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Abstract

This paper proposes a binary classifier to evaluate the so-called rank condition (RC),
which is required for consistency of the Common Correlated Effects (CCE) estima-
tor of Pesaran (2006). The RC postulates that the number of unobserved factors, m,
is not larger than the rank of the unobserved matrix of average factor loadings, $.
When this condition fails, the CCE estimator is generally inconsistent. Despite the
obvious importance of the RC, to date this condition could not be verified. The dif-
ficulty lies in that since the factor loadings are unobserved, $ cannot be evaluated or
estimated directly. The key insight in the present paper is that $ can be established
from the rank of the matrix of cross-sectional averages of observables. As a result,
$ can be estimated consistently using procedures already available for determining
the true rank of an unknown matrix. Similarly, m can be estimated consistently from
the data using existing methods. A binary classifier that evaluates the RC is con-
structed by comparing the estimates of m and $. The classifier correctly determines
whether the RC is satisfied or not, with probability 1 as (N, T) → ∞.
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1 Introduction

In a seminal paper, Pesaran (2006) put forward the Common Correlated Effects (CCE)
approach for consistent estimation of panel data models with a multifactor error struc-
ture. The approach involves augmenting the regression model with “simple” (unweighted)
cross-sectional averages (CSA) of the observables. Asymptotically, as the cross-sectional
dimension (N) tends to infinity, the procedure aims to control for the unobserved com-
mon factors. Given the computational simplicity of the approach, involving least-squares,
the CCE estimator has been highly popular, both in terms of extending it to several addi-
tional theoretical settings1, as well as in terms of applying it to a large range of empirical
areas2.

Notwithstanding its simplicity, CCE comes at a cost. In particular, the CSA of the ob-
servables are valid proxies for the unobserved factors only if the number of factors, m,
does not exceed the rank of the matrix of averaged factor loadings, $. This restriction,
known as the “rank condition” (RC), translates into the requirement that there must be
at least as many observables holding linearly independent information about the unob-
served factors, as the value of m. Westerlund and Urbain (2013) demonstrate that if the
RC fails, then the CCE estimator is not consistent when the factor loadings are corre-
lated with the regressors. More recently, Karabiyik et al. (2019) have shown that even
when the factor loadings are uncorrelated with the regressors, failure of the RC leads to
a lower rate of consistency for the CCE estimator.3

Despite the importance of the RC for the asymptotic properties of the CCE estimator,
practitioners typically take it for granted. The main reason is that the matrix of average
factor loadings is unobserved and therefore its rank cannot be evaluated or estimated
directly.

This paper puts forward a binary classifier that evaluates the rank condition. The key
insight is that the rank of the unobserved matrix of average factor loadings, $, can be
established from the rank of the matrix of CSA of the observables. As we shall show, this
implies that $ can be estimated consistently using existing procedures developed for de-
termining the true rank of an unknown matrix; see e.g. Camba-Mendez and Kapetanios
(2009) and Al-Sadoon (2017) for an overview of this literature. Similarly, the number
of factors, m, can be estimated from the data in a straightforward manner based on ex-
isting methods, such as those developed by Onatski (2010), Ahn and Horenstein (2013)
and Kapetanios (2010), among many others. Comparing consistent estimates of m and

1See e.g. Kapetanios et al. (2011), Harding and Lamarche (2011), Su and Jin (2012), Chudik and Pesaran
(2015), Everaert and De Groote (2016), Harding et al. (2018), Norkute et al. (2020) and De Vos and Everaert
(2021), to mention a few.

2A recent search on Google Scholar indicated that the number of empirical applications based on CCE
estimation currently exceeds one thousand.

3Note that in this case the standard two-way fixed effects estimator also remains consistent; see
Sarafidis and Wansbeek (2012).
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$, m̂ and $̂ respectively, the rank condition is deemed to be satisfied when the classifier
R̂C ≡ 1 − 1{$̂ < m̂} = 1, where 1{·} is an indicator function that returns 1 when the
argument inside the curly brackets holds true and 0 otherwise. The classifier is shown
to be consistent, i.e. it determines correctly whether the rank condition is satisfied or
not, with probability 1 as (N, T) → ∞.

When the RC is violated for the standard CCE approach, one needs to augment the
model with additional CSA that contain extra information about the factors. For in-
stance, Pesaran et al. (2007) and Chudik and Pesaran (2015) advocate adding cross-
sectional averages of external variables. Karabiyik et al. (2019) propose using external
variables as weights, in order to construct additional, weighted-CSA. The weights are
selected based on an Information Criterion (IC). The present paper contributes to this
literature as well, by presenting alternative deterministic weights that arise by splitting
the individual units into different groups, thus computing cluster-specific CSA.

In practice, it is not always clear which set of additional CSA to choose and whether the
selected augmentations are sufficient to restore the rank condition for the augmented-
CCE estimator. To address these issues, we put forward a strategy that combines the
classifier proposed in the present paper and the IC criterion of Karabiyik et al. (2019).
In particular, we first evaluate the RC for the standard CCE estimator, which makes use
of simple (unweighted) CSA. If the RC is satisfied, there is no need to seek additional
CSA. If the RC is found to be violated, we augment the model with additional CSA
(motivated from the aforementioned potential choices), which are selected using the IC
of Karabiyik et al. (2019). Subsequently, we evaluate the RC again for the augmented
‘CCEA’ estimator. If the RC is still violated, more potential expansion CSA need to be
sought, and so on. This strategy enables consistent CCE estimation of panel data models
with a multifactor error structure, even in cases where the rank condition fails for the
original CCE estimator.

We illustrate the practical relevance of our RC classifier by studying the effect of the
Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 on bank prof-
itability. In particular, we analyse bank profitability conditional on several potential
drivers, including bank size, capital adequacy, asset quality and liquidity. We use a
random sample of 450 bank holding companies (BHCs) and banks, and we employ the
CCE approach of Pesaran (2006) in order to account for macro-risk factors and com-
mon shocks, which hit the entire population of BHCs albeit with different intensities.
To examine the impact of the Dodd-Frank Act, we estimate the model separately over
two subperiods, namely 2006:Q1-2010:Q4 and 2011:Q1-2019:Q4. The RC classifier re-
veals that the rank condition holds for the standard CCE estimator in the second sub-
period, but not in the first one. By augmenting the standard set of CSA using external
variables, our procedure is able to restore the rank condition. This is important in the
present study because the estimated effect of size on bank profitability is significantly
lower when using the corresponding augmented CCEA estimator. That is, the incon-
sistent CCE estimator overestimates the impact of bank size on profitability in the first
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sub-period.

The remainder of this paper is structured as follows. Section 2 introduces the model
and the assumptions employed, and reviews the role of the rank condition. Section 3
develops a consistent classifier for evaluating the rank condition that underlies the CCE
approach. Section 5 studies the finite sample properties of the proposed procedure.
Section 6 illustrates our approach by examining the impact of the “Dodd-Frank Act”
on bank profitability in the U.S. banking sector. A final section concludes. Proofs of
theoretical results and additional simulation results are reported in Appendix A and
Appendix B respectively.

In what follows we will use A† to denote the Moore-Penrose pseudo-inverse of the ma-
trix A, rk(A) for its rank, |A| for the determinant and ‖A‖ = [tr (AA′)]1/2 for its Eu-
clidean (Frobenius) matrix norm. A vec(.) denotes the vectorization operation. Finally,
bac (dae) is the floor (ceiling) function, which yields the largest (smallest) integer less
than (greater than) or equal to a.

2 A multi-factor panel data model and the CCE approach

2.1 Model and assumptions

We study the following linear regression model with unobserved common factors

yi = Xiβ + Fλi + εi, (1)

where yi = [yi1, . . . , yiT]
′ denotes a T × 1 vector of observations on the dependent vari-

able for individual i, Xi = [xi1, . . . , xiT]
′ denotes a T × K matrix of covariates, where xit

is K × 1, and β is a K × 1 vector of unknown parameters of interest with ‖β‖ < ∞. The
error term is composite, such that F = [f1, . . . , fT]

′ denotes a T ×m matrix of unobserved
common factors, where ft is m × 1, and λi denotes an m × 1 vector of factor loadings.
Finally, εi = [εi1, . . . , εiT]

′ is a T × 1 vector of purely idiosyncratic disturbances.

Following Pesaran (2006), we assume that the covariates are also subject to a common
factor structure, such that the data generating process (DGP) for Xi is given by

Xi = FΓi + Vi, (2)

where Γi denotes an m × K matrix of factor loadings, and Vi = [vi1, . . . , viT]
′ is a T × K

matrix of idiosyncratic errors.

