−1
2 Op(

√
N (α−1)k logN/T ). By Lemma 4, we have σ1( 1

N(1−α)k/2 Π̃
(k)′

k−1) �
σ1( 1

N(1−α)k/2 Λ⊗(k−1) 1
T
H̄(k)
f
′E) = Op(

√
Nα/T ). If tr(GN) = o(N

k
k−1
−α(logN)−

1
k−1 ), then 1

N(1−α)k/2 C̃
(k)′
e

is negligible after multiplying
√
TN−α. Now (15) can be rewritten as

λ̂
(k)
i − H̄(k)′λi = D̃

(k)−1
NT (

1√
N

Λ̂(k)′)(
C̃

(k)
x

N (1−α)k/2
)

√
N

N (1−α)k/2
Λ⊗(k−1) 1

T
H̄(k)
f
′ei + op(

√
Nα

T
)

= D̃
(k)−1
NT (

1√
N

Λ̂(k)′)(
ΛC̃

(k)
f Λ′⊗(k−1)

N (1−α)k/2
)

√
N

N (1−α)k/2
Λ⊗(k−1) 1

T
H̄(k)
f
′ei + op(

√
Nα

T
)

= (D̃
(k)
NT )−1(

Λ̂(k)′Λ

N1−α )C̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1) 1

T
H̄(k)
f
′ei + op(

√
Nα

T
).

(16)

Now multiply both sides of the equation (16) by
√
TN−α to obtain

√
TN−α(λ̂

(k)
i − H̄(k)′λi) = (D̃

(k)
NT )−1(

Λ̂(k)′Λ

N1−α/2 )C̃
(k)
f (

Λ′Λ

N1−α )⊗(k−1) 1√
T
H̄(k)
f
′ei + op(1). (17)

When (N, T ) → ∞, Nα/T → 0 and tr(GN) = o(N
k
k−1
−α(logN)−

1
k−1 ), we have C̃

(k)
f → C

(k)
f ,

D̃
(k)
NT → D(k), Λ̂(k)′Λ

N1−α/2 → Q(k)′ and Λ′Λ
N1−α → ΣΛ. By Assumption D(i), we know that 1√

T
H̄(k)
f
′ei

d−→
N (0,Θ

(k)
i ). Overall, following Proposition 2 of Bai & Ng (2023), substituting H(k) for H̄(k), we

have

√
TN−α(λ̂

(k)
i −H(k)′λi)

d−→ N
(
0, (D(k))−1Q(k)′C

(k)
f (ΣΛ)⊗k−1Θ

(k)
i (ΣΛ)⊗k−1C

(k)′

f Q(k)(D(k))−1
)
. (18)

To derive the limit distribution of f̂
(k)
t , we follow Bai (2003)’s proof of Theorem 2. From F̂ (k) =

12



XΛ̂(k)/N and X = FΛ′ + E, we have f̂
(k)
t = N−1Λ̂(k)′Λft + N−1(Λ̂(k) − ΛH(k))′et + N−1H(k)′Λ′et.

Using Λ′Λ̂(k)/N → (H(k)′)−1 in Lemma 8, we obtain

f̂
(k)
t − (H(k))−1ft =

1

N
H(k)′Λ′et +

1

N
(Λ̂(k) − ΛH(k))′et. (19)

The last term holds ‖ 1
N

(Λ̂(k) − ΛH(k))′et‖ � 1√
T
‖ 1
N
E(Λ̂(k) − ΛH(k))‖ ≤ σ1( 1√

NT
E) 1√

N
‖Λ̂(k) −

ΛH(k)‖ = Op(
1√

TN1−α )+Op(

√
tr(GN )k−1N(α−1)k logN

NT
). Therefore, if we have Nα/T → 0 and tr(GN) =

o
(
T

1
k−1N

k
k−1

(1−α)(logN)−
1

k−1

)
, the last term 1

N
(Λ̂(k) − ΛH(k))′et is negligible when we multiply by

√
N . Equation (19) implies

√
N
(
f̂

(k)
t − (H(k))−1ft

)
=(

1√
Nα

H(k)′)(
1√
N1−α

Λ′et) + op(1). (20)

Together with Assumption D and 1√
NαH

(k) → (Q(k))−1, we have

√
N(f̂

(k)
t − (H(k))−1ft)

d−→ N (0, (Q(k)′)−1Φt(Q
(k))−1). (21)

1.5. Proof of Proposition 1

Recall that GN = LG∗NL
′, then C

(k)
e = (LG

∗1/2
N L′)C

(k)
u (LG

∗1/2
N L′)⊗(k−1). Since σ2

1(C
(k)
e ) =

ψ1(C
(k)
e C

(k)′
e ), we only need to study ψ1(C

(k)
e C

(k)′
e ). Let C̄

(k)
u = L′C

(k)
u (L)⊗(k−1). Notice that

ψ1(C(k)
e C(k)′

e ) = ψ1(G∗NL
′C(k)

u (L)⊗(k−1)(G∗N)⊗(k−1)(L′)⊗(k−1)C(k)′

u L)

= ψ1(G∗NC̄
(k)
u (G∗N)⊗(k−1)C̄(k)′

u ).

(i) When k = 3, write C
(3)
u = [B

(3)
u,1,B

(3)
u,2, . . . ,B

(3)
u,N ], where B

(3)
u,i has all elements equal to zero, ex-

cept the i-th diagonal element, which equals κ
(3)
u,i . Analogously, write C̄

(3)
u = [B̄

(3)
u,1, B̄

(3)
u,2, . . . , B̄

(3)
u,N ],

we have

ψ1(C(3)
e C(3)′

e ) ≤ ψ1(G∗N)ψ1(C̄(3)
u (G∗N)⊗(2)C̄(3)′

u )

≤ ψ1(G∗N)
N∑
i=1

g∗iψ1(B̄
(3)
u,iG

∗
NB̄

(3)
u,i).
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Note that B̄
(3)
u,i = L′(

∑N
j=1 lj,iB

(3)
u,j)L with

∑N
j=1 lj,iB

(3)
u,j = diag(l1,iκ

(3)
u,1, . . . , lN,iκ

(3)
u,N). Therefore,

ψ1(B̄
(3)
u,iG

∗
NB̄

(3)
u,i) = ψ1(L′

N∑
j=1

lj,iB
(3)
u,jLG

∗
NL
′
N∑
j=1

lj,iB
(3)
u,jL)

≤ ψ1(
N∑
j=1

lj,iB
(3)
u,j

N∑
j=1

lj,iB
(3)
u,j)ψ1(G∗N)

≤ ψ1(G∗N) max
j∈[N ]
|lj,i|2 max

j∈[N ]
|κ(3)
u,j|2.

Recall the number of nonzero elements in (l1,i, . . . , lj,i)
> is Gi and

√
Gi|lj,i| = O(1) if lj,i 6= 0. It

follows that maxj∈[N ] |lj,i|2 � G−1
i . Overall, we have

ψ1(C(3)
e C(3)′

e ) ≤ ψ2
1(G∗N)tr(GN) max

i∈[N ]
max
i∈[N ]
|lj,i|2|κ(3)

u |2

. ψ2
1(G∗N)tr(GN)G−1|κ(3)

u |2,

where κ
(3)
u = maxj∈[N ] |κ(3)

u,j| and G = mini Gi.
(ii) When k = 4, write C

(4)
u = [B

(4)
u,1,1, . . . ,B

(4)
u,1,N , . . . ,B

(4)
u,N,1, . . . ,B

(4)
u,N,N ], where B

(4)
u,i,j has all

elements equal to zero, except the i-th diagonal element of B
(4)
u,i,i, which equals κ

(4)
u,i . Analogously,

write C̄
(4)
u = [B̄

(4)
u,1,1, . . . , B̄

(4)
u,1,N , . . . , B̄

(4)
u,N,1, . . . , B̄

(4)
u,N,N ], we have

ψ1(C(4)
e C(4)′

e ) ≤ ψ1(G∗N)ψ1(C̄(4)
u (G∗N)⊗(3)C̄(4)′

u )

≤ ψ1(G∗N)
N∑
j=1

N∑
i=1

g∗i g
∗
jψ1(B̄

(4)
u,i,jG

∗
NB̄

(4)
u,i,j).

Note that B̄
(4)
u,i,j = L′(

∑N
p=1

∑N
q=1 lp,ilq,jB

(4)
u,p,q)L with

N∑
p=1

N∑
q=1

lp,ilq,jB
(4)
u,p,q = diag(l1,il1,jκ

(4)
u,1, . . . , lN,ilN,jκ

(4)
u,N).
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Therefore,

ψ1(B̄
(4)
u,i,jG

∗
NB̄

(4)
u,i,j) = ψ1

(
L′

N∑
p=1

N∑
q=1

lp,ilq,jB
(4)
u,p,qLG

∗
NL
′
N∑
p=1

N∑
q=1

lp,ilq,jB
(4)
u,p,qL

)
≤ ψ1(

N∑
p=1

N∑
q=1

lp,ilq,jB
(4)
u,p,q

N∑
p=1

N∑
q=1

lp,ilq,jB
(4)
u,p,q)ψ1(G∗N)

≤ ψ1(G∗N) max
p∈[N ]

|lp,i|2|lp,j|2 max
p∈[N ]

|κ(4)
u,p|2.

Overall, we have

ψ1(C(4)
e C(4)′

e ) ≤ ψ2
1(G∗N)tr(GN)2 max

i∈[N ]
max
p∈[N ]

|lp,i|2|lp,j|2 max
p∈[N ]

|κ(4)
u,p|2

. ψ2
1(G∗N)tr(GN)2G−2|κ(4)

u |2,

where κ
(4)
u = maxp∈[N ] |κ(4)

u,p| and G = mini Gi.
(iii) When k > 4, we have

ψ1(C(k)
e C(k)′

e ) ≤ ψ1(G∗N)ψ1(C̄(k)
u (G∗N)⊗(k−1)C̄(k)′

u ).

The matrix C̄
(k)
u (G∗N)⊗(k−1)C̄

(k)
u =

∑N
i1=1 · · ·

∑N
ik−2=1 g

∗
i1
· · · g∗ik−2

B̄
(k)
u,i1i2...ik−2

G∗NB̄
(k)
u,i1i2...ik−2

, where

B̄
(k)
u,i1i2...ik−2

∈ RN×N is the (i1i2 . . . ik−2)-th block matrix of C̄
(k)
u . Notice that

B̄
(k)
u,i1...ik−2

= L′
( N∑
`1=1

· · ·
N∑

`k−2=1

l`1,i1 · · · l`k−2,ik−2
B

(k)
u,`1...`k−2

)
L

= L′diag(l1,i1 · · · l1,ik−2
κ

(k)
u,1, . . . , lN,i1 · · · lN,ik−2

κ
(k)
u,N)L.

