WORKING PAPER

PREFERENCES FOR COLLECTIVE WORKING-TIME REDUCTION POLICIES: A FACTORIAL SURVEY EXPERIMENT

Damaris Castro
Brent Bleys

October 2023
2023/1076

IIIIIII

Preferences for collective working-time reduction policies:

a factorial survey experiment

Damaris Castro ${ }^{1}$ and Brent Bleys ${ }^{1}$

Abstract

Collective working-time reduction (WTR) policies, organized by companies, organizations, sectors or governments, can yield benefits across diverse domains including productivity and well-being. Despite an increasing number of WTR trials, the attractiveness of such policies remains relatively underexplored in literature. In this study, a factorial survey experiment investigates employees' preferences for collective WTR policies with pay reduction that vary along five dimensions. Findings reveal that employees favour policies that minimize pay reduction, that reduce working time moderately rather than extensively, and that establish a high degree of flexibility for taking up the additional leisure time. Moreover, the uptake amongst significant others matters: participation of colleagues as well as of close friends and family positively influences WTR attractiveness, although the latter primarily matter in WTR-supportive company cultures. Our findings provide valuable guidance for companies, organizations and policymakers when devising collective WTR policies and underline the importance of societal participation to enhance WTR attractiveness.

Keywords: working-time reduction, working-time preferences, factorial survey experiment

JEL classification codes: C83, C91, J22, J88

[^0]
1. Introduction

Working-time reduction (WTR) has been raised as a promising and highly relevant labour policy in today's industrialized societies. The policy owes its increasing popularity to its many potential advantages in diverse domains including employment (by offering a means to fight unemployment through worksharing), well-being (by reducing stress and burn-out, and increasing job satisfaction and work-life balance), environment (by reducing commuting and allowing for a more slow living lifestyle) and gender equality (by allowing for a more gender-balanced division of care and household responsibilities) (De Spiegelaere \& Piasna, 2017; Kallis et al., 2013; Pullinger, 2014; Skidelsky, 2019). The concept of WTR encompasses multiple meanings. Pullinger's (2014) broad definition of WTR, i.e. a reduction in the total amount of paid working time over the life course, leaves a lot of room for different interpretations. Therefore the implementation of a WTR policy requires decisions to be made regarding several dimensions. A first key dimension concerns the system: is working time reduced at the collective level (e.g. by a company or organization, sector or government) or the individual level (i.e. choice made by the employee)? A second dimension pertains to the quantity: by how much is working time reduced? Third, a decision has to be made regarding the reference base: is working time reduced on a daily basis (reduction in hours per day), weekly basis (reduction in days per week), monthly basis (reduction in weeks per month, e.g. 3 weeks with 6 days of working followed by 1 week off), yearly basis (receiving additional leave days) or life basis (e.g. earlier pension or career breaks)? Compensation is a fourth important dimension: who pays for the reduced working time? This can be one or a combination of three parties. First, the employee can pay in the form of a reduced wage, work intensification (higher productivity expectations) or increased flexibility. Second, the employer can bear the financial burden by lowering profits (while keeping wages constant). Third, the government can intervene by, for instance, providing cuts in the social security contributions for employees, employers or both. Other dimensions to be considered are the obligatory nature of WTR (is the policy mandatory or are employees free to participate), its expected duration (is the policy temporary or permanent) and its speed of implementation (is the policy introduced at one moment in time or in different
phases). By making specific choices for each of the above mentioned dimensions, WTR policies are uniquely defined. However, no single WTR policy is a "silver bullet" offering nothing but benefits: the choices regarding the different dimensions play a major role in the ability of the policy to create benefits in the diverse domains. Moreover trade-offs need to be considered as not all advantages are achievable at the same time. Ultimately the size of the WTR benefits that actually materialize will rely on both the dimension choices as well as the presence of complementary regulations and conditions.

1.1 Working-time reduction at the individual versus collective level

Since WTR policies directly affect employees in their everyday lives, they are one of the key players to consider. The greater the employee support, the more likely the policy is to succeed. Consequently, understanding employees' preferences for WTR policies and their dimensions can provide valuable insights for devising such policies. In what follows we discuss the existing literature concerning these preferences, thereby establishing a clear distinction between studies focusing on individual versus collective WTR policies.

At the individual level preferences for reducing working time have been studied extensively in literature on working-time preferences, overemployment and work hours mismatch. These preferences have been studied both as an independent variable to explain other constructs, primarily different types of well-being (e.g. Wooden, Warren and Drago, 2009; Wunder and Heineck, 2013; Angrave and Charlwood, 2015), and as an outcome variable (e.g. Reynolds, 2005; Golden and Gebreselassie, 2007; Otterbach, 2010; Gerold and Nocker, 2018). In these strands of literature, preferences are typically inferred indirectly by comparing actual with preferred number of working hours - individuals whose actual number is higher (resp. lower) than their preferred number of working hours are considered to be overemployed (resp. underemployed) or directly by asking respondents whether they would prefer to work fewer, about the same or more hours than they currently do. Considering the dimensions previously discussed, these studies basically estimate preferences for WTR (i) in an individual level system (choice made by the employee) and (ii) with
compensation by the employee in the form of reduced income. Research on individual preferences for working-time reduction typically looks at full-time working employees' preferences for working part-time. However, given that the individual choice to work part-time has specific characteristics and implications in today's society, relying solely on this literature to draw general conclusions about preferences for WTR is questionable. First, part-time work is primarily available in certain sectors and jobs (non-profit and personal services, including care). Respondents not working in such a sector or job may not consider working parttime as a credible proposal or have difficulty imagining such a working time arrangement, making their responses to the survey questions unreliable. Second, in the current system, part-time work does not only have an obvious direct negative effect (i.e. reduced income) but also several disadvantageous indirect effects. Social security benefits (e.g. pension and health coverage) are related to the income level of an employee, such that working part-time on average leads to lower benefits than working full-time. Furthermore there is a problem of perception: in the contemporary "work hard, play hard" culture, employees working part-time are often considered as being less motivated and less dedicated to the job. In the long term this perception may lead to lower promotion chances and thereby indirectly affect an individual's future earnings potential. Third, in reality the majority of individuals who work part-time are female and the freed up time is frequently used to attend to household and childcare responsibilities, i.e. to substitute paid labour for non-paid labour. Despite being presented as a voluntary choice, in practice the choice for part-time work is often accompanied by an imbalance in terms of gender and primary motivations, which may further contribute to the prevailing perception of part-time work.

Preferences for reducing working time at the collective level have thus far not been investigated widely in literature. Several authors have studied various trials where a WTR policy has been implemented at different collective levels over the last few decades (Cermak \& Houba, 2017; De Spiegelaere \& Piasna, 2017; Mullens et al., 2020). Examples include the Belgian women's association Femma in 2019 and multiple initiatives since 2018 from 4 Day Week Global (company and organizational level), ArcelorMittal in Germany in 2016 (sectoral level) and the 35-hour week in France from 1998 to 2008 (governmental
level). Except for the few governmental-level cases, most of these trials concern pilots that are limited in time. Furthermore no two trials are the same as they show a great variety regarding the primary goal of the trial (e.g. avoiding lay-offs, creating additional jobs, preserving competitiveness of the company or improving working conditions), they are implemented in different contexts (e.g. country regulations) and differ in many of the WTR dimensions outlined above (e.g. quantity, reference base and compensation). Although these trials provide valuable insights, comparing outcomes across trials is challenging because they have been implemented and described on a case-by-case basis.

Nevertheless gaining insights in employees' preferences for collective WTR policies and its different dimensions is worthwhile for multiple reasons. To begin with, it could inform companies and organizations on the relative importance of different dimensions for employees when designing a collective WTR policy. This is especially interesting for those dimensions that lie within the control of the company or organization: by customizing policies to align with employees' preferences, the likelihood of the policy being accepted and succeeding is enhanced. Additionally, collective WTR policies may have implications that go beyond the level of control of an individual company or organization if the policy is developed at a higher level (e.g. by a sector or government). In that case, significant others surrounding an individual employee may also participate in the same or a similar policy, which in turn may affect the employee's WTR preferences. Two groups of significant others can be identified: colleagues, and close friends and family.

First, in the work context the participation of colleagues may influence an employee's WTR policy evaluation. One potential explanation relates to the company culture: if the culture is perceived as being non-supportive or even opposing towards WTR, this may form an obstructing factor for an employee's preferences towards WTR. Such a culture may be reflected by an ideal worker norm, a long working hours norm, the choice for WTR having negative career implications or being acceptable for special reasons only such as having childcare responsibilities (Gerold \& Nocker, 2018; Hiemer \& Andresen, 2019). Another workplace related obstructing factor for reducing working time or taking up (additional) leave is the fear of overburdening coworkers with additional workload. All of these perceived barriers may be reduced or
removed by an increased participation of colleagues as well as by the fact that the policy is offered by the company or organization itself. Another explanation for the potential influence of colleague participation stems from the theory of social comparison: individuals evaluate their own opinions and abilities by comparing them to those of others, primarily those who are close to one's own ability or opinion (Festinger, 1954). It is reasonable to assume that employees socially compare with colleagues since they are similar to each other regarding occupation and because they spend a lot of time together. Therefore colleagues' participation in the WTR policy could influence an individual's opinion and evaluation of the policy. Another element to consider that fits within the social comparison framework is the relative income effect: besides absolute income, relative income may also matter (even more) for employee's preferences. In literature these positional effects have been studied in the context of subjective well-being (Clark et al., 2008) and work hours preferences (Schalembier et al., 2019). When more colleagues participate in the WTR policy, relative income concerns may lead people to be either more in favour (as an employee can maintain his or her relative position compared to colleagues by participating when a majority of colleagues participates) or less in favour (as an employee can improve his or her relative position compared to colleagues by not participating when a majority of colleagues participates) of the policy.

Second, in the private context the participation of close friends and family may also affect an employee's WTR policy evaluation. In a similar way as for colleagues, the theory of social comparison can provide a first explanation: individuals are likely to socially compare with close friends and family since they are expected to be alike at least in some ways (e.g. socio-economic characteristics or personal interests). An additional explanation can be found in the social multiplier effect, that is the fact that utility of leisure increases with the amount of leisure time spent by peers (Alesina et al., 2005; Glaeser et al., 2003). When more close friends and family participate in a similar WTR policy, the freed up time can be shared with these significant others, which may increase the value of the individual's leisure time.

In conclusion: the degree to which significant others in society - either colleagues or close friends and family - participate in similar WTR policies may influence an individual's preferences for such policies
and hence the policy's likeliness to succeed. To the best of our knowledge, no previous studies have investigated the role of participation in society for WTR policy evaluations. These findings can be particularly relevant to higher-level authorities responsible for formulating related policies, such as trade unions and governments.

1.2 Research objectives

This article adds to the literature by exploring full-time employees' preferences for collective WTR policies, that is WTR policies implemented at a higher than individual level (at least at the level of the company or organization). Towards this end a factorial survey experiment is set up in which full-time employees evaluate hypothetical WTR policies that vary with respect to five dimensions: three general dimensions (quantity, reference base and pay) and two participation dimensions (participation rate of colleagues and participation rate of close friends and family). The first research objective is to analyze how the different dimensions affect the WTR policy evaluation (RO1). In particular we investigate the effect of each individual dimension (RO1a) and for all dimensions together whether and how they trade off with the pay dimension (RO1b). The second research objective is to investigate the heterogeneity of these effects by examining moderators of the relationship between the dimensions and the WTR policy evaluation (RO2). First, we analyze whether and how the effects of all five dimensions depend on a selection of sociodemographic characteristics (RO2a). Second, as the participation dimensions are unexplored in literature, we additionally analyze whether and how the participation dimension effects in specific depend on a selection of social and organizational behaviours and beliefs (RO2b). More details on the selected moderators can be found in the Section 2.3.

2. Methods and data

2.1 Vignette design

A factorial survey experiment was set up in which respondents were asked to judge a series of vignettes, each containing a clear description of a hypothetical collective WTR policy. The description consisted of two parts: a fixed introduction and a flexible features section.

The fixed introduction - which stayed the same across all vignettes - specified a series of assumptions (see first paragraph in Figure 1). These assumptions related to employment status, working time arrangements and pay: respondents had to imagine working full-time according to UK standards and that their pay was equal to the pay they earned at that moment in their job. The sample selection criteria (see Section 2.2) guaranteed that only full-time working respondents located in the UK were eligible for participation, such that working time arrangements should have been similar across respondents. Nevertheless these assumptions were specified in the vignette to ensure an identical understanding of 'full-time work' as baseline reference across respondents. For pay, the reasoning was different: as pay levels are way more variable across full-time working UK employees than working hours, specifying one particular pay level as baseline reference for all respondents would be questionable. The vignette may not have been viewed as a realistic scenario, specifically by those respondents whose pay level strongly differed from the specified level. Consequently this could have resulted in unreliable findings. Therefore we decided to go with the safer option of using the respondent's own pay level as reference base. However, the respondent's pay level was queried in the survey so that it could be controlled for in our analyses.

Additionally respondents had to assume that a nationwide programme to promote WTR was being launched and that their company or organization decided to take part in it. As a result the respondent as well as all other employees from participating companies and organizations were invited to participate in a WTR policy with pay reduction. Under this policy, they were not expected to increase their level of productivity to compensate for the reduced working time. It was necessary to explicitly clarify the productivity
expectation in the vignette, given that it is an important dimension with significant implications for both employee (impact on stress and well-being) and employer (impact on the output that can be delivered with less working time and hence on profits). In addition, given that the choice for part-time work in contemporary society often brings about a variety of negative consequences (see Section 1), it was important to explicitly clarify in the vignette that the policy offered would not entail such disadvantages. Although these consequences are very relevant in case of actual trials, we decided to assume that all these factors remain unchanged for the sake of simplicity. Moreover, within the scope of this article we have chosen to prioritize other dimensions, more specifically the role of participation in society (see below).

The flexible features section - which varied across vignettes - contained additional details about five dimensions of the WTR policy. Table 1 summarizes the dimensions (factors) and levels (possible values) while the bulleted text in the second paragraph in Figure 1 gives an example of a vignette for one specific combination of levels. The first dimension was "quantity": working time was reduced with either 10%, 20% or 30%. The selected levels were chosen because they present moderate rather than radical reductions (such as working half-time). Furthermore, they were chosen based on observations, with 10% and 20% being the most frequently observed percentages in trials (Cermak \& Houba, 2017; De Spiegelaere \& Piasna, 2017; Lewis et al., 2023; Mullens et al., 2020).