Replacing Xi in Eq. (1) by the expression in Eq. (2), and stacking the observables into a
T × (K + 1) matrix Zi = [yi, Xi] ≡ [zi1, ..., ziT]

′, yields

Zi = FCi + Ui, (3)
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where Ci = [δi, Γi] is of order m × (K + 1) with δi = λi + Γiβ, and Ui = [εi + Viβ , Vi].
In what follows, it is important to note that Ci can be written as Ci = C̃iB, with

C̃i = [λi, Γi] , B =

[
1 01×K
β IK

]
. (4)

Therefore, since B is always a full rank square matrix, the rank of Ci is solely determined
by the matrix of factor loadings C̃i.

The following assumptions are made throughout the paper:
Assumption 1. (Idiosyncratic errors) εit and vit are mean zero, covariance-stationary variables
that are i.i.d. across i, with E(ε4

it) < ∞ and E(‖vit‖4) < ∞ for all i and t.
Assumption 2. (Common factors) ft is covariance-stationary with E(‖ft‖4) < ∞ and absolute
summable autocovariances, such that T−1F′F → ΣF as T → ∞, where ΣF is positive definite.
Assumption 3. (Factor loadings) C̃i is generated according to

C̃i = C̃ + Ξi; ξi ∼ i.i.d.(0m(K+1), Ωξ), (5)

where C̃ = E(C̃i) ≡ [λ, Γ] such that
∥∥∥C̃
∥∥∥ < ∞, ξi = vec(Ξi), Ωξ = E(ξiξ

′
i) with

∥∥Ωξ

∥∥ < ∞.

In addition, 1
N ∑N

i=1 CiC′
i → ΣC as N → ∞, with ΣC positive definite.

Assumption 4. (Dataset dimension) T ≥ m, with m fixed and finite.
Assumption 5. (Independence) ft, εis, vjl, ξh are mutually independent for all t, i, s, j, l, h.

The setup described by the DGP in Eq. (3) together with Assumptions 1-5, is similar
to that in Pesaran (2006) but deviates in the following respects. First, we focus on a
model with homogeneous slope coefficients and without fixed effects. This is for ease
of exposition only, as the results below also follow through under the assumption of
independent random coefficients with a common mean, as made in Pesaran (2006). Sec-
ond, following Westerlund and Urbain (2013) and Karabiyik et al. (2019), Assumption 3
generalizes Pesaran (2006) by allowing λi and Γi to be correlated across i. Third, we in-
troduce more explicit regularity conditions on the factors and their loadings compared
to what is typically the case in the CCE literature. In particular, the non-central second
moments are assumed to converge to a positive definite matrix. Such regularity con-
ditions are common in the factor literature (see e.g. Bai and Ng, 2002) and allow us to
consistently estimate m.

2.2 CCE and the rank condition

Given that F enters into the data generating process of both yi and Xi, and since λi and Γi
are allowed to be mutually correlated, failure to account for the common factor compo-
nent leads to endogeneity of Xi. Therefore, standard panel data estimators, such as the
two-way fixed and random effects estimators, fail to be consistent for the parameters of
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interest, β. The key idea of the CCE approach is to replace the unobserved factors with
CSA of the observables in Eq. (3).

In particular, taking sample averages over i in Eq. (3), we obtain

Z
T×(K+1)

= F
T×m

C
m×(K+1)

+ U
T×(K+1)

, (6)

where barred variables denote CSA as in Z = 1
N ∑N

i=1 Zi.

Under Assumptions 1-5 it is straightforward to show that U = Op(N−1/2) and C =
C + Op(N−1/2), where C = E (Ci). As a result, Z converges to a linear combination of
the m unobserved common factors, i.e.,

Z = FC + F(C − C) + U = FC + Op(N−1/2). (7)

Suppose that C has full rank, such that CC′ is invertible and bounded by Assumption
3, then post-multiplying Eq. (7) by C′ and solving for F yields

F = ZC′(CC′)−1 + Op(N−1/2). (8)

Thus, in finite samples the common factor component can be controlled for in estimation
by re-writing the original model in Eq. (1) as follows:

yi = Xiβ + Fλi + εi = Xiβ + Zλ∗
i + ε∗i , (9)

where λ∗
i = C+

λi, C+
= C′

(CC′
)−1 and ε∗i = εi − UC+

λi.

The corresponding pooled CCE (CCEP) estimator for β is given by

β̂ =

(
N

∑
i=1

X′
iMXi

)−1 N

∑
i=1

X′
iMyi, (10)

where M = IT − Z(Z′Z)†Z′.4

The CCE approach crucially relies upon the assumption that C is full rank. This restric-
tion, known as the “rank condition” (RC), can be expressed as

$ = m (11)

where we defined $ = rk(C). As pointed out earlier, when the RC fails, such that $ < m,
the CCEP estimator is in general not consistent as the unobserved factor space will not be
controlled for. Unfortunately, there exist several cases where the RC may fail in practice.
For instance, when m > K + 1, i.e. the number of factors is larger than the number

4When the model contains fixed effects, then one may set M = IT − H(H′H)†H′, where H = [ιT , Z]
and ιT is a T × 1 vector of ones.
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of CSA employed, it is straightforward to see that $ ≤ min{m, K + 1} = K + 1 < m.
Intuitively, re-writing Eq. (7) in vector form at time t, we have

zt =

[
yt
xt

]
= C′ft + Op(N−1/2).

It is impossible to solve the above system of K + 1 equations in terms of m > K + 1
unknown factors ft.

Note that K + 1 ≥ m is a necessary but not a sufficient condition for the RC to hold true.
For example, certain columns of Z can be asymptotically uninformative because the
corresponding observables: (i) do not load on the common factors (e.g. Γi = 0); (ii) have
factor loadings that average out (e.g. Γ = Op(N−1/2)); and (iii) do not hold information
on the common factors that is distinct from the information already provided by other
observables. In all these cases, the number of informative observables in Z, measured
by $, can be lower than m.

3 Evaluation of the rank condition

Despite the importance of the RC for the asymptotic properties of the CCE estimator, it
is typically taken for granted in practice. The main reason arguably is that the matrix of
CSA of the factor loadings, C, is unobserved. Therefore the rank of this matrix cannot
be evaluated or estimated directly.

The key insight of this paper is that the rank of C can be determined from the observed
matrix of CSA, Z. To see this, recall from Eq. (7) that Z = FC + Op(N−1/2). It follows
that so long as T ≥ m (Assumption 4),5 then under the maintained assumptions the
rank of Z asymptotically equals that of C. This result is summarized in the following
proposition:

Proposition 1. Let Z = FC + Op(N−1/2). As N → ∞,

rk(Z) a.s.
= rk (FC) = rk

(
C′F′) = rk

(
C′) = rk (C) = $. (12)

The third equality follows from the fact that F′ has full row rank by Assumption 2 and
T > m.6

Proposition 1 implies that estimating rk(Z) is asymptotically equivalent to estimating $.
Hence, one can use the observed Z to infer the rank of C, without observing C itself.

Once a consistent estimate of $ is obtained, the RC can be evaluated by direct compari-
son of this value with a consistent estimate for m. The latter can be determined from the

5This condition trivially satisfied when we consider large T asymptotics, since m is fixed.
6See pg. 85 in Abadir and Magnus (2005) for more details.
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observed data in a straightforward manner based on existing literature; see e.g. Bai and
Ng (2002), Alessi et al. (2010), Onatski (2010) and Ahn and Horenstein (2013), among
many others.

The following two sections provide details for consistent estimation of $ and m. Sec-
tion 3.3 puts forward a binary classifier that evaluates the rank condition correctly with
probability 1 as (N, T) → ∞. Section 4 discusses a strategy for obtaining a consistent
CCEP estimator when the RC fails.

3.1 Consistent estimation of $

Building on the result of Proposition 1, the rank of C can be determined based on the
rank of Z. The problem of testing for the rank of a general matrix is long standing in the
econometrics literature, and many methods have been suggested; see e.g. Cragg and
Donald (1997), Robin and Smith (2000) and Camba-Mendez and Kapetanios (2009).7 A
closely-related problem, which is more relevant in the present context, is the problem of
consistently estimating the true rank of a matrix. The two dominant approaches consid-
ered thus far are based on either sequential testing procedures, or information criteria.
Camba-Mendez and Kapetanios (2009) provide an overview of these approaches and
conclude that sequential testing procedures have an advantage over standard informa-
tion criteria methods under several modeling scenarios. Therefore, in the remainder of
this section, we closely follow the sequential testing procedure advocated by Robin and
Smith (2000). This procedure is straightforward to implement and relies on relatively
mild assumptions, in that it does not require the variance-covariance of the estimator of
the unknown matrix FC to be full rank, or its rank to be known.

