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Abstract

The fourfold pattern of risk attitudes has been called ‘the most distinctive impli-
cation of prospect theory’. It constitutes the central mechanism by which prospect
theory (PT ) explains the coexistence of gambling and insurance. Here, we com-
pare risk-taking patterns obtained from certainty equivalents (CEs) to risk-taking
patterns observed when presenting all single choices contained in the CE lists one-
by-one in a binary choice setup. Choices obtained from CEs indicate a clear fourfold
pattern. Binary choices, on the other hand, indicate risk aversion for small proba-
bility gains, and risk seeking for small probabilities losses—the opposite of what is
predicted by the fourfold pattern. The use of CEs to measure PT parameters is often
justified based on the fact that they avoid endogenous reference points, which have
been documented by comparing CEs to probability equivalents (PEs). We show
that loss aversion in a PT model can actually not account for this discrepancy, since
the gap between CEs and PEs requires different loss aversion coefficients for each
PE task. Our results thus question the applicability of PT beyond the restrictive
realm of CEs, which are arguably a poor proxy for most real-world decisions.

1 Motivation

A number of ‘standard patterns’ have been documented in the literature on decision

making under risk and uncertainty. The fourfold patterns of risk attitudes—risk seeking

for small probability gains and large probability losses, risk aversion for small probabil-

ity losses and large probability gains—constitutes one of the central features of prospect

theory (PT ; Kahneman and Tversky, 1979). This pattern constitutes the mechanism

by which the model accounts for the coexistence of gambling and insurance—a founda-

tional issue in decision making under risk (Vickrey, 1945; Friedman and Savage, 1948;
∗Ranoua Bouchouicha and Ferdinand Vieider gratefully acknowledge funding from the Research Foun-

dation—Flanders (FWO) under the project “Causal Determinants of Preferences” (G008021N). We are
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Markowitz, 1952). Tversky and Kahneman (1992) refer to the fourfold patterns as “the

most distinctive implication of prospect theory” (p. 306).

A model, however, ought to be judged by its predictive performance. Here, we test

PT’s predictive performance on its home turf—choices between binary prospects and

sure outcomes. We compare risk-taking patterns obtained based on choice lists to elicit

certainty equivalents (CEs) to patterns obtained by presenting the single choices con-

tained in the lists in a binary choice setup, where only a single choice is shown on each

screen. The results we obtain differ widely between the two choice contexts. The list

format produces the ‘standard’ fourfold pattern documented in the PT literature using

CEs (e.g., Tversky and Kahneman, 1992; Gonzalez and Wu, 1999; Bruhin, Fehr-Duda

and Epper, 2010; L’Haridon and Vieider, 2019). In binary choices, however, risk seeking

for small probability gains and risk aversion for small probability losses disappear, while

likelihood sensitivity increases. That is, we document not only large quantitative differ-

ences between the two contexts, but also qualitative differences—the fourfold pattern,

which is strong for CEs, disappears in binary choice.

The intimate marriage between PT and CEs can be traced back to a seminal contri-

bution by Hershey and Schoemaker (1985). Comparing risk attitudes inferred from CEs

to risk attitudes inferred from probability equivalents (PEs), the authors documented

a substantial increase in risk aversion using the latter. They explained this difference

by loss aversion relative to an endogenous reference point constituted by the unvarying

sure amount in PEs (see also Vieider, 2018). This arguably contributed in no small part

to Tversky and Kahneman’s (1992) choice to adopt CEs to measure the PT function-

als. In particular, the feature of CEs whereby the sure amount varies in a list while

the prospect is kept fixed is supposed to exogenously fix the reference point to 0—an

essential condition for the identification of all of PT’s separate components.

We thus further compare the patterns obtained from CEs to patterns obtained from

PEs. Depicting the choice patterns using nonparametric decision weights in a dual-

EU setup, we find the resulting functions to cross at large probabilities. Loss aversion

coefficients needed to account for the discrepancy for different PE tasks range from about

6 (string loss aversion) to 0.13 (strong gain seeking), both of which are implausible values

based on the accumulated evidence from over 600 existing data points (Brown, Imai,

Vieider and Camerer, 2022). Contrary to popular wisdom, loss aversion with respect to

the sure amount in PEs can thus not account for the difference between CEs and PEs.
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One might be tempted to blame the differences between lists and binary choices

on increased noise in binary choice. A close look at the data, however, reveals that

the patterns we document eschew such simple explanations. While it is true that we

find increased inconsistencies ‘within lists’ in binary choice, choice inconsistencies are on

average concentrated just below the point of expected-value equivalence, thus pointing to

a region of indifference as documented by Cubitt, Navarro-Martinez and Starmer (2015)

and Agranov and Ortoleva (2017), rather than purely random choice patterns. What is

more, measures of preference inconsistency ‘between lists’ akin to first-order stochastic

dominance violations indicate higher levels of noise in choice lists. Arguably, binary

choices thus produce more rather than less coherent choice patterns, although they also

reveal some uncertainty about the precise point of indifference.