Analogously, we have

ψ1(B̄
(k)
u,i1i2...ik−2

G∗NB̄
(k)
u,i1i2...ik−2

) ≤ ψ1(G∗N) max
j∈[N ]

(|lj,i1 |2 · · · |lj,ik−2
|2) max

j∈[N ]
|κ(k)
u,j |2.

Notice that maxj∈[N ](|lj,i1 |2 · · · |lj,ik−2
|2) ≤ G−(k−2). Therefore,

ψ1(C(k)
e C(k)′

e ) ≤ ψ2
1(G∗N)[G−1tr(GN)]k−2|κ(k)

u |2.

Now for k ≥ 3, we have σ1(C
(k)
e ) ≤ σ1(GN)[G−1tr(GN)]

k
2
−1|κ(k)

u |. Lemma 2 already shows that

σj(N
(α−1)k

2 ΛC
(k)
f (Λ′⊗(k−1))) � O(1) for j = 1, 2, . . . , R. It is sufficient for σj(ΛC

(k)
f Λ′⊗(k−1)) �
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σ1(C
(k)
e ) if we have

N
(α−1)k

2 σ1(GN)[G−1tr(GN)]
k
2
−1κ(k)

u = o(1). (22)

Furthermore, if there exist some identical eigenvalues in GN , the eigenvalue decomposition and

the eigenvector matrix L are not unique. Hence, under such case, we need that (22) holds for any

matrix L belonging to the eigenvector space of GN .

1.6. Proof of Remark 4.3

First, we give the proof of the convergence rate of the HFA estimator following the normalization

conditions that Λ′Λ/N = IR and C̃
(k)
f C̃

(k)
f
′ be diagonal. Thus we have ‖Λ‖ = O(

√
N) and ‖F‖ =

Op(
√
N−αT ).

Lemma 7 implies that p lim(T,N)→∞ Λ′Λ̂(k)/N = IR. Combining this with Lemma 8 we have

H(k) → IR, we can remove the rotation matrix H(k) and obtain

1√
N
‖Λ̂(k) − Λ‖ = Op(

√
tr(GN)k−1 logN

N (1−α)kT
) +Op(

√
Nα

T
),

1√
T
‖F̂ (k) − F‖ = Op(

1√
N

) +Op(
1√

TN1−α
) +Op(

√
tr(GN)k−1 logN

N (1−α)k+1T
).

(23)

We then derive the limit distribution of λ̂
(k)
i and f̂

(k)
t under the normalization conditions Λ′Λ/N =

IR and C̃
(k)
f C̃

(k)
f
′ be diagonal. Notice that H(k) → IR and Q(k) = IR. Notice that D(k) now is

the eigenvalues of C
(k)
f C

(k)′

f when Λ′Λ/N = IR, namely {D(k)}ii = σ2
i (C

(k)
f ) for i = 1, 2, . . . , R.

Therefore, the limit distribution of λ̂
(k)
i can be simplified as

√
TN−α(λ̂

(k)
i − λi)

d−→ N(0, (D(k))−1C
(k)
f Θ

(k)
i C

(k)′

f (D(k))−1). (24)

For the limit distribution of f̂
(k)
t , by Lemmas 7 and 8, it holds that H(k) → IR and Q(k) → IR. We

then obtain √
N(f̂

(k)
t − ft)

d−→ N (0,Φt), (25)

thus the result in Remark 4.3 follows.

2. Asymptotic results of factor-augmented regressions based on HFA factors

In this section, we will give the asymptotic results of the following factor-augmented regression

based on HFA factors:

yt+h = β′ft + γ′Wt + εt+h. (26)
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Prior to that, we need to make some assumptions on the factor-augmented regression:

ASSUMPTION E: Factor-augmented regression

(i) Let zt = (f ′t ,W
′
t)
′, E‖zt‖8 <∞, E(εt+h|yt, zt, yt−1, zt−1, . . .) = 0 for any h > 0, and zt and εt be

independent of the idiosyncratic errors eis for all i and s; 1
T

∑T
t=1 ztz

′
t

p−→ Σzz > 0;

(ii) For any h > 0, as T →∞,

1√
T

T∑
t=1

ztεt+h
d−→ N (0,Σzz,ε),

where Σzz,ε = p limT→∞
1
T

∑T
t=1(ε2t+hztz

′
t).

We first consider the properties of the least squares estimates δ̂ when the k-th order HFA

estimates of the factors f̂
(k)
t are used as regressors. Define δ̂ = ( 1√

Nα β̂
′, γ̂′)′ and δ = ( 1√

Nαβ
′H(k), γ′)′,

where H(k) is an R × R rotation and rescaling matrix and ‖H(k)‖ = Op(
√
Nα). Subsequently, the

following theorem holds:

Theorem 4. Suppose Assumptions A–E hold. The following results hold for HFA factor-augmented

regression:

(i) If
√
N2α−1/T → 0 as (N, T ) → ∞ and tr(GN) = o(T

2
k−1N

k+1
k−1

(1−α)(logN)−
1

k−1 ), then δ̂ is a

consistent estimator for δ, i.e. δ̂
p−→ δ.

(ii) Moreover, if tr(GN) = o
(
T

1
k−1N

k+1
k−1

(1−α)(logN)−
1

k−1

)
, α < 1 and TN1−2α →∞ as (N, T )→

∞, then

√
T (δ̂ − δ) d−→ N (0,Σδ), (27)

where Σδ = (A(k)′

0 )−1Σ−1
zz Σzz,εΣ

−1
zz (A(k)

0 )−1 with A(k)
0 = diag(Q(k), I) being block diagonal and

Q(k) defined by Theorem 3. A consistent estimator for Σδ, denoted by Âvar(δ̂), is

Âvar(δ̂) = (
1

T

T−h∑
t=1

ẑ
(k)
t ẑ

(k)
t
′)−1(

1

T

T−h∑
t=1

ε̂2t+hẑ
(k)
t ẑ

(k)
t
′)(

1

T

T−h∑
t=1

ẑ
(k)
t ẑ

(k)
t
′)−1. (28)

Theorem 4 establishes asymptotic normality of factor-augmented regression parameter δ with

weak factor models. Using the HFA factors ensures that δ is consistent with asymptotic normality

under mild conditions on tr(GN) for factor loading strength α ∈ [0, 1). The case α = 1 is invalid

since F̂ (k) is inconsistent after rescaled by
√
Nα. Bai & Ng (2006) establish the rate of convergence

17



and the limiting distribution of δ in a classical strong factor model (α = 0). However, their

theorems are infeasible for weak factor models.

Suppose the object of interest is the conditional mean of (26). A feasible way is to construct a

confidence interval for the conditional mean. Note that the equation

ŷT+h|T − yT+h|T = (δ̂ − δ)′ẑ(k)
T + β′H(k)(f̂

(k)
T − (H(k))−1fT ) (29)

has two components, which arise from estimating δ and ft. Theorems 3 and 4 show that
√
N(f̂

(k)
t −

(H(k))−1ft) and
√
T (δ̂ − δ) exhibit asymptotic normality for each t, respectively. Therefore, the

following result holds for ŷT+h|T :

Theorem 5. Let ŷT+h|T = δ̂′ẑ
(k)
T . Under the conditions of Theorem 4 (ii), then

(ŷT+h|T − yT+h|T )√
var(ŷT+h|T )

d−→ N (0, 1), (30)

where var(ŷT+h|T ) = 1
T
ẑ

(k)′

T Avar(δ̂)ẑ
(k)
T + 1

N
β̂′Avar(f̂

(k)
T )β̂.

Theorem 5 establishes asymptotic normality of forecasts ŷT+h|T with HFA factors. Notably,

ŷT+h|T ensure consistency for all α ∈ [0, 1), TN1−2α →∞ as (N, T )→∞ and tr(GN) satisfies mild

condition. As the two terms in var(ŷT+h|T ) vanish at different rates, notice that ‖β̂‖ = Op(
√
Nα),

and the overall convergence rate for ŷT+h|T is min(
√
N1−α,

√
T ). When weak factors are used

(α > 0), the convergence rate of ŷT+h|T is slower than min(
√
N,
√
T ).

Furthermore, when the objective is to forecast yT+h = yT+h|T + εT+h, the forecasting error

ε̂T+h = ŷT+h|T − yT+h = (ŷT+h|T − yT+h|T ) − εT+h. Hence, if εt ∼ N (0, σ2
ε ), we have ε̂T+h ∼

N (0, σ2
ε + var(ŷT+h|T )), a consistent estimate of σ2

ε is 1
T

∑T
t=1 ε̂

2
t . Once estimators for ̂var(ŷT+h|T )

are given, prediction intervals can be easily constructed. For example, the 95% confidence interval

for the conditional mean yT+h|T is

(
ŷT+h|T − 1.96

√
̂var(ŷT+h|T ), ŷT+h|T + 1.96

√
̂var(ŷT+h|T )

)
and the 95% confidence interval for the forecasting variable yT+h is

(
ŷT+h|T − 1.96

√
̂σ̂2

ε + var(ŷT+h|T ), ŷT+h|T + 1.96

√
σ̂2
ε + ̂var(ŷT+h|T )

)
.
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A consistent estimate of var(ŷT+h|T ) is given by

̂var(ŷT+h|T ) =
1

T
ẑ

(k)′

T Âvar(δ̂)ẑ
(k)
T +

1

N
β̂′

̂
Avar(f̂

(k)
T )β̂, (31)

where Âvar(δ̂) is given in Theorem 4 and
̂

Avar(f̂
(k)
T ) = Φ̂

(k)
T . Following Bai & Ng (2006), the R×R

matrix Φ̂
(k)
t can be

Φ̂
(k)
t =

1

N

N∑
i=1

ê
(k)2
it λ̂

(k)
i λ̂

(k)′

i , (32)

where ê
(k)
it = xit − λ̂(k)′

i f̂
(k)
t . Notice that ‖λ̂(k)

i ‖ = Op(
√
N) and ‖λi‖ = Op(

√
N1−α), so we have

Φ̂
(k)
t =

1

N1−α

N∑
i=1

ê
(k)2
it (λ̂

(k)
i /
√
Nα)(λ̂

(k)
i /
√
Nα)′. (33)

As all the elements in (33) are consistent estimators, Φ̂
(k)
t is a consistent estimate of Φt.