The second dimension concerned the "reference base": working time was reduced either on a daily basis (reduction in hours per day), a weekly basis (reduction in days per week) or a yearly basis (additional leave days). Considering the trials described by Cermak and Houb (2017), De Spiegelaere and Piasna (2017) and Mullens, Verbeylen and Glorieux (2020), the first two options are most common: they entail a structural change in an employee's working day or working week and thereby primarily impact daily life. The last option is less commonly observed in past and ongoing trials. However, given the growing importance of work-life balance in contemporary job choices, an increasing number of companies and organizations are offering additional leave days as a perk (e.g. within the context of cafeteria plans in Belgium). Considering
the rising relevance of leave days in compensation packages we decided to incorporate this level in addition to the two more obvious levels.

The third dimension is related to "compensation": pay was reduced relative to the quantity reduction with $50 \%, 60 \%, 70 \%, 80 \%, 90 \%$ or 100%. The last level (100%) implied that respondent's pay reduction was fully proportionate with the reduction in working time (e.g. when working 20% less, pay was reduced with 20%) while the first level (50%) implied that respondent's pay was only reduced by half compared to the reduction in working time (e.g. when working 20% less, pay was reduced with 10%). Consequently five out of six levels presented less than fully proportionate reductions in total pay or - equivalently - increases in pay per hour. The reason for setting the minimum level at 50% rather than 0% (full pay retention) is twofold. First, as employees are not expected to increase their productivity, a certain degree of pay reduction is legitimate. Second, the literature on factorial survey experiments advises to avoid including dominant levels, i.e. levels that are clearly preferred by most respondents. In the presence of dominant levels respondents may base their response entirely on the dominant level without carefully considering the levels of the other dimensions, thereby leading to biased results. The specific combination of the chosen pay level together with the expectation of zero productivity increase affects a key characteristic of the WTR policy, namely the compensation: who bears the costs for the reduced working time? In the case of 100% pay reduction, costs are entirely borne by the employee. In all other cases, employees only sacrifice a portion of their pay and therefore the remaining costs must be compensated in another manner: either by the company or organization, the government or through a cost-offset via efficiency gains despite the expectation of zero productivity increase. This cost-offset option is a plausible scenario since organizations often undertake restructuring and optimization of work processes prior to implementing a WTR policy, resulting in reduced inefficiencies. Additionally, due to reduced working hours, employees experience lower levels of job-related stress and burn-out risk and therefore are less likely to be absent, leading to reduced absenteeism.

The last two dimensions represented the hypothetical participation of two groups of individuals surrounding the employee. The vignette specified the following uptake rates: either $20 \%, 50 \%$ or 80% of colleagues (fourth dimension - "colleagues") and either $20 \%, 50 \%$ or 80% of close friends and family (fifth dimension - "close friends \& family") participated in a similar WTR policy. These numbers, which respectively represent a minority, half and a majority, were chosen because they are sufficiently disparate (increasing chances to detect a potential effect) without falling into unrealistic extremes (such as 0% or 100% participation).

The chosen number of dimensions (5) was in line with recommendations for achieving optimal consistency according to Auspurg and Hinz (2014). The chosen numbers of levels (four times 3 and one time 6) were either identical or a multiple of each other, leading to balanced levels across dimensions. For the pay dimension we decided to include 6 instead of 3 levels because it allowed to obtain a more detailed assessment of this dimension in employee's decision-making. The 5 dimensions and corresponding levels lead to a $3 \times 3 \times 6 \times 3 \times 3$ design, that is a vignette universe of 486 unique vignettes. Rather than using the full factorial we selected a subset of vignettes from the universe and subsequently allocated them into vignette decks using a D-efficient design ${ }^{2}$: this resulted in a selection of 120 unique vignettes, split up in 30 decks of 4 unique vignettes each. The D-efficient algorithm guaranteed that the selected subset of vignettes resulted in the most precise parameter estimation possible, and hence that the loss of statistical power was minimized compared to the full factorial case. Moreover the algorithm ensured a Resolution V design: all main effects and two-way interactions were identifiable. No restrictions were defined in the Defficient design since no implausible or bad combinations of levels were identified in the full factorial. The resulting D-efficiency score of 92.29 (out of 100) indicated that correlations between vignette dimensions were minimal and hence that the design had sufficient statistical power. This was further confirmed by our analysis: the maximum correlation measured between vignette dimensions was equal to 0.049 .

[^1]We investigated the effect of the different levels of the dimensions on two outcome variables (see bottom part of Figure 1): respondents were asked to evaluate each of the four vignettes with respect to their attractiveness on a scale from 0 (not attractive at all) to 10 (very attractive), and the likeliness of respondents to participate on a scale from 0 (not likely at all) to 10 (very likely). While the first outcome variable which has been used in prior factorial survey experiments (Moens et al., 2022; Schmoll \& Süß, 2019; Thompson et al., 2015) - serves as a relatively low-threshold measure of respondent preferences, the second outcome variable captures behavioural intention and can therefore be interpreted as a more explicit indicator of the respondent's preferences.

Finally, randomization was taken care of at two levels: respondents were randomly allocated to one of the 30 decks (first randomization level) after which the 4 vignettes within the deck were presented in a random order (second randomization level). For clarity and ease of interpretability, the order of dimensions as well as the order of outcome variables were not randomized across vignettes.

< FIGURE 1 HERE >

< TABLE 1 HERE >

2.2 Sample

Data was collected in March 2023 through Qualtrics, from a total of 300 respondents who were recruited via Prolific. Two selection criteria were applied: country of residence (United Kingdom) and employment status (working full-time). After cleaning the data ${ }^{3}$ the sample size was reduced to 276 respondents $\left(\mathrm{N}_{\mathrm{R}}\right)$. The final sample was representative of the full-time working UK population (based on data from Eurostat 2019) for sex, age and education ${ }^{4}$. The sample consisted of 61.7% male and 38.3% female respondents with

[^2]an average age of 40.8 years. About 6.5% of respondents was low educated (ISCED level 0-2) while the rest of respondents were nearly equally divided between being medium educated (ISCED level 3-4) and highly educated (ISCED level 5-8) with respectively 46.4% and 47.1%. Additional descriptive statistics of respondents are presented in Appendix Table 1. Each of the 276 respondents evaluated 4 vignettes, resulting in a total of 1104 vignette evaluations $\left(\mathrm{N}_{\mathrm{V}}\right)$.

2.3 Survey

The Qualtrics survey contained three sections. First, the pre-experimental section consisted of an introduction, an informed consent and a set of screener validation questions (see selection criteria and sample representativeness). Additionally we surveyed a battery of individual and household sociodemographic characteristics (sex, age, education, relationship status, parental status, personal and partner income). These characteristics were selected based on the literature on determinants of working-time reduction (Anxo et al., 2013; Gerold \& Nocker, 2018; Golden \& Gebreselassie, 2007; Otterbach, 2010; Reynolds, 2003, 2004, 2005; Reynolds \& Johnson, 2012; Schalembier et al., 2019) and were used as control variables in the analyses. Moreover, considering the consistent empirical evidence highlighting significant disparities in working-time preferences associated with sex and caregiving responsibilities, the variables of sex, relationship status and parental status were investigated as potential general moderators (RO2a).

Second, in the experimental section respondents were presented with an introductory description explaining the experiment itself after which they were asked to evaluate the 4 vignettes of the randomly allocated deck. Respondents were able to consult the explanatory introduction at any time, and were allowed to go back and forth between the vignettes and - if desired - modify their responses. To keep track of the time a respondent spent on reading the vignettes a hidden timer was added to each. A follow-up question concluded the experimental section: respondents were requested to evaluate the degree of realism of their company or organization participating in collective WTR policies.

Finally, the post-experimental section contained a series of job-related characteristics with respect to the respondent's current main job. This included both objective traits (sector, actual number of weekly working hours, number of annual leave days) as well as subjective evaluations (job stress, work-to-life conflict), and three measures of employee-led flexibility (worktime flexibility, workplace flexibility and job autonomy) ${ }^{5}$. All of these characteristics were added as control variables in the analyses. The selection of the objective traits and subjective evaluations is based on the literature on determinants of working-time reduction. The selection of the employee-led flexibility measures is inspired by literature on well-being. Enhancing worklife balance and well-being are primary motivations for reducing working hours, but other policies or arrangements may equally contribute to achieving these goals and therefore may serve as alternative strategies to WTR policies. This is particularly the case for types of so-called employee-led flexibility, that is work arrangements in which employees have a certain level of control and autonomy over when, where and how they perform their work. If employees experience high levels of employee-led flexibility in their current job, this may enable them to improve their work-life balance to such an extent that they no longer feel the need to reduce working hours (at least not for this reason). Therefore these three variables were added as control variables in the analyses.

Next, to analyse which circumstances affect the impact of the participation dimensions on the policy evaluation (RO2b), we included a set of statements at the end of the post-experimental section drawing on literature (see Section 1). We specifically focused on three social and organizational beliefs and behaviours that can be regarded as potential moderators. The first characteristic is social comparison orientations, i.e. the tendency of individuals to compare themselves with others (Schneider \& Valet, 2017). As there are both arguments suggesting a positive and arguments suggesting a negative moderating effect for both participation dimensions, we do not make an explicit hypothesis a priori for this moderator. The second characteristic - primarily expected to explain the effect of participation of colleagues - is the degree to which the company culture is experienced as being non-supportive of or even opposing to WTR policies.

[^3]We hypothesize that the more negative WTR norms are experienced by the employee in his or her company or organization, the more positive the relationship between participation of colleagues and policy evaluation. The third characteristic - primarily expected to explain the effect of participation of close friends and family - is sensitivity to the social multiplier effect, that is the degree to which the value of a respondent's leisure time increases when it can be shared with others rather than by oneself. We hypothesize that the higher an employee's sensitivity to the social multiplier effect, the more positive the relationship between participation of close friends and family on the one hand and policy evaluation on the other hand. 6

To assess the structure, phrasing and clarity of questions including the experiment, three successive rounds of pretesting were carried out. The first round involved five research colleagues, some of whom had experience in (factorial experiment) survey construction. The second round involved a UK researcher with expertise in WTR. Finally, the third round included ten participants from the target group who were recruited via Prolific. These pretest-participants were excluded for participation in the actual data collection.

[^4]
3. Results and discussion

We start by presenting descriptive statistics for both outcome variables. Subsequently, results for the main effects of the vignette dimensions (RO1a) and trade-offs between dimensions (RO1b) are presented. Afterwards, findings for both general (RO2a) and participation-specific (RO2b) moderators are discussed. We conclude this section with a series of robustness checks.

3.1 Descriptive statistics

Figure 2 and Figure 3 present descriptive statistics for attractiveness and likeliness to participate respectively. Respondents used the entire scale range for both outcome variables. With mean scores respectively equal to 4.61 and 3.91 , the attractiveness of a WTR policy on average is significantly higher than the likeliness to participate in the policy $(\mathrm{p}=.000)$. The proportion of vignettes rated with the lowest score (0) doubles when moving from attractiveness (7.9\%) to likeliness to participate (15.8\%): this is in line with expectations because the latter entails a more pronounced expression of preferences, given that participating in a WTR policy has more far-reaching consequences compared to merely rating a policy as attractive. Consequently the likeliness to participate variable also exhibits greater variability (standard deviation of 2.91 compared to 2.77). Nonetheless both outcome variables show a strong positive correlation ($\rho=.873 ; \mathrm{p}=.000$).

< FIGURE 2 HERE >

< FIGURE 3 HERE >

3.2 Effects of dimensions on policy evaluation (RO1)

To examine the impact of the WTR dimensions, two consecutive linear regression (OLS) models were run ${ }^{7}$. In the baseline model only the WTR dimensions were included as independent variables. The reference base dimension was treated as a categorical variable while the remaining four dimensions were treated as

[^5]continuous variables, given that all levels of these dimensions pertain to numerical values (percentages). The unit of measurement for all these variables is 10 percentage points (pp). The second model extended the first one by introducing a set of control variables (socio-demographic and job-related characteristics) as discussed in the Section 2.3. To account for the nested data structure, standard errors were corrected for the clustering of observations at the respondent level. Since results for these analyses are strongly similar across both outcome variables, the discussion will focus on the likeliness to participate variable. Results for the attractiveness variable are equally reported in the tables.

3.2.1 Main effects

Table 2 presents the results of the regression analyses for the baseline (column 1) and extended model (column 2) for the likeliness to participate variable. Thanks to the experimental manipulation of WTR dimensions, coefficients for these main effects can be interpreted causally. As coefficients between the baseline and extended model hardly differ, the discussion in the remainder of this section will focus on the coefficients of the extended model.

< TABLE 2 HERE >

First, we observe that pay reduction negatively impacts preferences for a WTR policy: for every 10 pp increase in pay reduction, the likeliness to participate decreases with .356 points (on a scale from 0 to 10) (p < .001). This corresponds with a reduction of 3.56 pp in the likeliness to participate for every 10 pp increase in pay reduction.

Next, we find that quantity reduction has a negative effect: when the amount of working-time reduction in a policy increases with 10 pp , the likeliness to participate drops with 5.05 pp ($\mathrm{p}<.001$). This finding can be understood in the context of the specific choice of levels for the pay reduction dimension (varying from 50% up until 100%). Each policy inevitably entails a certain degree of income loss. Moreover, as the level of quantity reduction increases, the remaining absolute income decreases, and this regardless of the specific level of pay reduction within a WTR policy. Since it is reasonable to assume that individuals have a
minimum or sufficient income threshold in mind below which they are unwilling to see their incomes reduced [anonymized reference], it is reasonable to expect that there are boundaries to the extent of quantity reduction individuals are willing to accept. This finding is valuable in that it underscores the existence of limitations to the level of support for reducing working hours when accompanied by pay reduction. Furthermore, other non-income-related job factors may be at play such as the satisfaction individuals derive from their job and the degree to which they experience their work as meaningful. As these contribute positively to life satisfaction (Allan et al., 2019) individuals probably desire to allocate a certain minimum amount of time to their work.