This study further contributes to a series of recent papers challenging PT’s ability

to account for empirical paradoxes that were once considered to fall within its remit.

Sydnor (2010) used a numerical calibration exercise to show that PT parameters as

measured in typical experiments are unable to account for the widespread overinsurance

of modest risks. Oprea (2022) showed that the fourfold pattern observed with CEs is

reproduced in choices between deterministic options that are represented with the same

level of complexity as in choice lists under risk. Using a large representative subject

pool, Chapman, Dean, Ortoleva, Snowberg and Camerer (2023) document that different

measures of loss aversion are unrelated to the gap between willingness-to-accept and

willingness-to-pay. Our contribution constitutes a possibly even bigger challenge to PT,

since it suggests that—as long as we care about the predictive ability of a model beyond

statistically fitting functional forms to data ex post—PT ought to be considered a theory

based on CEs and made only to explain patterns arising from CEs. This creates serious

questions about the applicability of PT to real word choice problems, which arguably

resemble the binary choice setup much more than they do choice lists.

Context effects for measurements of risk attitudes have a long history in economics

and psychology, going back at least to Slovic (1964), and periodically resurfacing in

the literature under different forms and with different focus (Hershey and Schoemaker,

1985; Crosetto and Filippin, 2015; Vieider, Lefebvre, Bouchouicha, Chmura, Hakimov,

Krawczyk and Martinsson, 2015; Mata, Frey, Richter, Schupp and Hertwig, 2018; Zhou

and Hey, 2018). The power of the context effects we present here rests in the observation

that we do not change the underlying elicitation format, but only whether choices are
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bundled into lists or not. We furthermore exclusively use lists involving certainty in one of

the outcomes, which creates ideal conditions for the observation of likelihood distortions

(Hershey, Kunreuther and Schoemaker, 1982; McCord and de Neufville, 1986).

Harbaugh, Krause and Vesterlund (2010) present what is likely the test that is closest

to our contribution. Using pricing tasks, they reproduce the ‘standard’ fourfold pattern.

Using binary choices between the same prospects and their expected values, however,

they document patterns “indistinguishable from random choice” (p. 595). Our study

differs from theirs in two major ways. One, in our case the choice format is truly identical

between treatment conditions. Two, by presenting the entirety of choices contained in

the lists in the binary choice setup, we can paint a much richer picture of the resulting

choice patterns. This latter aspect is indeed crucial, and leads us to reach very different

conclusions—far from being random, the choice patterns documented from binary choice

are very coherent, albeit very different from the choice patterns found using CEs.

To be sure, PT parameters have been measured using elicitation formats other than

CEs. Arguably, however, such elicitations have produced quantitatively and qualitatively

different results, which have rarely been discussed explicitly, not least because the absence

of experimental comparison treatments made it impossible to draw strong inferences on

any differences. For instance, Abdellaoui (2000) presents a parameter-free measurement

of the PT functionals where probability weighting is identified from PEs. The lists are,

however, filled in by a bisection procedure, which replies on binary choice. Abdellaoui,

Kemel, Panin and Vieider (2019) present weighting functions based on the choice list

format of Holt and Laury (2002), again filled in by a bisection procedure. None of

these papers finds risk taking for small probability gains. Other papers based on the

same type of list without implementing bisection have typically documented S-shaped

functions indicating under -weighting of small probabilities, and over -weighting of large

probabilities (Andersen, Harrison, Lau and Rutström, 2014).