2.1. Proof of Theorem 4

Let zt = (f ′t ,W
′
t)
′, ẑ

(k)
t = (

√
Nαf̂

(k)′

t ,W ′
t)
′, and H(k) = C̃

(k)
f ( Λ′Λ

N1−α )⊗(k−1)C̃
(k)′

f (Λ′Λ̂(k)

N1−α )(D̃
(k)
NT )−1.

We directly start to prove the asymptotic distribution of δ̂, the consistency of δ̂ can be easily

derived from it, hence we omit it here. Adding and subtracting terms, the regression model can

be written as

yt+h = β′ft + γ′Wt + εt+h

= β′H(k)f̂
(k)
t + γ′Wt + εt+h + β′H(k){(H(k))−1ft − f̂ (k)

t }

= δ′ẑ
(k)
t + εt+h + β′H(k){(H(k))−1ft − f̂ (k)

t }.

In matrix notation, Y = ẑ(k)δ + ε + {F (H(k)′)−1 − F̂ (k)}H(k)β, where Y = (yh+1, . . . , yT )′, ε =

(εh+1, . . . , εT )′, and ẑ(k) = (ẑ
(k)
1 , . . . , ẑ

(k)
T−h)

′. The ordinary least squares estimator is δ̂ = (ẑ(k)′ ẑ(k))−1ẑ(k)′Y .

Thus,

√
T (δ̂ − δ) = (T−1ẑ(k)′ ẑ(k))−1 1√

T
ẑ(k)′ε+ (T−1ẑ(k)′ ẑ(k))−1 1√

T
ẑ(k)′{F (H(k)′)−1 − F̂ (k)}H(k)β. (34)

First, notice that ‖ 1√
T
ẑ(k)′{F (H(k)′)−1 − F̂ (k)}H(k)β‖ ≤ ‖ 1√

T
ẑ(k)′{F (H(k)′)−1 − F̂ (k)}‖‖H(k)‖O(1)

= Op(
1√
N1−α ) + Op(

1√
TN1−2α

) + Op(

√
tr(GN )k−1N(α−1)k logN

N1−αT
) by Theorem 2 and ‖H(k)‖ = Op(

√
Nα).

Therefore, the second term on the right of (34) is op(1) if tr(GN) = o
(
T

1
k−1N

k+1
k−1

(1−α)(logN)−
1

k−1

)
,

TN1−2α →∞ and α < 1. For the first term on the right of (34), 1√
T
ẑ(k)′ε = 1√

T
(
√
Nαε′F̂ (k), ε′W )′.
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Now, √
Nα

T
F̂ (k)′ε = (H(k)/

√
Nα)−1 1√

T
F ′ε+

√
Nα

T
(F̂ (k) − F (H(k)′)−1)′ε,

where the second term
√

Nα

T
(F̂ (k) − F (H(k)′)−1)′ε = op(1), which provided that the above con-

ditions. Thus, 1√
T
ẑ(k)′ε = 1√

T
(ε′F (H(k)′/

√
Nα)−1, ε′W )′ + op(1) = 1√

T
Az′ε + op(1), where A(k) =

diag
(
(H(k)/

√
Nα)−1, I

)
is a block diagonal matrix. Thus,

√
T (δ̂ − δ) = (T−1ẑ(k)′ ẑ(k))−1 1√

T
z′ε+ op(1).

Since 1√
T
z′ε

d−→ N (0,Σzz,ε) by Assumption E(ii), the above is asymptotically normal. As ( H
(k)

√
Nα )−1 p−→

Q(k) by Lemmas 7 and 8. Define A(k)
0 = diag(Q(k), I); now, T−1ẑ(k)′ ẑ(k) = A(k)(T−1z′z)A(k)′ +

op(1)
p−→ A(k)

0 ΣzzA(k)′

0 . The limiting variance is

Σδ =(A(k)
0 ΣzzA(k)′

0 )−1(A(k)
0 Σzz,εA(k)′

0 )(A(k)
0 ΣzzA(k)′

0 )−1

=(A(k)′

0 )−1Σ−1
zz Σzz,εΣ

−1
zz (A(k)

0 )−1.

As ft = H(k)f̂
(k)
t +op(1) and zt = (f ′t ,W

′
t)
′, we haveA(k)( 1

T

∑T
t=1 ε

2
t+hztz

′
t)A(k)′ = 1

T

∑T
t=1 ε̂

2
t+hẑ

(k)
t ẑ

(k)
t
′+

op(1). Therefore, Âvar(δ̂) = ( 1
T

∑T−h
t=1 ẑ

(k)
t ẑ

(k)
t
′)−1( 1

T

∑T−h
t=1 ε̂2t+hẑ

(k)
t ẑ

(k)
t
′)( 1

T

∑T−h
t=1 ẑ

(k)
t ẑ

(k)
t
′)−1 is a

consistent estimator for Σδ.

2.2. Proof of Theorem 5

We first rewrite the prediction error

ŷT+h|T − yT+h|T =β̂′f̂
(k)
T + γ̂′WT − β′fT − γ′WT

=
1√
Nα

(β̂ −H(k)′β)′
√
Nαf̂

(k)
T + β′H(k)(f̂

(k)
T − (H(k))−1fT ) + (γ̂ − γ)′WT

=
1√
T
ẑ

(k)′

T {
√
T (δ̂ − δ)}+

1√
N
β′H(k){

√
N(f̂

(k)
T − (H(k))−1fT )}.

Both
√
T (δ̂ − δ) and

√
N(f̂

(k)
T − (H(k))−1fT ) are asymptotically normal. They are also asymp-

totically independent because the limit of
√
T (δ̂ − δ) is determined by (ε1, ε2, . . . , εT ), and that of

√
N(f̂

(k)
T − (H(k))−1fT ) is determined by eiT for i = 1, 2, . . . , N . Noting that T−1/2(ẑT − zT ) =

op(1), an estimate for the variance of 1√
T
z′T{
√
T (δ̂ − δ)} is 1

T
z′TAvar(δ̂)zT , which, in turn, is

estimated by 1
T
ẑ

(k)′

T Avar(δ̂)ẑ
(k)
T . Similarly, an estimate for the variance of the second term is

1
N

(β′H(k))′Avar(f̂
(k)
T )(β′H(k)), which, in turn, is estimated by 1

N
β̂′Avar(f̂

(k)
T )β̂. Thus, (ŷT+h|T −

yT+h|T )/var(ŷT+h|T )1/2 d−→ N (0, 1).
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3. HFA estimates in presence of Gaussian factors

In the main paper, we assume that all common factors are non-Gaussian. In this section, we

extend the approach to the case of both Gaussian and non-Gassuian factors. In subsection 4.1

we describe the approach for estimating the number of factors. In subsection 4.2, we provide an

iterative estimation approach of Gaussian and non-Gaussian factors in the presence of independent

Gaussian factors.

3.1. Two-step estimation of the number of factors

In the main paper Lu et al. (2024), we show that the number of non-Gaussian factors can

be estimated consistently by maximizing the GER criterion. If some factors are Gaussian and

independent with the non-Gaussian factors, the GER estimator is not consistent for the number of

factors R, because Assumption A(iii) is violated (C
(k)
f is not full rank). The estimation of Gaussian

and non-Gassuian factors in the observed factor model has been studied in Lu & Huang (2022). In

this subsection, we propose a two-step estimation to solve this practical problem. To be specific,

we first use the GER estimator to select the number of non-Gaussian factors. Given a consistent

estimate of the number of non-Gaussian factors, we then estimate the remaining Gaussian factors

based on a filtered series without the non-Gaussian factor structure by using the estimator of

Ahn & Horenstein (2013). The two-step estimation guarantees the consistency of factor number

estimation when the Gaussian factors exist. Before we introduce the procedure, it is necessary to

redefine the factor model. We denote the non-Gaussian factors as fht and the Gaussian factors as

fgt, the corresponding factor loadings are Λh and Λg, respectively. Therefore, the factor model can

be rewritten as

X = FhΛ
′
h + FgΛ

′
g + E = (Fh, Fg)

(
Λ′h
Λ′g

)
+ E = FΛ′ + E, (35)

where F = (Fh, Fg) is the factor matrix and Λ = (Λh,Λg) is the factor loading matrix. Non-

Gaussian and Gaussian factors are assumed to be independent. Let Rh and Rg be the number

of non-Gaussian and Gaussian factors, respectively. When Rg = 0, the GER estimator give a

consistent estimation of the number of factors, namely R̂GER = R̂h,GER → R. When Rg > 0, the

GER estimator only give a consistent estimation of Rh. Therefore, we shall assume a known Rh

and give the consistent estimates of the number of Gaussian factors Rg using the filtered series:

ωg,t ≡ xt − Λhfht = Λgfgt + et. (36)
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Since the series ωg,t only contains the Gaussian factor structure, it is a traditional factor num-

ber selection problem in the mean-variance framework. Several authors have proposed effective

methods to estimate Rg, e.g. Bai & Ng (2002) and Onatski (2010). We recommend to use the

Ahn & Horenstein (2013)’s Eigenvalue Ratio test to estimate the number of Gaussian factors Rg.

Since ωg,t is unobserved, Rg is estimated by the consistent estimates ω̂g,t = xt − Λ̂hf̂ht. In the

next section, we will discuss the factor extraction methods used to estimate Λh and fht consis-

tently. The consistency of Rg is not affected when the number of non-Gaussian factors Rh, the

non-Gaussian factors fht, and corresponding factor loadings Λh, are unknown or consistently es-

timated. This is because P (R̂g = Rg) = P (R̂g = Rg, R̂h = Rh) + P (R̂g = Rg, R̂h 6= Rh), and

P (R̂g = Rg, R̂h 6= Rh) ≤ P (R̂h 6= Rh) = o(1). Thus

P (R̂g = Rg) = P (R̂g = Rg, R̂h = Rh) + o(1),

= P (R̂g = Rg|R̂h = Rh)P (R̂h = Rh) + o(1),

= P (R̂g = Rg|R̂h = Rh) + o(1),

(37)

provided that P (R̂h = Rh) → 1. In addition, denote R̂∗g as the number of Gaussian factors

estimated by the true series ωg,t. Similarly, we have P (R̂g = Rg) = P (R̂g = Rg|R̂h = Rh, R̂g =

R̂∗g) + o(1) because P (R̂∗g = Rg) → 1 and P (R̂g = R̂∗g) → 1 (ω̂g,t → ωg,t). In summary, given the

consistent estimates of Rh, Fh and Λh, the consistency of Rg can be guaranteed based on ω̂g,t.