For the reference base dimension we find that higher level temporal units are preferred: compared to reducing working time on a daily basis, employees are 7.1 pp more likely to participate in a WTR policy which offers a reduction in working time on a weekly basis ($\mathrm{p}<.001$) and 14.33 pp more likely to participate in a policy in which working time is reduced on a yearly basis ($\mathrm{p}<.001$). The finding that individuals, on average, prefer additional leave days is noteworthy from a well-being perspective. Enhancing work-life balance, which is often considered one of the key benefits of WTR, is primarily expected when the work schedule is structurally adjusted, such that daily household chores and care responsibilities can be better accommodated. A potential explanation for the attractiveness of the yearly basis stems from the fact that a higher level of reference base implies a higher degree of flexibility. Additional leave days can be utilized in a more versatile manner, either by clustering them together for longer periods of vacation or by taking intermittent days off. In contrast, fixed reductions on a daily or weekly basis offer no such flexibility. Another explanation is that individuals may perceive longer periods of time off as facilitating their engagement in specific leisure activities that yield greater benefits, such as relaxing experiences, opportunities for mastery or growth (learning something new) and psychological detachment from work (Fritz et al., 2013).

Finally we analyze the results for the two participation dimensions. For colleagues, a positive effect is found: the likeliness to participate increases with .85 pp if the fraction of colleagues participating in a
similar WTR policy increases with 10 pp (p < .01). For close friends and family, a similar albeit smaller and weaker effect is found: an increase of 10 pp in the fraction of close friends and family participating in a similar WTR policy leads to an increase in likeliness to participate with .59 pp ($\mathrm{p}<.05$). Although these participation effects are notably smaller than the effects of the other dimensions, these findings are worthwhile: they suggest that, on average, increased participation in society in a collective WTR policy positively affects an employee's individual evaluation of the policy. Moreover, participation of colleagues appears to be twice as important compared to participation of close friends and family.

3.2.2 Cross-elasticities

To explore trade-offs between the different dimensions, cross-elasticities were calculated for each dimension with respect to the pay reduction dimension. Towards this end the coefficient of the dimension at hand was divided by the coefficient of the pay reduction dimension. Results for the likeliness to participate variable are summarized in the first row of Table 3.

< TABLE 3 HERE >

We find that all cross-elasticities are statistically significant. First, no trade-off is possible between quantity reduction and pay reduction: on average, employees are only willing to accept a WTR policy with 10 pp more quantity reduction if pay reduction is reduced with 14.18 pp . Moving to the reference base, trade-offs are possible: on average, employees are willing to accept a WTR policy where pay reduction is 19.94 pp (resp. 40.22 pp) higher in exchange for a switch in reference base from daily to weekly (resp. yearly) basis. Finally, trade-offs are also possible for both participation dimensions: on average, employees are willing to accept a trade-off in WTR policies where pay reduction is 2.39 pp higher, contingent upon an increase in participation rate of colleagues with 10 pp . Likewise, employees are willing to accept a trade-off where pay reduction is 1.65 pp higher in return for an increase in participation rate of close friends and family with 10 pp.

3.3 Moderators of the effects of dimensions on policy evaluation (RO2)

To better understand under what circumstances the main effects materialize, a set of general and participation-specific moderators were investigated. For each moderator, the extended OLS models were expanded with the appropriate cross-level interactions. Since results for these analyses are not always aligned across outcome variables, findings for both (likeliness to participate and attractiveness) are discussed. Moreover the results in this section should be treated with caution: coefficients for cross-level interactions cannot be interpreted causally since respondent-level characteristics were not experimentally manipulated.

3.3.1 General moderators

Results for the three socio-demographic general moderators (sex, relationship status and parental status) are presented in Table 4. For sex, we find that none of the cross-level interactions between sex (respondent level) and all WTR dimensions (vignette level) are significant for the likeliness to participate variable (column 1). For the attractiveness variable (column 2), the interaction between sex and yearly basis is marginally negative ($-.538 ; \mathrm{p}<.10$), suggesting that the positive effect of yearly basis on WTR policy evaluation is somewhat lower (although still positive) for women.

Moving to relationship status, we find that two interactions are significant for the likeliness to participate variable (column 3). First, the interaction effect between relationship status (having a cohabiting partner) and pay reduction is marginally negative ($-.152 ; \mathrm{p}<.10$), suggesting that the negative effect of pay reduction is even larger for employees who have a cohabiting partner. Second, the positive main effect of participation rate of close friends and family is neutralized by the negative interaction effect between relationship status and participation rate of close friends and family ($-.114 ; \mathrm{p}<.05$): this implies that participation of close friends and family positively affects an individual employee's likeliness to participate in a collective WTR policy only when he or she does not have a cohabiting partner. However, moving to the attractiveness variable (column 4) none of these findings seems to hold as all interactions are insignificant.

Finally, we examine whether the main effects of WTR dimensions vary depending on parental status. For both outcome variables (columns 5 and 6), we find that none of the interactions are significant: this implies that on average, the main effects for all dimensions do not vary between employees who have children living inside their household, and those who do not.

In summary, while variations in main effects exist based on sex and relationship status, these differences demonstrate only marginal significance. Additionally, they prove to be significant for just one of both outcome variables. We conclude that the main effects of the majority of WTR dimensions are robust across sex, relationship status and parental status.

< TABLE 4 HERE >

3.3.2 Participation-specific moderators

Table 5 summarizes the results for the three participation-specific moderators (social comparison, negative organizational WTR norms and sensitivity to social multiplier effect). For social comparison, we find for both outcome variables that none of the interactions are significant (columns 1 and 2): the main effects for both participation dimensions do not differ between employees who are more or less prone to compare themselves with others. However, for the attractiveness variable we do find that the main effect of social comparison is positive (.675; p<.05), suggesting that collective WTR policies on average are rated as more attractive by employees who are more prone to compare themselves with others.

Next, in columns 3 and 4 we find that the effect of participation of close friends and family significantly varies according to the degree of negative organizational WTR norms: the interaction term between both is negative (-.089; p < . 01 for likeliness to participate, and $-.099 ; p<.001$ for attractiveness). No significant effect is found for the interaction between participation of colleagues and these norms. Moreover, the main effect of negative organizational WTR norms is found to be positive (.591; p $<.05$ for likeliness to participate, and $.689 ; \mathrm{p}<.05$ for attractiveness). Taken together these findings suggest that on average, the more negative the experienced WTR norms in one's company or organization, the better the collective

WTR policy is being perceived. On the other hand, the more negative these norms are experienced, the more the initial positive effect of participation of close friends and family is reduced, up until the point where this effect is undone and even can become negative. The counterintuitive finding for the significant main effect can be explained by the forbidden fruit effect, according to which the desire for something - in casu a WTR policy - intensifies when it is perceived as inaccessible or challenging to attain. The findings for the interaction effects are not entirely in line with expectations as we hypothesized that these norms would moderate the participation of colleagues rather than that of close friends and family. Nevertheless, a logical explanation is available: individuals working in an environment where WTR is generally not appreciated may perceive WTR policies as less attractive, or even unrealistic. Consequently, the involvement of friends and family might not even be considered seriously by these employees when evaluating such policies. Conversely, employees working in an environment that is more supportive of WTR probably perceive such policies as more viable. Consequently, when forming their judgment regarding these policies they are more likely to thoroughly consider various factors, including the participation of friends and family.

Finally, we find that sensitivity to the social multiplier effect (columns 5 and 6) does not serve as moderator for any of both participation dimensions: none of the interaction terms are significant.

In conclusion, we find that the effect of participation of close friends and family on WTR policy evaluation is significantly moderated by negative organizational WTR norms - on average, the positive effect primarily materializes for employees working in a company or organization where WTR is generally more accepted - but not by social comparison and sensitivity to the social multiplier effect. The effect of participation of colleagues is moderated by none of the three behaviors and beliefs. Future research should investigate other potential moderators of the participation dimensions to better understand under what circumstances participation in society strengthens or weakens the support for collective WTR policies.

< TABLE 5 HERE >

3.4 Robustness checks

The robustness of our findings were tested for two elements: statistical model and subsample selection.

Two alternative statistical models were fit for the baseline and extended model (RO1) other than OLS regression with cluster-robust standard errors: a Random Intercept (RI) model, i.e. a multi-level regression model (Appendix Table 4) and two types of random-effects Tobit models (Appendix Tables 5 and 6). We found that for both outcome variables, significance (RI model and Tobit models) and size (RI model) of the coefficients for all main effects of the WTR dimensions were strongly similar to those of the OLS model. We conclude that main results are robust across different statistical models.

Next, analyses were repeated for three restricted samples. On the one hand, the minimum completion time for the factorial survey experiment task was set at two alternative values. Instead of excluding the fifth fastest percentile (i.e. respondents who spent at most 68 seconds, $\mathrm{N}_{\mathrm{R}}=276$), analyses were repeated after excluding respondents who spent (i) at most 60 seconds $\left(\mathrm{N}_{\mathrm{R}}=280\right)$ and (ii) at most 90 seconds $\left(\mathrm{N}_{\mathrm{R}}=249\right)$. Results are presented in Appendix Tables 7, 8 (RO1) and 10, 11, 12 and 13 (RO2). On the other hand, in response to the hypothetical bias of the of the experimental set-up, analyses were repeated after excluding 61 respondents who considered it completely unrealistic that their company or organization would participate in a collective WTR policy ${ }^{8}$. Results for the remaining sample $\left(\mathrm{N}_{\mathrm{R}}=215\right)$ are presented in Appendix Tables 9 (RO1), 14 and 15 (RO2). Main findings for RO1 remained unchanged according to both subsamples with adjusted minimum completion time. However, according to the subsample corrected for the hypothetical bias, a remarkable reversal in roles was observed for the participation dimensions compared to the initial analysis: while the positive effect of colleagues' participation was strongly reduced (both in terms of significance and coefficient size), the positive effect of participation of close friends and

[^6]family increased (in both significance and coefficient size). This seems to suggest that for employees working in an environment where a WTR policy is considered unrealistic, colleagues' involvement matters for the employee's own appraisal of the policy. However, once such a policy is considered somewhat plausible, the importance of colleagues' participation diminishes while the role of participation of close friends and family becomes more influential. These results align with previous findings on the moderating role of negative organizational WTR norms (see Section 3.3.2). As for RO2, general findings remained unaltered: except for some minor changes in significance level of coefficients, no additional interaction effects were found to be consistently significant.

4. Conclusion

Given the many potential advantages of working-time reduction including employment, well-being, environment and gender equality, a thorough examination of employees' preferences for such policies is highly relevant. Whereas individual policies (i.e. part-time work) initially dominated the scene both in practice and in literature, collective policies (i.e. reducing working time at the level of the company, organization or higher) have become increasingly prominent. However, the existing literature on collective policies primarily describes past and ongoing trials on a case-by-case basis, making it impossible to causally derive general preferences for (dimensions of) such policies. Moreover the potential impact of widespread participation in society on preferences has not been investigated in previous projects or research. To address these issues, we developed a factorial survey experiment in which full-time employees were asked to rate hypothetical collective WTR policies that varied on five different dimensions, including two participation dimensions. Beyond mapping preferred levels for each dimension, potential moderators were analyzed.

We found that the main effects for all WTR dimensions were significant. Firstly, results confirmed that policies entailing higher levels of pay reduction and larger volumes of reduction in working time were less preferred: on average, an employee's likeliness to participate in the policy dropped with 3.56 pp (resp. 5.05 pp) for every 10 pp increase in pay reduction relative to the amount of quantity reduction (resp. quantity reduction). These findings highlight the core role of compensation to be considered when implementing a WTR policy, as there are constraints on the level of support for such policies when they entail a loss of income for both financial and non-financial reasons. Furthermore, we found that policies where working time is reduced at a higher level of temporal unit were received more favourably: on average, an employee's likeliness to participate increased with 7.1 pp (resp. 14.33 pp) if working time was reduced at weekly (resp. yearly) rather than at daily basis. While these preferences can be logically explained - a higher reference base level enables a more flexible utilization of the additional leisure time - it raises questions about the implications for potential well-being (dis)advantages. Future research should elaborate on the rationale behind these preferences as well as potential consequences of each level for well-being. For all three general
dimensions, moderation analyses showed that their effects were largely robust across a series of sociodemographic characteristics as well as social and organizational beliefs and behaviours.

Secondly, albeit considerably smaller compared to the general dimensions, we found that the two participation dimensions significantly impacted the employee's policy perception: on average, likeliness to participate increased with .85 pp (resp. .59 pp) for every 10 pp increase in the participation rate of colleagues (resp. of close friends and family). Whereas the effect of colleagues was rather robust, the effect of close friends and family was somewhat smaller, less significant and heterogeneous. Moderation analyses showed that participation of close friends and family primarily had a positive effect for employees who worked in an environment where less negative norms around WTR. Although these results seem to imply that significant others surrounding an individual employee are in the first place colleagues and in the second place friends and family, this conclusion was reversed when performing a hypothetical bias correction: after excluding respondents who considered the implementation of collective WTR policies in their work environment not to be realistic at all, the effect of friends and family was found to be larger and more significant than that of colleagues. This suggests that the participation of colleagues is particularly relevant for those employees' policy evaluation who work in environments where WTR is not yet a topic of discussion.

To conclude, we discuss some limitations and opportunities for future research. First, in the vignettes we measured hypothetical behaviour (likeliness to participate), yet there might be a gap between respondents' hypothetical and actual behaviour. We aimed to overcome this limitation by repeating analyses for two outcome variables as well as by applying a hypothetical correction bias as a robustness check. A second shortcoming relating to the experimental set-up pertains to causality: while the main effects for the WTR dimensions (RO1) can be causally interpreted, no such interpretation is possible for the cross-level interaction effects in the moderation analyses (RO2) because respondent-level characteristics were not experimentally manipulated. A third limitation relates to the external validity of our study: both for practical reasons (availability of data in Prolific) and substantive reasons (employment regulations are often managed at country level), sample selection criteria were employed. While our sample is representative for the full-
time working population in the UK, the generalizability of our findings to other countries and employment statuses remains uncertain. Future research could extend this line of research by replicating these analyses in other contexts. A final shortcoming relates to the choice of dimensions and levels. Although careful consideration was given in this study to the selection of fixed and varying WTR dimensions as well as to the selection of the specific levels for each varying dimension, alternative choices could have been made, potentially leading to different conclusions. In this respect, it is crucial to keep an open-minded approach when considering the design and implementation of WTR policies and their dimensions in future research. While collective WTR policies hold significant potential, we believe it is important to refrain from being constrained by current or past trends that prescribe a specific interpretation of WTR, but rather to embrace new perspectives and challenge the status quo. Such an approach offers the best opportunity for these policies to effectively achieve their maximum potential benefits in addressing a wide range of contemporary challenges.