Some papers have also compared choice lists and binary choices from the same list,

but these investigations were confined to a single list. Lévy-Garboua, Maafi, Masclet

and Terracol (2012) compared choices in the task of Holt and Laury (2002) to the un-

derlying binary decisions, and documented higher levels of risk aversion and noise in

binary choices. Freeman, Halevy and Kneeland (2019) also compared risky choices ob-

tained from a choice list to risky choices in a single binary choice, and found significantly

more risk aversion in binary choice. They ascribed this effect to the random incentive
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mechanism—when incentives are random, they take away the nominal certainty from

sure outcomes, which may result in increased risk seeking. Note that such a mechanism

cannot account for our results, since the number of choices and hence the random in-

centives are constant across our treatments (see also Freeman and Mayraz, 2019, for a

reinterpretation of the previous explanation). Our approach differs from these papers

by presenting a whole series of choice lists. Importantly, this allows us to reach conclu-

sions about the predictive performance of prospect theory, which are not discussed in

these related papers. This also allows for a more nuanced assessment of noise, where the

conclusions in our examination depend crucially on the type of noise being examined.

We remain explicitly agnostic as to the specific drivers of the context effects them-

selves. Candidate mechanisms include anchoring at the mid-point of a list (Andersson,

Tyran, Wengström and Holm, 2016; Vieider, 2018), as well as more sophisticated models

of contextual preferences. For instance, a specific class of range normalization models

have modelled the normalization of choice options by the specific context provided by the

two choice options (Louie, Grattan and Glimcher, 2011). Peterson, Bourgin, Agrawal,

Reichman and Griffiths (2021) documented evidence for such context effects using a

large data set and applying machine learning techniques. The results furthermore point

to the promise of models of noisy coding when it comes to explaining choice behaviour

under risk (Khaw, Li and Woodford, 2021; Vieider, 2021). Such models start from noisy

mental signals about the specific characteristics of a choice situation. Early-generation

models have exclusively modelled binary choices. However, adding signals about the

context—such as e.g. the range of a choice list—could yield systematic predictions of

how different information may change behaviour in otherwise identical choice problems,

such as documented here.

2 Experiments

All experiments included in this paper were conducted online on Prolific UK within a

short time span in the winter of 2022/23. Instructions were provided in short videos,

which provided a machine-generated voice-over to slides illustrating the experimental

tasks. Experiments involved identical choices packaged either in choice lists, or in pre-

sented in a binary choice setup. Figure 1 shows screenshots of what the choice environ-

ment looked like for certainty equivalents (top), and for the extrapolated binary choice
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tasks (bottom). Screens for other tasks looked similar, and are not shown. Importantly,

we made sure that any visual display would be the same across the choice lists and

binary choice formats, to avoid introducing any confounding factors. While the choice

lists necessarily present the choices in an orderly fashion grouped into lists, the binary

choices are presented in random order across screens.

(a) Certainty Equivalent (CE) Condition

(b) Binary Choice (BC) Condition

Figure 1: The screenshot of two choice conditions
Screenshots from the certainty equivalent experiment for gains. Panel (a) shows a screenshot of a typical choice
list for a prospect yielding £8 with a 20% probability, or else 0. Panel (b) shows one binary choice extracted from
that same list as it was presented in the binary choice condition.

Certainty equivalents for gains. We used a total of 21 certainty equivalents (a

complete list is provided in Table 1 below), systematically varying probabilities p, and

both the upper outcome x and lower outcome y in a systematic fashion between lists.

The sure amount s changed in steps of £1 between the lower outcome and the upper

outcome. In total, our stimuli consist of 274 binary choices. 327 subjects signed up

for the experiment, but we dropped 26 of them who failed to correctly answer some

simple comprehension checks after watching the instructional video. We thus ended up

collecting valid responses from 301 individuals (CE: N=156; BC: N=145). The median

subject took 40 minutes to finish the experiment (33 minutes for certainty equivalents;

50 minutes for binary choice). Each subject was compensated for their time according to
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Prolific regulations. In addition, each subject had a 1/10 chance to play one randomly

selected choice for real money.

Certainty equivalents for losses. We also elicited certainty equivalents for losses.

The setup was identical to the one used for gains, except with negative instead of positive

amounts. We implemented the experiment using hypothetical payoffs. Tests of the

effect of real incentives are inconclusive. Particularly in the loss domain, real losses

are typically deducted from an initial endowment, since implementing real losses falls

foul of ethical guidelines. If (some) subjects integrate the endowment with the payouts,

then implementing real incentives may actually distort measured behaviour and bias the

inferences drawn, instead of providing true loss incentives. After excluding 10 subjects

who did not pass some very basic comprehension tests, we were left with 201 subjects

providing valid responses (CE: N=98; BC: N=103). A typical subject took 42 minutes

to complete the experiment with 31 minutes for the CE condition, and 50 minutes for

the BC condition.