A complicating factor in the present paper relative to the method of Robin and Smith
(2000) is that therein the dimensions of the matrix for which the rank is to be estimated
are fixed as the sample size grows. In contrast, here the matrix of interest Z is of order
T × n such that the number of rows (and so, the number of eigenvalues of ZZ′ ) increases
with T. To circumvent this issue, we introduce a narrow matrix Ψ of order n × T, such
that rk(ΨZ) = rk(Z). That is, Ψ has the role of reducing the dimensionality of Z without
altering its rank. The following assumption is employed:
Assumption 6. (Dimensionality reduction matrix) Ψ satisfies

(i) ‖ΨF‖ = Op(1); (ii)
∥∥ΨU

∥∥ = Op(N−1/2);

(iii)
√

Nvec(ΨZ − ΨFC) →L N (0, Ω) .

Assumption 6(i) implies that the entries of Ψ are sufficiently bounded. Assumption 6(ii)
states that Ψ is asymptotically uncorrelated with U, the error term in Eq. (6). Assump-
tion 6(iii) ensures that, by application of a suitable central limit theorem, ΨZ remains

7See Al-Sadoon (2017) for an in-depth study of the relation among various tests of rank.
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√
N-consistent for ΨFC and asymptotically normally distributed as N → ∞. This as-

sumption is identical to Assumption 2.2. in Robin and Smith (2000), except that it is
imposed on ΨZ rather than Z itself.

Given the above, we propose estimating the rank of ΨZ, an n× n matrix, by sequentially
testing the null hypothesis H0 : $ = $∗ against the alternative Ha : $ > $∗, using the
following statistic:

τ = N
n

∑
`=$∗+1

λ`(A), (13)

where λ1(A) ≥ · · · ≥ λn(A) are the ordered eigenvalues of the n × n matrix A ≡
ΨZZ′

Ψ′. The procedure is implemented sequentially for $∗ = 0, . . . , n − 1 and the es-
timated rank $̂ corresponds to the smallest value of $∗ for which the null hypothesis is
not rejected. Under the null, τ has a limiting distribution which is a weighted sum of
independent χ2

1 variables, with weights given by the (n − $∗)2 largest eigenvalues of
(D′

$∗ ⊗ R′
$∗)Ω(D$∗ ⊗ R$∗), where D$∗ and R$∗ denote the eigenvectors corresponding to

the n − $∗ smallest eigenvalues of Z′
Ψ′ΨZ and A, respectively. This is summarized in

the following proposition:

Proposition 2. Suppose that Assumption 6 holds true. Then, as N → ∞,

τ →L
(n−$∗)2

∑
`=1

v`Z2
` , (14)

where v` is the `th largest eigenvalue of (D′
$∗ ⊗ R′

$∗)Ω(D$∗ ⊗ R$∗) and {Z`}
(n−$∗)(n−$∗)
`=1 are

independent standard normal variates such that Z2
` ∼ χ2

1 is independent across `.

The proof of Proposition 2 follows from similar arguments as in Robin and Smith (2000),
mutatis mutandis. We omit the proof to save space.

Note that although Ω is unknown, it can be estimated consistently based on the follow-
ing expression8:

Ω̂ =
1
N

N

∑
i=1

vec(ΨZi − ΨZw)vec(ΨZi − ΨZ)′. (15)

Remark 3.1. In order to consistently estimate $, the significance level αN employed in the
testing sequence needs to decrease as N grows. This is because αN is the probability of
over-estimating the true rank, P($̂ > $), which must tend to zero for $̂ to be consistent.
Hence, αN ought to decrease sufficiently fast with N to limit the number of times $

is over-estimated, but not too fast, as this would result in severe under-estimation of
the true rank when N is small. More specifically, Robin and Smith (2000) show that
αN = o(1) and −N−1 ln αN = o(1) are sufficient for consistency. We suggest using

8Ω can also be estimated using bootstrap techniques. When the model contains fixed constants, Zi
should be time-demeaned, i.e., pre-multiplied with Q = IT − ιTι′T/T.
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αN = αcN−1/γ. This way, for a given choice of α and γ, the level of αN in samples with
small N can be controlled by setting c > 1, whereas the speed at which αN decreases
in N can be governed by setting γ > 0. For instance, choosing α = 5% and setting
c = 20 and γ = 1 fixes the nominal significance level to 5% for N = 20 and lets it
decrease at rate N. Given that over-estimating $ may lead to falsely concluding that
the rank condition is satisfied, we prefer a high rate of decrease with N in order to be
conservative (i.e., requiring strong evidence against the null before rejecting it in favor
of a higher rank estimate) and cap the probability of erroneously concluding that the
rank condition holds true.

In practice, there exist several potential choices for Ψ. One possible (stochastic) choice is
to draw Ψ from the standard normal distribution. The following theorem confirms that
such choice is rank-preserving. Moreover, pre-multiplication of Z by T−1/2Ψ ensures
that the product also adheres to the required conditions above.

Theorem 1. Let T > n and Ψ be a n × T random matrix with i.i.d. standard normal entries.

(i) It holds that

rk(ΨZ) = rk(Z),

that is, the rank of Z is preserved by the random projection Ψ.

(ii) Under Assumptions 1-3, 5 it follows that

T−1/2ΨZ = T−1/2ΨFC + Op(N−1/2),

where
∥∥T−1/2ΨFC

∥∥ = Op (1).

The proof of Theorem 1 is in Appendix A.

Remark 3.2. An alternative stochastic choice would be to set Ψ = Z′/T. However, this
choice is ruled out because even though ΨZ = Z′Z/T is stochastically bounded and has
the same rank as Z, it does not have an asymptotic normal distribution, i.e. it violates
Assumption 6(iii).

Alternatively, the choice for Ψ can be deterministic. In particular, since n time periods
contain the same amount of information on the rank of C as do T observations, an obvi-
ous candidate is to let Ψ = [0n×(T−n), In], which considers only the last n time periods
in Z. Moreover, one can also fold over (i.e. sum every n rows) and average the Z matrix
over time. This corresponds to setting Ψ = 1

dT/ne [ι
′
dT/ne ⊗ In]IdT/nen,T, where ιdT/ne is a

dT/ne × 1 vector of ones. The rank-preserving properties of these projections have also
been verified in (unreported) simulations.

3.2 Consistent estimation of m

There is a substantial literature on estimating the number of factors from observed
data. Briefly speaking, existing methods involve one of the following three approaches:
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looking at differences or ratios of adjacent eigenvalues (e.g. Onatski (2010) and Ahn
and Horenstein (2013)), specifying threshold functions to separate bounded from un-
bounded eigenvalues (e.g. Bai and Ng (2002) and Alessi et al. (2010)), or using sequen-
tial tests that determine which eigenvalues are unbounded (Kapetanios, 2010; Trapani,
2018). Preliminary simulation evidence conducted for this paper shows that the Growth
Ratio (GR) by Ahn and Horenstein (2013) performs well in finite samples and outper-
forms other estimators.9 Therefore, in what follows we propose estimating m using the
GR statistic.

In particular, let Z = [Z1, . . . , ZN] denote a T × (K + 1)N matrix, where Zi (defined in
Eq. (3)) collects all observables for individual i in a T × (K + 1) matrix. Also, let mmax
denote the maximum value of m considered in estimation, such that mmax ≥ m. We
define

m̂ = arg max
j∈{1,...,mmax}

GR(j); GR(j) =
ln(V(j − 1)/V(j))
ln(V(j)/V(j + 1))

, (16)

where V(j) = ∑h
k=j+1 λj (ZZ′/NT) with h = min{T, N(K + 1)}, and λj (ZZ′/NT) de-

notes the jth largest eigenvalue of (ZZ′/NT).

The above GR statistic is easy to compute because it involves maximizing the “growth
ratio” of two adjacent eigenvalues arranged in descending order. The main intuition
is that the growth ratios of two adjacent eigenvalues of ZZ′/NT are asymptotically
bounded, except for the growth ratio involving the mth and (m + 1)th eigenvalues,
which diverges to infinity.