Overall, by giving consistent estimates of Rh and Rg respectively, we can get a consistent

estimate of the number of factors R̂ = R̂h + R̂g. It should be noticed that for all α ∈ [0, 1], the

GER estimator is consistent if the conditions in Theorem 1 are satisfied, however, consistency

of R̂g only holds in α ∈ [0, 0.5), see in Freyaldenhoven (2022). For some Gaussian factors with

weak explanatory power (α > 0.5), the existing covariance-based approaches cannot identify them

successfully, this can be improved by using the GER estimator if factors have information on their

higher-order moments.

3.2. Iterative estimation of factors and loadings

In this subsection, we present the procedure used to estimate factors and factor loading in the

presence of independent Gaussian factors. The notations in Section 4.1 continue to be used in

this section. We assume that the number of non-Gaussian factors Rh and the number of Gaussian

factors Rg is known (or estimated consistently). We provide a two-step procedure to estimate

factors and loadings.

First, ignore (Fg,Λg) and given Rh, we can define the error terms e∗t = Λgfgt + et, the original

factor model (35) reduces to the structure xt = Λhfht + e∗t . Following the identification condition
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in the main paper, Λh can be estimated by

Λ̂
(k)
h = arg max

Λh
tr
{

Λ′h(C̃
(k)
x C̃(k)′

x )Λh

}
, (38)

subject to the constraint 1
N

Λ′hΛh = IRh . The HFA estimate of Λh subject to the constraint, denotes

that Λ̂
(k)
h , is

√
N times the eigenvectors corresponding to the Rh largest eigenvalues of the N ×N

matrix C̃
(k)
x C̃

(k)′
x . Given Λ̂

(k)
h , the non-Gaussian factors can be obtained as F̂

(k)
h = XΛ̂

(k)
h /N .

Next, given (F̂
(k)
h , Λ̂

(k)
h ) and Rg, we define the matrix Ωg = (ωg,1, ωg,2, . . . , ωg,T )′ ∈ RT×N with

ωg,t = xt − Λ̂
(k)
h f̂

(k)
ht . Then, based on a similar argument, the original model (35) reduces to the

structure ωg,t = Λgfgt+et. Therefore, estimates of Λg can be obtained by maximizing the objective

function:

Λ̂g = arg max
Λg

tr
{
T−1Λ′gΩ

′
gΩgΛg

}
, (39)

subject to the constraint 1
N

Λ′gΛg = IRg . It is an eigenvalue decomposition of matrix 1
NT

Ω′gΩg.

The estimate of Λg, denoted as Λ̂g, is
√
N times the eigenvectors corresponding to the Rg largest

eigenvalues of the matrix 1
T

Ω′gΩg and the estimated Gaussian factors F̂g = ΩgΛ̂g/N .

Moreover, following Ando & Bai (2016)’s alternating regressions, the estimators can be obtained

by using the following iterative algorithm:

Step 1 Initialize the number of non-Gaussian factors (Rh) by the GER estimator or priori knowl-

edge, and the non-Gaussian factors and the corresponding factor-loading matrix {Fh,0,Λh,0}
by solving (38).

Step 2 Given {F̂ (k)
h,0 , Λ̂

(k)
h,0}, initialize the number of Gaussian factors (Rg) by Ahn & Horenstein

(2013)’s ER estimator on the filtered series ωg,t = xt− Λ̂
(k)
h f̂

(k)
ht . Then, initialize the Gaussian

factors and the corresponding factor-loading matrix {Fg,0,Λg,0} by solving (39).

Step 3 Given {F̂g,0, Λ̂g,0}, updating the non-Gaussian factors and the corresponding factor-loading

matrix {F̂ (k)
h,1 , Λ̂

(k)
h,1} by solving (38).

Step 4 Repeat Step 2 and Step 3 until convergence is achieved.

Remark 3.1.

• The non-Gaussian factors and corresponding factor loadings {Fh,Λh} initialized by optimizing

(38) with the error terms e∗t = Λgfgt + et. Notice that e∗t satisfies Assumption C. Hence

{F̂ (k)
h , Λ̂

(k)
h } are consistent estimations by Theorem 2. Furthermore, using the filtered series

ω̂g,t = xt − Λ̂
(k)
h f̂

(k)
ht one can then initialize Rg and the Gaussian factors. This two-step
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estimation preserves consistency of the estimators since the presence of Gaussian factors

doesn’t affect the asymptotic properties of the proposed estimator of non-Gaussian factors by

Assumption A(iii).

4. HFA estimates with non-stationary data

Inference on factors using HFA requires the k-th order cumulant of the factors ft to converge to

a constant matrix as T → ∞, and the sample cumulant converges to its population counterpart,

see in Assumption A(ii). This assumption is clearly validated in case of stationary data. The goal

of this section is to explore how HFA can be applied in case of non-stationary data.

(a) Time trend

A first case of non-stationarity occurs when the data has a deterministic time trend. In this

case, we recommend to transform the data to stationarity before applying HFA. To illustrate this,

let us consider a single-factor model with a time trend as follows:

xit = µi + βit+ λift + εit, i = 1, . . . , N ; t = 1, . . . , T. (40)

where µi is fixed effect, λi and ft are factor loading and non-Gaussian factor respectively, εit is

normal idiosyncratic error. Without loss of generality, we assume E(ft) = 0, E(εit) = 0, and ft and

εit are mutually independent. The point is whether HFA can estimate ft consistently, especially

under the weak factor models.

We first show that performing the HFA directly on xit fails to obtain a consistent estimator of

ft, even in a strong factor model. Moreover, if T is large enough, we cannot identify the underlying

factor structure based on the multi-cumulant of xit. Without any prior knowledge about the non-

stationary of xit, we will detect two factors by the eigenvalue of C̃
(k)
x . This is because the time

trend can be regarded as a factor with a given finite sample size (N, T ). Then the factor model

can be rewritten as

x̄it = βif
∗
t + λift + εit,

where x̄it = xit−T−1
∑T

t=1 xit, f
∗
t = t−T+1

2
with T−1

∑T
t=1 f

∗
t = 0 for a given T , and T−1

∑T
t=1(f ∗t )2 =

(T + 2)(T + 4)/12. With an appropriate size of T , one may regard f ∗t as a strong explanatory

factor as the scree plot shows there are two dominant eigenvalues. Therefore, we can obtain HFA
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estimates of “the two factors” with rotation matrix H = [hij] such as

f̂1t ≈ h11f
∗
t + h12ft = −h11(T + 1)/2 + h11t+ h12ft,

f̂2t ≈ h21f
∗
t + h22ft = −h21(T + 1)/2 + h21t+ h22ft.

The estimated two factors are a linear combination of the underlying factor ft and time trending,

hence the estimator is non-stationary. This indicates the HFA estimator cannot recover ft by

using the non-stationary data xit. Moreover, when T → ∞, the eigenvalue provided by βif
∗
t will

dominate the factor structure λift + εit, hence only the time trends can be detected by the GER

test if we based on the original data xit.

A solution is to conduct HFA on the first-order difference on xit for each i and thus transforming

them into stationary process. This is also suggested by McCracken & Ng (2016) to deal with the

variables in the FRED-MD dataset, and we follow their proposed transformation rules in our

application. The model in first-differenced form is

∆xit = βi + λi∆ft + ∆εit (41)

for t = 2, 3, . . . , T and i = 1, 2, . . . , N . If λi, ∆ft and ∆εit satisfies Assumption A-C in the main

paper. Then under mild conditions, the HFA estimator is consistent such that ∆̂ft = ∆ft+op(1). To

recover ft, we let f̂t =
∑t

s=2 ∆̂fs, we use the following simulation to confirm that f̂t = ft−f1+op(1),

which implies f̂t is uniformly consistent for ft (up to a shift factor f1), see e.g. ?. In addition,

using ∆ft directly in factor-augmented regression is also common in literature, see e.g. Bai & Ng

(2013), McCracken & Ng (2016).

Numeric evidence of the accuracy of HFA when using first-order differenced data generated by

the model with time trend in (40) is provided in Figure 4. We consider (40) with non-Gaussian

factor ft (η1 = 0.5, p1 = 1, q1 = ∞; skewness = 1.244, ex-kurtosis = 4.920). ut is normally

distributed. βi ∼ N (0, 0.01) and µi ∼ N (0, 0.01). σj(GN) = j−0.544 for j ∈ [N ]. The sample size is

set as N = {50, 100, 300}, T = {500, 1000}. The factor strength is set as α = {0, 0.25, 0.5, 0.75, 1}.
We study the estimation error of estimated differenced factor ∆̂f t and original factor f̂t. We use the

maximum square error maxt=2,...,T (∆̂f t −∆ft)
2 and maxt=2,...,T (f̂t − ft)2 to measure the accuracy

of the estimators. Figure 4 provide simulation evidence of the consistency of the HFA estimators

for both ∆ft and ft in non-stationary data with a time trend. The estimation error decreases as

(N, T ) increases for all factor strength α. This result strongly supports that differencing xit into

stationary before HFA can avoid the effect of the potential time trend in xit.

∼ Insert Figure 4 Here ∼
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(b) Unit root processes

A second case of non-stationarity is when the factors or (and) idiosyncratic errors are unit

root processes, i.e. I(1) processes. To illustrate this, let us consider an I(1) single-factor model as

follows:

xit = µi + λift + εit, ft ∼ I(1), εit ∼ I(1), (42)

where µi is fixed effect. Without loss of generality, we assume ∆ft and ∆eit satisfies the assumptions

in the main paper. Intuitively, the model (44) in first-differenced form is

∆xit = λi∆ft + ∆εit. (43)

Notice that ∆ft and ∆εit are stationary and satisfies the assumptions of HFA in the differenced

model (43). Thus the consistent estimates of ∆ft can be obtained. However, establishing the

corresponding theoretical properties requires further research, which also includes unit root tests

for latent factors and idiosyncratic errors. We leave it here and take it as a future research topic.

Numeric evidence of the accuracy of HFA when using first-order differenced data generated by the

I(1) model in (44) is provided in Figure 5. ∆ft and ∆eit are generated as the same in (40). We

still use the maximum square error maxt=2,...,T (∆̂f t − ∆ft)
2 and maxt=2,...,T (f̂t − ft)2 to measure

the accuracy of the estimators. The estimation error of both ∆̂f t and f̂t decreases as N increases

for all factor strength α. This result also supports that differencing xit into stationary before HFA

can avoid the effect of latent unit root process.