Probability equivalents (gains only). The experiment eliciting probability equiva-

lents for gains was conducted in a similar way to the one eliciting certainty equivalents

for gains, except that probabilities varied within a choice list instead of the sure amount.

The stimuli thus fixed the outcomes of the prospect, x and y, and the sure amount s. The

stimuli were designed to resemble the ones for CEs from the perspective of an expected

value maximizer (Table 4 provides a complete list). The probability varied within each

given list between 0 and 1 in steps of 0.05. Subjects obtained a fixed participation fee

of £7, and had a 1/10 chance to play one of their choices for real money. We collected

valid responses from 187 subjects (PE: N=93; BC: N=94), with a median subject taking

34 minutes to complete the experiment.

3 Results

3.1 Certainty equivalents and ‘the fourfold pattern’

We start by examining the certainty equivalent experiment for gains. Figure 2 shows

some representative patterns emerging from the experiment. Panel A plots the proba-

bility of winning in a prospect offering £24 or else 0 against the choice proportion for

the risky option, which under well-behaved preferences will approximate a normalized
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certainty equivalent.1 Note that, here as well as throughout the paper, concepts such

as ‘certainty equivalents’ have an inherently stochastic interpretation. Since we allow

for multiple switching in choice lists and inconsistencies in binary choice, there is no

guarantee that there will be a one-to-one mapping between choices and switching points.

The measures we use are thus generated by tallying up choices for the risky option. As

we will show farther below, however, on average the choice patterns are regular and

well-behaved, so that this does not bias our inferences in any way.

binary choice certainty equivalents
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Figure 2: Nonparametric risk taking measures for certainty equivalents and binary choice for gains
Comparison between choice proportions for the risk option in identical choices that are either packaged in choice
lists (CEs) or presented one-by-one in a binary choice setup (BC). Panel A compares how the number of choices
for the risky option varies across the probability interval for prospects (24, p; 0), with p = {0.1, 0.5, 0.9}. Panel B
shows how a nonparametric index of relative risk aversion, p − ŝ, changes as the stakes x increase for prospects
(x, 0.5; 0), for values of x = {8, 16, 24}, where ŝ indicates the derived “stochastic” certainty equivalence.

When the choices are collected in a choice list, the function in panel A exhibits the

hallmark patterns documented in the PT literature. Small probabilities are overweighted,

resulting in risk seeking. Moderate to large probabilities are underweighted, resulting in

risk aversion. The combination of these two patterns results in pronounced likelihood-

insensitivity. The picture obtained from presenting the same identical choices contained

in the choice lists in a binary choice setup, however, is quite different. For one, we see a

strong level effect, whereby the function we obtain is shifted downward, and thus shows

a sizeable increase in risk aversion. The patterns are also qualitatively different from

those obtained when using choice lists. In particular, even the smallest probability of

p = 0.1 is now underweighed, resulting in risk aversion for small probability prospects.

Large probabilities continue to be underweighted, and since the difference between the
1By ‘normalized certainty equivalent’ we mean in general s−y

x−y , where s in this case indicates a
‘stochastic switching point’. Although our analysis is model-free, this measure can be interpreted as a
decision weight in a prospect theory model with linear utility.
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functions is much smaller for large probabilities, likelihood-insensitivity is much less

pronounced. Using CEs, we thus replicate the ‘standard’ fourfold pattern documented

in the PT literature based on CEs. Once we use binary choice, however, the fourfold

pattern disappears and gives way to a uniformly convex function, which however keeps

some modest degree of likelihood-insensitivity.

Table 1: Choice proportions of risky option by treatment for CEs over gains

Task CE BC p-value Task CE BC p-value

(16, 0.2; 0) 0.27 0.11 <0.01 (17, 0.5; 4) 0.43 0.34 <0.01
(16, 0.3; 0) 0.32 0.13 <0.01 (24, 0.1; 0) 0.19 0.06 <0.01
(16, 0.5; 0) 0.44 0.27 <0.01 (24, 0.5; 0) 0.42 0.26 <0.01
(16, 0.7; 0) 0.55 0.46 <0.01 (24, 0.9; 0) 0.71 0.66 <0.01
(16, 0.8; 0) 0.62 0.56 <0.01 (24, 0.4; 12) 0.44 0.31 <0.01
(16, 0.8; 0) 0.62 0.57 <0.01 (24, 0.6; 12) 0.47 0.43 <0.01
(16, 0.1; 4) 0.20 0.11 <0.01 (8, 0.2; 0) 0.32 0.12 <0.01
(16, 0.5; 4) 0.43 0.33 <0.01 (8, 0.5; 0) 0.50 0.32 <0.01
(16, 0.9; 4) 0.70 0.68 0.15 (8, 0.8; 0) 0.67 0.57 <0.01
(15, 0.5; 4) 0.45 0.35 <0.01 (8, 0.8; 0) 0.69 0.59 <0.01
(16, 0.5; 5) 0.42 0.35 <0.01

List of choice tasks with choice proportions per treatment condition. The indicated p-values are based
on two-sided Wilcoxon rank sum tests. CE: certainty equivalent set up. BC: binary choice set up.