Under regularity conditions implied by Assumptions 1-5, Ahn and Horenstein (2013)
show that

limmin{N,T}→∞Pr (m̂ = m) = 1, (17)

for any mmax ∈ {m, (dcmin{N, T})− m − 1}, where dc ∈ (0, 1].

Remark 3.3. In exactly the same way as described above, the number of factors can also
be estimated based on the T × T matrix YY′/NT, where Y = [y1, . . . , yN] is of dimen-
sion T × N. However, since both yi and Xi share the same factors by assumption, it is
natural to combine them together in order to increase the information set used to con-
struct proxies for F. This strategy is in line with the rationale behind the CCE approach,
which involves solving a system of equations, such that Eq. (3) includes LHS variables
(observables) that are solely driven by a common factor component and purely idiosyn-
cratic noise. Moreover, this strategy is consistent with Westerlund and Urbain (2015),
who also estimate factors based on ZZ′/NT.

9Juodis and Sarafidis (2018) provide additional evidence that confirms the good performance of the
GR statistic in finite samples.
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3.3 A consistent classifier for the rank condition

Given consistent estimates of the rank of C and the number of factors, $̂ and m̂ respec-
tively, the rank condition is deemed to be violated when $̂ < m̂. In particular, we define
the following classifier:

R̂C ≡ 1 − 1{$̂ < m̂}, (18)

where 1{·} is an indicator function that returns 1 when the argument inside the curly
brackets holds true, and 0 otherwise. Hence, if R̂C = 1 the rank condition is considered
to be satisfied, whereas R̂C = 0 indicates that (11) may be violated. The definition in
(18) shows that we also take $̂ > m̂ as a sign that (11) is satisfied.10

The following proposition summarizes the asymptotic properties of the proposed clas-
sifier:

Proposition 3. Let Assumptions 1-6 hold true. Suppose also that $ is determined based on the
sequential testing procedure outlined in Section 3.1, with αN = o(1), and −N−1 ln αN = o(1),
and m is determined by Eq. (16). Then, as (N, T) → ∞,

Pr
[(

R̂C = 1|$ = m
)
∪
(

R̂C = 0|$ < m
)]

→ 1. (19)

That is, the probability that the classifier correctly identifies whether the rank condition
is satisfied or not, converges to unity. The result follows directly from the consistency of
$̂ as N → ∞ under Assumptions 1-6, given an appropriate rate of decay for αN, and the
consistency of m̂ as (N, T) → ∞.

4 What if the rank condition is violated?

When R̂C = 0, the standard CCE estimator is inconsistent in general, unless the regres-
sors are uncorrelated with the unobserved factor loadings. To circumvent this problem,
one may seek to restore the RC by means of augmenting the existing model with addi-
tional CSA. There are several potential strategies available for this purpose.

For example, Pesaran et al. (2007) and Chudik and Pesaran (2015) advocate expanding
Z by adding cross-sectional averages of external variables. This practice requires that
these variables load on the same set of factors F that operate in Zi, but otherwise have
no relation to the dependent variable. To illustrate, consider a setting where m > K + 1
so that the rank condition is violated for Z. Let Z(e)

i be the T × Ke matrix gathering the
exogenous covariates, given by

Z(e)
i = FC(e)

i + ε
(e)
i , (20)

10$̂ > m̂ can only occur in finite samples due to estimation error but not at the population level.
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where C(e)
i denotes an m × Ke matrix of factor loadings with finite mean C(e), and ε

(e)
i

is the T × Ke matrix of errors. Assuming that the components of this DGP also satisfy

Assumptions 1-3 and 5, the augmented matrix of CSA, ZA =
[
Z, Z(e)], may satisfy the

rank condition, because it can be written as

ZA = F
[
C, C(e)]

+
[
U, ε(e)

]
= FCA + Op(N−1/2), (21)

where CA = [C, C(e)]. Given that Z(e)
i loads on the same set of factors F, the augmented

loading matrix CA is now of order m × (1 + K + Ke). Therefore, this can restore the RC
provided that m ≤ 1 + K + K(e) and C(e) is also sufficiently distinct from C.

An alternative idea is to make use of external variables as additional weights, in order
to construct weighted CSA. Such an approach has been recently advocated by Juodis and
Sarafidis (2020), Fan and Liao (2020), Juodis and Sarafidis (2021) and, in the present
context of CCE estimation, by Karabiyik et al. (2019).

To illustrate, let wi denote an external, time-invariant variable.11 Multiplying Eq. (3) by
wi and summing over i yields

Zw
T×(K+1)

= F
T×m

Cw
m×(K+1)

+ Uw
T×(K+1)

, (22)

where Zw = ∑N
i=1 Ziwi, Cw = ∑N

i=1 Ciwi, and Uw = ∑N
i=1 Uiwi. As shown by Karabiyik

et al. (2019), when Ci and wi are correlated, but Ui and wi are not, then Zw = FCw +
Op(N−1/2) and Cw converges to a nonzero matrix.12 If Cw is also sufficiently distinct
from C, the obtained Zw provides new (i.e. rank increasing) information on F, and the
rank of the augmented matrix ZA = [Z, Zw] is increased. As the authors point out, wi
effectively acts as an instrument for Ci, and multiple wi can be combined in an attempt
to restore the RC.13

Lastly, one can also employ deterministic averaging weights, such as binary indica-
tors that give rise to group-specific cross-sectional averages. For example, in a panel
of countries, individual units may be classified as developed, emerging and developing
economies; in a panel of firms, units may be grouped according to their size or sector;
and so on. In many cases, such group memberships are known and the group-specific
averages can be more informative factor proxies than the simple (overall) average.

The rich variety of potential expansions suggested above brings about two important
issues. First of all, the issue of how to choose CSA from a set of candidate expansions.
This is particularly relevant when some weights violate Assumption 2 in Karabiyik et al.

11For example, Karabiyik et al. (2019) estimate a gravity equation of bilateral trade flows and construct
weights based on different measures of trade cost.

12This property is also utilised by Juodis and Sarafidis (2021), who propose the use of aggregation
weights in the context of GMM estimation in panels with T fixed or large.

13See Section 2 in Karabiyik et al. (2019) for the formal set of assumptions required to ensure the validity
of such weights.
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(2019), or some candidate CSA load on different factors than those in the regression
model. Second, given a set of selected additional CSA, one still needs to check whether
the rank condition is satisfied for the augmented-CCE estimator.

In order to tackle the first issue, Karabiyik et al. (2019) have proposed an information
criterion (IC) selection procedure. To illustrate, let Z+ be the matrix of available expan-
sions

Z+ = {Z(1)
+ , Z(2)

+ , Z(3)
+ } (23)

where (say) Z(1)
+ = Z(e) contains CSA of exogenous variables, Z(2)

+ = Zw1 contains a

matrix of CSA arising from a specific weight w1, and similarly Z(3)
+ = Zw2 for a weight

w2. The appropriate set of expansion CSA can be selected from Z+ by minimizing

`∗ = arg min
`

IC(`) (24)

where

IC(`) = ln|ΣN
i=1Z′

iM
(`)
A Zi/NT|+ g(n); g(n) = n(K + 1)

ln
(

min{N,
√

T}
)

min{N,
√

T}
, (25)

and ` = {`1, `2, ...} gathers the indices of the considered expansions from Z+ such that

for (say) ` = {`1, `3}, Z(`)
A = [Z, Z(1)

+ , Z(3)
+ ] = [Z, Z(e), Zw2 ]. The number n denotes the

number of columns in Z(`)
A , and M(`)

A = IT − Z(`)
A

(
Z(`)′

A Z(`)
A

)†
Z(`)′

A .

A desirable property of the IC selection procedure is that it identifies the CSA that bring
in new information about the factors in Zi given what is already present in Z. Variables
or weights that are uninformative, or informative on factors that do not feature in Zi
will be excluded (asymptotically). There is, however, no guarantee that the RC will also
hold for the chosen CSA unless one is certain that the proposal set contains sufficient
informative candidates (see Karabiyik et al., 2019). For example, if the IC does not select
additional CSA besides Z, this could be either because the rank condition is satisfied
with Z, or because no further informative CSA are available in the proposal set Z+.
Therefore, the IC method alone does not allow one to distinguish between these two
scenarios.

