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Abstract: We construct and calibrate an overlapping generations model incorporating 
demographic change and the possibility to automate the production process to test the 
hypothesis put forward by Acemoglu and Restrepo (2017). In line with their hypothesis, we find 
that ageing is a powerful force stimulating the adoption of automation technologies in OECD 
economies. Ageing-induced automation is found to soften the negative effects of labour 
scarcity and rising old-age dependency rates on per capita growth, but the compensation is 
incomplete. One important reason is that automated tasks are far from perfect substitutes for 
tasks executed by human labour. A second reason is that ageing-induced automation reduces 
the intensity of positive behavioural reactions to ageing in the form of retiring later and investing 
more in human capital. Moreover, the partial compensation comes at the price of rising wage 
and welfare inequality between individuals of different innate ability level and a fall in the net 
labour share of income. Compared to existing literature, we pay special attention to the 
theoretical and empirical foundations of the modelling of automation. Theoretically, our work is 
the first one testing this hypothesis that relates the approach to automation rigorously to the 
state-of the-art conception by Acemoglu and Restrepo (2018a; 2018b). Empirically, we tested 
and largely confirmed the validity of our approach and calibration by comparing model 
predictions of (changes in) automation density to actual data on robotization in a cross-country 
fashion. 
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1 Introduction 
A large literature has studied the macroeconomic effects of demographic change in high 
income countries. The decline of fertility and the continuous rise of life expectancy during the 
last decades, together with the retirement of the baby boom generation, have been shown by 
many to cause lower per capita output and growth, lower productivity and investment, and 
lower real interest rates (e.g., Feyrer, 2007; Bloom et al., 2010; Ludwig et al., 2012; Gordon, 
2016; Aksoy et al., 2019; Eggertsson et al., 2019; Devriendt & Heylen, 2020). Many therefore 
consider demographic change as the principal driving force behind ‘secular stagnation’. On the 
other hand, some of the research mentioned above also demonstrated the existence of positive 
behavioural reactions of individuals to ageing: they will build more human capital, work more, 
and retire later (e.g., Ludwig et al., 2012; Cervellati & Sunde, 2013; Devriendt & Heylen, 2020). 
These endogenous reactions could counteract the negative effects of ageing on investment 
and growth. Recently, others have argued that demographic change may provide strong 
incentives to automation which could offset the negative effects on productivity and growth, 
although it may also eliminate jobs (Abeliansky & Prettner, 2017; Acemoglu & Restrepo, 2018c; 
Abeliansky et al., 2020).   

Not only the net effects of demographic change on per capita output remain a matter of debate, 
so are those on inequality. Although there is general agreement that scarcity of labour due to 
a declining population at working age raises aggregate wages (e.g., Ludwig et al., 2012), the 
displacement of workers by robots may simultaneously erode the labour share of income 
(Dauth et al., 2017; Prettner, 2019; Acemoglu and Restrepo, 2020; Prettner and Strulik, 2020; 
Stähler, 2021). Moreover, differences between individuals in the capacity to build more human 
capital and in the degree to which the tasks they execute are automatable, may imply falling 
relative (and even absolute) wages for workers with low innate ability (Prettner & Strulik, 2020). 
The costs and benefits of both demographic change and automation may thus be very 
unequally distributed.  

Our main objective and research question is to assess the net effects of demographic change 
on economic growth, the labour share of income, and wage and welfare inequality, when the 
response of automation and its induced effects are also taken into account. As such, our work 
can also be viewed as a theoretical test of the hypothesis in Acemoglu and Restrepo (2017), 
who suggest that the baseline negative effect of ageing on output per capita is neutralized or 
even reversed when considering that ageing endogenously triggers the adoption of automation 
technologies. Achieving this goal requires a quantitative general equilibrium model which is 
realistic in the modelling of automation, and which also gives room to the other behavioural 
reactions to demographic change highlighted by the literature (in particular labour supply at 
older age and human capital formation). Moreover, as to inequality, a promising analysis 
requires modelling individuals with heterogeneous skills.   

Our approach is to construct and simulate a 5-period overlapping generations model that 
incorporates heterogeneity in innate ability. We have three active generations (the young, the 
middle-aged and the older) and two generations of retired. Fertility and life expectancy are 
time-varying. Individuals enter the model at the age of 20 with either high, medium, or low 
ability and productivity of schooling. Those with high or medium ability will allocate their time 
when young to either work or education. Due to very low productivity of learning, young 
individuals with low ability do not study, they only work. When middle aged, individuals devote 
their time fully to work, regardless of their innate ability level. In the third and last period of 
active life, i.e., between the ages of 50 and 65, individuals may choose the fraction of time they 
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still work. The alternative is to choose leisure (which could include early retirement). 
Demographic perspectives and the degree of automation may affect all these choices. In the 
last two periods of life, i.e., from age 65 onwards, if they survive, individuals are retired and 
only have leisure. 

To model automation, we start from the task-based approach to automation of Acemoglu and 
Restrepo (2018b) and modify it to isolate demographic change from technological drivers of 
automation. The production of output requires the execution of both automatable and non-
automatable tasks. Both types are imperfect substitutes in production. Automatable tasks can 
be executed by either human labour or automation capital, which are perfect substitutes in the 
execution of these tasks. Since using automation capital will be more cost-effective, all 
automatable tasks will be automated, mirroring the simplifying assumption in Acemoglu and 
Restrepo (2019). Non-automatable tasks will be executed by labour. We will enrich this 
approach in several ways, however. In addition to automation capital, the production of goods 
in our model also requires the input of traditional physical capital, which is a complement to 
the execution of tasks. Next, as mentioned above, we distinguish three types of workers by 
ability. Depending on their level of education, they are capable of performing tasks of different 
complexity levels: high, medium, or low. The higher the complexity of tasks, i.e., the higher the 
required ability if they were executed by humans, the lower the fraction of tasks of that type 
that is automatable. Not only low-educated workers will thus face the probability of job 
destruction due to automation, but also the high-educated. For the latter, however, this 
probability is much smaller since fewer of their tasks are automatable routine tasks. In this, our 
modelling of automation is in accordance with earlier work finding that, for high-educated 
individuals too, the risk of job displacement by automation technologies is non-zero (Acemoglu 
& Restrepo, 2020; Frey & Osborne, 2017; Popescu et al., 2018). At the same time, we 
acknowledge that the risk is higher for low ability individuals such that automation is, in general, 
a force that increases the inequality between different education levels, as found in empirical 
research (Dauth et al., 2017; Graetz & Michaels, 2018).   

As we highlighted above, many researchers have studied the impact of demographic change 
on per capita economic growth, wages, and the interest rate. Some have integrated the 
endogenous response of automation and enriched the analysis of the labour share of income 
and inequality. The papers to which ours is most closely related are those of Basso and Jimeno 
(2021), Stähler (2021), Irmen (2021) and Zhang et al. (2021). Compared to these studies, we 
contribute to the literature in three major ways. First, we model both the education decision of 
young people and the labour supply (and early retirement) of older workers endogenously. In 
extensions of their model, Basso and Jimeno (2021) demonstrate the major importance of 
doing this for key outcomes, while Irmen (2021) explicitly indicates the endogenization of 
educational investment as a promising way forward. Second, we build our framework of 
automation based on the seminal task-based framework of Acemoglu and Restrepo (2018a; 
2018b), which allows us to be more explicit about the precise channels through which ageing 
stimulates automation. More specifically, we set up our model such that ageing-induced 
automation takes the form of automated tasks substituting for non-automated tasks in a less-
than-perfect manner, rather than capital substituting for labour perfectly in the execution of any 
given task. As the interest rate falls and aggregate wages rise as a result of ageing, firms will 
make more use of automated tasks, at the expense of non-automated tasks, but, since firms 
are technologically constrained, the share of tasks that are automated will not rise. At the same 
time, our model acknowledges the typical role of capital as a complement for all types of labour 
by distinguishing between ‘traditional capital’ and ‘automation capital’. Moreover, our set-up 
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allows us to verify a crucial assumption on which the economic conception of automation rests: 
automation capital should only feature in the production function if the use of automation capital 
is more cost-effective than the use of human labour for the execution of automatable tasks. 
Our third major contribution is that we explicitly test and show the empirical validity of the way 
we model automation, labour supply at older age and education. We see it as an important 
contribution that the calibrated model that we use for our simulations can explain a very large 
fraction of the cross-country differences in the level of robotization in OECD countries in 2019, 
as well as in the increase in robotization during the last two or three decades. Our model also 
explains a large fraction of cross-country differences in employment rates among older 
individuals and education rates among young individuals. Stokey and Rebelo (1995) have 
shown how sensitive the predictions of nicely calibrated models can be to the choice of key 
parameters. Before simulating our model, we therefore test (and show) that it translates 
observed cross-country differences in demography and policy into realistic performance 
differences with regard to automation, employment, and education.  

Our main findings and answers to our research question are as follows. Ageing strongly 
stimulates the adoption of automation technologies, as found in earlier empirical and 
theoretical work, and this ageing-induced automation can contribute to the growth performance 
of ageing economies. Given the current level of development of automation technologies, 
however, demographic change will still constitute a force weighing down per capita growth in 
the foreseeable future of the US, as old-age dependency starts to rise. Likewise, the fall in the 
interest rate that ageing induces, is softened by ageing-induced automation, but not halted. 
We thus consider our results to be cautiously supportive of the hypothesis of Acemoglu and 
Restrepo (2017), since the mitigation is only partial. One explanation is that automated tasks 
are far from perfect substitutes for tasks executed by human labour. A second explanation for 
this “only partial”-finding is that, as ageing-induced automation softens the relative shortage of 
human labour, it also reduces the strength of behavioural reactions to this relative shortage. 
Without ageing-induced automation, the incentives to retire later and invest more in human 
capital accumulation would have been even stronger. Moreover, the partial mitigation also 
comes at the cost of heightened inequalities. First, ageing-induced automation generates a fall 
in the labour share of income thus benefiting capital-owners. Second, ageing-induced 
automation is likely to increase the wage and welfare inequality between individuals of different 
innate ability levels. 

The remainder of this paper is structured as follows. Section 2 sets out our model. In Section 
3, we describe the parameterization of the model, and we demonstrate its empirical relevance. 
In Section 4, we simulate the impact of demographic change for the US in our baseline model 
and we investigate a counterfactual scenario to see how aggregate per capita income and 
intra-generational welfare inequality would have evolved in the absence of ageing-induced 
automation. Section 5 concludes the paper and summarizes our main findings.   
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2 The model  
Our framework consists of a five-period overlapping generations model for a closed economy 
where hours worked at older age, human capital formation and the degree to which the 
production process is automated are endogenously determined. The set-up of the model also 
accommodates the study of inequality by allowing for heterogeneity in the innate ability of 
individuals within each generation. More specifically, differences in innate ability are reflected 
in varying degrees of human capital upon entering the model and differences in the returns to 
schooling. Furthermore, our model incorporates the empirical finding that the automatability of 
tasks falls unambiguously in the educational attainment of the individuals executing these 
tasks (Arntz et al., 2016; Frey & Osborne, 2017).  

With regard to notation, we use superscript 𝑡 to refer to the time period in which individuals 
enter the model. Individuals entering at time 𝑡 will further on be called individuals ‘of generation 
𝑡’. Subscript 𝑗 is used to indicate that the generation is in the 𝑗-th period of their life and thus 
denotes the model age of an individual. Subscripts 𝐿, 𝑀 and 𝐻 refer to the three levels of innate 
ability: low, medium and high, respectively. Finally, time subscripts 𝑡 that are added to 
aggregate variables indicate historical time periods. 

2.1 Demography 
In each modelling period, five different generations are alive: three active adult generations 
representing young, middle-aged and older workers and two generations of retired individuals. 
Individuals enter the model when they become 20 years old and each period of life lasts for 
fifteen years. Model ages 𝑗 = 1, 2, 3, 4	and	5 thus correspond to actual ages 20-34, 35-49, 50-
64, 65-79 and 80-94. Demographic change in the model is captured by time-varying fertility 
and life expectancy. Equation (1) indicates how the size of the young generation of 20- to 34-
year-olds alive at time 𝑡 (𝑁!") relates to the size of the young generation at time 𝑡 − 1 (𝑁!"#!), 
where 𝑛"  is the time varying fertility rate in the model. This approach follows, among others, de 
la Croix et al. (2013). 

(1)		𝑁!" = (1 + 𝑛")𝑁!"#! 

The survival of an individual from one period into the following is uncertain. We denote by 
𝑠𝑟$"	(< 1) the time-varying and age-dependent probability that an individual of generation 𝑡 
experiences utility in the 𝑗-th period of life, conditional upon having been alive in period 𝑗 − 1. 
The size of generation 𝑡 then evolves as described by equation (2). 

(2)		𝑁$" = 𝑠𝑟$"𝑁$#!" 										∀	𝑗	 = 	2, 3, 4, 5 

The unconditional probability for an individual of generation 𝑡 to reach the age group 𝑗 is simply 
the product of the relevant conditional survival rates, as indicated in equation (3). 

 (3)		𝜋$" = ∏ 𝑠𝑟%"
$
%&' 								∀	𝑗	 = 	2, 3, 4, 5	and 	𝜋!" = 1 

Individuals in the fifth period of their life, representing those aged 80 to 94, die with certainty 
at the end of the period.  

Each generation consists of individuals of low, medium and high innate ability. It is assumed 
that survival and fertility rates do not vary over ability types and, in equation (4) that each ability 
group represents an equal share of one third of each generation at every point in time. 
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(4)		𝑁$(" = !
)
𝑁$"									∀	𝑗 = 1,2,3,4,5	; 	∀	𝑎 = 𝐿,𝑀,𝐻		  

Because of the long duration of each period, the modelling of actual demographic change is 
somewhat stylised, but it still captures the main demographic trends in terms of life expectancy 
and fertility. The fertility and survival rates follow exogenous, country-specific trajectories 
throughout this study. Details on data sources and construction of the demographic 
parameters can be found in Appendix C. There we also show that cross-country differences in 
the old-age dependency ratio are captured quite well by our model. 

2.2 Individuals 
2.2.1 Preferences 
A representative individual of ability 𝑎 and generation 𝑡 experiences utility in the 𝑗-th period of 
life through the instantaneous utility function described in equation (5). 

(5)		𝑢:𝑐$(" , 𝑙$(" = = ln:𝑐$(" = + 𝛾$
(+!"
# )$%&

!#-
						∀	𝑎	 = 	𝐿,𝑀,𝐻 and ∀	𝑗 = 1, 2, 3, 4, 5 

with 𝛾! = 𝛾% = 0, 𝛾$ > 0	∀	𝑗 = 	3, 4, 5 and θ > 0	(θ	 ≠ 	1)	  

Instantaneous utility is thus increasing in consumption 𝑐$&"  and leisure time 𝑙$&"  experienced in 
that period. Preferences are logarithmic in consumption, such that the intertemporal elasticity 
of substitution in consumption is 1. Additionally, preferences are iso-elastic in leisure with the 
intertemporal elasticity of substitution in leisure being 1/θ. 𝛾$ indicates the age-dependent 
utility value of leisure relative to consumption. Young and middle-aged individuals do not value 
leisure and, as a result, they will opt to not allocate any time to leisure.  