Table 1 shows the choice proportions for the two treatment conditions by task, and

provides nonparametric tests on the differences in calculated choice proportions. It in-

dicates that the patterns displayed in the graph are quite typical, with all but one com-

parison showing significant differences between certainty equivalents and binary choice.

Note further that none of these patterns can be explained ‘simply’ by noise. Even though

the discrete choice experiment takes longer than the CE experiment, subjects did not

know about the differential lengths of the experiments ex ante, and the differences we

observe are identical if we restrict our analysis of the discrete choice data only to the

first half of the experiment. The following section will provide a more in-depth analysis

of noise in the two treatment conditions.

Panel B in Figure 2 shows a measure of relative risk aversion, that is given by the

choice proportion of the risky option subtracted from the probability of winning. Note

that in the case of y = 0, a normalized certainty equivalent subtracted from the proba-

bility allows us to capture changes in relative risk aversion in the sense of Arrow-Pratt.

We once again see the same level effect as in panel A for all stake levels. Patterns for CEs
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indicate the typical increasing relative risk aversion (IRRA) documented in the literature

(Holt and Laury, 2002; Fehr-Duda, Bruhin, Epper and Schubert, 2010; Bouchouicha and

Vieider, 2017; Di Falco and Vieider, 2022). A similar pattern of IRRA is also observed

in binary choice, thus pointing to the robustness of the phenomenon.

binary choice certainty equivalents
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Figure 3: Nonparametric risk taking measures for certainty equivalents and discrete choice for losses

Figure 3 shows the equivalent results for losses, and Table 2 provides summary mea-

sures and tests of all choice tasks. Once again, the risk aversion for small probabilities

observed in the choice list format, which conforms to the prediction of the fourfold pat-

tern, turns into risk seeking in binary choice format, thus contradicting the prediction

of the fourfold pattern. This pattern of slight risk seeking is indeed observed across the

probability interval, whereas the function derived from CEs shows the typical inverse-S

shaped pattern (the pattern is not very pronounced, but this is not unusual for losses—see

e.g. L’Haridon and Vieider, 2019 for evidence from 30 different countries). Panel B shows

changes in relative risk aversion with stake size. Most measures are negative, indicating a

tendency towards risk seeking. Using CEs, we observe a pattern resembling the constant

relative risk aversion documented for losses in previous studies (Fehr-Duda et al., 2010;

Bouchouicha and Vieider, 2017). In binary choice, however, we observe clear evidence

for increasing relative risk aversion. In other words, whereas using CEs the patterns for

losses tend to differ from the ones for gains, as also documented in the previous literature,

in BC we find convergent evidence for increasing relative risk aversion.
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Table 2: Choice proportions of safe option by treatment for CEs over losses

Tasks CE BC p-value Tasks CE BC p-value

(-16, 0.2; 0) 0.23 0.14 <0.01 (-17, 0.5; -4) 0.43 0.36 <0.01
(-16, 0.3; 0) 0.32 0.20 <0.01 (-24, 0.1; 0) 0.13 0.08 <0.01
(-16, 0.5; 0) 0.49 0.41 <0.01 (-24, 0.5; 0) 0.50 0.46 0.02
(-16, 0.7; 0) 0.64 0.72 <0.01 (-24, 0.9; 0) 0.80 0.86 <0.01
(-16, 0.8; 0) 0.69 0.78 <0.01 (-24, 0.4; -12) 0.34 0.26 <0.01
(-16, 0.8; 0) 0.69 0.78 <0.01 (-24, 0.6; -12) 0.49 0.44 0.05
(-16, 0.1; -4) 0.11 0.09 0.27 (-8, 0.2; 0) 0.17 0.13 0.05
(-16, 0.5; -4) 0.42 0.34 <0.01 (-8, 0.5; 0) 0.47 0.37 <0.01
(-16, 0.9; -4) 0.76 0.80 <0.01 (-8, 0.8; 0) 0.70 0.75 0.04
(-15, 0.5; -4) 0.44 0.34 <0.01 (-8, 0.8; 0) 0.68 0.75 <0.01
(-16, 0.5; -5) 0.40 0.34 <0.01

List of choice tasks with choice proportions per treatment condition. The indicated p-values are based
on two-sided Wilcoxon rank sum tests. CE: certainty equivalent set up. BC: binary choice set up.