∼ Insert Figure 5 Here ∼

(c) Structural break

A third case of non-stationarity is when the factor process has a structural break at a fixed

point. To illustrate this, let us consider a single-factor model as follows:

xit = λift + εit, i = 1, . . . , N ; t = 1, . . . , T ;

ft ∼ p1, 1 ≤ t ≤ T0, and ft ∼ p2, T0 < t ≤ T,
(44)

where p1 and p2 are different non-Gaussian distributions, T0 is the fixed change point. After

simple calculation, we can get C
(k)
f ≡ limT→∞(T0

T
C

(k)
f,p1

+ T−T0
T

C
(k)
f,p2

) = C
(k)
f,p2

, where C
(k)
f,p1

and C
(k)
f,p2

are the k-th order multi-cumulant of p1 and p2, respectively. If C
(k)
f,p2

is a nonzero constant, the

Assumption A (ii) of the main paper is satisfied with a fixed change point T0, since the break is on
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a small portion and doesn’t contribute to the limit. Under this case, HFA can estimate the factor

consistently as (N, T )→∞.

5. Alternative factor extraction approaches

The proposed HFA complements existing methods for factor extraction such as Principal Com-

ponent Analysis (PCA), Independent Component Analysis (ICA) and Moment Component Anal-

ysis (MCA). We briefly discuss each of them below.

The objective of PCA is to estimate factors and factor loadings through an eigenvalue decom-

position of the covariance (or correlation) matrix. The objective function is as follows

LPCA(F,Λ) = (NT )−1

T∑
t=1

‖xt − Λft‖2,

s.t.
1

N
Λ′Λ = IR.

(45)

This problem is identical to maximizing tr(Λ′X ′XΛ). The estimated factor loading matrix, denoted

as Λ̂[PCA], is
√
N times the eigenvectors corresponding to the R largest eigenvalues of the N ×N

matrix X ′X. Given Λ̂[PCA], the factor matrix can be obtained as F̂[PCA] = XΛ̂[PCA]/N . As shown

in Remark 4.1 of the main paper, PCA is a special case of HFA when k = 2. In PCA, we rotate the

covariance matrix of the data and shrink the variance of the data into a very few factors to achieve

dimensionality reduction. Compare to PCA, an intuitive interpretation is that HFA rotation the

co-skewness matrix (or co-kurtosis matrix) of the data and shrink the skewness or kurtosis of the

data into a low number of factors to achieve dimensionality reduction. Since these higher-order

multi-cumulants contain less noise caused by the idiosyncratic errors, we can efficiently extract

factors with weak explanatory power. We can understand this by Figure 1. Figure 1(a) give the

heat map of C̃
(2)
c , C̃

(2)
e and C̃

(2)
x . One can observe that the heat map structure spanned by the

covariance of common component cit is masked by the heat map structure of that of the error

terms eit, which leads to the structure of cit cannot be observed clearly in the heat map of C̃
(2)
x .

In contrast, Figure 1(b) shows that the heat map structure spanned by the third-order cumulant

of common component cit can be clearly observed in C̃
(3)
x C̃

(3)′
x after adding noise eit.

ICA is an improved method of PCA designed to extract independent non-Gaussian factors. A

classic ICA involves two steps: First, PCA is used to obtain the uncorrelated factors. This step

is usually referred to a pre-whitening of the data, and the uncorrelated factors are named pre-

whitened data. Let denote the vector of pre-whitened data zt = [z1t, z2t, . . . , zRt]
′ = V̂ −1/2f̂t[PCA],

where V̂ is R×R eigenvalue matrix of F̂[PCA], to satisfy 1
T

∑T
t=1 ztz

′
t = IR. Second, the pre-whitened
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data are rotated to minimize their statistical dependence through an objective function. Several

objective functions have been proposed to obtain independent factors. A common approach named

FastICA (Hyvärinen & Oja,1997) consists of maximizing the negentropy of the pre-whitened data.

This method finds an R×R orthonormal matrix W to maximize the objective function

LFAST (W ) = {E[G(W ′zt)]− E[G(v)]}2,

s.t. W ′W = IR,
(46)

where the function G is a proxy of the negentropy and v is the Gaussian variable. For instance,

using kurtosis to proxy negentropy (G(y) = y4), one then solves for W to obtain the independent

factors F̂[ICA] = ZŴ = F̂[PCA]V̂
−1/2Ŵ . The corresponding estimated factor loading matrix is

Λ̂[ICA] = Λ̂[PCA]V̂
1/2(Ŵ ′)−1. It is clear that ICA only changes scale (by V̂ −1/2) and rotates direction

(by Ŵ ), but the factors are still in the same space spanned by PCA estimators.

Another popular class of ICA method extracts independent factors by performing an eigenvalue

decomposition of the higher-order multi-cumulants of the pre-whitened data. The Joint Approxi-

mate Diagonalization of Eigenmatrices (JADE) proposed by Cardoso & Souloumiac (1993), which

relies on the eigenvalue decomposition of the fourth-order cumulant tensor. This method finds

rotation matrix W to minimize the objective function

LJADE(W ) =
∑

iikl 6=ijkl

(κW ′zt,ijkl)
2,

s.t. W ′W = IR,

(47)

where κW ′zt,ijkl is the fourth-order multi-cumulant of independent factors W ′zt. It attempts to

minimize the sum of off-diagonal squared multi-cumulants which should be zero if W ′zt are inde-

pendent.

There are two main distinctions between ICA and HFA: First, ICA needs a measure of in-

dependence for estimating the non-Gaussian independent factors. In HFA, the singular values

of the higher-order multi-cumulants of factors are used to measure non-Gaussianity and estimate

the non-Gaussian factors by maximizing the sum of the squared singular values of higher-order

multi-cumulants. Therefore, HFA recovers the non-Gaussian factors without considering minimiz-

ing statistical independence. When non-Gaussian factors are mutually dependent, ICA cannot

estimate the non-Gaussian factors consistently but HFA is still consistent in many cases. Second,

ICA cannot improve the linear space spanned by PCA estimators, just up to rotation and scale.

In contrast, HFA estimators show more efficiency than PCA estimators in estimating factors and

factor loadings.
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MCA (Jondeau et al., 2018) is another novel method to extract the factors which drive the

higher-order co-moments (such as co-skewness and co-kurtosis) structures. It is based on multilin-

ear eigenvalue decomposition of the higher-order co-moments. We describe the joint-MCA which

assumes covariance, co-skewness, and co-kurtosis matrix are driven by the same factors. Denote

M̃
(k)
x as the sample k-th-order co-moment of response variables and Rm as the number of MCA

factors. The objective function of MCA is as follows:

LMCA(F,Λ) =
4∑

k=2

1

Nk
‖M̃(k)

x − ΛM̃
(k)
f (Λ′⊗(k−1))‖2,

s.t. Λ′Λ = IRm ,

(48)

where M̃
(k)
f is the k-th-order co-moment tensor spanned by MCA factors. MCA attempts to

estimate the factors driving the higher-order co-moments, but the asymptotic properties of MCA

are unknown.

The Nearest Co-moment (NC) approach proposed by Boudt et al. (2020) estimates the pa-

rameters of a latent factor model by minimizing the distance between the sample moments and

model-based moments. The objective function of NC is as follows:

LNC(θ) = (η(θ)− η̂s)′Ŵ (η(θ)− η̂s), (49)

where θ is the parameter vector of the factor model which contains the factor loadings (Λ), moments

of factors and errors, η(θ) is the model moments and η̂s is the sample moments. Ŵ is a positive

semi-definite weight matrix converging in probability to the positive semi-definite matrix W . The

NC approach consistently estimate the factor loading matrix and the moments of factors and

errors. However, since the dimension of the weight matrix W increase as O(N4), this approach is

not suitable for the high dimensional case.

6. Alternative approach for selecting the number of non-Gaussian factors

6.1. Generalized Growth Ratio estimator

The main paper presents a generalization of the Eigenvalue Ratio estimator of the number

of factors, as introduced by Ahn & Horenstein (2013). The latter also present a growth ratio

estimator. Below we provide its generalization to higher order multi-cumulants. The Generalized
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Growth Ratio (GGR) function we consider is

GGR(k)(r) ≡ ln(V (k)(r − 1)/V (k)(r))

ln(V (k)(r)/V (k)(r + 1))

=
ln(1 + µ̃

(k)∗
NT,r)

ln(1 + µ̃
(k)∗
NT,r+1)

, r = 1, 2, . . . , Rmax,

(50)

where V (k)(r) =
∑N

l=r+1 µ̃
(k)
NT,l and µ̃

(k)∗
NT,r = µ̃

(k)
NT,l/V

(k)(r). The term “GGR” refers to the General-

ized Growth Ratio because as discussed in Remark 3.1 below, it can be approximately interpreted

as the growth rate between the two adjacent sums of the residuals. Our proposed GGR estimator

for R is the maximizer of GGR(k)(r):

R̂
(k)
GGR = max

1≤r≤Rmax

GGR(k)(r). (51)

Remark 6.1.

• For the GGR estimator, we have V (k)(r) ≥ ‖Ĉ(k)
x[r] − C̃

(k)
x ‖2 (see De Lathauwer et al., 2000),

where Ĉ
(k)
x[r] = Λ̂

(k)
[r] Ĉ

(k)
f [r](Λ̂

(k)
[r]
′ ⊗ . . . ⊗ Λ̂

(k)
[r]
′), are the k-th-order multi-cumulants of the first r

factors and factor loadings estimated by Higher-Order EigenValue Decomposition (De Lath-

auwer et al.,2000). Hence, V (k)(r) can approximately represent the residuals between Ĉ
(k)
x (r)

and C̃
(k)
x .

• For the maximum number of non-Gaussian factors Rmax, Ahn & Horenstein (2013) recom-

mend two possible choices for Rmax. First, if we have a priori information about a possi-

ble maximum number of factors, for example Rpriori,max, we can set Rmax = 2Rpriori,max.

This choice is suitable for the case where Rmax is fixed. Second, consider using a sequence,

Rmax = min(R∗max, 0.2[N ]), where R∗max = #{r | µ̃(2)
NT,r ≥

∑N
r=1 µ̃

(2)
NT,r/N

2, r ≥ 1}. As

shown in Lemmas 5 and 6,
∑N

r=1 µ̃
(2)
NT,r = Op(N) + Op(RN

1−α) and µ̃
(2)
NT,r = Op(N

1−α)

for r = 1, 2, . . . , R. Thus, Prob(R∗max ≤ R)→ 0 as N →∞.