References

Alesina, A., Glaeser, E., \& Sacerdote, B. (2005). Work and leisure in the United States and Europe: Why so different? NBER Macroeconomics Annual, 20, 1-64. https://doi.org/10.1086/ma.20.3585411

Allan, B. A., Batz-Barbarich, C., Sterling, H. M., \& Tay, L. (2019). Outcomes of Meaningful Work: A Meta-Analysis. Journal of Management Studies, 56(3), 500-528. https://doi.org/10.1111/joms. 12406

Angrave, D., \& Charlwood, A. (2015). What is the relationship between long working hours, overemployment, under-employment and the subjective well-being of workers? Longitudinal evidence from the UK. Human Relations, 68(9), 1491-1515. https://doi.org/10.1177/0018726714559752

Anxo, D., Franz, C., \& Kümmerling, A. (2013). Working Time Distribution and Preferences Across the Life Course: a European Perspective. Economia \& Lavoro, XLVII(2), 77-106. https://doi.org/10.7384/75271:y:2013:i:2:p:77-106

Auspurg, K., \& Hinz, T. (2014). Factorial survey experiments (Vol. 175). Sage Publications.
[anonymized reference]
Cermak, M., \& Houba, D. (2017). Partageons le temps de travail. Entre chômage et burn-out: Mode d'emploi pour la semaine de 4 jours en Belgique. Bruxelles: Couleur Livres.

Clark, A. E., Frijters, P., \& Shields, M. A. (2008). Relative income, happiness, and utility: An explanation for the Easterlin paradox and other puzzles. Journal of Economic Literature, 46(1), 95-144. https://doi.org/10.1257/jel.46.1.95

De Spiegelaere, S., \& Piasna, A. (2017). The why and how of working time reduction. In European Trade Union Institute.

DeBaylo, P., \& Michel, J. S. (2022). Identifying energy and emotion-based conflict: Development of a refined work-life conflict scale. Stress and Health, 38(5), 961-977. https://doi.org/10.1002/smi. 3148

Festinger, L. (1954). A Theory of Social Comparison Processes. Human Relations, 7(2), 117-140. https://doi.org/10.1177/001872675400700202

Gerold, S., \& Nocker, M. (2018). More Leisure or Higher Pay? A Mixed-methods Study on Reducing Working Time in Austria. Ecological Economics, 143, 27-36. https://doi.org/10.1016/j.ecolecon.2017.06.016

Gibbons, F. X., \& Buunk, A. P. (1999). Individual Differences in Social, Comparison: Development and Validation of a Measure of Comparison Orientation. Journal of Personality and Social Psychology, 76(1), 129-142. https://doi.org/10.1037/0022-3514.76.1.129

Glaeser, E. L., Sacerdote, B. I., \& Scheinkman, J. A. (2003). The social multiplier. Journal of the European Economic Association, 1(2-3), 345-353. https://doi.org/10.1162/154247603322390982

Golden, L., \& Gebreselassie, T. (2007). Overemployment mismatches : the preference for fewer work hours. 130(4), 18-37.

Hiemer, J., \& Andresen, M. (2019). "Because Work Time Is Life Time" - Employees’ Perceptions of Individual Overemployment, Its Causes and Its Consequences. Frontiers in Psychology, 10(AUG), 1-15. https://doi.org/10.3389/fpsyg.2019.01920

Kallis, G., Kalush, M., Flynn, H. O., Rossiter, J., \& Ashford, N. (2013). "Friday off": Reducing Working Hours in Europe. 1545-1567. https://doi.org/10.3390/su5041545

Lewis, K., Schor, J., \& Frayne, D. (2023). UK's 4 Day Week Pilot Results Report 2023. https://doi.org/10.1038/s41415-022-3903-9

Marcatto, F., Di Blas, L., Luis, O., Festa, S., \& Ferrante, D. (2022). The Perceived Occupational Stress Scale: A Brief Tool for Measuring Workers' Perceptions of Stress at Work. European Journal of Psychological Assessment, 38(4), 293-306. https://doi.org/10.1027/1015-5759/a000677

Moens, E., Verhofstadt, E., Van Ootegem, L., \& Baert, S. (2022). Disentangling the Attractiveness of Telework to Employees: A Factorial Survey Experiment. SSRN Electronic Journal, 1076. https://doi.org/10.2139/ssrn. 4114763

Morgeson, F. P., Delaney-Klinger, K., \& Hemingway, M. A. (2005). The importance of job autonomy, cognitive ability, and job-related skill for predicting role breadth and job performance. Journal of Applied Psychology, 90(2), 399-406. https://doi.org/10.1037/0021-9010.90.2.399

Mullens, F., Verbeylen, J., \& Glorieux, I. (2020). Time-use research on the effects of a 30-hour workweek: Report.

Otterbach, S. (2010). Mismatches between actual and preferred work time: Empirical evidence of hours constraints in 21 countries. Journal of Consumer Policy, 33(2), 143-161. https://doi.org/10.1007/s10603-009-9116-7

Pullinger, M. (2014). Working time reduction policy in a sustainable economy: Criteria and options for its design. Ecological Economics, 103, 11-19. https://doi.org/10.1016/j.ecolecon.2014.04.009

Reynolds, J. (2003). You can't always get the hours you want: Mismatches between actual and preferred work hours in the U.S. In Social Forces (Vol. 81, Issue 4, pp. 1171-1199). https://doi.org/10.1353/sof.2003.0069

Reynolds, J. (2004). When too much is not enough: Actual and preferred work hours in the United States and abroad. Sociological Forum, 19(1), 89-120. https://doi.org/10.1023/B:SOFO.0000019649.59873.08

Reynolds, J. (2005). In the face of conflict: Work-life conflict and desired work hour adjustments. Journal of Marriage and Family, 67(5), 1313-1331. https://doi.org/10.1111/j.1741-3737.2005.00219.x

Reynolds, J., \& Johnson, D. R. (2012). Don't blame the babies: Work hour mismatches and the role of children. Social Forces, 91(1), 131-155. https://doi.org/10.1093/sf/sos070

Schalembier, B., Bleys, B., Van Ootegem, L., \& Verhofstadt, E. (2019). How relative income affects work hours preferences. Applied Economics, 5l(51), 5545-5558. https://doi.org/10.1080/00036846.2019.1613512

Schmoll, R., \& Süß, S. (2019). Working Anywhere, Anytime. Source: Management Revue, 30(1), 40-62. https://doi.org/10.2307/26869685

Schneider, S. M., \& Valet, P. (2017). Relative Standards and Distributive Justice: How Social Comparison Orientations Moderate the Link between Relative Earnings and Justice Perceptions. Social Psychology Quarterly, 80(3), 276-287. https://doi.org/10.1177/0190272517708810

Skidelsky, R. (2019). How to achieve shorter working hours. Progressive Economy Forum. www.progressiveeconomyforum.com

Thompson, R. J., Payne, S. C., \& Taylor, A. B. (2015). Applicant attraction to flexible work arrangements: Separating the influence of flextime and flexplace. Journal of Occupational and Organizational Psychology, 88(4), 726-749. https://doi.org/10.1111/joop. 12095

Wooden, M., Warren, D., \& Drago, R. (2009). Working time mismatch and subjective well-being. British Journal of Industrial Relations, 47(1), 147-179. https://doi.org/10.1111/j.1467-8543.2008.00705.x

Wunder, C., \& Heineck, G. (2013). Working time preferences, hours mismatch and well-being of couples: Are there spillovers? Labour Economics, 24, 244-252. https://doi.org/10.1016/j.labeco.2013.09.002

Tables

Table 1: Dimensions and levels of the factorial survey experiment.

DIMENSION	LEVEL
1 Quantity reduction	110%
	220%
	330%
2 Reference base	1 Daily (reduction in hours/day)
	2 Weekly (reduction in days/week)
	3 Yearly (additional leave days)
3 Pay reduction (relative to quantity reduction)	150%
	260%
	370%
	480%
	590%
	6100% (fully proportionate)
4 Participation rate of colleagues	120%
	250%
	380%
5 Participation rate of close friends and family	120%
	250%

Table 2: Regression results (OLS): baseline and extended analysis.

OUTCOME VARIABLE		LIKELINESS TO PARTICIPATE		ATTRACTIVENESS			
		(3)	(4)				
Quantity reduction (unit: 10\%)				$-0.514^{* * *}(0.083)$	$-0.505^{* * *}(0.084)$	-0.443*** (0.082)	$-0.433 * * *(0.082)$
Reference base	Daily (reduction in hours/day)	-	-	-	-		
	Weekly (reduction in days/week)	$0.669^{* * *}(0.163)$	$0.710^{* * *}(0.156)$	$0.748^{* * *}(0.150)$	$0.778^{* * *}(0.145)$		
	Yearly (additional leave days)	1.354*** (0.156)	$1.433^{* * *}(0.156)$	1.265*** (0.150)	$1.329 * * *(0.150)$		
Pay reduction rel. to quantity red. (unit: 10%)		$-0.362^{* * *}(0.044)$	$-0.356 * * *(0.042)$	$-0.348 * * *(0.041)$	$-0.347 * * *(0.039)$		
Participation rate of colleagues (unit: 10%)		0.092*** (0.027)	0.085** (0.026)	0.106*** (0.026)	0.098*** (0.025)		
Participation rate of close friends \& family (unit: 10%)		$0.050+(0.026)$	0.059* (0.025)	0.035 (0.026)	0.039 (0.025)		
Sex	Male		-		-		
	Female		0.455 (0.296)		0.372 (0.284)		
Age	Gen Z (<=26)		0.234 (0.499)		0.508 (0.464)		
	Gen Y (27-42)		-		-		
	Gen X (43-58)		0.040 (0.303)		0.370 (0.292)		
	Boomers II (>=59)		1.117* (0.471)		1.196** (0.447)		
Educational level	Low education (ISCED 2011 level 0-2)		0.233 (0.502)		0.107 (0.515)		
	Medium education (ISCED 2011 level 3-4)		-		-		
	High ducation (ISCED 2011 level 5-8)		0.111 (0.294)		0.063 (0.281)		
Relationship status	Dual earner HH default (living together with partner; partner earns wage)		-		-		
	Dual earner HH other (living together with partner; partner earns non-wage income)		$1.208+(0.719)$		0.973 (0.679)		
	Single earner HH (living together with partner who earns no income)		$-2.182 * * *(0.634)$		-2.057** (0.635)		
	Partner but not living together		0.291 (0.487)		0.271 (0.463)		
	Single		-0.183 (0.361)		0.040 (0.346)		
Number of children	0		-		-		
	1		0.121 (0.360)		0.076 (0.332)		
	2		-0.279 (0.371)		-0.081 (0.373)		
	3 or more		-0.771 (0.567)		-0.112 (0.553)		
Weekly working hours			$-0.044+(0.024)$		-0.023 (0.022)		
Annual leave days			0.012 (0.013)		0.013 (0.012)		
Monthly income main job (thousands)			0.071 (0.199)		0.085 (0.191)		
Sector	Private sector		-		-		
	Public sector		-0.458 (0.309)		-0.231 (0.283)		
	Joint private-public organisation or company		-0.372 (1.036)		0.286 (1.119)		
	Not-for-porfit sector or NGO		-0.304 (0.519)		-0.172 (0.495)		
Worktime flexibility	They are set by my company/organisation		-		-		
	I can choose between several fixed working schedules determined by my company/org.		0.385 (0.500)		0.487 (0.533)		
	I can adapt my working hours within certain limits (e.g. flextime)		0.093 (0.311)		0.394 (0.290)		
	My working hours are entirely determined by myself		$1.061+(0.551)$		0.585 (0.589)		
\% working remotely (unit: 10\%)			-0.047 (0.039)		$-0.063+(0.037)$		
Job autonomy			-0.124 (0.164)		0.097 (0.158)		
Job stress			-0.231 (0.174)		-0.216 (0.168)		
Work-life conflict			0.959*** (0.207)		0.979*** (0.196)		
Constant		$6.263^{* * *}(0.466)$	$5.425^{* * *}$ (1.394)	6.730*** (0.450)	$3.844^{* *}$ (1.282)		
Number of vignettes		1,104	1,104	1,104	1,104		
Number of respondents		276	276	276	276		
R^{2}		0.115	0.230	0.114	0.218		
Main effects for vignette dimensions		yes	yes	yes	yes		
Control variables (socio-demographic \& job-related characteristics)		no	yes	no	yes		

$+, *, * *$ and ${ }^{* * *}$ indicate significance at the 10, 5, 1 and 0.1\% level. Unstandardized coefficients are shown and cluster-robust standard errors are added in parentheses. Number of children refers to children who live inside the household.

Table 3: Cross-elasticities of WTR dimensions with respect to the pay reduction dimension (unit: 10%).

	Quantity reduction (unit: 10\%)	Reference base (ref. cat.: daily)		Participation rate of colleagues (unit: 10\%)	Participation rate of close friends \& family (unit: 10\%)
		Weekly	Yearly		
Likeliness to participate	$-1.418^{* * *}$	1.994***	4.022***	0.239***	0.165**
Attractiveness	$-1.248 * * *$	$2.241^{* * *}$	$3.828 * * *$	0.281***	0.112

Table 4: Regression results (OLS): moderation analysis with general moderators (sex, relationship status and parental status) for all WTR

dimensions.