To overcome this problem, we propose combining the IC criterion with our proposed
RC classifier. Such strategy circumvents the problem of potential failure of the rank
condition even when additional CSA have been selected. Our strategy is outlined in
Algorithm 1:
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Algorithm 1: CCEA algorithm
(1) Estimate the model parameters using the standard CCE approach and calculate

IC0 = ln|ΣN
i=1Z′

iMZi/NT|+ g(n). Proceed to step 2;
(2) Evaluate the rank condition for Z. If R̂C = 1, no further steps are required. If

R̂C = 0, proceed to step 3;

(3) Employ the IC in Eq. (25) to select from Z+ = {Z(1)
+ , Z(2)

+ , Z(3)
+ , . . . } the set of CSA

that are relevant for the factors in Zi. That is, define `∗ = arg min` IC(`);

(4) If IC(`∗) ≤ IC0, evaluate the rank condition for ZA = [Z, Z(`∗)
+ ] and proceed to

step 5, else proceed to step 6;
(5) If R̂C(ZA) = 1, estimate the model with the CCEA estimator based on ZA. No

further steps are required. If R̂C(ZA) = 0, proceed to step 6;
(6) Z+ does not contain sufficient informative expansions to restore the rank

condition in the model. Add new potential expansions to Z+ and return to step 3;

Remark 4.1. An alternative approach would be to evaluate the RC for all combinations
of potential augmentations until R̂C = 1. However, such approach bares the risk of
selecting CSA that load on different factors than those in Zi, and so they are irrelevant
for approximating the factor space. This follows from the easily shown fact that such
CSA will increase the rank of the augmented loading matrix, despite being irrelevant,
and they will therefore be incorrectly favored by the classifier. One could then falsely
conclude that the RC is satisfied with such augmentations. This is especially the case in
the absence of truly informative (i.e. relevant) CSA in Z+. A preliminary pass-through
by the IC selection eliminates such irrelevant options before they are considered by the
classifier. For this reason, it is crucial to combine the RC classifier with the IC pre-
selection step, as in Algorithm 1.

5 Monte Carlo Simulation

In this section we investigate the small sample behavior of the rank condition classifier
proposed in Section 3 using Monte Carlo simulations.

5.1 Design

Data are generated from Eq. (3), broadly following the design of Westerlund and Urbain
(2013). We set m = 2, K = 1, β = 3 and sample the time series (columns) in F, εi and Vi
assuming independent autoregressive processes with a common AR coefficient ρ = 0.8
and normally distributed mean zero innovations with variance (1 − ρ2) for the factors
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and (1 − ρ2)/2 for the idiosyncratic errors. For the factor loadings γi and Γi, we specify
the following three scenarios:

• Experiment 1: γi = [3, 2]′ + ηi, ηi ∼ N(02, I2), and Γi = γi + [−2, 0]′.

• Experiment 2: γi =

{
[0, 2]′ + ηi for i = 1, . . . , bN/2c
[2, 0]′ + ηi for i = bN/2c+ 1, . . . , N
with ηi ∼ N(02, I2) and Γi = γi.

• Experiment 3: γi ∼ N(02, I2) and Γi = γi.

This design implies that the rank condition is satisfied in Experiment 1 for the simple
CSA Z ($ = m = 2). Therefore, the standard CCE estimator is consistent. In Experiment
2, the basic CSA contain some information for estimating the factors ($ = 1), yet not
sufficient to satisfy the rank condition and consistently estimate the full factor space ($ =
1 < 2 = m). Since the loadings in yi and Xi are (perfectly) correlated, the standard CCE
estimator is not consistent. In Experiment 3 the standard CSA contain no information
at all about the factors ($ = 0 < m), in which case consistent CCE estimation is also not
possible with Z.

The purpose of the classifier in Eq.(18) is to identify whether or not the RC holds true
within each of the scenarios above. To assess this ability in finite samples, we evaluate
the RC in each MC iteration, using Algorithm 1 of Section 4. The number of factors
in Eq.(18) is estimated using the Growth Ratio (GR) statistic of Ahn and Horenstein
(2013), setting mmax = 7.14 The rank of the loading matrix ($) is estimated using the
procedure of Robin and Smith (2000) and a random dimension reduction matrix Ψ with
i.i.d. standard-normal entries, and the nominal significance level of the test sequence
specified by the function αN = cαN−1/γ, with c = 20, γ = 1 and α = 5%. Results for
alternative Ψ (fold-over or sub-sample) are also available upon request.15

Additional CSA are constructed from alternative weighting schemes or external covari-
ates:

Zw,1 =
N

∑
i=1

Ziwi,1, wi,1 =

{
1/N1 for i = 1, . . . , N/2,
0 for i = N/2 + 1, . . . , N,

(26)

Zw,2 =
N

∑
i=1

Ziwi,2, wi,2 =

{
0 for i = 1, . . . , N/2,
1/(N − N1) for i = N/2 + 1, . . . , N,

(27)

which results in CSA calculated over respectively the first (Zw,1) and second (Zw,2) group
of N/2 cross-sections. This choice of weights presumes the existence of an exogenous
grouping of the cross sections, which coincides with Experiment 2, and it is as such an
appropriate RC-restoring expansion in this experiment, but not for experiments 1 and 3,

14Results based on the “Edge Distribution” estimator of Onatski (2010) are also available upon request.
15We also applied the alternative rank estimator by Kleibergen and Paap (2006), but this was found to

be less effective than the main approach suggested in this paper. Results are available upon request.
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where no such grouping exists.
We also provide candidate CSA originating from the T × 2 matrix of external variables

Z(e)
i = FC(e)

i + ε
(e)
i ,

with the columns of ε
(e)
i generated as an AR(1) process with autoregressive coefficient

ρ = 0.8 and mean zero normally distributed innovations with variance (1 − ρ2)/2, and

C(e)
i =

[
2.5 1
1 2.5

]
+ η

(e)
i , vec(η(e)i ) ∼ N(04, I4).

As the Z(e)
i load on the same factors as those in Zi, the matrix Z(e)

= 1
N ∑N

i=1 Z(e)
i is an

informative, RC-restoring, expansion in experiments 2 and 3. We also accommodate in
our simulations the fact that in practice not all external variables will load on the same
factors as those in Zi. These irrelevant candidates are generated from

Z(g)
i = GC(g)

i + ε
(g)
i ,

where the factors G, loadings C(g)
i and innovations ε

(g)
i follow the same DGP as F, C(e)

i

and ε
(e)
i but are independently generated from the latter. As such, Z(g)

i is informative

about G but not F, and Z(g) is therefore not an appropriate expansion in any of the
considered experiments. The total set of candidate expansions that is fed into Algorithm
1 is thus a mixture of both relevant and uninformative candidates, and is given by

Z+ = [Zw,1, Zw,2, Z(e), Z(g)
]. (28)

In accordance with Algorithm 1, the augmented estimator CCEA selects expansions
from Z+ using the Information Criterion by Karabiyik et al. (2019) given in Eq. (25),
and the RC is re-evaluated in case expansions have been chosen.

We generate 2000 datasets for each combination of T = (20, 50, 100, 200) and N =
(20, 50, 100, 200, 500, 1000) and calculate the under/over-estimation frequencies for $̂

and m̂, and the classification accuracy of the RC classifier R̂C, i.e., the % of Monte Carlo
draws where the RC is correctly evaluated. When the RC is not satisfied for the stan-
dard CCE estimator (experiments 2 and 3), we also consider the CCEA estimator and
compute the ‘RC satisfied rate’ as the % of Monte Carlo draws where Algorithm 1 se-
lects expansions that restore the rank condition. Note that the classification accuracy of
the RC classifier for the CCEA estimator can be split into ‘Sensitivity’ (i.e. the rate of
correct detection that the rank condition holds when the right expansions are selected)
and ‘Specificity’ (i.e. the rate of correct detection that the rank condition does not hold
when insufficient expansions are selected). These results are reported in Appendix B,
where we also report the specific expansions selected by Algorithm 1 and estimation
summaries for β.
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5.2 Estimating $ and m

We start our discussion with an overview of the performance of the estimators for $

and m that we feed into the RC classifier. The results are presented in A/B format in
Table 1, with A and B the percentage of MC iterations where $ or m are respectively
under- and over-estimated. The left hand panel contains results for estimating the rank
$ of the loading matrix and reveals that both the over-and under-estimation frequencies
tend to zero as N → ∞. This confirms our claim that $ can be estimated consistently
from Z. It is clear however, that the rank estimator is nevertheless somewhat sensi-
tive to the size of the cross-section dimension, which needs to be sufficiently large (i.e.,
N of at least 50) to achieve an accuracy of 75%. In contrast, performance of the rank
estimator is largely invariant to the size of T, which supports the projection strategy to
guarantee computability of the estimator and large N consistency when also T → ∞. We
find that the i.i.d. standard-normal projection Ψ employed to obtain Table 1 is indeed
rank-preserving. Alternative dimension reduction transformations (data omission, av-
eraging) yield similar results and are therefore omitted to save space. Finally, the rank
estimator is clearly rather conservative in the sense that the true rank is more likely to
be under-estimated than over-estimated. This is by construction, and a consequence
of our chosen significance level αN = 20αN−1, of which its fast decay with N implies
that strong evidence against the null $ = $∗ is required before it is rejected in favor of
a higher rank $ > $∗. Yet, the observed under-estimation frequency is reasonable and
vanishes sufficiently fast with N. In additional (unreported) simulation results it has
been verified that a slower rate of decay on the significance level (say αN = 3αN−1/3)
reduces under-estimation but leads to over-estimation of the true rank. We prefer a con-
servative rank estimator for this classification context as it reduces the risk of falsely
concluding that the RC holds when the CCE estimator will in fact be inconsistent.