Proof of the consistency of GGR estimator: Under the condition Nα/T → 0 as (N, T )→∞
and tr(GN) = o

(
N

k
k−1

(1−α)T
1

k−1 (logN)−
1

k−1

)
, note that V (k)(R+1) =

∑N−R
j=R+2 µ̃

(k)
NT,j. For each part

we have

(N − 2R− 1)µ̃
(k)
NT,N−R ≤

N−R∑
j=R+2

µ̃
(k)
NT,j ≤ (N − 2R− 1)µ̃

(k)
NT,R+2. (52)

Then (52) implies that B1 ≤ V (k)(R + 1) ≤ B2. By Lemma 3, B1 = (N − 3R − 1)op(1) = op(N),

and B2 = (N − R − 1)op(1) = op(N). Thus under Assumptions A – D, we have V (k)(R + 1) =
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op(N)� Op(1). We now show the consistency of the GGR estimator. Using the inequalities

c/(1 + c) < ln(1 + c) < c, c ∈ (0,∞), (53)

we have that
ln(1 + µ̃

(k)∗
NT,j)

ln(1 + µ̃
(k)∗
NT,j+1)

<
µ̃

(k)∗
NT,j

µ̃
(k)∗
NT,j+1/(1 + µ̃

(k)∗
NT,j+1)

=
µ̃

(k)
NT,j

µ̃
(k)
NT,j+1

= Op(1), (54)

for j = 1, 2, . . . , R− 1, R + 1, . . . , N −R− 1. Lemma 5, Lemma 6 and (54) imply that

V (k)(R + 1)

V (k)(R− 1)
=

V (k)(R + 1)

µ̃
(k)
NT,R + µ̃

(k)
NT,R+1 + V (k)(R + 1)

= Op(1). (55)

Using (53) and (55), we have that

ln(1 + µ̃
(k)∗
NT,R)

ln(1 + µ̃
(k)∗
NT,R+1)

>
µ̃

(k)∗
NT,R+1/(1 + µ̃

(k)∗
NT,R+1)

µ̃
(k)∗
NT,R

=
µ̃

(k)
NT,R

µ̃
(k)
NT,R+1

V (k)(R + 1)

V (k)(R− 1)
→∞.

(56)

Then, the consistency of the GGR estimator follows from (54) and (56).

6.2. Jondeau et al. (2018)’s method

Jondeau et al. (2018) provide a simulation-based approach (JJR method later) to select the

number of common factors that drive the variation in a sequence of cumulants. They use Monte

Carlo simulations to derive the spectral densities of the correlation, co-skewness, and co-kurtosis

tensors under the null hypothesis of independence, for large T and fixed N . Then the largest

eigenvalue µ̆NT,+ is used as a threshold to determine the number of common factors. That is

R̂JJR = #{r | µ̃NT,r > µ̆NT,+} (r = 1, 2, . . . , N). We implement their approach as follows:

Step 1 For the dataset X with dimension N and T , we scale it to obtain normalized dataset Z.

Then zit is formalized with SGT distribution SGT (z|τ). Following Jondeau et al. (2018),

the distribution parameter τ̂ is estimated by fitting the average skewness and kurtosis of the

data Z.

Step 2 We generate a series z̆it with length NT , z̆it
i.i.d.∼ SGT (z|τ̂). We, then conduct joint-

MCA on the simulated dataset Z̆ to obtain the maximum eigenvalue of the joint higher-order

co-moment tensor, denoted as µ̆NT,max.
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Step 3 We repeat Step 2 l times and obtain the threshold as µ̆NT,+ = l−1
∑l

i=1 µ̆NT,i,max.

Step 4 We conduct joint-MCA on the original dataset Z to obtain the sample eigenvalue µ̃NT,r(r =

1, 2, . . . , N), the estimated number of non-Gaussian factors is R̂JJR = #{r | µ̃NT,r > µ̆NT,+}.

We find that the result of the JJR method is not affected by increasing the value of l above 100.

We, therefore, set l = 100 in our simulation studies and applications.

7. Computational aspects

It is well known that the dimension of the higher-order multi-cumulant tensor increases expo-

nentially as the number of response series increases. For instance, the number of entries in the

third-order multi-cumulant and fourth-order multi-cumulant of xt are N3 and N4. When N is

large, it is impossible to compute the higher-order multi-cumulant directly. HFA does not directly

depend on the higher-order multi-cumulant but on its singular values. As shown in the main paper

Lu et al. (2024), the singular value decomposition of C̃
(k)
x ∈ RN×Nk−1

is equivalent to the teigen-

value decomposition of C̃
(k)
x C̃

(k)′
x ∈ RN×N . Further, the computation of C̃

(k)
x C̃

(k)′
x can be connected

with the data matrix X but not C̃
(k)
x . Notice that for the k-th-order sample co-moment matrix

M̃
(k)
x of X, we have M̃

(k)
x M̃

(k)
x
′ = T−2X ′[(X X ′)◦(k−1)]X. When k = 3, it follows that

C̃(3)
x C̃(3)′

x = M̃(3)
x M̃(3)

x
′ =

1

T 2
X ′((XX ′) ◦ (XX ′))X, (57)

where ◦ denotes the Hadamard product. Since Equation (57) only contains the matrix computation,

it is easy for computation and storage with R language. When k = 4, we denote Σ̃x = X ′X/T and

use the definition of H̄(4)
x in Remark 4.2 of the main paper Lu et al. (2024). With simple algebra

calculation, we have

C̃(4)
x C̃(4)′

x =
1

T 2
X ′((XX ′) ◦ (XX ′) ◦ (XX ′))X +N1 +N2 +N3, (58)

where N1 = −3(X ′((b + b′) ◦ (XX ′))X)/T 2, b = (a, a, . . . , a) ∈ RT×T , a = (a1, a2, . . . , aT )′, at =∑
i

∑
j xitxjtΣ̃x,ij for t = 1, 2, . . . , T ; N2 = 3vec(Σ̃x)

′vec(Σ̃x)Σ̃xΣ̃x; N3 = 6Σ̃xΣ̃xΣ̃xΣ̃x. The main

computation cost is in N1, the vector a requires a loop for computation. Figure 2 compare the

computation cost between SVD of C̃
(k)
x and EVD of C̃

(k)
x C̃

(k)
x
′ (k = 3, 4). The computational cost

of C̃
(k)
x increases exponentially when N increases, in contrast, C̃

(k)
x C̃

(k)
x
′ bears only very few cost

even N is large.

∼ Insert Figure 2 Here ∼
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The gain in accuracy of the HFA for estimating non-Gaussian factors comes at the cost of a

higher (but feasible) computational cost. We document this in Figure 3. Since we fix T = 500

then increases N from 10 to 200. There is an increased computation time but the increase remains

feasible in practice.

∼ Insert Figure 3 Here ∼

8. Additional simulations

8.1. Strong and weak non-Gaussian factors

The Monte Carlo simulations in the main paper assume all factors are either strong or weak.

However, an empirical analysis shows that strong factors and weak factors are more likely to exist at

the same time (Brown, 1989; Fama & French, 1993). Therefore, it is necessary to confirm the finite

sample properties of the HFA estimators in a factor model with both strong and weak factors. We

consider DGP1 in the main paper and all factors are non-Gaussian (R = Rh = 2). The distribution

of the strong factor is skewed normal (η1 = 0.5, p1 = 2, q1 = ∞; skewness = 0.455, ex-kurtosis =

0.151) and the weak factor is distributed as skewed-laplace (η2 = 0.5, p2 = 1, q2 = ∞; skewness

= 1.244, ex-kurtosis = 4.920). The corresponding factor loadings satisfies λ1 ∼ N (0, 2N−1/2) and

λ2 ∼ N (0, N−1/2). The explanatory power of the first factor is twice that of the second factor.

The serial correlation coefficient of factors d = (0.5, 0.2)′ and ut draw from normal distribution and

ξ = 0.2. The sample size is set as (N = 100, T = 1000).

First, we evaluate the performance by determining the number of factors. We let σj(GN) = cj−1

for j = 1, 2, . . . , N . Now we control the parameter c to adjust the relatively strength between

factors and errors. To be specific, we set c = 1, 2, 3, . . . , 10. We compute the eigenvalue ratio

based on the covariance matrix and the third-order multi-cumulant of xt to construct the ER and

GER3 estimator. Figure 6(a1) and Figure 6(a2) report the eigenvalue ratio of ER and GER3 and

the estimated number of factors, all results are averaged by 500 simulations. The spike of the

eigenvalue ratio in Figure 6(a1) changes when c increases, however, the spike of the eigenvalue

ratio in Figure 6(a2) remains the same. This indicates that the number of factors estimated by the

ER estimator changes from two to one and the weak factor cannot be detected when the variance

of the idiosyncratic errors increases. However, the GER3 estimator can still detect the weak factor.

Figure 6(a3) shows the average number of factors estimated by ER, GR and GER3, we can also

see that the ER and GR estimator can only detect the strong factor but GER3 can detect both

strong and weak factors with c increases, which confirms the illustration in Section 3.2 of Lu et al.

(2024).
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Second, we need to evaluate the performance of the HFA estimators on the estimated strong

and weak factors, respectively. We compute the Trace Ratio for the estimated strong and weak

factors, respectively. We use DGP1 to control α ∈ [0, 1]. Figure 6(b1) and Figure 6(b2) show

the average Trace Ratio of the estimated strong and weak factors and the corresponding factor

loadings, respectively. When α is close to one, namely Onatski (2012)’s weak factor model, the

weak factor and corresponding factor loadings estimated by PCA become inefficient as shown before

by Onatski (2012). In contrast, HFA show better performance on estimating the weak factors and

corresponding factor loadings. In addition, Figure 6(b1) and (b2) show that PCA provides good

performance for the strong factor.

∼ Insert Figure 6 Here ∼

8.2. Non-Gaussian and Gaussian factors

When there are both Gaussian and non-Gaussian factors, we propose to use a two-step estima-

tion of the number of factors, and an iterative approach for the estimation of the factors in Section

3. In this subsection, we verify the finite sample accuracy of this approach. We consider DGP1

(R = 2) in the main paper and one factor is non-Gaussian while another is Gaussian. ut is normal

distributed and ξ = 0.2. The serial correlation coefficient of factors d = (0.5, 0.2)′. We estimate the

number of non-Gaussian factors by GER3 and estimate the number of Gaussian factors by ER and

GR. The non-Gaussian and Gaussian factors and the corresponding factor loadings are estimated

by the ALS algorithm with Rh and Rg being known.