Each individual in the model maximises his/her expected lifetime utility, described by equation 
(6). In this equation, β	is the discount factor determining the present value of future utility.  

(6)		𝑈" =C𝛽$#!	
/

$&!

𝜋$"	𝑢:𝑐$(" , 𝑙$(" = 

The maximisation of expected lifetime utility is subject to both time and budget constraints. 

2.2.2 Time constraints 
Every period in our model is of the same fifteen-year length. We normalize this length to 1. 
Depending on the specific age and ability of an individual, time is allocated to either work (𝑛), 
education (𝑒) or leisure (including useful activities at home) (𝑙). Equations (7) to (10) state the 
time constraints in each period. 

(7)		𝑛!(" = 1 − 𝑒!("   with 𝑒!0" = 0 

(8)		𝑛'(" = 1 

(9)  𝑙)(" = 1 − 𝑛)("  

(10)		𝑙$(" = 1	 with 𝑗 = 4,5 

Young individuals in equation (7) allocate their time to either work (𝑛) or education (𝑒), at least 
when they have medium or high ability. Individuals of low innate ability do not study when 
young (𝑒!'" = 0). They are assumed to have zero productivity of schooling at the tertiary level. 
In later periods no one studies. Whereas young and middle-aged individuals are assumed to 
have no leisure, retired individuals in their fourth and fifth period of life have only leisure, as 
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expressed in equation (10). The statutory retirement age in our model is 65. The generation of 
age 50 to 64 (𝑗 = 3) is the only generation in our model that is able to choose in equation (9) 
what share of time 𝑙(,&" they allocate towards non-productive activities. Leisure time when older 
𝑙(&"  can be considered attainable through either reducing hours worked while still employed or 
entering into early retirement schemes.  

2.2.3 Budget constraints 
Each individual enters the model with zero assets. Equations (11) and (12) state the budget 
constraints with which individuals of generation 𝑡 are confronted in the different periods of their 
life.  

(11)		(1 + τ1)𝑐$(" +ω$(" =	𝑤(,"3$#!ℎ$(" 𝑛$(" :1 − τ4$(,"3$#!= + (1 + 𝑟"3$#!(1 − τ1%))ω$#!,(
" + 	𝑖ℎ𝑡"3$#! +

																																																			𝑡𝑟𝑎"3$#!  for 𝑗 = 1,2 

(12)		(1 + τ1)𝑐)(" +ω)(
"

=	𝑤(,"3'ℎ)(" 𝑛)(" :1 − τ4)(,"3'= + 𝑏	𝑤(,"3'ℎ)(" (1 − 𝑛)(" ):1 − τ4)(,"3'=
+ (1 + 𝑟"3'(1 − τ1%))ω'(

" + 𝑖ℎ𝑡"3' + 𝑡𝑟𝑎"3' 

(13)		(1 + τ1)𝑐$(" +ω$(" =	𝑝𝑝$(" + (1 + 𝑟"3$#!(1 − τ1%))ω$#!,(
" + 𝑖ℎ𝑡"3$#! + 𝑡𝑟𝑎"3$#! for 𝑗 = 4,5 

Individuals allocate their disposable resources to either consumption 𝑐$&"  or the accumulation 
of non-human wealth. We denote by 𝜔$&"  the stock of wealth held by an individual of ability 𝑎 
at the end of the 𝑗-th period of his/her life. Consumption is taxed at rate 𝜏*. The right-hand 
sides of equations (11) and (12) show individuals’ available resources during their active life. 
These include after-tax labour income, non-employment benefits (only when older), non-
human wealth accumulated in the previous period and the after-tax return on it, accidental 
bequests or inheritances (𝑖ℎ𝑡") and lump sum transfers from the government (𝑡𝑟𝑎"). After-tax 
labour income rises in the real remuneration 𝑤& per unit of effective human labour provided by 
an individual of ability 𝑎, the human capital of that individual ℎ$&" , and the fraction of time spent 
working 𝑛$&" . It falls in the average tax rate on labour income τ+$&. Since we model a 
progressive labour income tax system (cf. infra), tax rates depend on the ability and age of 
individuals. When older, at model age 𝑗 = 3, individuals may choose to reduce their working 
time. In line with reality in many countries, they may then receive a benefit that is proportional 
to the time not spent working. This benefit can be thought to reflect both early retirement 
benefits (for those no longer working) and benefits in the context of phased retirement schemes 
(for older employees reducing work hours). The level of the benefit is a fraction of the net 
labour income an individual would receive if (s)he worked. The policy parameter 𝑏 indicates 
the net replacement rate.  

If an individual survives to the next period, his/her unconsumed resources are lent out to firms 
or the government. The individual is paid back at the end of that period and remunerated at 
the after-tax real interest rate 𝑟(1 − 𝜏*,), with 𝜏*, a proportional capital income tax. At the end 
of the fifth period, all surviving individuals fully consume their remaining resources. This way, 
individuals in the final period of life do not die with debt nor do they willingly leave bequests. 
Although in other periods individuals are allowed to have negative values ω$&"  and to finance 
consumption by incurring debt, we observe such borrowing only for young medium and high 
ability individuals spending time in education and already anticipating high income levels in the 
future.  
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During retirement, the first two sources of income are no longer available, but the individual 
then receives old-age pension benefits, 𝑝𝑝-&"  and 𝑝𝑝.&"  respectively. The pension system in the 
model is of a pay-as-you-go (PAYG) type. Equation (14) describes the formation of these 
benefits as a function of the individual’s net labour income in the past, when (s)he was still 
active. The replacement rate is denoted by ρ. We impose that each of the three periods of 
active life are equally important for the calculation of the pension assessment base. We note 
that, for given tax rates, an increase in this net pension replacement rate encourages 
individuals to work longer hours when older and increase education efforts through positive 
substitution effects, but also discourages work and education through an income effect.  

(14)		𝑝𝑝5(" = 𝑝𝑝/(" = ρS
1
3CT𝑤(,"3$#!ℎ$(" 𝑛$(" :1 − τ4$(,"3$#!=U

)

$&!

V 

Finally, if individuals do not survive the transition to the following period, the unconsumed part 
of their disposable resources is not saved but immediately passed on as a source of disposable 
income that is equally divided among all individuals in the population. In equation (15), 
𝐼𝐻𝑇"	indicates the complete mass of unconsumed resources at the end of time period 𝑡 of 
individuals who do not reach the following period of their life. Note that individuals dying with 
debt negatively contribute to the total inheritance mass 𝐼𝐻𝑇". This total inheritance mass 
𝐼𝐻𝑇"	will be immediately distributed equally among all individuals surviving period 𝑡 in the form 
of a lump sum transfer. The inheritance per person at the end of time 𝑡 (𝑖ℎ𝑡") is given by 
equation (16)1.  

(15)		𝐼𝐻𝑇" =C C :1 − 𝑠𝑟$3!
"3!#$=𝜋$

"3!#$𝑁!(
"3!#$

(&0,6,7

5

$&!

ω$(
"3!#$ 

(16)		𝑖ℎ𝑡" =		
𝐼𝐻𝑇"

𝑁!" + 𝜋'"#!𝑁!"#! + 𝜋)"#'𝑁!"#' + 𝜋5"#)𝑁!"#) + 𝜋/"#5𝑁!"#5
	 

2.2.4 Human capital formation  
Individuals of different ability enter the model with different initial levels of human capital. The 
human capital of young individuals of the high ability type is normalized to ℎ/. Young individuals 
of medium and low ability dispose of only a fraction ε& of this level. 

(17)		ℎ!,&" = 𝜀&ℎ/	  with 𝜀' <	𝜀0 <	𝜀1 = 1  

This heterogeneity in individuals upon entering the model can be thought to reflect both 
differences in innate ability at birth and heterogeneous learning outcomes in primary and 

 
1 Note that the remaining wealth of those dying at the end of the period 𝑡 is already viewed as a source 
of income at time 𝑡 by all potential survivors. The intuition is as follows. There is no aggregate uncertainty 
in this model such that individuals perfectly anticipate both the number of people dying at the end of 𝑡 
and the magnitude of their unconsumed resources. They realise that they can already choose to either 
consume out of it or invest it at the end of 𝑡, precisely as they allocate income generated in period 𝑡. 
Even individuals who do not survive to the next period 𝑡 + 1 and whose unconsumed resources are the 
source of the inheritance viewed this inheritance as an income source at time 𝑡.  
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secondary education. Neither ℎ/ nor ε&  varies across generations such that equation (17) is 
not a source of long-term growth or of fluctuations in the skill premium. 

In the first period of their lives, medium and high ability individuals can allocate time to 
increasing their level of human capital. We have in mind that individuals spend time studying 
in tertiary education between the ages of 20 and 34. Equation (18) describes the human capital 
production function. It is identical to that of Bouzahzah et al. (2002) and Buyse et al. (2017), 
among others. For more details, we refer to their work. Equations (19) and (20) indicate that 
human capital never depreciates. We have in mind that learning by doing while at work may 
counteract depreciation. 

(18)		ℎ'(" = ℎ!(" (1 + 𝜙(𝑒!(" )8)          ∀	𝑎 = 𝑀,𝐻  with 𝜙 > 0, 0 < 𝜎 ≤ 1   

(19)		ℎ'0" = ℎ!0"   

(20)		ℎ)(" = ℎ'(" 									∀	𝑎 = 𝐿,𝑀,𝐻  

We abstain from shocks to individual human capital and productivity during individuals’ life. 
Our set of assumptions seems to offer the best match to findings by Huggett et al. (2006, 2011) 
and Keane and Wolpin (2007) that heterogeneity in human capital endowment at young age 
and learning abilities, rather than shocks to human capital, account for most variation in lifetime 
utility. 

2.2.5 Optimality conditions for savings, education and work 
The rational individuals in the model maximise their expected lifetime utility (equation (6)) 
subject to the budget and time constraints (equations (7) to (20)) by optimally choosing 
consumption in each period of their active life and the share of time spent working in the third 
period of life. Medium and high ability individuals also choose the amount of time spent at 
educational activities when young. The relevant optimality conditions are described and 
explained in Appendix E. 

2.3 Production and the modelling of automation 
A large number of identical firms operate on competitive markets for final goods, labour and 
capital2. The production function in equation (21) exhibits constant returns to scale in traditional 
physical capital 𝐾" and effective labour in efficiency units 𝐴"𝐻". The model is neoclassical in 
nature in that the sole source of long run growth lies in labour-augmenting technical progress 
that is assumed to grow at a constant and exogenous rate 𝑥. Note that this exogenous growth 
result depends crucially on imposing that automation capital does not substitute perfectly for 
human labour in all tasks (in contrast to the work of Abeliansky and Prettner (2017)). 

(21)		𝑌" =	𝐾"9(𝐴"𝐻")!#9     with 𝐴" =	𝐴"#!(1 + 𝑥)  

In equation (22), aggregate effective labour 𝐻" is defined as a CES composite of effective 
labour supplied by each of the three ability groups (𝐻',"2", 𝐻0,"2" and 𝐻1,"2") where 𝑠 is the 
elasticity of substitution between the ability types and η', η0 and η1  are the share parameters. 
Equation (23) clarifies how the effective labour supplied by each ability type is in its turn also 

 
2 Note that this assumption of competitive markets implies that all movements in the model’s factor 
shares are solely attributable to capital-labour substitution. Two key drivers of the fall in the labour share 
according to Manyika et al. (2019) - the effects of globalisation on workers’ bargaining power, and 
increasing mark-ups due to a consolidation on product markets - play no role in our model.  
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a CES composite of labour provided by humans of that ability type (𝐻', 𝐻0 and 𝐻1) and 
automation capital 𝑃. The elasticity of substitution between human labour and automation 
capital is a non-varying 𝜅 for each ability type and the share parameter of human labour in total 
effective labour of type 𝑎 is 𝜉&. Last but not least, equation (24) describes total human labour 
of a specific ability type. Human labour of different age groups within an ability type is assumed 
to be perfectly substitutable. 

(22)		𝐻" = c𝜂0𝐻0,":","
;#!
; + 𝜂6𝐻6,":","

;#!
; + 𝜂7𝐻7,":","

;#!
; e

;
;#!

 

(23)		𝐻(,":"," =	c𝜉(
$
'	𝐻(,"

'%$
' + (1 − 𝜉()𝐽𝑃"

'%$
' e

'
'%$

								∀	𝑎 = 𝐿,𝑀,𝐻, with 	0 < 𝜉( < 1  

(24)		𝐻(," = ∑ 𝜋$
"3!#$𝑁!(

"3!#$𝑛$(
"3!#$ℎ$(

"3!#$)
$&! 						∀	𝑎 = 𝐿,𝑀,𝐻  

Equation (23) mirrors the task-based approach of Acemoglu and Restrepo (2018b). In the spirit 
of their work, this equation can be derived from an underlying basic specification 𝐻&,"2"," =

(∫ 𝑡&,,,"
!"#
! 𝑑𝑖!

/ )
!

!"# with 𝑡&,,," = ℎ&,,,"	, ∀𝑖 < 𝜉& and 𝑡&,,," = 𝑗𝑃" + λℎ&,,,"	, ∀𝑖 > 𝜉& where the effective 
amount of work of ability type 𝑎 is executed by combining the execution of a continuum of tasks 
𝑡&,,," with an elasticity of substitution 𝜅. In Appendix A (Part 1), we show the validity of equation 
(23). In this underlying equation, ℎ&,,," then represents the amount of human labour of ability 𝑎 
that is devoted to the execution of task 𝑡&,,," and 𝑃" is a general purpose automation technology 
contributing to the execution of all automatable tasks. The parameter 𝑗 (closely related to 𝐽) 
expresses the efficiency of automation capital in the execution of automatable tasks, while λ 
stands for the efficiency of human labour in the execution of automatable tasks. 

More revealingly, one can consider the CES in (22) to distinguish between low ability, medium 
ability and high ability tasks which have to be executed for the production of final output 𝑌. 
From this perspective, η&  indicates the share of total tasks that are of the ability type 𝑎 and 𝑠 
then indicates how easily performing tasks of an ability type different from 𝑎 substitutes for 
tasks of ability type 𝑎 in the production of final goods. The CES in equation (23) then indicates 
how each of the three types of tasks consists of both technologically non-automatable tasks, 
which only human labour can execute, and technologically automatable tasks, which both 
human labour and automation capital can execute. We follow the common assumption in the 
task-based literature on automation that automation capital and human labour substitute 
perfectly in the execution of technologically automatable tasks (Acemoglu & Restrepo, 2018b). 
It is 𝜉&  that indicates the share of total tasks of type 𝑎 that are not technologically automatable 
and that can only be performed by humans. Finally, the elasticity of substitution 𝜅 determines 
how well automated tasks can substitute for non-automated tasks, and vice versa. It is 
assumed to be non-varying over ability types. 