The right-hand panel of Table 1 reports results for estimating the number of factors
m = 2 with the Growth Ratio (GR) estimator of Ahn and Horenstein (2013). The es-
timator performs very well despite the high serial dependence in the generated data,
in which case many of its competitors in the literature tend to behave more poorly (re-
sults for some alternative estimators are available upon request). In contrast to the rank
estimator, which is sensitive to N, the finite sample performance of the GR approach
appears to be primarily driven by the time series dimension T. Yet, its small sample
performance is more than adequate as the approach displays low error frequencies even
when T = 20, and identifies m without error when T > 50.
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Table 1: Under/over-estimation frequency of the estimators for $ and m

$̂ m̂

(N, T) 20 50 100 200 20 50 100 200
Experiment 1 20 35/0 26/0 34/0 33/0 14/15 4/0 0/0 0/0
$ = 2, m = 2 50 23/0 20/0 20/0 19/0 5/7 1/0 0/0 0/0

100 14/0 20/0 16/0 14/0 4/8 0/0 0/0 0/0
200 11/0 12/0 11/0 10/0 7/6 0/0 0/0 0/0
500 9/0 8/0 8/0 8/0 7/5 0/0 0/0 0/0

1000 5/0 7/0 7/0 5/0 5/6 0/0 0/0 0/0
Experiment 2 20 32/3 33/3 26/4 27/3 10/6 2/0 0/0 0/0
$ = 1, m = 2 50 19/2 14/2 16/4 17/1 5/3 0/0 0/0 0/0

100 13/1 4/1 10/0 8/0 8/2 0/0 0/0 0/0
200 7/1 8/1 8/0 5/0 6/4 0/0 0/0 0/0
500 5/0 1/0 3/0 3/0 10/1 0/0 0/0 0/0

1000 2/0 1/0 2/0 3/0 8/1 0/0 0/0 0/0
Experiment 3 20 0/7 0/7 0/8 0/7 14/15 4/0 0/0 0/0
$ = 0, m = 2 50 0/3 0/3 0/3 0/2 5/7 1/0 0/0 0/0

100 0/0 0/1 0/1 0/1 4/8 0/0 0/0 0/0
200 0/2 0/1 0/1 0/1 7/6 0/0 0/0 0/0
500 0/0 0/0 0/0 0/0 7/5 0/0 0/0 0/0

1000 0/0 0/0 0/0 0/0 5/6 0/0 0/0 0/0
Notes: (i) Based on 2 000 MC iterations. (ii) Reported in the left hand panel is the percentage
of under/over- estimation of the true rank $ by the rank estimator $̂ applied to Z, with Ψ

drawn from the standard-normal distribution, αN = 20αN−1 and α = 5%. (iii) The right hand
panel is the percentage of under/over estimation of the true number of factors m = 2 by the
Growth Ratio estimator with mmax = 7.

5.3 Evaluating the rank condition

Experiment 1: rank condition satisfied

We start with Experiment 1, in which the rank condition is satisfied for the CCE estima-
tor that uses the standard set of CSA in Z. The classification accuracy reported in Table
2 shows that the R̂C classifier is reasonably accurate in detecting that the rank condition
is indeed satisfied. Even for smaller samples, the RC is correctly confirmed for at least
70% of the MC iterations, the only exception being the smallest N = 20 setting where
the lowest rate is 59%. As the sample size grows, the accuracy improves and we find
that it tends to 1 as both (N, T) → ∞, as required. The results also show that the main
determinant for finite sample performance is the cross-section dimension N, rather than
T. This is as expected from the results in Table 1, which show that $̂ is more prone to
finite sample error than is m̂, which is practically error-less when T ≥ 50, and $̂ fur-
thermore converges at a slower rate and only as N grows. Hence, $̂ is the main driver
of the finite sample performance of R̂C, and therefore, in line with the properties of the
CCE estimator itself, it will mainly be N that needs to be sufficiently large to be able to
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correctly assess the rank condition in practice. Yet, it is clear that N does not need to be
very large to obtain good classification accuracy, nor does the conservative specification
of $̂ lead to too many false conclusions. Note furthermore that the samples where we in-
correctly obtain R̂C = 0 classifications for the CCE estimator prompted the application
of the augmentation strategy outlined in Algorithm 1 of section 4. As shown in Table 8
in the appendix, an expansion was only selected in the smallest samples and in at most
2% of the MC iterations. Hence, the rank evaluation results for the augmented CCEA
estimator reported in the right panel of Table 2 are almost identical to those for the CCE
estimator.

Table 2: Evaluating the rank condition: Experiment 1
CCE CCEA

(N, T) 20 50 100 200 20 50 100 200
Classification 20 0.59 0.73 0.66 0.66 0.64 0.73 0.66 0.66
accuracy 50 0.71 0.80 0.79 0.80 0.73 0.80 0.79 0.80

100 0.80 0.80 0.84 0.86 0.82 0.80 0.84 0.86
200 0.84 0.88 0.89 0.90 0.84 0.88 0.89 0.90
500 0.86 0.92 0.91 0.91 0.86 0.92 0.91 0.91

1000 0.89 0.92 0.93 0.95 0.89 0.92 0.93 0.95
Notes: (i) Based on 2 000 MC iterations. (ii) Reported is the Classification Accuracy (CA),
which is the proportion of MC samples in which the classifier R̂C defined in Eq. (18)
correctly identifies whether the RC is satisfied or not. (iii) The RC classifier uses the GR
estimator of Ahn and Horenstein (2013) with mmax = 7 to estimate m, and the Robin and
Smith (2000) rank estimator with a standard-normal projection matrix and significance
level αN = 20αN−1 to estimate $. (iv) The left panel evaluates the rank condition for
the standard CCE estimator that uses the matrix of CSA Z to control for the unobserved
factors. The right panel evaluates the rank condition for the CCEA estimator, which is the
outcome of Algorithm 1 presented in section 4. That is, if R̂C = 1 for Z, then only Z is
employed in the estimation. If on the other hand Z yields R̂C = 0, then expansion CSA
are selected from Z+ using the IC in (25). The rank condition is then re-evaluated for the
augmented set of CSA.

Experiment 2: rank condition violated for basic weights

Next, we discuss experiment 2, where the rank condition is violated when using the
standard set of CSA Z. As the factor loadings are (perfectly) correlated, the CCE estima-
tor is inconsistent for β in this setting (this can also be seen from the estimation results
in Table 11 in Appendix B). The left ’CCE’ panel of the classification results in Table
3 shows that the RC-classifier strongly signals that the rank condition is violated for
the CCE estimator. The proportion of samples where the classifier wrongly concludes
that the RC holds quickly diminishes as (N, T) → ∞, with the classification accuracy
amounting to more than 90% for most sample sizes.

When the rank condition is found to be violated, Algorithm 1 is applied to resolve the
rank deficiency of the CCE estimator by letting the IC search among the proposal expan-
sions for additional CSA. In this experiment this results in the selection of at least one
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of the valid augmentations (Zw,1, Zw,2, Z(e)) in the majority of combinations of N and T
(see Table 8 in Appendix B). Accordingly, the rank condition was successfully restored
in 91% of the MC iterations even when T = N = 20. This confirms the effectiveness of
the IC by Karabiyik et al. (2019) for selecting appropriate expansions. The proportion of
samples where the RC is restored is given in the lower panel for the CCEA estimator, and
can be seen to converge to 1 as (N, T) → ∞. Hence, Algorithm 1 leads to a consistent
CCEA estimator as (N, T) → ∞ (when provided with appropriate rank-increasing CSA),
which is also confirmed by the estimation results for β in Table 11 of Appendix B. In ad-
dition, note that the algorithm also performs well in finite samples with a high success
rate. The cases where the RC is not satisfied for CCEA are due to the miss-classification
as R̂C = 1 in the ’CCE’ panel, which indeed vanishes as the sample size grows.