3.2 Decision noise

One may be tempted to blame the difference in behaviour we have observed between

choice lists and binary choice on differences in noise arising from the two formats. As

we show in this section this would, however, run the risk of being overly simplistic.

We indeed observe an increased frequency of ‘multiple switching’ within any given

task in binary choice compared to certainty equivalents, as shown in figure 4. The

patterns are similar for gains, shown in panel A, and for losses, shown in panel B. While

the overall switching rates are higher in binary choice, they do follow a highly regular

pattern. In particular, the switching rates in binary choice exhibit a marked peak around

expected value differences indicating risk aversion for gains, and slight risk seeking for

losses. The switching rates for CEs indicate that some multiple switching is going on in

choice lists, too, but that this multiple switching is much less frequent (11.6% of subjects

in CEs versus 100% of subjects in BC for gains; and 12.0% of subjects in CEs versus

100% of subjects in BC for losses exhibit this pattern in at least one list), and again

quite regular. The inconsistencies we observe within tasks are thus best interpreted

as indicating regions of indifference such as documented by Cubitt et al. (2015) and

Agranov and Ortoleva (2017), and consistent with the notion of cognitive uncertainty

of Enke and Graeber (2019). The choice list format seems to dramatically reduce these

effects. Such reduced noisiness may be seen as an asset from the vantage point of a

deterministic model such as PT—an additional aspect that may have contributed to the
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marriage between PT and CEs. Artificially reducing this type of noise may, however,

affect the proper identification of decision noise, which plays a central role in stochastic

models of choice (Khaw et al., 2021; Vieider, 2021). Note furthermore that reducing

noise within-list may well induce additional noisiness under different forms.
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Figure 4: Noise in lists versus discrete choice
Panels A and B compare subjects’ tendency to switch from one option to another as the sure amount increases.
The expected value difference on the x-axis is calculated as the sure amount minus the expect value of the prospect,
and the y-axis shows switching frequencies with each increase in the sure outcome. Panels C and D examine
first-order stochastic dominance violations between lists as the probabilty increases for identical outcomes. These
plots report the relative violation frequency, which is the violation frequency divided by the number of all possible
violations.

Such alternative forms of noise do indeed show up between tasks in the form of first-

order stochastic dominance violations. Such violations are systematically more frequent

for CEs than in binary choice across all possible tasks in which stochastic dominance

can be violated, as shown in panel C for gains and in panel D for losses. While the

patterns we observe are clear, there are several possible explanations. One possibility
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Table 3: Check of Repeated Stimuli

Gain Domain Loss Domain

prospect Direct Choice Choice List Direct Choice Choice List

(8, 0.8; 0) 0.772 0.487 0.688 0.610
(0.697, 0.831) (0.358, 0.599) (0.571, 0.778) (0.468, 0.721)

(16, 0.8; 0) 0.915 0.695 0.854 0.528
(0.883, 0.938) (0.598, 0.764) (0.791, 0.899) (0.368, 0.657)

Note: The test is Pearson’s Correlation test. 95% confidence interval is reported in parentheses. The
result remains essentially unchanged when applying Spearman’s Correlation test.

is that the context effects driving the deviation in response patterns in lists from those

observed in binary choice induce more randomness in switching points, i.e. they may

distract from the characteristics of each single choice and thus induce higher levels of

randomness in choice between lists. In this sense, the artificial reduction of within-task

switching behaviour may create some randomness in the switching point in lists.

Finally, we can examine the test-retest reliability as a measure of choice consis-

tency. To have a measure that is consistent across settings, we repeated two entire lists,

(8, 0.8; 0) and (16, 0.8; 0) in the CEs for gains and (−8, 0.8; 0) and (−16, 0.8; 0) in CEs for

losses. Table 3 reports the correlation coefficients of the proportion of safe choices for the

repeated lists. We find reasonably large and significantly positive correlations between

responses in repeated stimuli in both conditions. The correlations are, however, much

stronger in the binary choice condition. This confirms that subjects’ responses are quite

stable when they answer those binary choices separately, and rather less stable when

packaged in a choice list format. Whatever the exact explanation, the results show that

the differences between presentation formats we present defy a simple error narrative

whereby binary choice is just ‘noisier’.