Note that human labour does not feature in the part of the CES indicating the execution of 
automatable tasks in equation (23). This is because the parameter 𝐽 will be calibrated in the 
next section such that all automatable tasks are more cost-effectively executed by automation 
capital. All automatable tasks will therefore also be automated in practice. This is not an 
uncommon simplifying assumption in task-based models of automation (Acemoglu & 
Restrepo, 2019) and it implies that the share of tasks that is automated is constrained by 
technology (What tasks are automatable?) and not by the optimal choice of firms (Should I use 
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capital or labour for the execution of this automatable task?). By imposing this, we adopt the 
same view of automation as in Acemoglu and Restrepo (2018b), but extend it by imposing a 
high elasticity of substitution 𝜅 between automated and non-automated tasks of type 𝑎 and 
distinguishing between two types of capital. In this approach, as in Acemoglu and Restrepo 
(2018b), two technological processes embodying ‘automation’ coexist: automation at the 
extensive margin implies that more tasks become technologically automatable and this is 
captured by a rise in 1 − 𝜉& in the model. Such automation at the extensive margin will displace 
workers in that the marginal product of human labour will fall (infra: equation (27)). Automation 
at the intensive margin represents a rise in the productivity 𝑗 of automation capital 𝑃 at already 
automated tasks, for a given share of automatable (and automated) tasks 1 − 𝜉&. Firms will 
then substitute automated tasks for tasks executed by human labour in their production 
process. Contrary to the two-factor framework of Acemoglu and Restrepo (2018b), this 
automation at the intensive margin has the potential to decrease the demand for labour in our 
model with two types of capital (DeCanio, 2016).  
 
When exogenous evolutions such as demographic change alter the cost of capital and/or 
labour, the reaction of firms to the changing cost structure can imply processes of non-
technological automation. Automation of a non-technological nature can be divided into the 
same two types as technological automation. Automation at the extensive margin then takes 
the form of firms using automation capital for the execution of automatable tasks that were 
executed by humans before. This option is excluded in our model, since firms are 
technologically constrained in the sense that all automatable tasks are already automated. On 
the other hand, automation at the intensive margin implies that firms choose to make more use 
of automatable tasks, and less of non-automatable tasks in their production process. For the 
low ability individuals, this non-technological automation at the intensive margin will also lower 
the real hourly wage3. 

In our model, it is this non-technological automation at the intensive margin that plays a crucial 
role, since it is an important channel through which firms react to the change in factor costs 
implied by demographic change. This channel is very distinct from the true replacement of 
humans by automation capital in the execution of a given task, since it are tasks, not production 
factors that substitute for one another in the case of automation at the intensive margin. An 
example might clarify this. The adoption of cost-effective computer technology entirely 
displaced the human computing profession. This is the automation at extensive margin: a drop 
in 𝜉&  implies that tasks which capital could not perform in the past because they were 
technologically unautomatable, are now only executed by capital due to the perfect 
substitutability between capital and labour for the execution of that task and the lower cost of 
executing that task using capital. Computers can do exactly the same computations, but in a 

 
3 This is shown in sub-section 3.1.6. The main driver of this result will be the larger (1 − 𝜉!) for the low 
ability type. It implies that the “substitution of automated tasks for non-automated tasks” will play a larger 
role for low ability labour than for other ability types. For individuals of medium and high ability, this task 
substitution effect will also be negative (since the sign of this effect is mostly determined by 𝑠 and 𝜅, 
which are parameters common across ability types), but the overall effect will be less strong for them 
and more than fully offset by the fact that automation also implies that tasks of other ability types are 
executed more. In sub-section 3.1.6 we expand further on this by explicitly stating expressions 
determining the sign of the mixed second order derivatives of final output 𝑌 with respect to automation 
capital and human labour of a certain ability type. We will find that, given the calibrated parameter values, 
automation capital is a q-substitute for low ability labour and a q-complement for medium and high ability 
labour.  
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far more cost-effective way than humans. Automation at the intensive margin happens when 
those tasks now performed by computers are increasingly executed and substitute, rather than 
complement for the tasks still performed by humans. High-speed computers still do not deliver 
the mail - this task itself is not automated -, but demand for this task itself has diminished due 
to the performance of tasks like e-mailing substituting for it. Of course, one could argue that 
the “delivering mail” task has in fact become automated, but this would not be entirely accurate. 
Delivering mail and delivering electronic messages are distinct tasks that require very distinct 
actions and skills for their execution, but they just substitute for one another relatively well. 
Important to note is that, while we assume perfect substitutability between automation capital 
and human labour for the execution of automatable tasks (as in Acemoglu and Restrepo 
(2018b)), we consider automatable and non-automatable tasks of the same ability type 𝑎 to 
substitute for one another in a less-than-perfect way. Sending an e-mail is an alternative to 
sending a postcard, but they are surely not interchangeable in all circumstances. 

The high elasticity of substitution between (tasks executed by) capital and tasks executed by 
labour is surely not warranted in any situation. In fact, it is one of the great assets of the task-
based approach to automation that the accumulation of capital is allowed to play its traditional 
role of increasing the demand for human labour. By distinguishing between two types of capital 
in our model, automation capital explicitly represents those instances in which the work 
performed by capital makes the work performed by labour less relevant for the production of 
final output. Following Acemoglu and Restrepo (2018b), we mainly have computer-assisted 
machines, robotics, and artificial intelligence in mind when referring to automation capital. 
Traditional capital (e.g., infrastructure) then represents those, more typical, instances where 
capital empowers the relevance of human work and increases the demand for it. Our approach 
allows this distinction between automation capital and traditional capital, although it is not 
typical in task-based models of automation. We borrowed it from other frameworks of 
automation (Abeliansky & Prettner, 2020; Cords & Prettner, 2018; Lankisch et al., 2019; 
Prettner, 2019). It is because of this distinction between two types of capital that the traditional 
labour-empowering role of traditional capital accumulation can be preserved, while also 
allowing for q-substitutability between (tasks executed by) automation capital and (tasks 
executed by) certain types of human labour. Namely, DeCanio (2016) shows that q-
substitutability is impossible in any framework with only two production factors (and constant 
returns to scale). Furthermore, it is important to note that there is only one type of automation 
capital 𝑃 present in our framework and it executes all tasks, even of different ability types 
simultaneously. It is for this reason that 𝑃", and not 𝑃&,", features in equation (23). This 
approach mainly proxies well for general purpose automation technologies such as 
computerisation, which are capable of performing sets of tasks of very heterogeneous ability 
levels and which are not solely devoted to the execution of a limited amount of tasks. More 
details on the technical implications of this approach can be found in Appendix A.  

On a final note, the labour-augmenting technical change in our model is consistent with stable 
factor shares, just as in many representations of the neoclassical growth model. Technical 
progress in our model can be considered ‘total labour’-augmenting in the sense that it lifts the 
degree to which the execution of tasks (by both humans and automation capital) contributes 
to the production of final goods. The ratio of the marginal products of automation capital and 
human labour is thus left unaffected by the technical change in the model: the marginal 
products of both factors increase in the same proportion, as under Hicks-neutral technical 
progress. Furthermore, total effective labour 𝐻 and traditional capital 𝐾 are combined in a 
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Cobb-Douglas production function such that the labour augmenting technical progress is not 
labour-biased.4 

2.4 Firm optimisation 
Equation (25) expresses the standard first-order condition that firms invest in traditional capital 
up to the point where its marginal product net of depreciation (𝛿3) is equal to the interest rate.   

(25)		k𝛼 m
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In equation (26), we impose that investment in traditional capital and investment in automation 
capital yield precisely the same after-tax rate of return. This is what Abeliansky and Prettner 
(2017), Cords and Prettner (2018) and Lankisch et al. (2019) refer to as the “no-arbitrage 
condition”. In this equation, 𝜏4 indicates the tax rate (𝜏4 > 0) or subsidy rate (𝜏4 < 0) that is 
applied to the marginal product of automation capital, while 𝛿4 is the depreciation rate of 
automation capital.  
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Labour markets too are assumed to be perfectly competitive such that firms employ human 
labour of ability type 𝑎 up to the point where the marginal product of effective human labour of 
type 𝑎 equals the real hourly wage per unit of human capital of individuals of that ability level. 
This condition is expressed in equation (27). Note that τ+$&"  does not feature in this expression, 
since all labour taxes are assumed to be paid by the employee. 
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2.5 Government  
The government budget constraint is set out in equation (28). Government spending consists 
of government consumption 𝐺", non-employment benefits to older workers 𝐵", expenditures on 
the PAYG pension system 𝑃𝑃", interest payments on public debt 𝑟"𝐷" and lump-sum transfers 
to all living individuals 𝑇𝑅𝐴". The government levies taxes on labour income	𝑇5,", on 
consumption	𝑇*,", on the return to non-human wealth 𝑇*,," and on the returns of automation 
capital 𝑇4,". Government consumption 𝐺" is wasteful: it does not enter in the production function 
nor in the individuals’ utility function. The share of final output that is allocated to consumption 
𝐺" follows an exogenous path defined by the evolution of 𝑔. If the government sets specific 
targets on the evolution of public debt, it can adjust lump-sum transfers. Also note our 
assumption that the pension system is fully integrated into government accounts. We do not 
impose a specific financing of the PAYG pension plan. The government can use resources 
from the general budget to finance pensions.   

 
4 With the assumption of a Cobb-Douglas production function and labour-augmenting technical change, 
our model conforms to two features central in neoclassical growth models. Jones (2005) explains their 
pervasiveness in the literature by highlighting their analytical convenience (they lead to stable steady-
state growth (Uzawa, 1961)), but also finds microfoundations justifying both modelling choices. 
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Following Guo and Lansing (1998) and Boone and Heylen (2019), the average tax rates on 
labour income τ+$& are progressively determined by equation (37).  
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Here, 𝑤&"ℎ$&
"6!#$𝑛$&

"6!#$ is the total pre-tax labour income of the individual at time 𝑡, and 𝑦g"7&8 is 
the average pre-tax labour income in the economy at time 𝑡. Furthermore, 𝛤 represents the 
average labour tax rate for an individual whose labour income is at the economy-wide average and 
ψ determines the progressivity of the tax system. Both tax parameters are time-invariant throughout 
this study. The relevant labour tax rates for the decisions of individuals are the marginal tax rates, 
however. As long as ψ > 0, the marginal tax rate (in equation (38)) is higher than the average tax 
rate. 
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2.6. Aggregate equilibrium  
Aggregate equilibrium on the market for final goods is ensured by the equilibrium on the market 
for loanable funds expressed in equation (39). More precisely, equation (39) imposes that the 
aggregate stock of non-human wealth held by individuals in the economy 𝑍" coincides with the 
total stock of traditional capital, automation capital and government debt. The interest rate 𝑟! 
ensures that this equilibrium on the market for loanable funds is reached (see Figure 1). 
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Figure 1 Visual representation of the market for loanable funds 

 
For simplicity’s sake, the supply of loanable funds is represented linearly here. Note that it is upward-sloping in spite 
of the intertemporal elasticity of substitution of one, following Backus et al. (2014).  
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3 Parameterization and empirical relevance 
3.1 Parameterization 
In order to evaluate the fit of the model’s predictions with the actual data and to simulate the 
impact of exogenous shocks like demographic change or policy initiatives, numeric values 
have to be assigned to the model’s parameters. All parameter values in our baseline model for 
the US can be found in Table 1. Nine parameters were calibrated by imposing that the model 
perfectly replicates recent actual data for the US. In Table 1, these calibrated parameters are 
marked in bold. The other parameter values were taken from the literature. For more 
information on the construction of the calibration targets, we refer to Appendix D. 

Table 1: Parameterization and target values for calibration  

 
The parameters that were assigned a value through calibration on target values are marked in bold. The target 
values are ordered in a logical way: the first target is most relevant in assigning a value to the first calibrated 
parameter, etc. For details on the definition, the sources and the construction of the target values and the policy 
parameters, we refer to Appendix D. 

3.1.1 Technology and preference parameters 
The rate of physical capital depreciation is assumed to be the same for traditional capital and 
automation capital. We impose δ3 =	δ4 = 	0.714, which implies a yearly depreciation rate of 
around 8% because of the fifteen-year length of one model period. Similarly, we impose β =
	0.8 which reflects a rate of time preference of 1.5% per year. We assume the share parameter 
α for traditional capital in the production function for final goods to be equal to 0.25. The idea 
is that before tasks were technologically automatable (𝜉& = 	1, ∀𝑎 = 𝐿,𝑀,𝐻), the share of 
capital in national income was constant and equal to the share parameter 𝛼. This is what 
Samuelson (1964) labelled ‘Bowley’s Law’ and which Kaldor (1961) referred to as the 
steadiness of the wage share. Keynes (1939) also acknowledged the existence of a constant 

𝑛$ = 59.0% 
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labour share and famously labelled it “a bit of a miracle” (p. 49). With regard to the level of the 
constant initial wage share, our value of 0.75 is consistent with the findings of Johnson (1954) 
and Gollin (2002).  

The elasticity of substitution 𝑠 between labour (tasks) of different ability types is set equal to 
1.5. The empirical labour literature consistently documents values between 1 and 2 (Caselli & 
Coleman, 2006). For the value of the intertemporal elasticity of substitution in leisure (1 𝜃⁄ ) we 
follow Rogerson (2007). He puts forward a reasonable range for 𝜃 in macro studies from 1 to 
3. In line with this, we impose 𝜃 to be equal to 2. This choice implies an elasticity of labor 
supply which is much higher than the very low elasticities typically found in micro studies. Given 
our macro focus, however, these micro studies may not be the most relevant ones (Rogerson 
& Wallenius, 2009; Fiorito & Zanella, 2012). Several parameters in our model relate to human 
capital production. For the elasticity of human capital with respect to education time (𝜎) we 
choose a conservative value of 0.3. This value is within the range considered by Bouzahzah 
et al. (2002) and Docquier and Paddison (2003). For the values of the relative initial human 
capital of medium and low ability individuals (relative to the initial human capital of high ability 
individuals, 𝜀0 and 𝜀'), we follow Buyse et al. (2017). They looked at the distribution of PISA 
science test scores in OECD countries. From the robust pattern they observed in relative 
scores of weaker and median performers relative to better performers, they derived ε' = 	0.67 
and ε0 = 	0.84. The initial level of human capital with which high ability individuals enter the 
model is normalized to one in our model (ℎ/ = 	1). Finally, the efficiency parameter 𝜙 in the 
human capital production function has been determined by a calibration procedure that we 
discuss now. 

We calibrated all remaining parameters by imposing that the model matches key data for the 
US. The US provide a good source of data for the calibration exercise since two crucial 
assumptions of the model are relatively justifiable in the US context. The most basic openness 
indicator - trade as a percentage of GDP - views the US as the most closed OECD economy. 
Furthermore, the very low ‘strictness of employment protection’ indicator of the OECD and very 
low union density show that our assumption of a perfectly competitive labour market holds up 
the most for the US.   