In practice, selecting expansion CSA with the IC does not guarantee that the rank con-
dition is also satisfied, leaving the researcher unsure about the state of the RC. Hence,
Algorithm 1 incorporates a re-evaluation with the classifier after expansions have been
chosen. The top right panel of Table 3 reveals that this re-evaluation is able to confirm
with good accuracy that the rank condition is satisfied in those cases where the right ex-
pansions have been selected (see also the Sensitivity, or the rate of correct detection for
the RC holds cases, given in Table 9 of Appendix B). The overall classification accuracy
is over 70% in the smallest samples and gradually converges to 1 as (N, T) → ∞. The
few cases where the RC remains violated are all due to an incorrect R̂C = 1 conclusion
for Z in the first step, which does not prompt action by the algorithm. These RC failures
remain undetected by Algorithm 1 and hence lead to a Specificity (’rate of correct detec-
tion of RC fail cases’) of technically 0%. Note, however, that this amounts to max 8% of
the MC samples even for N = T = 20.

Table 3: Evaluating the rank condition: Experiment 2
CCE CCEA

(N, T) 20 50 100 200 20 50 100 200
Classification 20 0.92 0.94 0.95 0.97 0.73 0.89 0.93 0.95
accuracy 50 0.93 0.97 0.96 0.98 0.86 0.93 0.95 0.98

100 0.92 0.99 1.00 1.00 0.89 0.99 1.00 1.00
200 0.94 0.98 1.00 0.99 0.90 0.98 1.00 0.99
500 0.90 0.99 1.00 1.00 0.89 0.99 1.00 1.00

1000 0.91 1.00 1.00 1.00 0.90 0.99 1.00 1.00
RC satisfied 20 0.91 0.94 0.95 0.97
rate 50 0.93 0.97 0.96 0.98

100 Always 0 0.92 0.99 1.00 1.00
200 (by construction) 0.94 0.98 1.00 0.99
500 0.90 0.99 1.00 1.00

1000 0.91 1.00 1.00 1.00
See notes to Table 2. The ‘RC satisfied rate’ is the % of MC samples in which the algorithm
behind CCEA selects CSA augmentations that restore the rank condition.
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Experiment 3: rank condition violated

Experiment 3 is a setting where the loading matrix C for the standard CSA is rank zero.
Intuitively, the effect of the factors is averaged out in Z such that the CSA are uninfor-
mative for estimating the factor space and the CCE estimator is inconsistent (see Table
12 in Appendix B for confirmation). Table 4 summarizes the ability of our evaluation
procedure to detect this case where the RC is ’severely’ violated. The top panel reveals
that our method is highly accurate in this setting even for very small N. This is due to
the large discrepancy between m = 2 and $ = 0, the latter of which would need to be
overestimated by 2 in order to incorrectly conclude that the RC is satisfied. As we have
specified a conservative estimator for $, such an over-estimation almost never occurred
(recall the bottom panel of Table 1).

Given the strong signal by the classifier that the RC is violated, Algorithm 1 in the
’CCEA’ panel has led to a search for expansion CSA in nearly all MC samples. We

find that the sole rank-restoring expansion Z(e) was selected with high probability, as
indicated by the high proportion of samples for which the RC has been restored (see
the bottom panel of Table 4). With the exception of T = 20 samples, the irrelevant ex-

pansions (Zw,1, Zw,2, Z(g)) are successfully excluded, which confirms the good properties
of the IC also in this experiment. This can be seen from Table 8 in Appendix B. Note,
however, that compared to Experiment 2 the classifier appears less capable to confirm
that the rank condition is restored when N is very small. Accuracy is only 40% when
N = 20 (see also the low Sensitivity in Table 9 in Appendix B). Closer analysis reveals
that this is caused by a relatively large under-estimation rate (60%) of the true rank in
N = 20 samples when the correct expansion was selected. A possible cause is that the

expanded matrix ZA = [Z, Z(e)
] has a potential rank (number of columns=4) which is

twice the true rank (2). This suggests a relatively high level of estimation noise, and a
cross-section dimension of N = 20 appears too small to estimate the rank well in such
cases. Yet, the performance of the estimator improves quickly with N and classification
accuracy recovers to 85% or higher for N = 100. This confirms our earlier conclusion
that sufficiently large N is key for good evaluation of the rank condition.

As a final experiment, we consider also the empirically relevant scenario where the pro-
posal set Z+ does not contain sufficient informative CSA to restore the rank condition.
To that end, we report in the CCEA,sub panel of Table 4 the outcomes of Algorithm 1

when the set of proposal expansions is Z+,sub = {Zw,1, Zw,2, Z(g)} in stead of Z+. Hence,
Z+,sub contains insufficient valid expansions to restore the RC, and Algorithm 1 should
signal that the RC remains violated even when expansions have been selected from it. It

is furthermore important that the IC does not select Z(g), the CSA that loads on factors
not in Zi, as it would lead to false conclusions that the RC is satisfied by the classifier (see
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Remark 4.1). This makes the setting particularly challenging. The results summarized
in the CCEA,sub panel of Table 4 show, however, that the classifier confirms with high
accuracy that the RC fails even after expansions were chosen. This is also visible from
the Sensitivity/Specificity breakdown in Table 9 of Appendix B. In dept analysis reveals

that the few miss-classified cases are primarily caused by selection of the invalid Z(g)

expansion by the IC, which has indeed prompted false conclusions that R̂C = 1. Yet,
since the IC is able to successfully exclude this expansion when T is sufficiently large
(T > 20 suffices in this experiment), miss-classification indeed vanishes as N and T
grow, as required. Unreported simulation results confirm that alternatives to Algorithm
1 which do not include a pre-selection step by the IC lead to erroneous conclusions that
the RC can be restored with Z+,sub.

Table 4: Evaluating the rank condition: Experiment 3
CCE CCEA CCEA,sub

(N, T) 20 50 100 200 20 50 100 200 20 50 100 200
Classification 20 0.98 0.99 0.99 1.00 0.38 0.41 0.38 0.40 0.92 0.96 0.92 0.94
accuracy 50 0.99 0.99 0.99 1.00 0.65 0.68 0.67 0.73 0.97 0.97 0.98 0.99

100 1.00 1.00 1.00 1.00 0.86 0.94 0.96 0.91 0.98 0.99 0.99 1.00
200 0.99 1.00 1.00 1.00 0.91 0.98 0.98 0.96 0.97 0.99 0.99 0.98
500 1.00 1.00 1.00 1.00 0.93 0.99 0.99 0.97 0.96 0.99 1.00 1.00

1000 1.00 1.00 1.00 1.00 0.93 0.99 0.99 0.99 0.98 1.00 0.99 0.99
RC satisfied 20 0.92 0.97 0.99 0.99
rate 50 0.96 0.99 0.99 1.00

100 Always 0 0.96 0.99 1.00 1.00 Always 0
200 (by construction) 0.96 1.00 1.00 1.00 (by construction)
500 0.98 0.99 1.00 1.00

1000 0.98 1.00 1.00 1.00

See notes to Tables 2 and 3. CCEA,sub refers to using Algorithm 1, with the set of potential augmentations given by Z+,sub =

{Zw,1, Zw,2, Z(g)} instead of Z+.

6 On the impact of the Dodd-Frank Act on the profitabil-
ity of U.S. banks

Banks play an important role in the functioning of national economies because they act
as financial intermediaries between savers and borrowers, and facilitate the pricing and
allocation of risks. Studies on the profitability of banking institutions are vital for ob-
taining better understanding of the causes of financial crises, economic recessions and
growth. On the one hand, profits constitute the first line of defense against losses from
credit impairment, since retained earnings are an important source of capital. On the
other hand, when it comes to large banks, high profitability may also signal excessive
market power through stronger brand image or implicit regulatory protection; this is
the so-called “too-big-to-fail” (TBTF) hypothesis, which postulates that large financial
institutions may be so widely interconnected to the rest of the economy that their fail-
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ure would generate a disastrous domino effect for the whole economy. Thus, to the
extent that governments effectively subsidize downsize risk for financial institutions
with TBTF status, large banks face artificially lower costs of capital, and thus reap more
profits (see e.g., Cetorelli and Traina, 2018).