As shown in Figure 7, the estimation procedure works well when both non-Gaussian and Gaus-

sian factors exist. Figure 7(a) shows that GER3 can select the number of non-Gaussian factors

Rh accurately as α ∈ [0, 1], the ER and GR estimators can select the number of Gaussian factors

Rg when α < 0.6, these are expected because, as shown in Section 3.2 of Lu et al. (2024), the ER

or GR estimator cannot determine the accurate number of factors when the eigenvalue of GN is

large. The estimated non-Gaussian and Gaussian factors and the corresponding factor loadings, as

shown in Figure 7(b), also confirm our theorems. The estimated Gaussian factor cannot hold the

consistency when α is close to one, but it works in a strong factor model.

∼ Insert Figure 7 Here ∼

8.3. Symmetric non-Gaussian factors

To study the sensitivity of the HFA approach for symmetric factors we consider the simple case

in which, if all the non-Gaussian factors are symmetric and independent, then their third-order

multi-cumulant would be a zero matrix (or φ
(3)
j = 0 for j = 1, 2, . . . , Rh), and further, if all the
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non-Gaussian factors show a t distribution (fourth-order cumulants exist), then 0 < φ
(4)
j < ∞ for

j = 1, 2, . . . , Rh. The number of nonzero eigenvalues of C
(k)
f may be related with the order k.

We use simulation studies to investigate the case where the factors are symmetric. The distri-

bution of the non-Gaussian factors now changes into Laplace distribution (ηj = 0, pj = 1, qj =∞;

skewness = 0, ex-kurtosis = 3). ut is a normal distribution and ξ = 0.2. The serial correlation

coefficient of factors is d = (0.5, 0.2)′. The number of factors remains 3 (R = Rh = 3). We first

estimate the number of factors R using the GER and GGR estimators, then estimate the factors

and factor loadings. For factor number selection, we consider the GER estimator based on the

third- and fourth-order cumulant, and denote GER3 and GER4, respectively. For factors and the

factor loadings estimation procedure, we consider the HFA estimators with k = 3 and k = 4 and

denote as HFA3 and HFA4, respectively. When we estimate the factors and factor loadings, we

assume the number of factors R is known. We set the maximum number of factors Rmax = 10.

Figure 8(a) and Figure 8(b) report the finite sample properties of GER3 and GER4 estimators.

In sample size (N, T ) = (100, 1000) and (N, T ) = (100, 2000), we can observe that GER3 are

inconsistent estimators of R. In contrast, GER4 estimators can choose the number of factors

correctly even when α is close to one. When (N, T ) = (100, 1000), the GER4 estimator have poor

finite sample properties when α = 1, we need a larger sample size to support the accuracy as

shown in Figure 8(b), this is expected because, as shown in Theorem 1, the statistics based on

kurtosis have bad finite sample properties and need very large observations to obtain high power.

On the other hand, see in Figure 8(c), HFA4 estimators remain consistent for all α, PCA and

HFA3 estimators lose efficiency when α is close to one. It should be noted that we do not need

a very large sample size for HFA4 to estimate factors and factor loadings consistently, therefore,

if we have a priori information on the number of factors in a weak factor model, we can still use

HFA4 to obtain a more efficient estimation than PCA.

∼ Insert Figure 8 Here ∼

9. Additional application results

This section gives the results of the normality test of the error terms in the main paper and the

measurement of the decay rate of the spectrum of the error terms. We use the distribution-free

normality test proposed by Bai & Ng (2005). Table 1 gives the proportion of rejecting the null

hypothesis in the FRED-MD dataset. After we extracted 1 to 8 factors with HFA3 or HFA4, the

majority of idiosyncratic errors cannot reject the normality test, which provides empirical evidence

for the normality assumption of the main paper.

∼ Insert Table 1 Here ∼
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Similarly, we measure the decay rate of the spectrum of GN after extracting 1 to 8 factors with

HFA3 or HFA4. We fit the eigenvalues by a polynomial decaying curve such that σj(GN) = C0j
−ρ,

where ρ is what we called “the decay rate of the spectrum”. As shown in Table 2, the decay rate

ρ is 0.618 ∼ 0.812 based on HFA3 approach and 0.753 ∼ 0.926 based on HFA3 approach. Even

after extracting 8 factors, the decay rate ρ is still significantly larger than zero, which effectively

supports the results in the main paper.

∼ Insert Table 2 Here ∼
Finally, we test the normality of the error terms in the rolling-window analysis. As shown in

Figure 9, the test result is robust. Only 6% of the idiosyncratic errors at most reject the normality

test.

∼ Insert Figure 9 Here ∼

10. Dampening of non-normality

In this section, we show that et = G
1/2
N ut being asymptotically normal according to the Lya-

punov Central Limit Theorem (CLT) under mild assumptions on G
1/2
N . The Lyapunov Central

Limit Theorem in Billingsley (2013) (Theorem 7.3) is as follows:

Theorem 7.3 of Billingsley (2013). Suppose {X1, . . . , Xn} (n→∞) is a sequence of indepen-

dent random variables, each with finite expected value µi and σ2
i . Define

s2
n =

n∑
i=1

σ2
i .

If for some δ > 0, Lyapunov’s condition

lim
n→∞

1

s2+δ
n

N∑
i=1

E
[
|Xi − µi|2+δ

]
= 0

is satisfied, then

1

sn

n∑
i=1

(Xi − µi)→d N (0, 1) .

Now we use this theorem to show that when the number of non-zero elements in G
1/2
N diverges

to infinity as N → ∞, we have the normality of e1t =
∑N

i=1 g1iuit under mild assumptions, where

(g11, . . . , g1N) is the first row of G
1/2
N . Define D = {i : g1i 6= 0} and D indicates the index set of

non-zero elements and we assume that b1 <
√
|D||g1i| < b2 for i ∈ D, where |D| is the number of
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non-zero elements and b1, b2 are universal constants. Define Dc = {i : g1i = 0} and Dc indicates

the index set of zero elements. We assume D ∪ Dc = {1, . . . , N}. Let Xit = g1iuit, then we have

e1t =
∑N

i=1Xit. Now we need to check whether {X1t, . . . , XNt} satisfies the Lyapunov’s condition.

We also assume that {uit}Tt=1 is a stationary sequence (or simply consider i.i.d. uit) for each i such

that E[uit] = 0, E[u2
it] = 1 and E[|uit|2K ] < ∞, and that {uit}Tt=1 are independent across i. We

then have µi = E[Xit] = 0 and σ2
i = E[X2

it] = g2
1i, E[|Xit|2+δ] = |g1i|2+δE[|uit|2+δ] ≤ c2|g1i|2+δ by

assuming c1 ≤ E[|uit|2+δ] ≤ c2 for some universal positive constants c1 and c2 and any δ ≤ 2K − 2.

It follows that

lim
N→∞

1

s2+δ
N

N∑
i=1

E
[
|Xi − µi|2+δ

]
= lim

N→∞

1

s2+δ
N

∑
i∈D

E
[
|Xi − µi|2+δ

]
≤ lim

N→∞

c2

∑
i∈D |g1i|2+δ

(
∑

i∈D g
2
1i)

2+δ
2

≤ lim
N→∞

c2|b2|2+δ

|b1|2+δ
|D|−δ/2.

If |D| (the number of non-zero elements) diverges to infinity as N →∞, the Lyapunov’s condition

is satisfied. On the other hand, the variance of e1t, s
2
N =

∑N
i=1 g

2
1i =

∑
i∈D g

2
1i ≤ |b2|2 < ∞.

Overall, we can say e1t is asymptotically normal distributed. This argument is analogous for ejt,

j = 1, . . . , N .

11. Implementation in the R package hofa

The main functions of HFA in the package hofa are M3.select, M4.select, M3.als and M4.als.

The functions M3.select and M4.select provide Generalized Eigenvalue Ratio (GER) test for

determining the number of non-Gaussian and Gaussian factors, and the function M3.als and

M4.als implement the Alternating Least Square (ALS) algorithm to estimate the factors and

factor loadings in Higher-order multi-cumulant factor analysis.

Installing and loading the package from GitHub are achieved by

> devtools::install_github("GuanglinHuang/hofa")

> library("hofa")

The function M3.select (also for M4.select) takes as arguments the T × N dataset of T ob-

servations of the N -variate variable X. Optional arguments include, a logical parameter scale,

whether the dataset need to be normalized (default of FALSE), the maximum number of factors

rmax (default of 8), and the method be used: "GER3", Generalized Eigenvalue Ratio test based
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on third-order cumulant; "GGR3", Generalized Growth Ratio test based on third-order cumulant;

"JJR", Jondeau et al. (2018)’s threshold approach. The documentation of the M3.sel function can

be loaded by

> ?M3.sel

We use the edhec dataset, which contains monthly returns returns on the Convertible Arbitrage

and CTA global EDHEC hedge fund style indices over the period January 1997 until November

2019, to illustrate this function.

> data(edhec)

> data = edhec[, 1:13]*100

> fn_ger3 <- M3.select(data, method = "GER3")

> fn_ger4 <- M4.select(data, method = "GER4")

> fn_er <- M2.select(data, method = "ER")

> names(fn_ger3)

[1] "R" "Rh" "Rg" "eigenvalues"

> names(fn_ger4)

[1] "R" "Rh" "Rg" "eigenvalues"

> names(fn_er)

[1] "R" "eigenvalues"

The approach "GER3" and "GER4" return the estimated number of non-Gaussian (Rh), Gaussian

factors (Rg), all factors (R = Rh + Rg) and the eigenvalues of the higher-order multi-cumulant.

The approach "ER" reports the estimated total number of factors (R) and the eigenvalues of the

covariance matrix. The results of those approaches are as follows

> fn_ger3$R

[1] 3

> fn_ger3$Rh

[1] 1

> fn_ger3$Rg

[1] 2

> fn_ger4$R

[1] 4

> fn_ger4$Rh

[1] 2
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> fn_ger4$Rg

[1] 2

> fn_er$R

[1] 1

For example, the estimated number of non-Gaussian factors R̂h is one by GER3 and two by GER4,

the estimated number of Gaussian factors R̂g is two by both ER and GR criterions. The estimated

number of factors R̂ are 3,4 and 1 by GER3, GER4 and ER, respectively.