The relative taste for leisure of individuals during the final period of active life (γ() is set to 
generate an employment rate among older workers, averaged over the three ability groups 
(𝑛() of 0.59. This is the fraction of potential hours that were actually worked by all individuals 
aged 50 to 64 in the US 2005-2019 (for more details, see Appendix D). The exogenous growth 
rate of 𝐴" is the only source of long-term per capita growth in the model, which is why 𝑥 is set 
to match the average yearly growth rate of potential GDP per person of working age. This was 
1.47% in the US for the years between 2005 and 2019, leading to a value of 𝑥 of 0.244. We 
calibrate the efficiency parameter in the human capital production function 𝜙 such that the 
model accurately predicts the 2005-2019 data on the average aggregate participation in 
education of individuals between 20 and 34. 

For the calibration of the share parameters of the three different ability types of labour (tasks) 
relevant to the production of final output (η', η0, η1), our target values are the pre-tax wages 
of young workers of low and medium education relative to the wages of young workers of high 
education. More specifically, we target data published by the OECD (Education at a Glance 
2020) for the wages of 25- to 34-year old individuals whose highest degree is of the upper 
secondary level or lower (ISCED 3 or lower) and of individuals with short-cycle tertiary 
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education (ISCED 5), relative to the wages of individuals with at least a bachelor’s degree 
(ISCED 6 or higher)5,6. This results in values for η' and η0 respectively. The value for η1  then 
follows as 1 − η' − η0. This approach approximates best our modelling assumptions that 
individuals with low ability do not participate in tertiary education, while those of medium and 
high ability do. We focus on the skill premium for young individuals since this better reflects 
the differences in intrinsic demand for different types of abilities due to differences in the 
importance of tasks in the production of final goods.   

3.1.2 Automation parameters: general  
We identify five parameters relating to automation. These are the shares of automatable tasks 
by ability 1 − 𝜉&	(for	𝑎 = 𝐿,𝑀,𝐻), the elasticity of substitution between automatable and non-
automatable tasks 𝜅, and the productivity of automation capital 𝐽. They are determined such 
that our model replicates or confirms five facts or well-informed hypotheses. A first one is that 
25% of tasks of low ability are automatable. A second and third are that the fractions of 
automatable tasks of medium and high ability equal respectively 85% and 48% of the fraction 
of automatable tasks of low ability. A fourth one is that due to automation the labour share in 
the US fell from 75% to about 70% in 2005-19. The fifth one is Acemoglu and Restrepo’s 
(2018c) claim that if the demographic structure in the US were the same as in Germany, robot 
density in the US would be 21% higher. We now clarify these facts or hypotheses in greater 
detail. 

3.1.3 Shares of automated tasks: 1 − 𝜉" for  𝑎 = 𝐿,𝑀,𝐻   
The basis of our calibration is the work of Arntz et al. (2016) and Popescu et al. (2018). Both 
studies reveal clear heterogeneity between ability types in the share 1 − 𝜉& of tasks that are 
automatable. Unlike most other studies, Arntz et al. (2016) adopt a task-based approach to 
estimate the share of jobs and individuals at high risk of automation. This makes their results 
a more reliable point of reference for us to start from. More precisely, they report for the three 
groups in the US with the lowest ISCED levels7, estimated shares of workers at high risk of 
automation equal to 100%, 44% and 19% respectively. Weighing these shares with the relative 
size of these three groups (US Census Bureau, Current Population Survey), we obtain that 
25.3% of what we label low ability individuals are employed in highly automatable occupations. 
If next we assume a one-to-one relationship between the task content of jobs and the education 
level of those who execute them, our projection follows that a share 1 − 𝜉' of 25% of low ability 
tasks are automatable.  

Taking this 25% for 1 − 𝜉' as our benchmark, similar shares of tasks of medium and high ability 
that are automatable can be derived fairly easily from Popescu et al. (2018). They build on the 

 
5 See Appendix D. Due to a lack of data on the wages of individuals with a post-secondary, non-tertiary 
degree (ISCED 4) in the US, we have to assume that the wages of individuals with short-cycle tertiary 
education (ISCED 5) are representative for the whole medium ability group.  
6 The US Census Bureau defines these categories of educational attainment as ‘high school degree or 
lower’, ‘associate’s degree of some college education’ and ‘bachelor’s degree or higher’, respectively. 
A natural question is whether our model’s assumption of an equal size of each ability group holds up. In 
2019, this assumption seems to approximate reality quite well: 33% of the US population between 25 
and 34 had a high school degree or lower as their highest diploma (ISCED 3 or lower), 27% had an 
associate’s degree or did some college education (ISCED 4 and 5) and 40% had a bachelor’s degree 
or higher (ISCED 6 or higher) (U.S. Census Bureau, Current Population Survey, 2019 Annual Social 
and Economic Supplement).   
7 These are the three ISCED levels that we see as representative for low ability: primary education or 
less, lower secondary education or higher secondary education. 
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work of Frey and Osborne (2017) among others, and also estimate the probability of job 
automation by education level.8 We impose that the relative levels of future automation 
probabilities that they report, are also reflected in the share of tasks of each ability that are 
already automated. In practice, this results in two conditions demanding that the share of 
medium ability (high ability) tasks that are automated is 84.7% (48.0%) of the share of low 
ability tasks that are automated. In absolute terms, it then follows that we impose a value for 
1 − 𝜉0 equal to 21% and a value for 1 − 𝜉1 equal to 12%. We thus assume that the same 
ability bias expected in future automation has been present in the automation technologies up 
to now. Compared to the findings of Arntz et al. (2016), Popescu et al. (2018) put forward 
relatively small differences in job automatability between education levels. By opting for their 
estimates to serve as calibration targets, our model is less likely to overestimate the inequality-
enhancing impact of automation.  

3.1.4 Efficiency parameter of automation capital 𝐽   
Together with the three shares of automated tasks (1 − 𝜉&) fixed above, it will be the efficiency 
parameter 𝐽 that determines the share of income that is a remuneration for automation capital 
(equation (41)). 
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Since traditional capital 𝐾" and aggregate effective labour 𝐻" are combined in a Cobb-Douglas 
production function with an output elasticity of traditional capital of 0.25, the share of human 
labour in the national income is 0.75 minus automation capital’s income share. As indicated 
earlier, before tasks became technologically automatable (𝜉& = 1 , ∀𝑎 = 𝐿,𝑀,𝐻), automation 
capital’s share of income was zero (equation (41)) and the labour share of income was a 
constant 0.75, which is thought to reflect the constancy of the labour share that Keynes noted 
(1939). We then calibrate the constant parameter value 𝐽 such that – with given values of 
1 − 𝜉& and the demographic parameters – the labour share that our model produces in the US 
for the 2005-2019 model period is lower than this original 0.75 due to automation. More 
specifically, we will target a value for the US labour share in this period of 0.701. That is 
precisely half of the fall from the initial 0.75 to the level of 0.652 that Gutiérrez (2017)9 finds for 
the US labour share (excluding the real estate, finance and non-business sectors) for 2010-
2014. In imposing that the automation of tasks was the driving force behind 50% of the fall in 
the labour share, we follow the findings of Karabarbounis and Neiman (2014) and Dao et al. 
(2017).10 As one can see in Table 1, this approach yields a value for 𝐽 equal to 9.26.   

 
8 In line with our approach in the previous section, we equate the low ability type with the ‘less than high 
school’ and ‘high school’ attainment, the medium ability type with the ‘some college’ and ‘associate’ 
attainment and the high ability type with the ‘bachelors’, ‘masters’ and ‘doctorate’ attainment. We weigh 
each attainment by the percentage of jobs with this education level as reported in Popescu et al. (2018). 
This approach results in automation probabilities that unambiguously fall with the educational level, 
consistent with the original findings of Frey and Osborne (2017) and the work of Arntz et al. (2016). 
9 Gutiérrez and Piton (2020) report similar data for the US labour share (excluding real estate) for 
2010-2015 in Figure D.2 of their appendix. In assuming that, in total, the gross US labour share for the 
private business sector declined by almost 10 percentage points (from its ‘constant’ level until 2005-
2019), we follow Manyika et al. (2019) and Karabarbounis and Neiman (2012). 
10 An alternative approach could be to target the stock of automation capital, for example robot capital 
in the US in the 2005-2019 period. Doing that, however, would inevitably result in a vision of automation 
that is too narrow: in reality, there are a multitude of automation technologies contributing to the fall in 
the labour share. 
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We verified and confirmed that this parameterization leads to an efficiency of automation 
capital that is sufficiently high such that our simplifying assumption that ‘all automatable tasks 
are automated’ holds throughout all simulations. Following Acemoglu and Restrepo (2018b), 
the condition that has to be satisfied such that it is strictly cheaper to produce automated tasks 
with automation capital is 𝑤" >

9%	+	𝛿𝑝
$

 where (𝑟" + 𝛿𝑝)/𝑗 represents the real cost of producing a 

task with automation capital and 𝑤" the real cost of producing the same task with human 
labour11. Given the general-purpose nature of our automation technology, the condition is more 
complex in our model. The inequality condition that has to hold such that automatable tasks of 
the low ability type are automated is expressed by equation (42). This is derived in appendix 
A, part 2. Mutatis mutandis, this condition also applies to medium and high ability tasks. 
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The expression in (42) will always hold if 𝐽 is set sufficiently high. For the value that we 
obtained, that is the case. The corresponding conditions for medium and high ability tasks are 
also satisfied.  

3.1.5 Elasticity of substitution between automated and non-automated tasks: 𝜅 
Our model and calibration impose constant parameter values for 1 − 𝜉& and 𝐽 over all periods. 
This choice reflects our focus on non-technological automation at the intensive margin, as we 
have argued in sub-section 2.3. We emphasize as an important channel in response to ageing 
(increased life expectancy, scarcity of young workers) that firms make more use of automated 
tasks in their production and less use of tasks executed by humans. The elasticity of 
substitution between automated and non-automated tasks 𝜅 is crucial here. We calibrate this 
parameter such that ageing induces automation to the extent that is found by the empirical 
study of Acemoglu and Restrepo (2018c). They find that if they increase their ageing variable 
from the US level to the German level, keeping all other things equal12, the induced increase 
in robots per worker “is about 25% of the Germany-US difference in the adoption of robots” (p. 
22)13. Practically, we use the data for 2014 that Acemoglu and Restrepo (2018c) present on 
the size of the robotics gap between Germany and the US: Germany’s relative lead in robotics 
was approximately 85.5%. Acemoglu and Restrepo (2018c) thus more generally find that if the 
US had the demographic structure of Germany, their robot density would be 21.4% higher (a 
quarter of 85.5%). For our calibration, we then impose that, just like in Acemoglu and Restrepo 
(2018c), applying German demography to the US and keeping all other things equal leads to 

 
11 We assume that workers have no preference with regard to executing automatable tasks or non-
automatable tasks such that they will only execute the former if both tasks pay the same hourly wage.  
12 In the work of Acemoglu and Restrepo (2018c), this implies that the control variables remain at US 
level. In our case, “keeping all other things equal” means that all non-demographic parameters are kept 
at US level.  
13 We are aware of the fact that in the newest version of this study, Acemoglu and Restrepo (2021) 
report a stronger link between ageing and robot adoption, with ageing explaining 50% of the Germany-
US robotics gap. The authors convincingly show that ageing significantly stimulates robot adoption, but 
the slope of the relationship is (in both studies) somewhat dependent on the precise specification. We 
opt to follow the more cautious finding of 25% in Acemoglu and Restrepo (2018c). In appendix F, we 
show that if we double the calibration target, which implies (requires) a much higher 𝜅, we would strongly 
overestimate the cross-country differences in robot density. 
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a rise in the baseline automation density of 21.4%. In the counterfactual case with German 
demographics, the US level of automation capital per worker has to be 1.214 times the level 
of automation capital per worker in the baseline case for the US with regular demographics, 
when both are evaluated at the end of the 2005-2019 period. This is the target value for our 
calibration. It yields a value of 𝜅 equal to 3.28.14    

The explanation for why the longer life expectancy and the scarcity of young workers in 
Germany relative to the US contributes to the higher adoption of robotics in Germany is twofold. 
Note that as automated and non-automated tasks substitute better for one another (a higher 
𝜅), both explanations for why ageing stimulates automation gain in strength.  

First, Carvalho et al. (2016), among many others, argue that increased longevity and reduced 
fertility have a net positive effect on total savings. In our closed economy model, increased 
national savings will lead to lower interest rates and capital deepening for all types of capital. 
As noted in Palivos and Karagiannis (2010), however, a higher elasticity of substitution with 
human labour counteracts diminishing returns to capital. This implies that the ageing-induced 
capital deepening will not stimulate the accumulation of the two capital types equally. A 
proportional increase in 𝐾 and 𝑃 would imply a stronger fall in the marginal product of traditional 
capital. Due to the no-arbitrage condition in equation (26), this is not allowed and, compared 
to the situation of proportional increases, 𝑃 will increase even more and 𝐾 will fall until the 
equality of returns has been re-established. Irmen (2021) too finds that, in the long run, a rise 
in longevity stimulates automation. Second, Abeliansky and Prettner (2017) outline how a fall 
in fertility can generate a relative shortage of human labour supply that can encourage the 
adoption of automation technologies. While automation capital is only a q-substitute for low 
ability labour (cfr. infra), it can be shown that an equal fall in the labour supply of all ability types 
positively affects the marginal product of automation capital (while, of course, reducing the 
marginal product of traditional capital) for the final parameter values. Given the no-arbitrage 
condition, a fall in fertility will thus stimulate the accumulation of automation capital.15 Both the 
automation-enhancing effect of a rise in longevity and of a fall in fertility will be stronger in case 
of a higher elasticity of substitution between automated and non-automated tasks 𝜅, since the 
derivative of the marginal product of automation capital with respect to the human labour input 
will be lower in case of a higher 𝜅. This is shown in Appendix B. 

 
14 Ultimately, we judge this calibration approach for 𝜅 to be more sensible than imposing that the model 
mimics the wage effect of increases in robot capital found in empirical studies. An important reason is 
the wide variety in estimated effects. Regarding the impact of increasing robot density on aggregate 
wages, Dauth et al. (2017) find insignificant effects, Graetz and Michaels (2018) find significantly positive 
effects and Acemoglu and Restrepo (2020) find significantly negative effects. In our model, the effects 
of a rise in automation density vary depending on the margin along which the increase was generated. 
In a general equilibrium model, one does not have the luxury to abstract from what has caused the 
increased automation. Automation at the intensive margin increases the aggregate wage moderately, 
automation at the extensive margin strongly decreases aggregate wages. The literature does not 
provide clear guidance on what type of technological progress is responsible for the increase in robot 
density. A varying importance of each type of progress could explain the wide variety in estimated wage 
effects of robotics. 
15 This is closely related to the work of Irmen (2021) who finds that a fall in fertility leads to a rise in 
aggregate wages, which provides incentives for firms to automate (here: the substitution of automated 
tasks for non-automated tasks). 
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3.1.6 Automation at the intensive margin and the effect on wages: q-substitutes?  
Finally, we note that our model succeeds in creating heterogeneous effects from investment 
in automation capital on the different types of human labour despite the common elasticity of 
substitution 𝜅. The main driver of this result is the difference in the shares of total tasks that 
are automated. Similar to the findings of Acemoglu and Restrepo (2020) with regard to 
robotics, the effects of any increase in the stock of automation capital are far more benign for 
the high ability workers. This can be seen in equation (43), derived in Appendix B.  
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The equation determines whether a rise in the input of automation capital in the production 
function has a positive or negative effect on the real hourly wage per unit of human capital for 
an individual of ability 𝑎. The continuity condition for symmetry of the mixed second order 
derivatives is met, such that the equation above also indicates whether the marginal product 
of automation capital is decreasing or increasing in the amount of human labour of type 𝑎. 