MODERATOR outcome variable		SEX		RELATIONSHIP STATU		PARENTAL STATUS	
		Likeliness to participate (1)	Attractiveness (2)	Likeliness to participate (3)	Attractiveness (4)	Likeliness to participate (5)	Attractiveness (6)
Quantity reduction (unit: 10\%)		${ }^{-0.556 * * *}(0.101)$	${ }^{-0.461 * * *}(0.102)$	${ }^{-0.569 * * *}(0.152)$	${ }^{-0.416 * *}(0.147)$	${ }^{-0.474 * * *}(0.110)$	$-0.424 * * *(0.106)$
Reference base	Daily (reduction in hours/day)	-	-	-	-	-	-
	Weekly (reduction in days/week)	0.584** (0.194)	0.683*** (0.184)	0.424 (0.265)	0.575* (0.236)	0.602** (0.219)	0.646** (0.196)
	Yearly (additional leave days)	1.565*** (0.195)	1.528*** (0.195)	1.427*** (0.279)	$1.355 * * *(0.243)$	1.366*** (0.218)	1.292*** (0.206)
Pay reduction rel. to quantity red. (unit: 10%)		$-0.377 * * *(0.055)$	$-0.362 * * *(0.052)$	$-0.259 * * *(0.074)$	$-0.281 * * *(0.068)$	$-0.332 * * *(0.055)$	$-0.317 * * *(0.051)$
Participation rate of colleagues (unit: 10%)		0.080* (0.034)	0.109*** (0.033)	0.073 (0.047)	0.086* (0.043)	0.076* (0.036)	0.109** (0.035)
Participation rate of close friends \& family (unit: 10%)		0.039 (0.034)	0.019 (0.032)	0.136** (0.046)	0.086* (0.043)	0.045 (0.035)	0.017 (0.033)
Sex	Male	-	-	-	-	-	-
	Female	-0.478 (0.882)	-0.013 (0.869)	0.449 (0.297)	0.367 (0.284)	0.453 (0.296)	0.372 (0.284)
Relationship status	Dual earner HH default (living together with partner; partner earns wage)	-	-	-	-	-	-
	Dual earner HH other (living together with partner; partner earns non-wage income)	1.207+ (0.721)	0.972 (0.683)	$1.218+(0.721)$	0.976 (0.679)	1.207+ (0.719)	0.977 (0.679)
	Single earner HH (living together with partner who earns no income)	$-2.183 * * *(0.640)$	-2.053** (0.640)	$-2.198 * * *$ (0.636)	-2.065** (0.634)	$-2.179 * * *(0.633)$	$-2.061 * *(0.632)$
	Partner but not living together	0.307 (0.488)	0.287 (0.464)	-0.998 (1.102)	-0.681 (1.049)	0.298 (0.488)	0.277 (0.466)
	Single	-0.177 (0.362)	0.046 (0.347)	-1.460 (0.987)	-0.903 (0.934)	-0.185 (0.362)	0.043 (0.346)
Number of children	0	-	-	-	-	-	-
	1	0.118 (0.360)	0.073 (0.331)	0.132 (0.360)	0.082 (0.332)	0.437 (0.947)	0.535 (0.919)
	2	-0.267 (0.371)	-0.071 (0.373)	-0.275 (0.371)	-0.078 (0.374)	0.036 (0.961)	0.371 (0.906)
	3 or more	-0.750 (0.573)	-0.091 (0.557)	-0.755 (0.568)	-0.103 (0.553)	-0.468 (1.091)	0.332 (1.003)
Sex x quantity reduction (unit: 10%)		0.120 (0.177)	0.059 (0.172)				
Sex x weekly (reduction in days/week)		0.304 (0.329)	0.225 (0.302)				
Sex x yearly (additional leave days)		-0.362 (0.326)	$-0.538+(0.309)$				
Sex x pay reduction rel. to quantity red. (unit: 10%)		0.047 (0.089)	0.032 (0.082)				
Sex x participation rate of colleagues (unit: 10%)		0.015 (0.054)	-0.029 (0.052)				
Sex x participation rate of close friends \& family (unit: 10%)		0.054 (0.052)	0.053 (0.051)				
Relationship status (having partner \& living together) x quantity reduction (unit: 10%)				0.100 (0.182)	-0.023 (0.177)		
Relationship status (having partner \& living together) x weekly (reduction in days/week)				0.445 (0.326)	0.313 (0.297)		
Relationship status (having partner \& living together) x yearly (additional leave days)				0.010 (0.334)	-0.036 (0.306)		
Relationship status (having partner \& living together) x pay reduction rel. to quantity red. (unit: 10%)				$-0.152+(0.092)$	-0.102 (0.085)		
Relationship status (having partner \& living together) x participation rate of colleagues (unit: 10%)				0.017 (0.058)	0.017 (0.054)		
Relationship status (having partner \& living together) x participation rate of close friends \& family (unit: 10%				-0.114* (0.055)	-0.071 (0.052)		
Having children x quantity reduction (unit: 10%)						-0.057 (0.170)	-0.014 (0.166)
Having children x weekly (reduction in days/week)						0.272 (0.304)	0.351 (.284)
Having children x yearly (additional leave days)						0.153 (0.306)	0.103 (0.297)
Having children x pay reduction rel. to quantity red. (unit: 10%)						-0.060 (0.087)	-0.080 (0.081)
Having children x participation rate of colleagues (unit: 10%)						0.016 (0.053)	-0.031 (0.051)
Having children x participation rate of close friends \& family (unit: 10%)						0.036 (0.051)	0.057 (0.051)
Number of vignettes		1,104	1,104	1,104	1,104	1,104	1,104
Number of respondents		276	276	276	276	276	276
R^{2}		0.233	0.222	0.235	0.221	0.231	0.220
Main effects for vignette dimensions		yes	yes	yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)		yes	yes	yes	yes	yes	yes

Table 5: Regression results (OLS): moderation analysis with participation-specific moderators (social comparison, negative organizational WTR norms and sensitivity to social multiplier effect).

| MODERATOR
 OUTCOME VARIABLE | | |
| :--- | :--- | :--- | :--- | :--- |

Figures

Figure 1: Vignette example.

DESCRIPTION OF THE COLLECTIVE WORKING-TIME REDUCTION PROPOSAL

Assume that you have a full-time job with regular working times according to UK standards, that is a 40-hour workweek spread evenly across 5 working days (Monday to Friday). There are 48 workweeks per year. Assume your pay is equal to the pay you currently earn in your job.
Suppose now that a nationwide programme to promote working-time reduction is launched, and that your company or organization decides to take part in it. As a result, all employees from participating companies and organizations including you are invited to participate in a working-time reduction proposal with pay reduction. Under this proposal, you are not expected to perform the same amount of work in less time, hence you are not required to increase your productivity to 'compensate' for the reduced working time. All other aspects of your original full-time job remain intact, including annual leave and social security benefits.

The proposal has the following key features:

- You get to work $\mathbf{2 0 \%}$ less on a weekly basis, that is a reduction of one day per week.
- Your pay is $\mathbf{1 0} \%$ lower than your original pay in the full-time scenario.

Finally, assume that the nationwide programme would result in the following uptake:

- About $\mathbf{2 0 \%}$ of your colleagues decide to participate in a similar working-time reduction proposal.
- About $\mathbf{8 0 \%}$ of your close friends and family decide to participate in a similar workingtime reduction proposal.

How attractive do you think the working-time reduction proposal is?

not attractive at all									very attractive	
0	1	2	3	4	5	6	7	8	9	10

How likely is it that you would participate in this working-time reduction proposal?

not likely at all									very likely	
0	1	2	3	4	5	6	7	8	9	10

Figure 2: Frequency distribution of outcome variable attractiveness $\left(N_{V}=1104\right)$.

Figure 3: Frequency distribution of outcome variable likeliness to participate $\left(N_{V}=1104\right)$.

Appendices

Abbreviations and acronyms.

ABBREVIATION OR ACRONYM	EXPLANATION
WTR	working-time reduction
pp	percentage points
HH	household

Appendix Table 1: Descriptive statistics ($N_{R}=276$).

VARIABLE	Mean	Std. Dev.	Min	Max
SOCIO-DEMOGRAPHIC CHARACTERISTICS				
Sex				
Male	0.616			
Female	0.384			
Age				
Gen Z (<=26)	0.109			
Gen Y (27-42)	0.489			
Gen X (43-58)	0.319			
Boomers II (>=59)	0.083			
Educational level				
Low education (ISCED 2011 level 0-2)	0.065			
Medium education (ISCED 2011 level 3-4)	0.464			
High ducation (ISCED 2011 level 5-8)	0.471			
Relationship status				
Dual earner HH default (living together with partner; partner earns wage)	0.583			
Dual earner HH other (living together with partner; partner earns non-wage income)	0.047			
Single earner HH (living together with partner who earns no income)	0.033			
Partner but not living together	0.076			
Single	0.261			
Number of children*				
0	0.576			
1	0.174			
2	0.178			
3 or more	0.072			
JOB-RELATED CHARACTERISTICS				
Weekly working hours	40.682	5.716	27	65
Annual leave days	30.120	10.217	1	92
Monthly income main job (thousands)	2.175	0.805	1.125	5.375
Sector				
Private sector	0.565			
Public sector	0.333			
Joint private-public organisation or company	0.025			
Not-for-porfit sector or NGO	0.076			
Worktime flexibility				
They are set by my company/organisation	0.475			
I can choose between several fixed working schedules determined by my company/org.	0.087			
I can adapt my working hours within certain limits (e.g. flextime)	0.384			
My working hours are entirely determined by myself	0.054			
\% working remotely (unit: 10\%)	3.518	3.972	0	10
Job autonomy	3.467	1.000	1	5
Job stress	3.006	0.980	1	5
Work-life conflict	3.233	0.871	1	5
PERSONAL CHARACTERISTICS				
Social comparison	3.413	0.788	1	5
Negative organizational WTR norms	3.065	0.902	1	5
Sensitivity to social multiplier effect	3.317	0.937	1	5

*Number of children refers to children who live inside the household.

Appendix Table 2: Items to measure job stress, work-to-life conflict and job autonomy. Each item is rated on a 5-point Likert scale from 'totally disagree' (1) to 'totally agree' (5).

JOB STRESS

1 My work is stressful.
2 Thinking about my work makes me feel tense.
3 At work I feel under pressure.
4 My work has negative effects on my health.

WORK-TO-LIFE CONFLICT

1 My work takes up time that I'd like to spend with friends or family.
2 The behaviours I perform that make me effective at work do not help me to be a better friend or family member.

3 After work, I come home too tired to do some of the things I'd like to do.
4 My work often makes me so frustrated that it negatively impacts my personal life.

JOB AUTONOMY

1 I have significant autonomy in determining how I do my job.
2 I can decide on my own how to go about doing my work.
3 I have considerable opportunity for independence and freedom in how I do my job.

[^7]Appendix Table 3: Items to measure social comparison, negative organizational WTR norms and sensitivity to social multiplier effect. Each item is rated on a 5-point Likert scale from 'totally disagree' (1) to 'totally agree' (5).

SOCIAL COMPARISON

1 I always pay a lot of attention to how I do things compared with how others do things.
2 If I want to find out how well I have done something, I compare what I have done with what others have done.

3 I often compare myself with others with respect to what I have accomplished in life.

NEGATIVE ORGANIZATIONAL WTR NORMS

1 Reducing working hours is not generally accepted in my company/organization.
2 In my company/organization, reducing working hours is considered as cutting back on career ambitions.

3 In my company/organization, reducing working hours implies losing interesting tasks.

SENSITIVTY TO SOCIAL MULTIPLIER EFFECT

1 My leisure time is more valuable when I can share it with others.
2 If I had additional free time, I would prefer to spend it by myself rather than with others. (R)

[^8]Appendix Table 4: Regression results (RI model): baseline and extended analysis.

OUTCOME VARIABLE		LIKELINESS TO PARTICIPATE		ATTRACTIVENESS	
		(1)	(2)	(3)	(4)
Quantity reduction (unit: 10\%)		$-0.536^{* * *}(0.066)$	$-0.534^{* * *}(0.066)$	$-0.444 * * *(0.063)$	$-0.443^{* * *}(0.063)$
Reference base	Daily (reduction in hours/day)		-		-
	Weekly (reduction in days/week)	$0.691^{* * *}(0.133)$	$0.698^{* * *}(0.133)$	0.736 *** (0.128)	$0.741^{* * *}(0.127)$
	Yearly (additional leave days)	1.372*** (0.135)	$1.386^{* * *}(0.135)$	$1.317^{* * *}(0.129)$	$1.327^{* * *}(0.129)$
Pay reduction rel. to quantity red. (unit: 10%)		$-0.373^{* * *}(0.033)$	$-0.371^{* * *}(0.033)$	$-0.367 * * *(0.031)$	$-0.367^{* * *}(0.031)$
Participation rate of colleagues (unit: 10\%)		0.086*** (0.022)	$0.085 * * *(0.022)$	0.091*** (0.021)	$0.089 * * *(0.021)$
Participation rate of close friends \& family (unit: 10\%)		0.046* (0.022)	0.048* (0.022)	0.025 (0.021)	0.026 (0.021)
Sex	Male		-		-
	Female		0.455 (0.309)		0.373 (0.296)
Age	Gen Z (<=26)		0.235 (0.478)		0.509 (0.457)
	Gen Y (27-42)		-		-
	Gen X (43-58)		0.038 (0.314)		0.366 (0.300)
	Boomers II (>=59)		1.116* (0.546)		1.193* (0.522)
Educational level	Low education (ISCED 2011 level 0-2)		0.230 (0.563)		0.104 (0.539)
	Medium education (ISCED 2011 level 3-4)		-		-
	High ducation (ISCED 2011 level 5-8)		0.108 (0.301)		0.060 (0.288)
Relationship status	Dual earner HH default (living together with partner; partner earns wage)		-		-
	Dual earner HH other (living together with partner; partner earns non-wage income)		$1.206+(0.676)$		0.980 (0.647)
	Single earner HH (living together with partner who earns no income)		$-2.183 * *(0.813)$		$-2.063^{* *}(0.778)$
	Partner but not living together		0.295 (0.529)		0.275 (0.507)
	Single		-0.182 (0.343)		0.041 (0.328)
Number of children	0		-		-
	1		0.125 (0.384)		0.082 (0.367)
	2		-0.276 (0.391)		-0.081 (0.374)
	3 or more		-0.765 (0.568)		-0.101 (0.543)
Weekly working hours			$-0.044+(0.026)$		-0.023 (0.025)
Annual leave days			0.012 (0.014)		0.013 (0.014)
Monthly income main job (thousands)			0.071 (0.194)		0.086 (0.186)
Sector	Private sector		-		-
	Public sector		-0.457 (0.316)		-0.228 (0.302)
	Joint private-public organisation or company		-0.366 (0.859)		0.296 (0.822)
	Not-for-porfit sector or NGO		-0.310 (0.531)		-0.178 (0.508)
Worktime flexibility	They are set by my company/organisation		-		-
	I can choose between several fixed working schedules determined by my company/org.		0.383 (0.508)		0.484 (0.486)
	I can adapt my working hours within certain limits (e.g. flextime)		0.087 (0.343)		0.386 (0.328)
	My working hours are entirely determined by myself		1.060 (0.647)		0.582 (0.619)
\% working remotely (unit: 10%)			-0.047 (0.041)		-0.062 (0.039)
Job autonomy			-0.121 (0.162)		0.100 (0.155)
Job stress			-0.231 (0.187)		-0.218 (0.179)
Work-life conflict			0.958*** (0.211)		$0.981 * * *(0.202)$
Constant		6.427*** (0.354)	$5.649 * * *$ (1.344)	6.993*** (0.339)	4.099** (1.286)
Number of vignettes		1,104	1,104	1,104	1,104
Number of respondents		276	276	276	276
Std. Dev. u_{j}		2.125	1.979	1.994	1.893
Std. Dev. $\varepsilon_{i j}$		1.768	1.768	1.697	1.697
Intraclass correlation		0.591	0.556	0.580	0.554
Main effects for vignette dimensions		yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)		no	yes	no	yes

Appendix Table 5: Regression results (Tobit (RI) model with lower limit): baseline and extended analysis.