The function M3.als (also for M4.als) estimates the factor loadings and factors by giving Rh, Rg

and the T ×N dataset of X. As explained and demonstrated in the main paper, given consistent

estimates of the number of non-Gaussian factors Rh and Gaussian factors Rg, we can estimate

the factors and factor loadings consistently. Therefore, without a priori information of the factor

number, the results of the M3.select or M4.select function can be used. Optional arguments of

M3.als include (i) a logical parameter scale, whether the dataset need to be normalized (default

of FALSE) and (ii) the the iteration error eps (default to 10−8).

Continuing with the example of the edhec dataset. By setting rh = 2 and rg = 2, we can

estimate the factors and the factor loadings as follows

> est_hfa3 = M3.als(data, rh = 2, rg = 2)

> est_hfa4 = M4.als(data, rh = 2, rg = 2)

> names(est_hfa3)

[1] "f" "u" "e" "ev"

> round(head(est_hfa3$f),2)

[,1] [,2] [,3] [,4]

[1,] 1.88 -0.68 -1.77 -1.20

[2,] -0.01 -1.06 -0.59 -1.53

[3,] -1.81 -1.10 0.83 -0.73

[4,] 0.37 0.07 0.33 0.09

[5,] 2.44 0.32 -0.48 0.74

[6,] 1.55 -0.73 -0.48 -0.81

> round(head(est_hfa4$f),2)

[,1] [,2] [,3] [,4]

[1,] 1.94 -0.61 -1.79 -1.10

[2,] -0.01 -0.99 -0.73 -1.47

[3,] -1.88 -1.00 0.66 -0.87

[4,] 0.38 0.02 0.38 0.08
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[5,] 2.45 0.28 -0.36 0.72

[6,] 1.55 -0.67 -0.52 -0.85

The first rh columns are the estimated non-Gaussian factors and the remaining rg columns are the

estimated Gaussian factors. Ignore the signs of the factors, the results are different between HFA3

and HFA4. Moreover, the factors are different when Principal Component Analysis (PCA) is used

> est_pca = M2.pca(data,r = 4, method = "PCA")

> round(head(est_pca$f),2)

[,1] [,2] [,3] [,4]

[1,] 2.08 -1.79 -0.57 0.92

[2,] -0.10 -1.74 0.13 0.87

[3,] -2.09 -0.83 0.81 0.01

[4,] 0.32 0.27 0.36 0.11

[5,] 2.57 0.37 -0.03 -0.40

[6,] 1.49 -1.12 0.40 0.43
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(a) The heat map structure based on covariance matrix

(b) The heat map structure based on third-order multi-cumulant

Figure 1: The heat map of the covariance matrix and third-order multi-cumulant of cit, eit and xit

Note: This figure reports the elements in covariance matrix and third-order multi-cumulant of cit, eit and xit. The
DGP follows the DGP1 in the main paper and the sample size is (N,T ) = (300, 500) and α = 1.
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Figure 2: Computational cost of singular values of higher-order multi-cumulant

Note: This Figure reports the computation cost of singular value decomposition of higher-order multi-cumulant.

SVD denotes compute the singular value decomposition on C̃
(3)
x (C̃

(4)
x ) directly, EVD denotes compute eigenvalue

decomposition on C̃
(3)
x C̃

(3)
x
′(C̃

(4)
x C̃

(4)
x
′). We have 10 replications.

Figure 3: Computational cost of HFA3, HFA4 and PCA

Note: This Figure reports the computation cost of singular value decomposition of HFA3, HFA4 and PCA. H-

FA3 denotes compute eigenvalue decomposition on C̃
(3)
x C̃

(3)
x
′, HFA4 denotes compute eigenvalue decomposition on

C̃
(4)
x C̃

(4)
x
′, and PCA denotes compute eigenvalue decomposition on C̃

(2)
x . We have 10 replications.
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(a) The finite sample properties of estimated differenced factor ∆̂f t

(b) The finite sample properties of estimated factor f̂t

Figure 4: Accuracy of HFA factors with a time trend

Note: This Figure reports the maximum square error of the HFA estimation with the non-stationary data which

has a time trend, see in (40). Figure (a) reports the maximum square error between ∆̂f t and ∆ft, where ∆̂f t is

estimated by HFA using the first order differenced data. Figure (b) reports the maximum square error between f̂t
and ft. The estimated factor f̂t is recovered by the cumulative sum of the estimated differenced factor ∆̂f t. We
have 2000 replications.
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(a) The finite sample properties of estimated differenced factor ∆̂f t

(b) The finite sample properties of estimated factor f̂t

Figure 5: Accuracy of HFA factors with I(1) factor and I(1) idiosyncratic errors

Note: This Figure reports the maximum square error of the HFA estimation with the non-stationary data which

both ft and eit are I(1) process, see in (44). Figure (a) reports the maximum square error between ∆̂f t and ∆ft,

where ∆̂f t is estimated by HFA using the first order differenced data. Figure (b) reports the maximum square error

between f̂t and ft. The estimated factor f̂t is recovered by the cumulative sum of the estimated differenced factor

∆̂f t. We have 2000 replications.
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(a) The finite sample properties of estimated factor number

(b) The finite sample properties of estimated factors and loadings

Figure 6: Accuracy of HFA and PCA when both strong and weak factors existing

Note: This figure reports the finite sample properties of HFA and PCA in a two-factor model with one strong
factor and one weak factor. Both of two factors are non-Gaussian. We follow the DGP1 in the main paper and the
sample size is (N,T ) = (100, 1000). Figure (a1) and (a2) show the average eigenvalue ratio of ER (GR) and GER3
estimators based on 500 simulations, Figure (a3) shows the average number of factors estimated by ER (GR) and
GER3 estimators, where c controls the eigenvalues of the idiosyncratic errors. Figure (b1) and Figure (b2) show
the Trace Ratio of the estimated factors loadings and factors, respectively.
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Figure 7: Accuracy of HFA estimators when both non-Gaussian and Gaussian factors existing

Note: This figure reports the finite sample properties of HFA estimators with both non-Gaussian and Gaussian
factors existing. We follow the DGP1 in the main paper with one non-Gaussian factor and one Gaussian factor.
Figure (a) show the proportion of selecting the number of non-Gaussian (Rh) and Gaussian (Rg) factors correctly
by GER3 (GGR3) and ER (GR), respectively. Figure (b) shows the average Trace Ratio of non-Gaussian (Fh) and
Gaussian (Fg) factors and the corresponding factor loadings (Λh and Λg) estimated by ALS algorithm. The sample
size is (N,T ) = (300, 500) and we have 500 replications.

Table 1: The normality test of the idiosyncratic errors in FRED-MD dataset

family-wise error rate = 10% family-wise error rate = 5% family-wise error rate = 1%
Normality Asymmetric Fat-tailed Normality Asymmetric Fat-tailed Normality Asymmetric Fat-tailed

Panel A: HFA3 approach
r = 1 1.61 0.00 2.42 0.81 0.00 1.61 0.00 0.00 0.00
r = 2 3.23 0.00 1.61 2.42 0.00 0.81 0.00 0.00 0.00
r = 3 2.42 0.00 2.42 1.61 0.00 0.81 0.00 0.00 0.00
r = 4 3.23 0.00 2.42 2.42 0.00 1.61 1.61 0.00 0.81
r = 5 3.23 0.00 2.42 2.42 0.00 1.61 1.61 0.00 0.81
r = 6 3.23 0.00 2.42 2.42 0.00 1.61 0.81 0.00 1.61
r = 7 3.23 0.00 3.23 2.42 0.00 1.61 1.61 0.00 1.61
r = 8 6.45 0.00 3.23 4.84 0.00 2.42 0.81 0.00 2.42

Panel B: HFA4 approach
r = 1 1.61 0.00 3.23 0.81 0.00 1.61 0.00 0.00 0.00
r = 2 2.42 0.00 1.61 0.81 0.00 0.81 0.00 0.00 0.00
r = 3 3.23 0.00 2.42 1.61 0.00 1.61 0.00 0.00 0.00
r = 4 1.61 0.00 2.42 1.61 0.00 1.61 0.00 0.00 0.00
r = 5 4.03 0.00 2.42 3.23 0.00 1.61 1.61 0.00 1.61
r = 6 3.23 0.00 2.42 3.23 0.00 1.61 1.61 0.00 1.61
r = 7 4.03 0.00 3.23 4.03 0.00 2.42 2.42 0.00 2.42
r = 8 4.03 0.81 3.23 3.23 0.00 2.42 2.42 0.00 2.42

Note: This table reports the normality test of idiosyncratic errors of the FRED-MD dataset after extracting several
factors by HFA3 or HFA4 approach, respectively. r indicates the number of HFA components have been remove
before the test. The numbers in the table represent the proportion(%) of rejecting the null hypothesis to the total
(N = 124). “Asymmetric” and “Fat-tailed” represent the test of the third-order moment and the fourth-order
moment, respectively.
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(a) Accuracy of estimated factor number

(b) Accuracy of estimated factors and loadings (N = 100, T = 1000)

Figure 8: Accuracy of HFA estimators with symmetric factors

Note: This figure reports the finite sample properties of HFA estimators with symmetric non-Gaussian factors.
Figure (a1) and (a2) show the proportion of selecting the number of factors correctly by GER3 and GER4, Figure
(b) shows the average Trace Ratio of factors and factor loadings estimated by HFA3, HFA4 and PCA. We have 500
replications.
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Table 2: Measurement of the decay rate of the spectrum of the error terms in the FRED-MD
dataset

HFA3 HFA4
r = 1 0.812 0.926
r = 2 0.738 0.924
r = 3 0.674 0.910
r = 4 0.664 0.829
r = 5 0.634 0.826
r = 6 0.638 0.826
r = 7 0.634 0.826
r = 8 0.618 0.753

Note: This table reports the decay rate ρ in the FRED-MD dataset after extracting several factors by HFA3 or

HFA4 approach, respectively. r indicates the number of HFA components have been remove. ρ is fitted by the

polynomial decaying function σj(GN ) = C0j
−ρ.

Figure 9: Rolling-window normality test of the idiosyncratic errors

Note: This figure reports the normality test of idiosyncratic errors of the FRED-MD dataset after extracting four
factors by HFA3 or HFA4 approach, respectively. The points in the figure represent the proportion(%) of rejecting
the null hypothesis to the total (N = 124). Shaded regions indicate the three largest drawdown periods of the S&P
500 during the out-of-sample period.
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