The two terms that play a role have distinct interpretations. The first term indicates the effect 
of a rise in 𝑃 on the wage of workers performing tasks of type 𝑎 through the increase in total 
effective labour performing tasks of type 𝑎. The degree to which automated tasks can 
substitute for non-automated tasks of the same ability type 𝑎 - embodied by the elasticity of 
substitution 𝜅 - plays a crucial role here. It can easily be seen that, when the elasticity of 
substitution 𝜅 is sufficiently high, this first effect always turns negative. For our calibrated 
parameter values, this is the case for all ability types. It will be more negative for the low and 
medium ability workers, however, since a larger share of tasks performed by them are 
technologically automatable (larger 1 − 𝜉&). This is not the whole story though. The second 
term indicates the effect of an increase in automation capital on the wage of workers 
performing tasks of type 𝑎 through the increase in total effective labour that performs tasks 
that are different from 𝑎.16 The elasticity of substitution 𝑠 between the different ability types 
plays a large role in determining the sign of this second effect. If performing tasks of an ability 
level different from 𝑎 substitutes for performing tasks of type 𝑎 - 𝑠 is large -, this effect will turn 
negative. For our calibrated parameter levels, however, tasks of different ability types are q-
complements and the effect will be positive.  

The total effect of this non-technological automation at the intensive margin is negative for low 
ability workers, but positive for medium and high ability workers for the calibrated parameter 

 
16 Note that the presence of this second term depends crucially on a specific modelling choice. In our 
framework, it is the same stock of automation capital 𝑃 that substitutes for all human labour, regardless 
of the type of task 𝑎. There is only one automation technology and the representative firm increases its 
input of this technology by investing in 𝑃. This automation capital then contributes to the execution of 
tasks of all types proportional to the share parameter 1 − 𝜉! for that task type. This modelling choice 
reflects the nature of more general-purpose automation technologies such as computerisation better 
than technologies that focus solely on tasks performed by blue-collar, low ability workers (of which 
robotisation might be a more suitable example).   
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values. Strictly speaking, automation is thus only a q-substitute for low ability human labour, 
since, for workers of higher ability, the negative displacement effect of automation is more than 
fully compensated by the increased execution of complementary tasks.  

3.2 Empirical test of the model 
In this section we confront our model’s predictions with the data on cross-country differences 
in automation, employment among older workers, and investment in human capital by the 
young generation. Our calibration implies that the model’s predictions match the data in the 
US exactly. A minimal test of the model’s validity and empirical relevance is whether it can also 
match the data for other OECD countries and (especially) the size of the cross-country 
differences. To do this test, we basically impose the same preference and technology 
parameters reported in Table 1 on all countries. Only the exogenous demographic variables 
and policy parameters, and one ‘technology’ parameter, differ. In Appendix C and D, we 
describe the demographic variables and the policy parameters in greater detail. We also show 
the data per country. The one technology parameter that differs is the efficiency parameter 𝜙 
in the production of human capital. Here we follow the approach in Boone and Heylen (2019) 
and allow differences across four country-groups to capture the effects of differences in 
institutions that may affect the characteristics and the quality of tertiary education17. All in all, 
this confrontation with the data in Figure 2 is encouraging. Our model seems able to translate 
observed differences in demography and policy into realistic performance differences.  
 
The blue line in each panel of Figure 2 is the 45°-line. In the upper left corner of each panel, 
we also report the specification of the regression line that would provide the best fit between 
the model’s predictions and the data, as well as the correlation coefficient R. The regression 
line itself is not drawn. Figures 2(a) verifies whether the model can accurately reproduce 
differences in automation between countries. The actual data used comes from the 
International Federation of Robotics (2005; 2014; 2020) (IFR) reports on the most robotized 
countries in 2019.18 The IFR presents data on robot density in the form of “number of industrial 
robots per 10 000 employees in the manufacturing industry”, out of which we select fifteen 
OECD economies. The vertical axis of Figure 2(a) shows the actual robot density in 2019, 
expressed relatively to the US. The model’s indicator of automation density - set out on the 
horizontal axis - is the ratio of the amount of automation capital 𝑃" at the end of the 2005-2019 
period relative to the size of the three active generations in this period. Since everyone on the 
labour market actually works in the model (there is no unemployment), this indicator reflects 
the amount of automation capital per worker (of which some workers work full time and some 

 
17 The four country groups we consider are euro area countries (Austria, Belgium, France, Germany, 
Italy, the Netherlands, Spain), Nordic countries (Denmark, Finland, Sweden), East-Asian countries 
(Korea, Japan) and Anglo-Saxon countries (Canada, UK, US). For the Anglo-Saxon countries, we 
impose the calibrated 𝜙 = 1.27 of the US. For the other country groups, the parameter 𝜙 is calibrated 
such that the average share of time spent studying when young across the country block accurately 
predicts the recent average participation in education of individuals between 20 and 34 in these 
countries. These averages are respectively 16.9%, 25.5% and 20.5% yielding 𝜙2345 = 1.49, 𝜙654789 =
2.78 and 𝜙2!:;	!:8! = 1.37. For Japan, OECD.stat does not include data on the enrolment rate of 20- to 
34-year-olds. As a result, the East Asian calibration is solely based on Korea. 
18 The data thus only represents one automation technology. Due to its focus on manual labour tasks, 
it might not fully be in line with our model’s automation technology which is inherently general-purpose 
in nature. Our focus on robotics is however very much in line with the literature, and is the result of the 
relative lack of data on the adoption of other automation technologies (Martens & Tolan, 2018). 
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part-time, as in reality). The values of this indicator are, for all fifteen OECD economies, also 
expressed relative to the value for the US.19  

Figure 2: Model predictions (horizontal) against actual data (vertical) 

In panel (a) and (b), Kor2 and Jap2 denote the result for South Korea and Japan respectively, when taking into 
account the historical and future tax incentives for investment in robotics which the countries have offered. Kor1 
and Jap1 denote the result for both countries when ignoring these tax incentives. Underlying the model predictions 
for each country is the assumption that lump sum transfers adjust in equation (30) to keep the predicted public debt-
to-GDP ratio equal to its actual level.  
 
The baseline correlation between the model’s predictions and the actual values in panel (a) is 
76%, when taking into account the past and future tax credits20 for robotics in Japan and Korea. 
The slope of 1.01 is extremely close to the ‘optimal’ value of 1. In words, our model does not 
systematically overestimate the effects of demographic and policy differences (slope below 1), 
nor does it systematically underestimate these effects (slope above 1). When we ignore the 

 
. 
20 Japan and Korea are, to the best of our knowledge, the only two countries in our sample who had 
special tax measures for robotics. In Japan, the tax credit rate related to investment in robotics was 3-
5% under the ‘Connected Industries tax system’. The system was in place from June 2018 until March 
2020. More details can be found at https://www.jetro.go.jp/en/invest/support_programs/incentive. In the 
Republic of Korea, the Restriction on Special Taxation Act defines a tax credit related to investment in 
robotics from January 1994 onwards. The tax credit rate was initially 3% to 7% depending on firm size, 
but the tax credit rate was lowered by 2% from 2017 onwards. Korean legal records on the evolution of 
the tax credit for robotics can be found on https://www.law.go.kr/LSW/main.html. From 2020 onwards, 
the tax credit rate will be 3%, 5% or 12% for large, medium-size and small companies respectively 
(https://assets.kpmg/content/dam/kpmg/kr/pdf/2020/korea-tax-brief-202008-v2-eng.pdf). We model the 
tax credit rates through negative values for 𝜏< dependent on the size of investment in automation capital.   
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tax incentives for robotics investment in Japan and Korea, correlation falls slightly to 73%. 
Even when we remove Korea from the sample, correlation is still a respectable 52%. The 
model accurately captures the high degree of automation in the two East Asian economies 
relative to the other nations, but the size of the robotics lead of Japan is somewhat 
overestimated.21 
 
The model mainly relies on exogenous differences in ageing and fiscal policy between 
countries to reproduce actual differences in robot adoption. Ageing stimulates the adoption of 
automation capital for the two reasons highlighted in sub-section 3.1.5. High taxes on low 
ability labour and high benefit replacement rates for low ability individuals all induce a relative 
shortage in the labour supply of low ability labour leading to an increased effectiveness of 
automation capital. High taxes on the return to savings, on the other hand, increase the cost 
of capital and lower the profitability of automated tasks substituting for non-automated tasks. 
High government debt functions in a similar way by raising the interest rate. Finally, generous 
old-age pension systems reduce aggregate savings and thus increase the interest rate and 
the cost of (automation) capital (see for instance Rachel and Summers (2019)), making 
automation capital less cost-effective. 

Figure 2(b) verifies whether the model correctly reproduces cross-country differences in recent 
trends in robot adoption. On the vertical axis of this panel, the change in the log of robots per 
10.000 workers in the manufacturing sector is set out for each country, relative to the change 
in the log in the US in the same period. For most countries, the period over which the log 
change is calculated starts in 1993 (the earliest data the IFR provides) and ends in 2019. For 
Belgium, Canada, the Netherlands, Korea and Japan, we are limited to 2005-2019 for reasons 
of data availability and quality. On the horizontal axis of panel (b), the log increase in our 
model’s proxy for automation density is set out, again relative to the log increase in the proxy 
for the US in that same period.22 Focusing on changes relative to the change in the US is 
desirable since it allows to abstract from common factors driving automation, such as 
technological improvements in the quality of robots. This approach matches the set-up in our 
model to hold technology constant over time and between countries. 

The correlation between actual values and the model’s predictions in panel (b) is 65% in the 
baseline sample, when taking into account the robot tax incentives in Japan and Korea. The 
slope of 0.95 is, again, very close to 1, indicating that our model neither over- nor 
underestimates the degree to which ageing causes differences in the evolution of automation. 
When ignoring the robot tax incentives for Japan and Korea, correlation is still 64%. In general, 
the model performs quite well on this front and the bulk of its explanatory power in this regard 
has to be ascribed to demographic change, since, except for the size of government 
consumption and the evolution of the debt-to-GDP ratio, policy parameters are kept constant 

 
21 One remaining concern might be that some countries have a higher robot density because they are 
historically specialized in sectors which are very suitable to automation (e.g., Germany in the automobile 
industry). When we correct the actual values on the vertical axis of Figure 2(a) based OECD data on 
the historical sector composition of manufacturing employment in 1995 and IFR data on the robot density 
per sector in 2019, we still find the correlation in panel (a) to be 67% with a slope of 0.69. 
22 Given the fifteen-year length of periods in the model, the log change between 1993 and 2019 is 
proxied by the log increase from the end of the 1975-1989 period to the end of the 2005-2019 period. 
For the five countries above, our model indicator is the log increase in automation density from the end 
of the 1990-2004 period to the end of the 2005-2019 period. 
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throughout the simulations. This result is thus in line with the claim of Acemoglu and Restrepo 
(2018c) that (expected) ageing is a significant determinant of the adoption of robots. 

We also check the model’s performance with respect to hours worked among older individuals 
in panel (c). The actual employment rate is constructed based on OECD data for 2005-2019 
and considers both the intensive and extensive margin of employment (more details in 
Appendix D). It is proxied by the average share of time spent working by individuals aged 50 
to 64 in the 2005-2019 modelling period. Although we observe a clear overestimation of the 
employment rate in most European nations, the correlation between actual values and model 
predictions is very high and the slope of the regression line is again close to 1. The 
overestimation of the employment rate in Europe may follow from imposing the calibrated taste 
for leisure of the US. Europeans may have a higher taste for leisure as suggested by Blanchard 
(2004). 

Finally, we check the model’s performance with respect to participation in tertiary education in 
panel (d). The actual tertiary education participation rate is constructed based on OECD data 
for 2005-2018 and considers both part- and full-time students (more details in Appendix D). It 
is proxied by the average share of time spent studying of an individual aged 20 to 34 in the 
2005-2019 period. The correlation between actual values and model predictions is 81% and 
the slope is 1.03. Of course, the region-specific value of 𝜙 contributes to the very good result 
here.   

After comparing the model’s predictions with key actual data on four fronts across OECD 
economies, we conclude that it is meaningful to use our model to evaluate the automation 
effects of ageing and to simulate policy shocks. The cross-country differences in automation 
density are realistically captured by the model in panel (a) of Figure 2, while panel (b) shows 
that the model can also account for differences in the evolution of automation density during 
recent decades. Furthermore, the model’s specification and parameters seem capable of 
translating observed differences in policy and demography into realistic differences in labour 
supply at older age and education when young (panels (c) and (d)). This is crucial since, in 
addition to automation, the reaction in these two variables plays a major role in the relationship 
between ageing and the possibility of secular stagnation. Despite the obvious limitations of our 
test in Figure 2, its outcome clearly raises confidence in the reliability of our calibration, and 
our simulations in the next section.  
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4 Ageing, automation and inequality: the effects of ageing-induced 
automation 
For the purpose of this section, we simulate the deterministic model for the US using Dynare 
4.6.2 (Adjemian et al., 2011). Just as before, we impose exogenous paths for the five 
demographic parameters, which are fully known beforehand by the individuals in the model 
(more details in Appendix C and D). The exogenous path of the demographic parameters in 
the US is shown in Figure 3. In our baseline simulation of the future, all policy parameters and 
the public debt ratio are kept at their level of 2005-2019. Lump sum taxes adjust such that the 
government budget constraint always holds. 

Figure 3: Path of exogenous demographic parameters for the US   

 

In this baseline simulation, we observe that the exogenous rise in life expectancy and the 
retirement of the baby boom generation generate a shift in factor prices facilitating the adoption 
of automation capital (see Figure 4, panel (a)). As wages increase and the interest rate falls, 
substituting automated tasks for non-automated tasks is the logical thing to do for cost-
minimizing firms. To evaluate the impact of the ageing-induced automation, we compare the 
baseline results with the counterfactual scenario in which the government raises taxes on the 
return to automation capital such that the level of automation capital per worker does not 
increase through time (see Figure 4, panel (b)). More precisely, the tax rate on the return to 
automation capital τ4," varies endogenously over time to ensure that the decisions of rational 
investors lead to a level of automation density that is constant to the 1989 level. Lump sum 
transfers per capita adjust to absorb the budgetary impact of this automation tax, but, in per 
capita terms, transfers are not materially different from the baseline case (Figure 4, panel (c)). 
The first taxation of automation capital is announced in the 1990-2004 model period and 
implemented in the 2005-2019 model period (see Figure 4, panel (b)). In our counterfactual 
scenario, we thus look at the consequences of ageing when the incentive to automate that 
ageing implies is neutralized. This differs from the approach taken by Stähler (2021) whose 
counterfactual looks at the consequences of ageing in the absence of any automation 
technology. We argue that since ageing directly impacts factor prices and not technology, our 
approach based on a scenario with counterfactual costs rather than automatability offers a 
more suitable comparison. 
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Figure 4: Evolution of automation density, automation tax and lump sum transfers19 

 
In Figure 4(a), ‘automation capital per worker’ relates to the ratio of the stock of automation capital at the end of the 
relevant model period to the size of the workforce in that relevant period. The same applies to Figure 5(d) and (e). 