OUTCOME VARIABLE		LIKELINESS TO PARTICIPATE		ATTRACTIVENESS	
		(1)		(3)	(4)
Quantity reduction (unit: 10\%)		$-0.618^{* * *}(0.075)$	$-0.616^{* * *}(0.075)$	$-0.483^{* * *}(0.067)$	$-0.481^{* * *}(0.067)$
Reference base	Daily (reduction in hours/day)		-		-
	Weekly (reduction in days/week)	$0.817^{* * *}(0.151)$	$0.824^{* * *}(0.151)$	$0.780 * * *(0.135)$	$0.786^{* * *}(0.135)$
	Yearly (additional leave days)	1.553*** (0.153)	$1.566 * * *(0.152)$	1.380*** (0.136)	$1.389 * * *(0.136)$
Pay reduction rel. to quantity red. (unit: 10%)		$-0.431^{* * *}$ (0.037)	$-0.430^{* * *}(0.037)$	$-0.393 * * *(0.033)$	$-0.392 * * *(0.033)$
Participation rate of colleagues (unit: 10%)		$0.094^{* * *}(0.025)$	$0.093 * * *(0.025)$	$0.095 * * *(0.023)$	$0.094^{* * *}(0.023)$
Participation rate of close friends \& family (unit: 10\%)		$0.044+(0.025)$	$0.046+(0.025)$	0.025 (0.023)	0.026 (0.023)
Sex	Male		-		-
	Female		0.444 (0.366)		0.317 (0.316)
Age	Gen Z (<=26)		0.447 (0.562)		0.615 (0.488)
	Gen Y (27-42)		-		-
	Gen X (43-58)		0.054 (0.372)		0.397 (0.321)
	Boomers II (>=59)		1.448* (0.644)		1.333* (0.558)
Educational level	Low education (ISCED 2011 level 0-2)		0.375 (0.667)		0.068 (0.578)
	Medium education (ISCED 2011 level 3-4)		-		-
	High ducation (ISCED 2011 level 5-8)		0.131 (0.358)		0.035 (0.309)
Relationship status	Dual earner HH default (living together with partner; partner earns wage)		-131 (0.358)		-
	Dual earner HH other (living together with partner; partner earns non-wage income)		$1.399+(0.794)$		1.096 (0.691)
	Single earner HH (living together with partner who earns no income)		$-2.862 * *(0.978)$		-2.265** (0.833)
	Partner but not living together		0.385 (0.622)		0.348 (0.540)
	Single		-0.358 (0.406)		0.047 (0.351)
Number of children	0		-3.38 (0.406)		-
	1		0.219 (0.453)		0.207 (0.392)
	2		-0.306 (0.463)		-0.162 (0.402)
	3 or more		$-1.391 *(0.686)$		-0.262 (0.585)
Weekly working hours			$-0.056+(0.030)$		-0.025 (0.026)
Annual leave days			0.024 (0.017)		0.019 (0.015)
Monthly income main job (thousands)			0.120 (0.230)		0.102 (0.199)
Sector	Private sector		-		(0.199)
	Public sector		-0.582 (0.374)		-0.258 (0.324)
	Joint private-public organisation or company		-0.390 (1.014)		0.298 (0.880)
	Not-for-porfit sector or NGO		-0.263 (0.627)		-0.122 (0.543)
Worktime flexibility	They are set by my company/organisation		-		-
	I can choose between several fixed working schedules determined by my company/org.		0.657 (0.597)		0.603 (0.519)
	I can adapt my working hours within certain limits (e.g. flextime)		0.226 (0.405)		0.480 (0.351)
	My working hours are entirely determined by myself		$1.431+(0.761)$		0.623 (0.665)
\% working remotely (unit: 10%)			$-0.084+(0.048)$		-0.085* (0.042)
Job autonomy			-0.107 (0.192)		0.151 (0.166)
Job stress			-0.322 (0.222)		-0.199 (0.192)
Work-life conflict			$1.206^{* * *}(0.250)$		1.103*** (0.217)
Constant		6.579*** (0.408)	$5.346 * * *(1.591)$	7.072*** (0.362)	$3.442 *(1.379)$
Number of vignettes		1,104	1,104	1,104	1,104
Number of respondents		276	276	276	276
Left-censored cases		174	174	87	87
Right-censored cases		0	0	0	0
Std. Dev. u_{j}		$2.662^{* * *}(0.141)$	$2.348 * * *(0.129)$	$2.272 * * *(0.118)$	$2.026^{* * *}(0.109)$
Std. Dev. $\varepsilon_{i j}$		$1.919 * * *(0.051)$	$1.919^{* * *}(0.051)$	1.756 (0.045)	$1.756 * * *(0.045)$
Intraclass correlation		0.658	0.600	0.626	0.571
Main effects for vignette dimensions		yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)		no	yes	no	yes

Appendix Table 6: Regression results (Tobit (RI) model with lower and upper limit): baseline and extended

analysis.

OUTCOME VARIABLE		LIKELINESS TO PARTICIPATE		ATTRACTIVENESS	
		(1)	(2)	(3)	(4)
Quantity reduction (unit: 10\%)		$-0.636^{* * *}(0.077)$	$-0.635^{* * *}(0.077)$	-0.490 *** (0.069)	$-0.489^{* * *}(0.069)$
Reference base	Daily (reduction in hours/day)		-		-
	Weekly (reduction in days/week)	$0.826^{* * *}(0.156)$	$0.834^{* * *}(0.156)$	$0.784^{* * *}(0.137)$	$0.791^{* * *}(0.137)$
	Yearly (additional leave days)	1.582*** (0.157)	$1.596^{* * *}(0.157)$	1.400 *** (0.139)	$1.409^{* * *}(0.139)$
Pay reduction rel. to quantity red. (unit: 10%)		$-0.443 * * *(0.038)$	$-0.441^{* * *}(0.038)$	$-0.400^{* * *}(0.034)$	$-0.399^{* * *}(0.034)$
Participation rate of colleagues (unit: 10\%)		$0.096^{* * *}(0.026)$	$0.095^{* * *}(0.026)$	0.096*** (0.023)	0.095*** (0.023)
$\underline{\text { Participation rate of close friends \& family (unit: } 10 \% \text {) }}$		0.041 (0.026)	0.043 (0.026)	0.022 (0.023)	0.023 (0.023)
	Male		-		-
	Female		0.432 (0.375)		0.300 (0.322)
Age	Gen Z (<=26)		0.453 (0.576)		0.610 (0.497)
	Gen Y (27-42)		-		-
	Gen X (43-58)		0.027 (0.381)		0.372 (0.327)
	Boomers II (>=59)		1.420* (0.659)		1.298* (0.567)
Educational level	Low education (ISCED 2011 level 0-2)		0.375 (0.683)		0.063 (0.588)
	Medium education (ISCED 2011 level 3-4)		-		-
	High ducation (ISCED 2011 level 5-8)		0.138 (0.366)		0.042 (0.314)
Relationship status	Dual earner HH default (living together with partner; partner earns wage)		-		-
	Dual earner HH other (living together with partner; partner earns non-wage income)		$1.489+(0.814)$		$1.183+(0.704)$
	Single earner HH (living together with partner who earns no income)		$-2.897^{* *}(1.001)$		$-2.260^{* *}(0.847)$
	Partner but not living together		0.428 (0.637)		0.382 (0.550)
	Single		-0.374 (0.416)		0.035 (0.357)
Number of children	0		-		-
	1		0.210 (0.464)		0.201 (0.399)
	2		-0.316 (0.474)		-0.176 (0.409)
	3 or more		-1.413* (0.702)		-0.269 (0.595)
Weekly working hours			$-0.055+(0.031)$		-0.024 (0.027)
Annual leave days			0.024 (0.017)		0.019 (0.015)
Monthly income main job (thousands)			0.120 (0.236)		0.104 (0.203)
Sector	Private sector		-		-
	Public sector		-0.596 (0.383)		-0.254 (0.329)
	Joint private-public organisation or company		-0.213 (1.042)		0.470 (0.899)
	Not-for-porfit sector or NGO		-0.307 (0.642)		-0.140 (0.552)
Worktime flexibility	They are set by my company/organisation		-		-
	I can choose between several fixed working schedules determined by my company/org.		0.631 (0.612)		0.592 (0.528)
	I can adapt my working hours within certain limits (e.g. flextime)		0.207 (0.415)		0.470 (0.357)
	My working hours are entirely determined by myself		$1.479+(0.780)$		0.641 (0.676)
\% working remotely (unit: 10\%)			$-0.088+(0.049)$		-0.088* (0.042)
Job autonomy			-0.116 (0.197)		0.143 (0.169)
Job stress			-0.321 (0.227)		-0.193 (0.195)
Work-life conflict			$1.241^{* * *}(0.257)$		$1.122 * * *(0.221)$
Constant		6.712*** (0.420)	$5.397 * * *$ (1.629)	7.160*** (0.370)	$3.474 *$ (1.403)
Number of vignettes		1,104	1,104	1,104	1,104
Number of respondents		276	276	276	276
Left-censored cases		174	174	87	87
Right-censored cases		28	28	23	23
Std. Dev. u_{j}		$2.725^{* * *}(0.145)$	$2.401^{* * *}(0.132)$	$2.309^{* * *}(0.120)$	$2.058^{* * *}(0.111)$
Std. Dev. $\varepsilon_{i j}$		$1.970^{* * *}(0.054)$	$1.970^{* * *}(0.054)$	1.790 *** (0.046)	1.791 *** (0.046)
Intraclass correlation		0.657	0.598	0.625	0.569
Main effects for vignette dimensions		yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)		no	yes	no	yes

Appendix Table 7: Regression results (OLS) after adjusting minimum completion time for the factorial
survey experiment task to 60 seconds $\left(N_{R}=280\right)$: baseline and extended analysis.

OUTCOME VARIABLE		LIKELINESS TO PARTICIPATE		ATTRACTIVENESS	
		(1)	(2)	(3)	(4)
Quantity reduction (unit: 10\%)		$-0.507 * * *(0.082)$	$-0.502 * * *(0.083)$	-0.431 *** (0.081)	$-0.425^{* * *}(0.081)$
Reference base	Daily (reduction in hours/day)		-		-
	Weekly (reduction in days/week)	$0.684^{* * *}(0.162)$	$0.736^{* * *}(0.155)$	$0.753 * * *(0.149)$	$0.794 * * *(0.143)$
	Yearly (additional leave days)	$1.341^{* * *}(0.156)$	$1.429 * * *(0.155)$	1.246*** (0.150)	$1.318^{* * *}(0.149)$
Pay reduction rel. to quantity red. (unit: 10%)		$-0.356^{* * *}(0.044)$	$-0.355^{* * *}(0.042)$	$-0.338^{* * *}(0.041)$	$-0.340 * * *(0.039)$
Participation rate of colleagues (unit: 10\%)		$0.088^{* *}$ (0.027)	0.083** (0.026)	$0.102^{* * *}(0.026)$	0.096*** (0.025)
$\underline{\text { Participation rate of close friends \& family (unit: } 10 \% \text {) }}$		$0.051+(0.026)$	0.059* (0.025)	0.034 (0.026)	0.037 (0.025)
Sex	Male		-		-
	Female		0.470 (0.294)		0.433 (0.279)
Age	Gen Z ($<=26$)		0.373 (0.498)		0.716 (0.453)
	Gen Y (27-42)		-		-
	Gen X (43-58)		0.081 (0.303)		0.421 (0.293)
	Boomers II (>=59)		1.140* (0.468)		$1.247^{* *}$ (0.446)
Educational level	Low education (ISCED 2011 level 0-2)		0.164 (0.502)		0.065 (0.506)
	Medium education (ISCED 2011 level 3-4)		-		-
	High ducation (ISCED 2011 level 5-8)		0.013 (0.296)		-0.015 (0.282)
Relationship status	Dual earner HH default (living together with partner; partner earns wage)		-		-
	Dual earner HH other (living together with partner; partner earns non-wage income)		1.155 (0.712)		0.935 (0.678)
	Single earner HH (living together with partner who earns no income)		$-2.215^{* * *}(0.630)$		$-2.063 * *(0.637)$
	Partner but not living together		0.085 (0.479)		0.197 (0.443)
	Single		-0.325 (0.365)		-0.110 (0.352)
Number of children	0		-		-
	1		0.119 (0.361)		0.083 (0.333)
	2		-0.312 (0.373)		-0.094 (0.374)
	3 or more		-0.881 (0.568)		-0.197 (0.553)
Weekly working hours			$-0.045+(0.024)$		-0.025 (0.022)
Annual leave days			0.012 (0.013)		0.012 (0.012)
Monthly income main job (thousands)			0.009 (0.198)		0.051 (0.189)
Sector	Private sector		-		-
	Public sector		-0.376 (0.310)		-0.182 (0.280)
	Joint private-public organisation or company		-0.323 (1.048)		0.322 (1.148)
	Not-for-porfit sector or NGO		-0.239 (0.513)		-0.140 (0.491)
Worktime flexibility	They are set by my company/organisation		-		-
	I can choose between several fixed working schedules determined by my company/org.		0.339 (0.510)		0.443 (0.540)
	I can adapt my working hours within certain limits (e.g. flextime)		-0.017 (0.310)		0.315 (0.288)
	My working hours are entirely determined by myself		$1.044+(0.553)$		0.582 (0.594)
\% working remotely (unit: 10\%)			-0.048 (0.039)		-0.064+ (0.036)
Job autonomy			-0.093 (0.163)		0.113 (0.156)
Job stress			-0.206 (0.172)		-0.204 (0.166)
Work-life conflict			0.972*** (0.209)		$1.003 * * *(0.196)$
Constant		$6.231^{* * *}$ (0.462)	$5.481^{* * *}$ (1.410)	6.667*** (0.446)	3.837** (1.293)
Number of vignettes		1,120	1,120	1,120	1,120
Number of respondents		280	280	280	280
R^{2}		0.111	0.230	0.107	0.219
Main effects for vignette dimensions		yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)		no	yes	no	yes

Appendix Table 8: Regression results (OLS) after adjusting minimum completion time for the factorial

survey experiment task to 90 seconds $\left(N_{R}=249\right)$: baseline and extended analysis.