3.3 Endogenous reference points and loss aversion

A key reason why CEs are the tool of choice to elicit PT parameters is that they allow

to exogenously fix the reference point to 0. This is indeed essential if one wants to

separately identify all the different components of PT, since in the presence of endogenous

reference points all prospects would become mixed (see Baillon, Bleichrodt and Spinu,

2020, for a study disentangling these effects). Hershey and Schoemaker (1985) famously

showed that varying a probability in a list while keeping the sure amount fixed could
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create a risk of endogenous reference dependence. Given that in such a case all gambles

become mixed, PT can no longer be fully identified.2 In particular, it would no longer

be possible to separately identify reference-dependence and rank-dependence (i.e., loss

aversion and optimism/pessimism for gains and losses). One possibility is then that in

binary choice the sure outcome may also act as an endogenous reference point, which

would be troublesome for the identification of the full array of PT parameters.
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Figure 5: CEs versus PEs
Nonparametric dual-EU decision weights obtained from certainty equivalent (CE) lists and Probability equivalent
(PE) lists. The patterns shown are obtained from lists offering £24 or else 0. In the CE lists, the sure amount
is varied from £1 to £23 for probabilities p = {0.1, 0.5, 0.9}. In the PE lists, probabilities are varied with sure
outcomes s = {3, 12, 21}.

Figure 5 compares the choice patterns obtained using CEs while varying the sure

outcome within a list and probabilities between lists, to the choice patterns obtained

using PEs while varying probabilities within a list and the sure outcome between lists.

Both were measured in the same experimental setting, and using lists that ought to

induce similar switching points for an expected value maximizer. While the CE patterns
2To cite but one example, Choi, Fisman, Gale and Kariv (2007) and Choi, Kariv, Müller and Silver-

man (2014) investigate allocations between two risky assets under budget constraints. Equal allocations,
which occur frequently in the data, can be explained by either rank-dependence or loss aversion, but
the two are not separately identified. This points to an over-specification of PT when it comes to its
applicability to real-world choices.
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exhibit the iconic inverse-S shape, the risk attitude patterns obtained from PEs appear

to exhibit an S-shape over the probability interval. The stark contrast between the two

risk taking patterns appears to indicate an effect whereby subjects take the range of the

list being shown to them as an additional element informing the decision process.

Table 4: Choice proportions of safe option by treatment for PEs over gains

Tasks PE BC p-value Tasks PE BC p-value

(16, p; 0) V.S. 2 0.39 0.52 <0.01 (24, p; 0) V.S. 3 0.41 0.54 <0.01
(16, p; 0) V.S. 8 0.72 0.82 <0.01 (24, p; 0) V.S. 12 0.71 0.82 <0.01
(16, p; 0) V.S. 13 0.86 0.93 <0.01 (24, p; 0) V.S. 21 0.90 0.96 <0.01
(16, p; 0) V.S. 13 0.84 0.94 <0.01 (24, p; 12) V.S. 17 0.50 0.40 <0.01
(16, p; 4) V.S. 6 0.37 0.25 <0.01 (8, p; 0) V.S. 1 0.36 0.49 <0.01
(16, p; 4) V.S. 10 0.64 0.71 <0.01 (8, p; 0) V.S. 4 0.70 0.82 <0.01
(16, p; 4) V.S. 14 0.80 0.86 <0.01 (8, p; 0) V.S. 6 0.83 0.92 <0.01

List of choice tasks with choice proportions per treatment condition. The indicated p-values are based on two-
sided Wilcoxon rank sum tests.

Documenting similar patterns, Hershey and Schoemaker (1985) concluded that the

patterns obtained using PEs could be obtained by PT with an endogenous reference

point equal to the salient sure amount s, which does not change within a given list.