4.1 Output, capital formation and labour 
Figure 5 summarizes the dynamic simulation results of both the baseline and the 
counterfactual scenario from the 1975-89 period until the 2050-64 model period. 23 Given our 
explanation above, the difference between the baseline and the counterfactual reveals the 
impact of the ageing-induced automation. Based on panel (a), we can thus conclude that the 
additional automation generated by demographic change has been a factor contributing to per 
capita growth in the past and it will be a factor softening the negative output per capita effect 
of a rising old-age dependency ratio in the future.24 Since the output effect of ageing is thus 
somewhat less negative when taking into account that ageing stimulates automation, we 
consider our results as evidence that is cautiously supportive of the hypothesis of Acemoglu 
and Restrepo (2017): automation mitigates the negative effects of ageing, but only partially. 
The intuitive reason behind this mitigation is that, when additional automation is allowed, the 
increased execution of automated tasks can compensate for the relative shortage of human 
workers executing non-automated tasks. In short, ageing-induced automation can soften the 
decline of the labour supply per capita and thus slow down the ‘headwind’ that ageing creates 
from the supply side (Gordon, 2014). Automated and non-automated tasks are imperfect 
substitutes, however, such that the compensation is only partial. As of now at least, the scope 
of tasks in which automation technologies can help cushion the shortage of human workers is 
found to be insufficient. The degree of substitutability between automated and non-automated 
tasks seems to be a crucial factor. When 𝜅 is raised sufficiently such that automated and non-
automated tasks substitute better for each other, it is theoretically possible that ageing-induced 
automation entirely neutralizes the negative effects of future demographic change in the US 
on growth. In Appendix F, we explore this scenario further, but also explain why we judge this 
theoretical case to be empirically unrealistic. 

In Figure 5(b), one can observe that demographic change is a factor drastically lowering the 
interest rate, consistent with earlier analyses of demographic change in an OLG context 

 
23 In Figure 4, 5 and 6, we detrend aggregate variables (such as wage rates, output levels, capital stocks) 
that increase by the rate of technical progress 𝑥 from period to period. These figures thus indicate how 
these macroeconomic variables deviate from their rising trend. As a result, our ‘constant automation 
capital per worker’ counterfactual is, in fact, a scenario in which the growth of automation capital is 
limited to the rate of technical progress 𝑥. 
24 In appendix C, we show that the old-age dependency ratio of the US only starts to rise strongly from 
the 2020-34 model period onwards. Before that, the growth effect of demographic change is positive 
(even in the counterfactual without ageing-induced automation) since the primary reason ageing could 
weigh down growth - what Bloom et al. (2010) labelled the ‘accounting effect’ - is absent. 
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(Ludwig et al., 2012; Eggertson et al., 2019; Gagnon et al., 2021). When the rise in automation 
capital is artificially suppressed by levying an automation tax, the fall in the interest rate is even 
more pronounced. Ageing-induced automation thus partially counteracts the decline in the 
interest rate generated by demographic change. The main reason for this is that traditional 
capital and automation capital complement one another such that allowing investment in 
automation capital can help to keep the productivity of traditional capital high in times of rising 
capital intensity.25 As in Eggertson et al. (2019), we interpret the decline in the return to 
(traditional) capital as an indicator for the new secular stagnation hypothesis and thus conclude 
that ageing-induced automation might also constitute a force mitigating demand-side secular 
stagnation. It is also noteworthy that, when allowed, the rise in automation capital density is 
far more pronounced than for traditional capital (see Figure 5, panel (d) and (e)). The intuitive 
explanation behind this is that, because of its less complementary relation to human labour, 
automation capital thrives in an ageing economy where labour becomes scarcer. Because 
investors demand the same return on both types of investments, automation density has to 
rise more than traditional capital intensity.  

In line with the findings of Heijdra and Romp (2009) and Ludwig et al. (2012), rising life 
expectancy stimulates investment in human capital considerably (Figure 5, panel (f)) since 
individuals have a higher chance of being alive in stages of life where one can benefit from this 
investment in human capital. The anticipation of a longer life as pensioner (without labour 
income) likewise leads individuals to work more when older (Figure 5, panel (g)). This too is in 
line with the findings of the OLG literature studying the effects of ageing (e.g., Heijdra & 
Reijnders, 2018; Devriendt & Heylen, 2020). Following Bloom et al. (2010) working longer and 
studying more can be labelled important “behavioural effects of ageing” mitigating the negative 
impact of an older population. In Figure 5 panel (f) and (g), one can observe that both 
behavioural effects are less strong when ageing-induced automation is allowed to take place. 
The main driver of this result is the higher interest rate in this scenario. When the interest rate 
is higher, working when young and transferring income to the future through the accumulation 
of non-human wealth becomes more interesting relative to investing in the accumulation of 
human capital. Given the higher return on savings, individuals also don’t have to work as hard 
when old to achieve sufficient resources during retirement (income effect) and, given the lower 
amount of built up human capital, the financial return to working is also less worthwhile 
(substitution effect). The negative linkage between the automation effect of ageing and the 
behavioural effects provides a second explanation for why the mitigating effect of ageing-
induced automation is only partial. In short, typical theoretical models studying the growth 
effects find a negative net effect linked to ageing because behavioural effects compensate 
incompletely for the negative accounting effect of a rising old-age dependency. We find that, 
even when adding the possibility for capital - not just labour - to react endogenously to counter 
the relative labour shortage, the net growth effect of ageing remains negative. 

 
25Note that allowing both capital types to complement one another generates, what is effectively, an 
upward shift in capital demand. In combination with an upward-sloping capital supply curve, this leads 
to a rise in the national savings rate (= =#>?#>@#

=#
) (see Figure 5, panel (c)). Intuitively, one might have 

thought that restricting the investment in automation capital in the counterfactual would generate a larger 
traditional capital density in the counterfactual (as investors are forced into traditional capital 
investments). However, this is not the case: the positive productivity shock to traditional capital allows 
traditional capital intensity to be equally high in the baseline as in the counterfactual. Therefore, allowing 
investment in labour-saving technologies does not come at the expense of investment in labour-
augmenting technologies. 
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Figure 5: Evolution of seven selected indicators in the baseline scenario and the 
counterfactual scenario without ageing-induced automation. Indicators marked with * are 

normalized to the level in the 1975-1989 model period. The other variables are in level (%). 
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4.2 Wage formation, labour share and inequality 
The strong, ageing-induced increase in the adoption of automation capital generates a fall in 
the labour share due to the high elasticity of substitution between automated and non-
automated tasks 𝜅 (Figure 6, panel (a)). This is in line with the findings of Karabarbounis and 
Neiman (2014) and Dao et al. (2017) who respectively regard capital-labour substitution and 
automation of routine tasks as important drivers of the fall in the labour share. Given that the 
elasticity of substitution between automated and non-automated tasks 𝜅 is higher than 1, non-
technological automation at the intensive margin will lead to a wedge between the evolution of 
the average productivity and the marginal productivity (or, on competitive labour markets, the 
remuneration) of human labour. Rognlie (2014) rightly points out that it is the evolution of the 
net labour share that has distributional consequences for capital-owners and non-capital-
owners. Since capital accumulation also implies additional depreciation, the ageing-induced 
automation in our model leads to a smaller decline in the net labour share (Figure 6, panel (b)). 
Nevertheless our results imply that automation will be a factor strongly favouring capital 
owners.  

As indicated in sub-section 3.1.6, automation capital is a q-substitute for low ability labour, but 
a q-complement for (medium and) high ability labour. As a result, ageing-induced automation 
generates downward pressure on low ability hourly wages per unit of human capital 𝑤' (Figure 
6, panel (c)), while high ability wages (𝑤1) are positively impacted (Figure 6, panel (e)). The 
dominant, ageing-driven effect is one of rising wages through time, however, as human labour 
becomes relatively scarcer. Unsurprisingly, this results in an increase in lifetime wage 
inequality between the ability types (Figure 6, panels (f) and (g)).26 As a result, ageing-induced 
automation will lead low ability individuals to reduce their workload when older more than their 
medium and high ability counterparts due to substitution effects of the changing wages (results 
not shown). The opposite effects of automation on wages of different ability types thus also 
lead to diverging employment trends. Not just wage, but also welfare inequality increases as a 
result of ageing-induced automation (Figure 6, panels (h) and (i).27 Note that, even when 
ignoring the automation impact, ageing worsens wage and welfare inequality because of a 
strong increase in education by medium and high ability individuals and the fall in the interest 
rate. The falling interest rate is not inconvenient for studying individuals who borrow when 
young and save close to retirement. It is more damaging for low ability individuals with low 
productivity of schooling, however, who are (relative to their lifetime labour income) most 
dependent on interest income throughout their life.  

 
26 The indicator in Figure 6(f), is the average hourly wage of low ability individuals entering the model at 
time 𝑡 throughout their lifetime, relative to the average lifetime hourly wage of high ability individuals of 
the same generation 𝑡. That time 𝑡 is indicated on the horizontal axis of the panel (f). In the same way, 
Figure 6(g), indicates the wage gap between medium and high ability individuals. 
27 The indicator in Figure 6(h), is the percentage increase in consumption in each period of life of low 
ability individuals of generation 𝑡 that is necessary to raise their expected lifetime utility to the 
counterfactual expected lifetime utility they would have enjoyed if they experienced the consumption 
and leisure inputs of high ability individuals of that same generation 𝑡. The generation 𝑡,	being the period 
in which individuals enter the model, is indicated on the horizontal axis of panel (h). For example, it 
would only be after a 90% rise in their actual consumption levels that low ability individuals, young in the 
2035-49 model period, would be indifferent between entering the baseline model as a high ability 
individual or as a low ability individual. In the same way, Figure 6(i), indicates the welfare gap between 
medium and high ability individuals. 
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Figure 6: Evolution of nine selected indicators in the baseline scenario and the 
counterfactual scenario without ageing-induced automation. Indicators marked with * are 

normalized to the level in the 1975-1989 model period. The other variables are in level (%). 
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The absolute welfare effects of ageing-induced automation are positive for individuals of all 
ability and all generations, although the positive welfare effects are spread unevenly (see 
Figure 7).28 For earlier generations, it is actually the low ability individuals who benefit slightly 
more from the automation that ageing elicits: since the bulk of the rise in automation density 
happens after they retire, they barely suffer from the lower demand for low ability labour that 
automation implies, but they do benefit from the higher interest rate. Given their smaller 
retirement income relative to higher ability individuals (and the decreasing marginal utility of 
consumption), the extra interest income has the largest positive effect for them. For later 
generations, however, the labour market effects during active life start to dominate and low 
ability individuals have the least to gain from automation (while high ability individuals have the 
most). Nevertheless, the benefits of automation (in the form of a higher interest income and 
more leisure) still outweigh the negative wage effects for low ability individuals.  

 

  

 
28 In Figure 7, we consider the absolute welfare impact of ageing-induced automation. The indicator 
considers the percentage increase in consumption in each period of life that is necessary to raise an 
individual’s expected lifetime utility under the constant automation density counterfactual to the utility 
level of an individual of the same generation 𝑡 and same ability level 𝑎 under the baseline scenario. The 
generation 𝑡,	being the period in which individuals enter the model, is indicated on the horizontal axis of 
Figure 7. Note that, since the evolution of the share of output that is absorbed by wasteful government 
spending is identical in both scenarios, a welfare analysis is appropriate.  

Figure 7: Absolute welfare effect of ageing-induced 
automation, by generation and ability type28 
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5 Conclusion 
In this study, we built and simulated a stylized computable overlapping generations model that 
incorporates automation of the production process and demographic structure with the aim to 
test the dual hypothesis of Acemoglu and Restrepo (2017) that (1) ageing can be a factor 
stimulating automation and (2) that this ageing-induced automation compensates for the 
typical negative growth effects of ageing that theoretical models find. We paid special attention 
to the theoretical and empirical foundations of the modelling of automation in this paper. 
Theoretically, our work is the first one testing this hypothesis that relates the approach to 
automation rigorously to the state-of the-art conception of automation by Acemoglu and 
Restrepo (2018a; 2018b). Empirically, we tested and largely confirmed the validity of our 
approach and calibration by comparing model predictions of automation density to actual data 
on robotization in a cross-country fashion. An additional important contribution to the literature 
consists of the fact that, while our model is quite small-sized, employment at older age and 
human capital investment are endogenous. This allows us to examine how automation 
interacts with other (more behavioural) effects which compensate for the typical negative effect 
of ageing on growth. The rapidly growing recent literature (e.g. Stähler, 2021; Basso & Jimeno, 
2021; Irmen, 2021; Zhang et al., 2021) has largely neglected empirical verification as well as 
the key role of both labour supply at older age and investment in education. Finally, we add to 
the literature by calculating the welfare impact of ageing-induced automation for individuals 
with different innate ability. 

Our main findings are as follows. Ageing strongly stimulates the adoption of automation 
technologies in our model, as found in earlier empirical and theoretical work and this ageing-
induced automation can improve the growth performance of ageing economies. Given the 
current level of development of automation technologies, however, demographic change will 
still constitute a force weighing down per capita growth in the foreseeable future of the US, as 
old-age dependency starts to rise. Likewise, the fall in the interest rate that ageing induces, is 
softened by ageing-induced automation, but not halted. We thus consider our results to be only 
cautiously supportive of the hypothesis of Acemoglu and Restrepo (2017), since the mitigation 
is only partial. Given the current state of automation technologies, the extent to which 
automation can negate the shortage of human labour is found to be insufficient for complete 
mitigation. An additional explanation for this “only partial”-finding is that, as ageing-induced 
automation softens the relative shortage of human labour, it also reduces the strength of 
behavioural reactions to this relative shortage. Without ageing-induced automation, the 
incentives to retire later and invest more in human capital accumulation would have been even 
stronger. Moreover, the partial mitigation also comes at the cost of heightened inequalities. 
First, ageing-induced automation generates a fall in the labour share of income (not only the 
gross, but also the net share) and higher interest rates, thus benefiting capital-owners. Second, 
it is found to increase the wage and welfare inequality between individuals of different innate 
ability levels. While the real wage of high ability individuals rises, ageing-induced automation 
is a factor reducing the real wage of low ability individuals. Since low ability individuals benefit 
from the rise in the interest rate, however, ageing-induced automation may also make them 
better off in absolute welfare terms. 