OUTCOME VARIABLE		LIKELINESS TO PARTICIPATE		ATTRACTIVENESS	
		(1)	(2)	(3)	(4)
Quantity reduction (unit: 10\%)		$-0.477^{* * *}$ (0.086)	${ }^{-0.465 * * *}(0.087)$	$-0.397 * * *(0.084)$	$-0.387^{* * *}(0.084)$
Reference base	Daily (reduction in hours/day)		-		-
	Weekly (reduction in days/week)	0.682*** (0.173)	0.730*** (0.165)	0.780*** (0.158)	$0.814 * * *(0.151)$
	Yearly (additional leave days)	$1.374 * * *(0.164)$	$1.441^{* * *}(0.161)$	$1.317^{* * *}(0.156)$	$1.367^{* * *}(0.155)$
Pay reduction rel. to quantity red. (unit: 10%)		$-0.382 * * *(0.046)$	$-0.370^{* * *}(0.045)$	$-0.364 * * *(0.043)$	$-0.358 * * *(0.042)$
Participation rate of colleagues (unit: 10\%)		0.097*** (0.028)	0.088** (0.028)	$0.111^{* * *}(0.027)$	$0.102^{* * *}(0.027)$
Participation rate of close friends \& family (unit: 10\%)		0.060* (0.028)	0.069* (0.027)	0.045 (0.027)	$0.049+(0.027)$
Sex	Male		-		-
	Female		0.468 (0.305)		0.412 (0.291)
Age	Gen Z (<=26)		0.003 (0.537)		0.408 (0.507)
	Gen Y (27-42)		-		-
	Gen X (43-58)		0.089 (0.324)		0.407 (0.311)
	Boomers II (>=59)		1.282* (0.499)		1.356** (0.486)
Educational level	Low education (ISCED 2011 level 0-2)		0.201 (0.535)		0.071 (0.541)
	Medium education (ISCED 2011 level 3-4)		-		-
	High ducation (ISCED 2011 level 5-8)		0.215 (0.312)		0.178 (0.297)
Relationship status	Dual earner HH default (living together with partner; partner earns wage)		-		-
	Dual earner HH other (living together with partner; partner earns non-wage income)		0.894 (0.768)		0.778 (0.719)
	Single earner HH (living together with partner who earns no income)		$-1.871^{*}(0.764)$		-1.562* (0.717)
	Partner but not living together		0.083 (0.527)		0.215 (0.503)
	Single		-0.314 (0.375)		-0.098 (0.357)
Number of children	0		-		-
	1		0.047 (0.378)		0.059 (0.344)
	2		-0.319 (0.391)		-0.086 (0.382)
	3 or more		$-1.179 *(0.587)$		-0.359 (0.626)
Weekly working hours			$-0.044+(0.026)$		-0.012 (0.023)
Annual leave days			0.004 (0.014)		0.003 (0.013)
Monthly income main job (thousands)			0.115 (0.215)		0.086 (0.205)
Sector	Private sector		-		-
	Public sector		-0.431 (0.317)		-0.118 (0.288)
	Joint private-public organisation or company		-0.306 (1.043)		0.343 (1.096)
	Not-for-porfit sector or NGO		-0.473 (0.567)		-0.378 (0.552)
Worktime flexibility	They are set by my company/organisation		-		-
	I can choose between several fixed working schedules determined by my company/org.		0.057 (0.486)		0.096 (0.546)
	I can adapt my working hours within certain limits (e.g. flextime)		0.274 (0.324)		$0.544+(0.300)$
	My working hours are entirely determined by myself		1.414* (0.648)		$1.100+(0.607)$
\% working remotely (unit: 10\%)			$-0.075+(0.041)$		-0.093* (0.038)
Job autonomy			-0.153 (0.172)		0.102 (0.162)
Job stress			-0.135 (0.183)		-0.124 (0.175)
Work-life conflict			$0.867 * * *(0.219)$		0.885*** (0.208)
Constant		6.240*** (0.490)	$5.713 * * *(1.524)$	6.666*** (0.471)	3.639** (1.399)
Number of vignettes		996	996	996	996
Number of respondents		249	249	249	249
R^{2}		0.121	0.232	0.122	0.224
Main effects for vignette dimensions		yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)		no	yes	no	yes

OUTCOME VARIABLE		LIKELINESS TO PARTICIPATE		ATTRACTIVENESS	
		(1)	(2)	(3)	(4)
Quantity reduction (unit: 10\%)		-0.534*** (0.093)	$-0.519^{* * *}(0.095)$	-0.449*** (0.090)	-0.436 *** (0.091)
Reference base	Daily (reduction in hours/day)		-		-
	Weekly (reduction in days/week)	$0.784^{* * *}$ (0.180)	$0.851^{* * *}(0.170)$	$0.772^{* * *}(0.169)$	$0.823^{* * *}(0.161)$
	Yearly (additional leave days)	$1.591^{* * *}(0.173)$	$1.690^{* * *}(0.168)$	$1.436 * * *(0.168)$	$1.515^{* * *}(0.166)$
Pay reduction rel. to quantity red. (unit: 10%)		$-0.343^{* * *}(0.048)$	$-0.337 * * *(0.047)$	$-0.327 * * *(0.044)$	$-0.318^{* * *}(0.042)$
Participation rate of colleagues (unit: 10\%)		$0.055+(0.028)$	0.046 (0.028)	$0.068^{*}(0.028)$	0.062* (0.028)
Participation rate of close friends \& family (unit: 10%)		0.090** (0.029)	0.087** (0.029)	0.071* (0.029)	0.066* (0.029)
Sex	Male		-		-
	Female		0.460 (0.325)		0.386 (0.315)
Age	Gen Z (<=26)		0.051 (0.521)		0.386 (0.485)
	Gen Y (27-42)		-		-
	Gen X (43-58)		-0.038 (0.344)		0.302 (0.335)
	Boomers II (>=59)		$1.379 * *(0.500)$		1.341 ** (0.493)
Educational level	Low education (ISCED 2011 level 0-2)		-0.307 (0.588)		-0.058 (0.625)
	Medium education (ISCED 2011 level 3-4)		-		-
	High ducation (ISCED 2011 level 5-8)		-0.225 (0.313)		-0.190 (0.321)
Relationship status	Dual earner HH default (living together with partner; partner earns wage)		-		-
	Dual earner HH other (living together with partner; partner earns non-wage income)		0.687 (0.753)		0.492 (0.749)
	Single earner HH (living together with partner who earns no income)		-1.934** (0.634)		-2.051** (0.702)
	Partner but not living together		0.551 (0.516)		0.529 (0.495)
	Single		-0.132 (0.401)		0.008 (0.387)
Number of children	0		-		-
	1		0.100 (0.385)		0.065 (0.367)
	2		-0.315 (0.400)		-0.085 (0.414)
	3 or more		$-1.378 *(0.639)$		-0.206 (0.660)
Weekly working hours			-0.018 (0.028)		0.002 (0.026)
Annual leave days			0.002 (0.013)		0.008 (0.013)
Monthly income main job (thousands)			-0.038 (0.221)		-0.032 (0.208)
Sector	Private sector		-		-
	Public sector		-0.232 (0.327)		-0.274 (0.323)
	Joint private-public organisation or company		-0.151 (1.241)		0.659 (1.244)
	Not-for-porfit sector or NGO		-0.526 (0.565)		-0.262 (0.546)
Worktime flexibility	They are set by my company/organisation		-		-
	I can choose between several fixed working schedules determined by my company/org.		0.635 (0.572)		0.874 (0.607)
	I can adapt my working hours within certain limits (e.g. flextime)		0.148 (0.345)		0.524 (0.327)
	My working hours are entirely determined by myself		$1.130+(0.622)$		0.630 (0.668)
\% working remotely (unit: 10\%)			-0.034 (0.044)		-0.046 (0.042)
Job autonomy			-0.202 (0.173)		0.042 (0.174)
Job stress			-0.177 (0.189)		-0.230 (0.190)
Work-life conflict			$0.973 * * *(0.239)$		$1.008 * * *(0.225)$
Constant		$6.229^{* * *}(0.507)$	$5.100^{* *}$ (1.552)	$6.715^{* * *}(0.490)$	$3.354 *(1.429)$
Number of vignettes		860	860	860	860
Number of respondents		215	215	215	215
R^{2}		0.131	0.260	0.121	0.232
Main effects for vignette dimensions		yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)		no	yes	no	yes

280): moderation analysis with general moderators (sex, relationship status and parental status) for all WTR dimensions.

MODERATOROUTCOME VARIABLE		SEX		RELATIONSHIP STATU		PARENTAL STATUS	
		Likeliness to participate (1)	Attractiveness (2)	Likeliness to participate (3)	Attractiveness (4)	Likeliness to participate (5)	Attractiveness (6)
Quantity reduction (unit: 10\%)		$-0.546^{* * *}(0.101)$	$-0.446 * * *(0.101)$	$-0.577 * * *(0.149)$	${ }^{-0.407 * *}(0.144)$	-0.471 *** (0.109)	$-0.410 * * *(0.104)$
Reference base	Daily (reduction in hours/day)	-	-	-	-	-	-
	Weekly (reduction in days/week)	0.619** (0.193)	0.708*** (0.183)	0.531* (0.263)	0.656** (0.232)	0.647** (0.216)	0.676*** (0.192)
	Yearly (additional leave days)	1.557*** (0.196)	$1.498 * * *(0.195)$	1.424*** (0.279)	$1.340^{* * *}(0.244)$	1.355*** (0.216)	$1.269^{* * *}(0.204)$
Pay reduction rel. to quantity red. (unit: 10%)		$-0.376^{* * * *}(0.054)$	-0.356*** (0.051)	-0.270*** (0.074)	$-0.275^{* * *}(0.067)$	-0.330*** (0.055)	$-0.305 * * *(0.051)$
Participation rate of colleagues (unit: 10%)		0.078* (0.034)	0.111*** (0.032)	0.075 (0.047)	0.087* (0.041)	0.071* (0.036)	0.104** (0.034)
Participation rate of close friends \& family (unit: 10%)		0.032 (0.034)	0.012 (0.032)	0.130** (0.046)	$0.077+(0.043)$	0.047 (0.035)	0.016 (0.033)
Sex	Male	-	-	-	-	-	-
	Female	-0.527 (0.868)	0.005 (0.853)	0.468 (0.295)	0.429 (0.280)	0.467 (0.294)	0.431 (0.279)
Relationship status	Dual earner HH default (living together with partner; partner earns wage)	-	-	-	-	-	-
	Dual earner HH other (living together with partner, partner earns non-wage income)	1.152 (0.714)	0.932 (0.683)	1.165 (0.715)	0.938 (0.679)	1.154 (0.712)	0.940 (0.678)
	Single earner HH (living together with partner who earns no income)	$-2.216^{* * *}(0.635)$	$-2.058^{* *}(0.642)$	-2.229*** (0.632)	$-2.069^{* *}(0.637)$	-2.210*** (0.629)	-2.065** (0.634)
	Partner but not living together	0.103 (0.479)	0.214 (0.443)	-1.058 (1.082)	-0.749 (1.017)	0.089 (0.481)	0.201 (0.446)
	Single	-0.319 (0.366)	-0.104 (0.353)	-1.459 (0.986)	-1.047 (0.927)	-0.327 (0.366)	-0.107 (0.352)
Number of children	0	-	-	(0)		((
	1	0.117 (0.361)	0.081 (0.332)	0.129 (0.361)	0.089 (0.333)	0.475 (0.945)	0.655 (0.913)
	2	-0.299 (0.372)	-0.083 (0.374)	-0.308 (0.373)	-0.092 (0.375)	0.044 (0.958)	0.470 (0.900)
	3 or more	-0.858 (0.574)	-0.175 (0.558)	-0.865 (0.570)	-0.188 (0.554)	-0.535 (1.088)	0.360 (0.995)
Sex x quantity reduction (unit: 10%)		0.107 (0.175)	0.044 (0.170)				
Sex x weekly (reduction in days/week)		0.272 (0.325)	0.198 (0.297)				
Sex x yearly (additional leave days)		-0.357 (0.323)	-0.491 (0.307)				
Sex x pay reduction rel. to quantity red. (unit: 10%)		0.050 (0.089)	0.037 (0.081)				
Sex x participation rate of colleagues (unit: 10\%)		0.013 (0.054)	-0.039 (0.052)				
Sex x participation rate of close friends \& family (unit: 10%)		0.072 (0.052)	0.069 (0.051)				
Relationship status (having partner \& living together) x quantity reduction (unit: 10%)				0.118 (0.179)	-0.023 (0.175)		
Relationship status (having partner \& living together) x weekly (reduction in days/week)				0.326 (0.324)	0.220 (0.293)		
Relationship status (having partner \& living together) x yearly (additional leave days)				0.005 (0.333)	-0.029 (0.307)		
Relationship status (having partner \& living together) x pay reduction rel. to quantity red. (unit: 10%)				-0.134 (0.092)	-0.101 (0.084)		
Relationship status (having partner \& living together) x participation rate of colleagues (unit: 10\%)				0.011 (0.057)	0.013 (0.052)		
Relationship status (having partner \& living together) x participation rate of close friends \& family (unit: 10%				$-0.106+(0.055)$	-0.060 (0.052)		
Having children x quantity reduction (unit: 10%)						-0.058 (0.169)	-0.026 (0.165)
Having children x weekly (reduction in days/week)						0.229 (0.301)	0.324 (0.280)
Having children x yearly (additional leave days)						0.166 (0.306)	0.131 (0.297)
Having children x pay reduction rel. to quantity red. (unit: 10%)						-0.064 (0.087)	-0.093 (0.081)
Having children x participation rate of colleagues (unit: 10%)						0.022 (0.053)	-0.024 (0.051)
Having children x participation rate of close friends \& family (unit: 10%)						0.032 (0.051)	0.057 (0.051)
Number of vignettes		1,120	1,120	1,120	1,120	1,120	1,120
Number of respondents		280	280	280	280	280	280
R^{2}		0.233	0.222	0.234	0.220	0.231	0.221
Main effects for vignette dimensions		yes	yes	yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)		yes	yes	yes	yes	yes	yes

Appendix Table 11: Regression results (OLS) after adjusting minimum completion time for the factorial survey experiment task to 60 seconds $\left(N_{R}=\right.$
280): moderation analysis with participation-specific moderators (social comparison, negative organizational WTR norms and sensitivity to social multiplier effect).