That is, they simply rescaled the PT equation as follows:

u(0) = w+(p)u(x− s)− λw−(1− p)u(s),

where u is a reference-dependent utility function, w+ and w− the probability weighting

functions for gains and losses, respectively, and λ captures loss aversion. Given that we

have all the elements to identify utility curvature and probability weighting from CEs, we

can easily infer the loss aversion coefficient that would explain the discrepancy between

CEs and PEs shown in figure 5 from the following equation:

λ =
w+(p)

w−(1− p)

u(x− s)

u(s)
. (1)

Even just eyeballing the figure tells us that we would need λ � 1 to explain the first

PE data point to the left, λ ≈ 1 for the second data point, and λ < 1 for the right-

most decision weight obtained from PEs. The exact parameters will of course depend

on assumptions made about functional forms and errors, but a ‘standard’ PT imple-
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mentation (see Appendix A) yields λs=3 = 6.37 [6.16 ; 6.95], λs=12 = 0.82 [0.81 ; 0.84],

and λs=21 = 0.13 [0.12 ; 0.13]. It is thus clear that loss aversion cannot account for the

discrepancy, since the loss aversion coefficient in PT is supposed to be constant. Note

that, although we obtained these sepcific numbers based on the prospects paying £24

or 0 shown in figure 5, the patterns obtained for other prospects while systematically

varying the sure outcome s are very similar.

4 Discussion and Conclusion

We have documented systematic differences between risk attitudes elicited in choice lists,

and risk attitudes elicited in identical choices extrapolated from the lists to be randomly

presented in a binary choice setup. The choice lists data reproduce the ‘standard’ fourfold

pattern of risk attitudes documented in the prospect theory literature using certainty

equivalents, and which serves as the latter’s main vehicle to explain the coexistence of

insurance and lottery play. The binary choice data, however, paint a rather different

picture. We now find risk aversion for small probability gains, and risk seeking for small

probability losses—the exact opposite of what is predicted by the ‘fourfold pattern’. This

constitutes a major challenge for PT, since the discrepancies occur on its home turf of

choices between binary prospects and sure amounts of money.

One possible explanation, which has often been used as a justification for the use of

certainty equivalents to measure prospect theory functionals, is that certainty equivalents

help to exogenously fix the reference point to 0. Other tasks on the other hand may in-

duce endogenous reference points, thus increasing risk aversion. We have shown that the

discrepancy between certainty equivalent tasks and probability equivalent tasks cannot

actually be explained by such an account, contrary to the prevailing view in the litera-

ture. This does of course not exclude that such endogenous reference-dependence may

occur in binary choice. If that were truly the explanation of the discrepancy, however,

that would point to an even more troubling conclusion. Given that real world decisions

tend to resemble binary choices much more than certainty equivalents (or indeed pricing

tasks—outside of auctions or experiments, it is rare to be asked to declare a maximum

buying price), this would imply that prospect theory is over-specified, since this would

inevitably result in collinearity between rank-dependence and loss aversion.

The patterns we have shown also defy a simple noise narrative, whereby the patterns
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we document under binary choice could be simply blamed on ‘increased noise levels’.

Comparing pricing tasks to discrete choices between gambles and their expected values,

Harbaugh et al. (2010) concluded that while pricing showed the standard fourfold pat-

tern, the binary choice tasks yielded decision patterns “indistinguishable from random

choice”. Our much richer choice setup paints quite a different picture. Far from be-

ing akin to random choice, discrete choice patterns seem in many ways more coherent

and regular than the patterns observed in choice lists. We choose to see this as a good

sign—presenting simple binary choice actually appears to focus attention on the essential

aspects of the decision problem.
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Appendix A: Recovering loss aversion from PE tasks

We estimate a simple aggregate PT model from the data for CEs, by letting u(x) =

1−exp(−ρx)
ρ , with different parameters for gains and losses, entered in terms of abso-

lute amounts. Using an exponential utility specification is motivated by the IRRA

patterns observed in the nonparametric data, and avoids issues in the identification

of loss aversion when different utility coefficients are estimated for gains and losses using

CRRA functions (Köbberling and Wakker, 2005). The probability weighting function is

w(p) = δpγ

δpγ+(1−p)γ , again with different parameters for gains and losses. We estimate

the model using Bayesian techniques in Stan. The priors used for the parameters are

mildly regularizing, i.e. they are uninformative in the sense of being centred on neutral

values (ρ = 0, δ = γ = 1), and they are diffuse, in the sense that the standard deviation

is chosen in a way as to include a large range of parameters into the possible range (e.g.,

for γ and δ, 95% of the probability mass is allocated to the interval between 0 and 7).

Subsequently, we calculate the choice objects p, x− s and s for each of the three PE

tasks shown in Figure 5 (estimates obtained from other PE tasks yield similar results).

We then inject the PT parameters estimated from CEs. Importantly, we do so using

the entire vector of posterior draws for each of the parameters, which allows us to take

the uncertainty in the parameter estimates into account, and thus to obtain credibility

intervals for the estimates of loss aversion, as reported in the main text.
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