Our findings regarding the effects of ageing-induced automation on the labour share of income 
and inequality largely confirm the results in the recent literature mentioned above. When it 
comes to effects on per capita growth, however, the conclusions of several studies (e.g. Irmen, 
2021; Zhang et al., 2021) may be too optimistic. Only when we impose unrealistically high 
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elasticities of substitution between automated tasks and tasks executed by human labour, we 
also find that ageing-induced automation may fully offset the negative per capita growth effects 
of demographic change. This observation underscores the importance of empirical verification 
of calibrated theoretical models.     

An important caveat to this study is of course its ‘constant level of development in automation 
technologies’ assumption. It falls beyond the scope of this work to study how ageing affects 
the returns to automation-related R&D activities, but it is clear that, as the cost of labour rises 
and the cost of capital falls, the incentives to automate currently non-automatable tasks will 
rise. A more optimist interpretation of the results therefore presents itself: even without any 
progress in robotics, AI or computer-assisted machines, these technologies can, as they are 
increasingly used, play a crucial role in limiting the negative consequences of ageing. Nuance 
is required here, however. This study suggests that, even without technical progress, the social 
effects of ageing-induced automation will already be very disruptive. It will be policymakers’ 
challenge to create sufficient public support for automation to play its crucial role in the next 
decades. Clearly communicating that embracing automation technologies goes hand in hand 
with policy initiatives redistributing income from the winners to the losers of automation, could 
prove to be key.
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Appendix A: Task-based framework of automation 

Part 1 - Proof of the validity of equation (23)  

Our starting point is the following expression for 𝐻&,"2"," :  

𝐻&,"2"," = (∫ 𝑡&,,,"
!"#
! 𝑑𝑖!

/ )
!

!"# with 𝑡&,,," = ℎ&,,,"	, ∀𝑖 < 𝜉& and 𝑡&,,," = 𝑗𝑃" + λℎ&,,,"	, ∀𝑖 > 𝜉& 
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Given our calibration, it is at any point cost-effective for firms to only use automation capital to 
execute automatable tasks (see the second part of this Appendix A). We can therefore state 
that 

∀𝑖 > 𝜉&:	𝑡&,,," = 	𝑗𝑃"										(2)  
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									(3) 

Given that the productivity of effective human labour at the execution of any task 𝑖 < 𝜉& is 
identical and individuals have no preference between different tasks, the identical amount of 
human labour ℎ&," will be used for any task 𝑖 < 𝜉& such that ℎ&,,," =	ℎ&,"	(4)  

(3)	&	(4) 	⇒ 𝐻&,"2"," = �ℎ&,"
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The total amount of human labour provided by individuals of a particular ability level 𝐻&," is 

allocated over the different tasks such that 𝐻&," =	∫ ℎ&,"	𝑑𝑖 = 𝜉&ℎ&,"
;&
/ 			(6) 
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 with 𝐽 = 𝑗
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Which results in equation (23).  
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Part 2 - Derivation of the necessary condition that has to hold such that all 
automatable tasks are fully automated 

Deriving 𝑌" with regard to ℎ',3,", which is the human labour devoted to the execution of an 
automatable task 𝑡',3," of the low ability type (with 𝑘 > 𝜉'), results in: 

𝜕𝑌"
𝜕ℎ',3,"

= (1 − 𝛼) �
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𝐻"
�
@
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𝐻',"2","

�

!
A 𝜕𝐻',"2","
𝜕ℎ',3,"

				(1) 

Deriving 𝑌" with regard to 𝑃", which is - given the general-purpose nature of the automation 
technology - the automation capital devoted to the execution of an automatable task 𝑡',3," (with 
𝑘 > 𝜉'), results in: 

𝜕𝑌"
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		(2) 

Starting out from the most general expression, and setting the productivity λ of human labour 
at the execution of automatable tasks (relative to its productivity at the execution of non-
automated tasks) at 1/3, the executed work of the ability type 𝐿 can be written as29: 
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When applying the Leibniz integral rule for definite integrals with constant lower and upper 
limits, we get: 
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As a result,  
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29 We judge a value for λ of 1/3 to be not unreasonable given the exponential comparative advantage 
schedule that Acemoglu and Restrepo (2018a) impose on the productivity of labour.  
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We now proceed by evaluating the ratio CF%
CE%

CF%
CD*,-,%
�  for ℎ',3," = 0 and we verify that this ratio is, 

throughout our simulations, larger than (9%	6H/)(!#J/)
"#

+*,%
 (being the cost of capital relative to 

human labour). Note that evaluating this inequality for ℎ',3," = 0 is sufficient since the ratio 
CF%
CE%

CF%
CD*,-,%
�  will be the lowest for ℎ',3," = 0. This is the case because any increase in ℎ',3," would 

leave the ratio C1*,%,%,%
CE%

C1*,%,%,%
CD*,-,%

�  unchanged (at a constant value of (1 − 𝜉&)3𝑗), but it would 

increase the productivity of automation capital in the execution of tasks of ability types different 
from 𝐿 by increasing 𝐻". As such, if the inequality holds for ℎ',3," = 0, it also holds for higher 
values of ℎ',3,". 

When evaluating CF%
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When evaluating CF%
CE%

 for ℎ',3," = 0, we find: 
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We find that, given our parameterization, the following inequality holds throughout all of our 
simulations for any country: 
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The same inequality holds true for medium and high ability tasks. As a result, it is strictly 
cheaper for firms to use automation capital for the execution of automatable tasks of any ability 
type. As a result, our simplifying assumption that all automatable tasks are automated (and 
that no human labour is used to execute automatable tasks) is valid.  
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Appendix B: Evaluating the sign of mixed second order derivates; q-substitutability? 

The real wage per unit of human labour of individuals of ability type 𝑎 equals the marginal 
product of effective human labour of type 𝑎. The equation below is equation (27) in the main 
text. 
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After rearranging, a non-negative expression 𝐸" that is independent of 𝑃" can be put in front. 
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This simplified expression for the real wage per unit of human capital is now derived with 
respect to the input of automation capital 𝑃".  
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Common terms are put in front and it is identified that they form a non-negative expression 𝐹". 
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Only the final expression is relevant when determining the sign of the derivative: 
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Based on this final expression, we can draw conclusions with regard to why the effects of an 
increase in automation capital vary over the different ability types. For this interpretation, we 
refer to sub-section 3.1.6 of the main text.  
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Appendix C: Modelling of demographic change 

For each country, we use data from the Human Mortality Database (HMD) to construct time-
varying survival rates and fertility rates. For many OECD countries that we include to evaluate 
the empirical value of our model, high-quality time series do not start until 1945. We calculate 
the demographic parameters such that the modelling periods are aligned with fifteen-year 
blocks starting in 1945: 1945-1959, 1960-1974, 1975-1989, 1990-2004, 2005-2019, 2020-
2034, 2035-2049, 2050-2064, 2065-79 and 2080-2094. The survival rates are based on the 
mortality rates of each year in these 15-year time periods, which are subsequently averaged. 
Since individuals in the model can only die when making the transition from one fifteen-year 
block to another (e.g., when going from 20-34 to 35-49), our model parameters do not reflect 
reality perfectly. Real-world survival rates are approximated by calculating the probability of 
reaching the mean age of every period conditional upon having reached the mean age of the 
previous period. The 𝑠𝑟% of the model is thus computed as (1-death27)*(1-death28)*…*(1-
death41). This is then calculated for every year in the 15-year historical time period and 
averaged. The historical survival rates for all age groups, all time periods and all countries 
were constructed in this fashion. Fertility data was constructed on the basis of the number of 
27-year-olds in a country at each year and averaged across fifteen years. The fertility rate is 
then calibrated such that the relative sizes of the young generations through time fit the real 
data on the evolution of these 15-year averages. Following Devriendt and Heylen (2020), we 
do not explicitly account for immigration and emigration in our model. Migration movements of 
individuals up to 27 years old are taken into account in the computation of the fertility rate, 
however.  

The HMD only provides historical data. For long term projections regarding the evolution of 
survival rates and fertility rates in modelling periods in the future, we use the projections of the 
United Nations Population Division (UNPD). 

For the relative sizes of new cohorts entering the model in the future, we based ourselves on 
the medium-variant projections of the UNPD for the total population by five-year age group. 
We use fifteen-year averages of the 25- to 29-year old population. The projections are available 
until 2100 such that the size of new cohorts relative to the previous cohort size can be 
calculated for five 15-year periods after the 2005-2019 period. From the 2095-2109 period 
onwards, our simulations assume that each cohort of 20- to 34-year olds is of identical size as 
the previous one (𝑛 = 0). This approach was followed for all countries.  

For the evolution of future survival rates, we impose that the model accurately replicates the 
growth in the old-age dependency ratio based on the UNPD’s medium variant projections until 
2100. The old-age dependency ratio is defined here as the number of individuals older than 
65 divided by the population between 20 and 64, just like we will do for our model. Since the 
evolution of the old-age dependency ratio does not provide sufficient guidance to determine 
four survival rates, we have to make assumptions. We impose that the proportions of the 
different mortality rates are fixed at their 2005-2019 level for the US throughout the future. For 
instance, the probability of not surviving the transition from the 65-79 age group to the 80-94 
age group for individuals who were in the 65-79 age group in the 1990-2004 period was around 
54%. For individuals in the 35-49 group in the 1990-2004 period, the probability of not reaching 
the next period was around 6%. The survival rates in future periods will increase in a way that 
this factor 9 ratio is maintained. This approach delivers quite intuitive results: the largest 
absolute gains in the reduction of mortality rates in the future will be made for the ages at which 
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this mortality rate is highest. On the other hand, the probability of dying will never fully go to 
zero, even for low ages (see Figure 3 in the main text). This approach allows us to come up 
with survival rates for five 15-year periods after the 2005-2019 period. From the 2095-2109 
period onwards, the survival rates are kept constant in the simulation, at their respective 2080-
2094 levels. Note that for the other countries, we impose that future mortality rates decrease 
at the same rate as for the US, while the proportions of the different mortality rates are also 
fixed at their 2005-2019 level. A fictitious country in which the probability to not survive the 
transition to the third period of life (1 − 𝑠𝑟%) is only half as large as the probability in the US in 
2005-2019 will thus also have a mortality probability (1 − 𝑠𝑟%) that is half as large as the US in 
all future periods. If the same country exhibits a probability to not survive the transition to the 
fourth period of life (1 − 𝑠𝑟() that is 25% smaller than the probability the US in 2005-2019, this 
25% lead relative to the US will also be kept in all future periods. For Korea and Germany, the 
historical survival rates which the HMD provides do not start sufficiently early. As a result, we 
constructed the survival rates before the 2005-2019 period for these two countries by imposing 
that the evolution of the life expectancy at age 20 (by the UNPD) is replicated by the model 
(based on the same assumptions as earlier). An approach based on the old-age dependency 
ratio is not possible here, since we cannot replicate the dependency ratio when fertility rates 
are only imposed from 1945-1959 onwards. Furthermore, since the HMD only provides data 
for 2005-2017, we also performed a correction such that Germany’s lead in life expectancy at 
age 20 to the US is of the level indicated by UNPD data. For future survival rates, the same 
approach as for the other countries was used.  

 We verify whether our method allows us to accurately reproduce evolutions in the old-age 
dependency ratio in various OECD countries. To match the specific age group split in our 
model, we define the old-age dependency ratio as the number of individuals older than 65 as 
a share of the number of individuals between 20 and 64. The actual dependency ratio was 
calculated based on the OECD Historical Population and Population Projections datasets. 
Cross-sectionally, the model’s dependency ratio for the 2005-2019 period (on the horizontal 
axis) matches the average value of the actual dependency ratio over that period (on the vertical 
axis) quite nicely (see Figure C.1). 

Figure C.1: Old-age dependency ratio (65+/20-64) in 15 OECD countries, 2005-2019 

 

The solid blue line is the 45°-line. 
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The correlation between the actual data and the model values is 96%. For most countries, 
there is a slight overestimation of the actual old-age dependency ratio. This is most likely the 
result of our simplified representation of survival rates where reaching the median age of the 
next period in real life is set equal to surviving the transition to the next period in the model. 
For younger ages, the fact that some people did not live the entire part of the next period (but 
are still categorised as ‘survived the whole period’) is balanced out quite well by the fact that 
some individuals lived for some time during the next period (but are still categorised ‘as ‘did 
not live in the whole period’). At older ages however, the first inaccuracy becomes far stronger 
since the actual probability of dying starts to increase faster throughout one’s lifetime. This 
leads to a slight overestimation of the amount of people between the ages of 80 and 95, which 
is not entirely counterbalanced by the exclusion of the possibility to survive past the age of 95 
in the model. The effect is very small, however, and the model captures cross-country 
differences very well overall. 

When the evolution of the dependence ratio is set out for each country individually, it becomes 
clear that the degree of future ageing is reproduced quite well (see Figure C.2). Some 
remarkable differences between the OECD’s projections and our model values are, however, 
apparent for Austria, France, Germany, the Netherlands and Spain in 2052. These differences 
are mostly the result of OECD and UNPD projections on future fertility being in disagreement. 

Moreover, the model’s old-age dependency ratios in the period before 2005-2019 are unlikely 
to capture the full reality, since - for most countries - the data on population size was only 
available from 1945 onwards. For countries such as Canada, Spain and the US, the 
dependency ratios in the beginning of the displayed period are large overestimations. This is 
mainly due to the rapid population growth these countries witnessed before the period of 1945, 
which increased the size of their working-age population relative to earlier generations. For the 
US, we use data on population growth from the 1930-1944 model period onwards, such that 
the fertility rate series starts in the 1945-1959 period for that country. Note that including pre-
1945 data on population growth does not materially affect the model’s predictions for the 2005-
2019 modelling period whatsoever, since these generations are no longer alive in the 2005-
2019 period.



 

 

Figure C.2: The evolution of the actual and model old-age dependency ratio (65+/20-64), 1952-2060 
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Appendix D: Construction of data and data sources 

In this appendix, we indicate how the actual values of key performance variables and policy 
parameters were constructed. The data source and the relevant period are always indicated. 
Several variables were constructed using an approach that is identical to Buyse et al. (2017) 
and we refer to their work for more details on the data construction. Any deviation from their 
approach is mentioned in the text below.  

Performance variables: 

Employment rate in hours when old (𝒏𝟑) (for the age group 50-64, 2005-2019)  

Definition: total actual hours worked by individuals in the age group / potential hours worked. 

Total actual hours worked = total employment in persons x average hours worked per week x 
average number of weeks worked per year 

Potential hours worked = total population in the age group x 2080 (where 2080 = 52 weeks per 
year x 40 hours per week) 

Data sources:  

* Total employment and total population by age group: OECD Stat, Labour Force Statistics by 
Sex and Age. Data are available for 50-54, 55-64. We constructed the data for our group of 
50-64 as a weighted average. 