MODERATOR	SOCIAL COMPARISON		NEGATIVE ORGANIZATIONAL WTR NORMS		SENSITIVITY TO SOCIAL MULTIPLIER EFFECT	
OUTCOME VARIABLE	Likeliness to participate (1)	Attractiveness (2)	Likeliness to participate (3)	Attractiveness (4)	Likeliness to participate (5)	Attractiveness (6)
Quantity reduction (unit: 10\%)	${ }^{-0.500 * * *}(0.083)$	-0.424*** (0.081)	$-0.518^{* * *}(0.082)$	$-0.442^{* * *}(0.081)$	$-0.506^{* * *}(0.083)$	$-0.430^{* * *}(0.081)$
Reference base Daily (reduction in hours/day)	-	-	-	-	-	-
Weekly (reduction in days/week)	0.739*** (0.154)	0.796*** (0.142)	0.747*** (0.155)	0.806*** (0.142)	0.745*** (0.155)	0.804*** (0.143)
Yearly (additional leave days)	1.418*** (0.154)	1.306*** (0.148)	1.418*** (0.153)	1.304*** (0.147)	1.431*** (0.155)	1.324*** (0.149)
Pay reduction rel. to quantity red. (unit: 10\%)	-0.353*** (0.042)	$-0.339 * * *(0.039)$	$-0.360 * * *(0.042)$	$-0.346 * * *(0.039)$	$-0.357 * * *(0.042)$	$-0.340 * * *(0.039)$
Participation rate of colleagues (unit: 10%)	0.023 (0.115)	0.136 (0.111)	0.088 (0.104)	0.147 (0.091)	0.072 (0.089)	0.118 (0.085)
Participation rate of close friends \& family (unit: 10%)	0.136 (0.123)	0.162 (0.126)	$0.326 * *$ (0.101)	0.333*** (0.092)	-0.045 (0.090)	-0.110 (0.085)
Social comparison	$0.530+(0.288)$	0.722* (0.300)				
Social comparison x participation rate of colleagues (unit: 10%)	0.019 (0.035)	-0.011 (0.034)				
Social comparison x participation rate of close friends \& family (unit: 10%)	-0.023 (0.036)	-0.036 (0.037)				
Negative organizational WTR norms			0.593* (0.288)	0.678* (0.278)		
Negative organizational WTR norms x participation rate of colleagues (unit: 10%)			-0.003 (0.034)	-0.017 (0.030)		
Negative organizational WTR norms x participation rate of close friends \& family (unit: 10%)			$-0.087 * *(0.032)$	$-0.096 * *(0.030)$		
Sensitivity to social multiplier effect					0.154 (0.241)	0.063 (0.245)
Sensitivity to social multiplier effect x participation rate of colleagues (unit: 10%)					0.003 (0.027)	-0.007 (0.025)
Sensitivity to social multiplier effect x participation rate of close friends \& family (unit: 10%)					0.031 (0.027)	0.044+ (0.025)
Number of vignettes	1,120	1,120	1,120	1,120	1,120	1,120
Number of respondents	280	280	280	280	280	280
R^{2}	0.247	0.236	0.235	0.225	0.240	0.226
Main effects for vignette dimensions	yes	yes	yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)	yes	yes	yes	yes	yes	yes

Appendix Table 12: Regression results (OLS) after adjusting minimum completion time for the factorial survey experiment task to 90 seconds ($N_{R}=$

249): moderation analysis with general moderators (sex, relationship status and parental status) for all WTR dimensions.

MODERATOR OUTCOME VARIABLE		SEX		RELATIONSHIP STATU		PARENTAL STATUS	
		Likeliness to participate (1)	Attractiveness (2)	Likeliness to participate (3)	Attractiveness (4)	Likeliness to participate (5)	Attractiveness (6)
Quantity reduction (unit: 10\%)		${ }^{-0.554 * * *}(0.109)$	$-0.450^{* * *}(0.106)$	${ }^{-0.438 * * ~(0.152) ~}$	$-0.277+(0.146)$	$-0.381^{* * * *}(0.113)$	-0.344** (0.104)
Reference base	Daily (reduction in hours/day)	-	-	-	-	-	-
	Weekly (reduction in days/week)	0.566** (0.207)	0.698*** (0.191)	$0.501+(0.273)$	0.654** (0.244)	0.655** (0.231)	$0.730^{* * *}(0.201)$
	Yearly (additional leave days)	1.563*** (0.204)	1.539*** (0.202)	1.520*** (0.287)	1.427*** (0.255)	1.391*** (0.225)	1.375*** (0.211)
Pay reduction rel. to quantity red. (unit: 10%)		$-0.386^{* * *}(0.058)$	$-0.364^{* * *}(0.055)$	$-0.217^{* *}(0.077)$	$-0.239^{* * *}(0.071)$	$-0.321^{* * *}(0.058)$	-0.319*** (0.054)
Participation rate of colleagues (unit: 10%)		0.079* (0.037)	0.112** (0.035)	0.078 (0.051)	0.091* (0.045)	0.073+ (0.038)	0.108** (0.036)
Participation rate of close friends \& family (unit: 10%)		0.059 (0.036)	0.036 (0.035)	0.152** (0.047)	0.101* (0.044)	0.053 (0.037)	0.023 (0.035)
Sex	Male	-	-	-	-		-
	Female	-0.494 (0.926)	0.042 (0.905)	0.457 (0.305)	0.403 (0.292)	0.464 (0.305)	0.411 (0.291)
Relationship status	Dual earner HH default (living together with partner, partner earns wage)	-	-	-	-	-	-
	Dual earner HH other (living together with partner; partner earns non-wage income)	0.911 (0.772)	0.792 (0.725)	0.910 (0.770)	0.787 (0.717)	0.899 (0.766)	0.784 (0.716)
	Single earner HH (living together with partner who earns no income)	$-1.853^{*}(0.768)$	-1.539* (0.716)	$-1.878^{*}(0.765)$	$-1.561 *(0.712)$	-1.866* (0.760)	-1.561* (0.712)
	Partner but not living together	0.089 (0.526)	0.220 (0.503)	$-2.099+(1.119)$	-1.632 (1.067)	0.083 (0.528)	0.220 (0.506)
	Single	-0.300 (0.376)	-0.087 (0.358)	$-2.484^{*}(1.026)$	-1.937* (0.952)	-0.320 (0.376)	-0.095 (0.357)
Number of children	0	(-	((((
	1	0.040 (0.378)	0.055 (0.344)	0.069 (0.377)	0.075 (0.344)	0.925 (1.011)	0.685 (0.970)
	2	-0.309 (0.391)	-0.077 (0.382)	-0.317 (0.391)	-0.086 (0.382)	0.556 (1.038)	0.531 (0.971)
	3 or more	$-1.161+(0.591)$	-0.344 (0.628)	$-1.153+(0.590)$	-0.342 (0.626)	-0.310 (1.187)	0.252 (1.096)
Sex x quantity reduction (unit: 10%)		0.216 (0.181)	0.152 (0.173)				
Sex x weekly (reduction in days/week)		0.391 (0.345)	0.274 (0.316)				
Sex x yearly (additional leave days)		-0.339 (0.335)	-0.464 (0.318)				
Sex x pay reduction rel. to quantity red. (unit: 10%)		0.032 (0.094)	0.007 (0.086)				
Sex x participation rate of colleagues (unit: 10%)		0.027 (0.057)	-0.024 (0.054)				
Sex x participation rate of close friends \& family (unit: 10%)		0.026 (0.055)	0.037 (0.054)				
Relationship status (having partner \& living together) x quantity reduction (unit: 10%)				-0.020 (0.185)	-0.150 (0.177)		
Relationship status (having partner \& living together) x weekly (reduction in days/week)				0.384 (0.341)	0.269 (0.309)		
Relationship status (having partner \& living together) x yearly (additional leave days)				-0.108 (0.347)	-0.074 (0.319)		
Relationship status (having partner \& living together) x pay reduction rel. to quantity red. (unit: 10%)				-0.239* (0.096)	-0.183* (0.088)		
Relationship status (having partner \& living together) x participation rate of colleagues (unit: 10%)				0.016 (0.061)	0.016 (0.057)		
Relationship status (having partner \& living together) x participation rate of close friends \& family (unit: 10%				-0.128* (0.057)	-0.080 (0.055)		
Having children x quantity reduction (unit: 10%)						-0.171 (0.177)	-0.088 (0.170)
Having children x weekly (reduction in days/week)						0.194 (0.319)	0.296 (0.800)
Having children x yearly (additional leave days)						0.101 (0.319)	-0.008 (0.309)
Having children x pay reduction rel. to quantity red. (unit: 10%)						-0.116 (0.092)	-0.100 (0.086)
Having children x participation rate of colleagues (unit: 10%)						0.025 (0.056)	-0.023 (0.054)
Having children x participation rate of close friends \& family (unit: 10%)						0.041 (0.054)	0.067 (0.054)
Number of vignettes		996	996	996	996	996	996
Number of respondents		249	249	249	249	249	249
R^{2}		0.236	0.228	0.241	0.229	0.235	0.226
Main effects for vignette dimensions		yes	yes	yes	yes	yes	yes
Control variables (socio-demographic \& job-related characteristics)		yes	yes	yes	yes	yes	yes

children (who live inside the household), number of weekly working hours, number of annual leave days, monthly income, sector, worktime flexibility, workplace flexibility, job autonomy, job stress and work-life conflict. Only coefficients for relevant control variables are displayed.

Appendix Table 13: Regression results (OLS) after adjusting minimum completion time for the factorial survey experiment task to 90 seconds $\left(N_{R}=\right.$
249): moderation analysis with participation-specific moderators (social comparison, negative organizational WTR norms and sensitivity to social multiplier effect).

| MODERATOR
 OUTCOME VARIABLE | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Appendix Table 14: Regression results (OLS) after exclusion of respondents who consider their company or organization participating in a collective
WTR policy as completely unrealistic ($N_{R}=215$): moderation analysis with general moderators (sex, relationship status and parental status) for all

WTR dimensions.

| MODERATOR
 OUTCOME VARIABLE | | |
| :--- | :--- | :--- | :--- | :--- |

Appendix Table 15: Regression results (OLS) after exclusion of respondents who consider their company or organization participating in a collective
WTR policy as completely unrealistic $\left(N_{R}=215\right)$: moderation analysis with participation-specific moderators (social comparison, negative
organizational WTR norms and sensitivity to social multiplier effect).

| MODERATOR
 OUTCOME VARIABLE | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^0]: ${ }^{1}$ Department of Economics, Faculty of Economics and Business Administration, Ghent University, Tweekerkenstraat 2, B-9000 Ghent, Belgium.

[^1]: ${ }^{2}$ Vignettes were generated with the D-efficient algorithm by means of the macro \%Mktex in SAS 9.4.

[^2]: ${ }^{3}$ Respondents who (i) failed attention checks, (ii) participated in the UK's four-day working week pilot (Lewis et al., 2023)or (iii) completed the factorial survey experiment task in at most 68 seconds (i.e. the $5^{\text {th }}$ percentile) were excluded from the sample.
 ${ }^{4}$ According to the Chi Square Goodness of Fit Tests, the univariate distributions for the sample are equal to the expected ones from Eurostat 2019 (Q4) for sex ($p=0.971$), age ($p=0.496$) and education ($p=0.572$).

[^3]: ${ }^{5}$ Appendix Table 2 describes the measurement of job stress, work-to-life conflict and job autonomy.

[^4]: ${ }^{6}$ Appendix Table 3 describes the measurement of social comparison, negative organizational WTR norms and sensitivity to social multiplier effect.

[^5]: ${ }^{7}$ All regressions were run in Stata/MP 15.1.

[^6]: ${ }^{8}$ We made use of the survey question where respondents evaluated the degree of realism of their company or organization participating in collective WTR policies on a scale from 0 (completely unrealistic) to 10 (completely realistic). Respondents who rated score 0 were excluded.

[^7]: Job stress is measured as the mean of 4 items, based on Marcatto et al. (2022). Cronbach's alpha $=.875$.
 Work-to-life conflict is measured as the mean of 4 items that were selected from the 12-item work-to-life conflict scale developed by DeBaylo and Michel (2022). Cronbach's alpha $=.754$.
 Job autonomy is measured as the mean of 3 items, following the example of Morgeson, Delaney-Klinger and Hemingway (2005). Cronbach's alpha $=.903$.

[^8]: (R) denotes a reverse scaled item.
 Social comparison is measured as the mean of 3 items that were selected from a modified and shortened version of the 11 item INCOM scale developed by Gibbons and Buunk (1999). Cronbach's alpha $=.690$.
 Negative organizational WTR norms is measured as the mean of 3 self-developed items. Cronbach's alpha $=.802$.
 Sensitivity to social multiplier effect is measured as the mean of 2 self-developed items.