* Average hours worked per week: OECD Stat, Labour Force Statistics, Hours worked, 
Average usual weekly hours worked on the main job. These data are available only for age 
groups 25-54 and 55-64. We use the OECD data for the age group 25-54 as a proxy for our 
age subgroup 50-54. We constructed the data for our group of 50-64 as a weighted average. 
The data considers dependent employment. Data is lacking here for Canada, Korea and Japan 
such that we used the average value of the remaining countries in our sample. 

* Average number of weeks worked per year: OECD Stat, Labour Force Statistics, Hours 
worked. The average number of weeks worked per year has been approximated by dividing 
average annual hours actually worked per worker (dependent employment) by average usual 
weekly hours worked on the main job by all workers (dependent employment). Data is lacking 
here for Canada, Korea and Japan such that we used the average value of the remaining 
countries in our sample. 

Education rate of young individuals (𝒆) (for the age group 20-34, 2005-2018) 

Data sources: OECD.Stat, Education and Training, Students enrolled by age; OECD.Stat, 
Labour Force Statistics by Sex and Age, Population; OECD.Stat, Education and Training, 
Enrolment rate by age. 

For the 2005-2012 period, our approach is identical to Buyse et al. (2017). The ‘Students 
enrolled by age’ dataset is discontinued in 2012, however, such that for the 2013-2018 period 
we use ‘Enrolment rate by age’ data (all levels of education). Since this data does not 
distinguish between full-time and part-time students, we preferred not to use this dataset for 
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the entire period. Enrolment rates for the age groups 20-24, 25-29 and 30-39 were used. We 
assumed that for 2013-2018, the share of part-time students for each specific age category 
was identical to the share of part-time students in that age category for the 2005-2012 period 
and we applied the same weighting of part-time students. Since each of the three age groups 
represents five years in the model, the final education rate of young individuals is the 
unweighted average of the three. The results for 2013-2018 align closely with what one expects 
based on the 2005-2012 period. The final education rate of a country is the average over the 
complete 2005-2018 period 

Annual real potential per capita GDP growth rate (𝒙) (2005-2019) 

Data source for the real potential GDP: OECD Statistical Compendium, Economic Outlook 
Statistics and Projections, Supply Block, Potential Output of Total Economy, Volume. 

Data source for the population at working age: OECD Statistical Compendium, Short-term 
Labour Market Statistics, Labour Force Statistics - Quarterly levels, Active Population, Aged 
15-64. 

The rate of technical progress 𝑥 is calculated as the average annual growth rate of real 
potential GDP per person of working age, as in Buyse et al. (2017). 

Wages of young, low and medium ability individuals, relative to the wage of young, high 
ability individuals  (+*D#*

+1D#1
 and +2D#2

+1D#1
) (2018-2019) 

Data source: OECD Education at a Glance 2020, Educations and earnings, relative earnings 
by educational attainment (The data considers 2018); OECD Education at a Glance 2020, 
Educational attainment of 25-64 year-olds (The data considers 2019). 

We only consider full-time, full-year earners and the age category of 25- to 34-year-olds. For 
the data construction, we considered ‘below upper secondary education’ and ‘upper secondary 
education’ to be representative for the low ability type, ‘short-cycle tertiary education’ as 
representative for the medium ability type and ‘bachelor’s’ and ‘master’s or doctoral’ as 
representative for the high ability type. For ability types represented by multiple educational 
attainments, we weighted each attainment by the percentage of adults with that level of 
education as the highest level attained (Education at a Glance 2020, Educational attainment 
of 25-64 year-olds (2019)). 

Policy parameters: 

The values of the different policy parameters are indicated in Table D.1 below for the different 
countries in this study. 
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Table D.1: Policy parameters in 2005-2019 for 15 OECD countries 

 

Public debt as a share of total output (𝒅) (2005-2019) 

Data source: OECD Statistical Compendium, Economic Outlook Statistics and Projections, 
Government Accounts, General Government Gross Financial Liabilities as a Percentage of 
GDP; IMF Historical Public Debt Database (HPDD). 

The data in the table above represent averages for the 2005-2019 levels of gross public debt 
as a percentage of GDP. For earlier periods, starting from 1945-1959, fifteen-year averages 
of the level of public debt as a percentage of GDP are constructed based on the IMF HPDD.  

Government consumption spending as a share of total output (𝒈) (2005-2019) 

Data source: OECD Economic Outlook Statistics and Projections, Expenditure and GDP, 
Government final consumption expenditure, nominal value, GDP expenditure approach; 
OECD Economic Outlook Statistics and Projections, Expenditure and GDP, Gross domestic 
product, nominal value, market prices 

Dividing the yearly volume of final government consumption by the GDP data and 
subsequently averaging across fifteen-year periods results in the time-varying value for 𝑔. Due 
to limited data availability for some countries in our sample, we only let 𝑔 vary over the three 
time periods 1975-1989, 1990-2004 and 2005-2019.  

Consumption tax (𝛕𝒄) (2005-2018) 

Data source: OECD.Stat, Annual National Accounts, Supply and Use Tables, SUT Indicators, 
Taxes less subsidies on products in percentage of final consumption expenditure by 
households (total product, total activity) 



XIX 

The aggregate consumption tax rate is calculated by deducting total subsidies on final products 
from the total taxes on final products and then expressing the result as a percentage of final 
consumption expenditures. Data is for the 2005-2018 period, but for several countries data 
availability is limited to a sub-period. For Spain and Germany, no data is available and we use 
the consumption tax rates calculated by Dhont and Heylen (2009), which consider the 1995-
2001 period. For Japan, the Korean consumption tax rate was imposed. Assuming this low 
Korean rate of 6.9% for Japan seems warranted since, before April 2014, the official value-
added tax rate was only 5% and, from April 2014 until October 2019, the rate was 8% (reported 
on the website of the Japanese National Tax Agency). 

Tax rate on the return to savings (𝝉𝒄𝒊) (2012) 

Tax rates on the return to savings are proxied by the average of tax rates applied to interest 
and dividend payments as calculated by the OECD study of Harding (2013) (Table 16 of the 
study). The data considers the tax systems as they were in July 2012. 

Average labour income tax rate, at average income level (𝜞) (2005-2019) 

Data source: OECD.Stat, Public Sector, Taxation and Market Regulation, Taxation, Tax 
Database, Table I.5. Average personal income tax and social security contribution rates on 
gross labour income, Total Tax Wedge. 

The parameter 𝛤 is given a country-specific value based on average OECD data over the 
2005-2019 period on the average tax wedge on labour income including employer social 
security contributions (Table I.5). Consistent with our characterisation of the tax system in 
equation (40), 𝛤 is proxied by the average labour income tax at 100% of the average wage 
over the model period.  

Progressivity parameter of labour income tax system (ψ) (2005-2019) 

Data source: OECD.Stat, Public Sector, Taxation and Market Regulation, Taxation, Tax 
Database, Table I.5. Average personal income tax and social security contribution rates on 
gross labour income, Total Tax Wedge. 

The parameter ψ is set in a country-specific way such that for four different levels of income 
(67%, 100%, 133% and 167% of the average wage) the model’s average tax rates, as stated 
by equation (40), proxy for the actually observed average tax rates as well as possible 
(minimization of squared errors). 

Net pension replacement rates (𝝆) (2018) 

Data source: OECD, Pensions at a Glance 2019: OECD and G20 Indicators, Net pension 
replacement rates by earnings, Table 5.5. 

The net replacement rates are defined as the individual’s net pension entitlement as a 
percentage of the individual’s net pre-retirement earnings. The replacement rates of all types 
of individuals are assumed to be identical to the unweighted average of the net replacement 
rates reported for individuals at 50%, 100% and 150% of average earnings. The calculations 
reflect the situation of individuals entering the labour market in 2018 and onwards.  
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Appendix E: Optimality conditions for behaviour of the household 

Equation (E1) expresses a standard Euler equation for consumption. It is clear that rising 
survival rates will encourage individuals to save more at a given interest rate since this 
increases the probability that the individuals can make use of these savings in the next period. 

(𝐸1)	
*34#,&
%

*3&
% = 𝑠𝑟$6!" 𝛽�1 + 𝑟"6$�  ∀	𝑗	 = 	1, 2, 3, 4 

Equation (E2) states the optimality condition that determines labour supply in the final period 
of active life. The LHS indicates the loss in utility related to having one less unit of leisure in 
that period. The RHS of the equation describes the return of providing an additional unit of 
labour in that period. It consists of a part related to the extra consumption possibilities in the 
period in which more labour is provided itself and another part that is related to the increase in 
consumption possibilities when retired. The latter is the result of the construction of the pension 
system in which retirement benefits are a function of labour income during active life. The 
return to an extra hour of work also rises when it is likelier that the individual will live to enjoy 
this increased retirement benefit: this is the positive substitution effect that one can directly 
observe in equation (E2). As higher survival rates also imply that individuals will set more aside 
for when they become old so they can consume more (𝑐-&"  and 𝑐.&" ), there is also a negative 
income effect of increased life expectancy on labour supply when old.  
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Finally, equation (E3) gives the condition related to the optimal time spent at education when 
young for the medium and high ability individuals. The LHS indicates the marginal utility loss 
from higher investment in human capital when young, related to the fall of hours worked when 
young that it implies. It takes the form of a decrease in consumption possibilities that is 
composed of both the direct loss of income when young and the lower pension benefits later 
as a result of the lower hours worked when young. The RHS then indicates the expected 
discounted gain in utility that stems from earning a higher wage because of an increased 
human capital stock and, as a result of that, also higher pension and non-employment benefits. 
Once again, the rise in life expectancy creates a direct positive effect on the returns to 
education through the increased probability of being alive in stages of life where one can 
benefit of this investment in human capital. On the other hand, negative income effects 
lowering the marginal utility of consumption at later stages of life are also present. 
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Appendix F: Alternative calibration with higher elasticity of substitution 𝜅 

In section 3.1.5, we calibrated the elasticity of substitution between tasks 𝜅 by imposing that 
differences in demography account for 25% of the relative gap in automation density between 
Germany and the US. Given the substantial variation around the estimated effect of ageing on 
robotics, it is appropriate to consider alternative calibration targets for 𝜅. By following the 25% 
found by Acemoglu and Restrepo (2018c), we are relatively conservative regarding the 
strength of the relationship. In an updated version of the same study, Acemoglu and Restrepo 
(2021) revised their conclusion by stating that ageing explains 50% of Germany’s robotics lead 
over the US. The underlying range of estimates that the two studies produce are similar, but 
the final conclusion depends on the preferred specification. It is because of this uncertainty 
surrounding the precise value of our calibration target for 𝜅 and our earlier choice for a target 
value near the lower end of the range, that we here briefly consider an alternative 
parameterization of our model in which the target value is doubled. In the counterfactual case 
with German demographics, the US level of automation capital per worker now has to be 1.428 
times the level of automation capital per worker in the baseline US model with regular 
demographics, when both are evaluated at the end of the 2005-2019 period. 

Table F.1: Parameterization and target values for calibration  

 
As can be seen in Table F.1, this alternative calibration leads to a much higher value of 𝜅	(8.8 
instead of 3.28) and some changes in the other calibrated parameters. We note that condition 
(42) also holds under this new parameterization such that all automatable tasks are cost-
effectively automated. As in section 3.2, we can check the empirical relevance of this 
parameterisation by comparing the model’s predictions regarding automation density with the 
actual data on robot density. Figure F.1 shows the new version of Figure 2, panel (a). 
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Figure F.1: Model predictions (horizontal) against actual data (vertical) on robot density in 
2019 relative to the US  

 

We argue that the model now strongly overestimates the cross-country differences in 
automation in general and the impact of ageing on automation in particular. The slope is now 
0.58 in the baseline case (versus 1.009 under the normal parameterization). The fact that the 
new slope is close to 0.5 implies that doubling the calibration target for 𝜅 leads us to 
overestimate the differences in automation by a factor two. This result legitimises our choice 
to calibrate based on the more cautious conclusion of Acemoglu and Restrepo (2018c).  

Finally, we note that under this alternative parameterization some of the main findings of our 
study in Section 4 would have to be adjusted. As automated tasks can substitute a lot better 
for non-automated tasks when 𝜅	is raised to 8.8, the rise of the old-age dependency in the US 
over the next thirty years does become an engine of growth. Ageing then stimulates the 
adoption of automation technologies even more powerfully and automation is allowed to better 
compensate for the scarcity of humans of working age. These findings underscore the 
importance of the work of Stokey and Rebelo (1995): one theoretical model can lead to entirely 
different conclusions depending on the precise calibration targets. For this reason, it is 
especially important to verify the empirical implications of the model’s parameterization. As a 
result, we conclude that it is theoretically possible for our model to find that ageing-induced 
automation completely neutralizes the negative effect of ageing on growth, but that the 
empirical relevance of the parameterization necessary for this result is highly questionable. 
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 Appendix G: Robustness check - What if government consumption adjusts? 

In Section 4, we outlined the general equilibrium effects of ageing-induced automation under 
the assumption that government consumption as a share of GDP 𝑔 follows an exogenous path, 
while lump sum transfers adjust to maintain a constant public debt to GDP ratio at the level of 
2005-2019. For all periods after 2005-19, the 2005-19 value was imposed on 𝑔. Details on 
construction and sources can be found in Appendix D. In this appendix, we test whether our 
main conclusions also hold true when the government keeps lump sum transfers per capita 
constant at the 1975-89 level, while 𝑔 adjusts. The government now absorbs the costs of 
ageing by reducing government consumption. Everything else is identical to our approach in 
Section 4. Note that in the constant automation density counterfactual too, lump sum transfers 
per capita are kept constant at the 1975-89 level, while 𝑔 adjusts endogenously. Figures G.1 
to G.4 are the new versions of Figure 4 to 7 of the main text.  

For the most part, results do not materially deviate from our findings in Section 4 of the study. 
The most eye-catching difference Is the lower welfare inequality between the ability types in 
Figure G.1, panels (h) and (i). This is mainly because, in Section 4, lump sum transfers are 
reduced (Figure 4, panel (c)), while, in this robustness test, the government does not have to 
reduce lump sum transfers since it is wasteful government consumption that absorbs the costs 
of ageing. These lump sum transfers are most important for low (and medium) ability 
individuals with fewer resources. On the other hand, the somewhat erratic evolution of 
government consumption is also reflected in more fluctuation in national savings and 
eventually output per capita. Here too, however, the main trends described in Section 4 remain 
valid.  

 

 

 

Figure G.1: Evolution automation density, automation tax and lump sum transfers  
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 Figure G.2: Evolution of seven selected indicators in the baseline scenario and the 
counterfactual scenario without ageing-induced automation. Indicators marked with * are 

normalized to the level in the 1975-1989 model period. The other variables are in level (%). 
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Figure G.3: Evolution of nine selected indicators in the baseline scenario and the counterfactual 
scenario without ageing-induced automation. Indicators marked with * are normalized to the level 

in the 1975-1989 model period. The other variables are in level (%). 
 

Figure G.4: Absolute welfare effect of ageing-induced 
automation, by generation and ability type28 
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