There is a large number of studies that analyse drivers of bank profits in general (see
e.g., Athanasoglou et al., 2008; Baker and Wurgler, 2015; Goddard et al., 2011, 2004; Ian-
notta et al., 2007; Lee and Hsieh, 2013; Staikouras and Wood, 2004). There is also a fairly
substantial literature focusing on the TBTF hypothesis (see e.g. Gropp and Vesala, 2004;
Hakenes and Schnabel, 2011; Morgan and Stiroh, 2005; Sironi, 2003; Stern and Feldman,
2009; Völz and Wedow, 2011). The bulk of this literature provides evidence that govern-
ment bailout guarantees may distort market discipline, inducing excessive risk-taking
and morally hazardous behavior (Mattana et al., 2015).

The present illustration contributes to this literature by examining the impact of the
well-known “Dodd-Frank Act” (DFA) on profitability in the U.S. banking sector. The
DFA is a U.S. federal law enacted during 2010, aiming “to promote the financial stabil-
ity of the United States by improving accountability and transparency in the financial
system, to end “too big to fail”, to protect the American taxpayer by ending bailouts, to
protect consumers from abusive financial services practices, and for other purposes”.16

In a nutshell, the DFA has instituted a new failure-resolution regime, which seeks to
ensure that losses resulting from bad decisions by managers are absorbed by equity and
debt holders, thus potentially reducing moral hazard.

Existing empirical evidence on the extent to which the DFA has alleviated the TBTF is
relatively sparse and not in agreement. For example, while Baily et al. (2020) conclude
on a positive influence of the DFA towards resolving moral hazard, other studies point
in the opposite direction (see e.g. Bordo and Duca, 2018). In what follows, we apply the
CCE estimator and rank test methodology developed in the present paper to shed some
light on this important topic.

6.1 Model Specification

We make use of a panel data set consisting of 450 U.S. banking institutions, each one
observed over 56 quarters. The sample spans the period 2006:Q1–2019:Q4 and includes
the financial crisis (2007–2009).17 We analyse the impact of major drivers of bank prof-
itability, with emphasis on bank size. Thus, we specify the following model:

16See https://www.cftc.gov/sites/default/files/idc/groups/public/@swaps/documents/file/
hr4173_enrolledbill.pdf.

17All data are publicly available and they have been downloaded from the Federal Deposit Insurance
Corporation (FDIC) website. See https://www.fdic.gov/.
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ROAit = β
(`)
1 SIZEit + β

(`)
2 CARit + β

(`)
3 LIQUIDITYit + β

(`)
4 QUALITYit + β

(`)
5 NPLit + uit;

uit = ηi + λ′
ift + εit,

(29)

where i = 1, . . . , N(= 450), t = 1, . . . , T(= 56), ` = τ11{t < τ} + τ21{t ≥ τ} and τ

signifies the first quarter of the first full year after which the DFA became effective, i.e.
2011:Q1. Essentially, the model above is estimated for two different sub-periods, namely
2006:Q1–2010:Q4 and 2011:Q1–2019:Q4; the first sub-period belongs to the Basel I-II pe-
riod, whereas the second one corresponds to the DFA and coincides with the introduc-
tion of the Basel III internationally.18

The variables of the model are defined as follows:

• ROAit denotes the return on assets, defined as annualized net income expressed
as a percentage of average total assets on a consolidated basis;

• SIZEit is proxied by the natural logarithm of bank total assets;

• CARit stands for “capital adequacy ratio”, which is proxied by the ratio of Tier 1
(core) capital over average total assets minus ineligible intangibles. Higher values
of this ratio imply higher levels of capitalisation;

• LIQUIDITYit is given by the loan-to-deposit (LTD) ratio. A higher value of this
ratio implies a lower level of liquidity;

• QUALITYit represents the quality of bank assets and is computed as the total
amount of loan loss provisions (LLP) expressed as a percentage of assets. Thus,
a higher level of loan loss provisions indicates lower quality;

• NPLit is a measure of risk, and denotes the ratio of non-performing loans to total
loans for bank i at time period t. Higher values of the NPL ratio indicate that
banks ex-ante took higher lending risk and therefore they have accumulated ex-
post more bad loans;

The error term uit is composite. In particular, ηi captures bank-specific effects, such as
ownership and location, both of which can be important factors for profitability (Zim-
merman, 1996). The m × 1 vector ft denotes unobserved economy-wide factors that
influence bank profits, albeit with heterogeneous intensities (absorbed by the bank-
specific factor loadings), λi. Last, εit is a purely idiosyncratic error.

The above set of explanatory variables originate from bank accounts (balance sheets
and/or profit and loss accounts) and are tied to management decisions. As such, they

18Basel III is an international regulatory framework for capital standards, which incorporates a set of
reforms within the banking sector, designed to improve the regulation, supervision and risk management.
In short, largely in response to the credit crisis, the Basel III requires banks to maintain proper leverage
ratios and meet certain minimum capital requirements.
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are viewed as “internal”. Bank profitability is also driven by “external” factors that lie
beyond the control of management, such as business cycle effects, monetary shocks and
financial innovation. These are absorbed in our model by the common factor compo-
nent specified in the error term, λ′

ift. Although in some cases external drivers can be
measured and included directly in the model, often the details of measurement may be
difficult and/or contentious.19

We note that internal and external drivers of bank profitability are likely to be mutually
correlated. For example, asset quality may depend on the position of the business cycle,
since contractionary phases are typically associated with a higher level of default risk.
Therefore, standard panel data approaches that fail to control for external drivers are
likely to face an endogeneity issue and, hence, to yield inconsistent parameter estimates.
The CCE approach allows for consistent estimation, provided that the rank condition is
satisfied such that the external drivers are adequately controlled for.

Some discussion on the interpretation of the parameters that characterize Eq. (29) is
noteworthy. To begin with, β

(`)
1 reflects the impact of bank size on profits. Thus, β

(`)
1

captures the effect of market power and implicit regulatory protection via TBTF. More-
over, β`

1 also absorbs the effect of economies of scale. Such scale effects will be positive
(negative) if there exist economies (diseconomies) of scale. However, to the extent that
the degree of returns to scale in the banking sector has remained unaltered during the
sampling period of the analysis, the difference in the coefficient of SIZEit between the
two sub-periods, i.e., β

(τ2)
1 − β

(τ1)
1 , will measure the impact of the Dodd-Frank Act on

TBTF, conditional on the remaining covariates.

β
(`)
2 and β

(`)
3 measure the effect of capital adequacy and liquidity, respectively, on bank

profits. In theory, an excessively high CAR could signify that a bank is operating over-
cautiously and is ignoring potentially profitable investment opportunities. Similarly,
a bank that holds a relatively high proportion of liquid assets (hence, LIQUIDITY is
relatively low) is unlikely to earn high profits. Therefore, β

(`)
2 and β

(`)
3 are expected to

be negative and positive, respectively.

Poor asset quality can be a major cause of decreased profitability, since higher loan loss
provisions tend to impair bank balance sheets by construction. This negative effect is
absorbed by β

(`)
4 .

Finally, β
(`)
5 measures the effect of portfolio risk on profits. The main idea is that when

banks are less exposed to risk, shareholders might be willing to accept a lower return on
assets. If this is true, β

(`)
5 would be negative.

For notational convenience of the analysis below, let Zi denote the T × 6 matrix with the

19For example, how does one measure monetary shocks? Does one look at interest rates or monetary
aggregates? Which monetary aggregates? Similarly, how does one proxy financial innovation? For in-
stance, how does one measure embedded leverage in new financial instruments?
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observables of the model

Zi =
[
yi, x(1)i , . . . , x(5)i

]
, (30)

where yi = [yi1, . . . , yiT]
′ is a T × 1 vector such that yit ≡ ROAit, and similarly for

the remaining variables, where x(k)i denotes the covariate with coefficient β
(`)
k , for k =

1, . . . , K(= 5).

6.2 Evaluating the RC

Before looking at the results obtained from the CCE approach, it is important to test
whether the RC is satisfied. The number of factors m is estimated from the T × (K + 1)N
matrix Z = [Z1, . . . , ZN], using the Growth Ratio statistic of Ahn and Horenstein (2013),
as explained in Section 3.2. The rank of the matrices of CSA that we consider, to be
defined shortly, is determined based on the sequential testing procedure of Robin and
Smith (2000), which is described in Section 3.1. Since T is small in both sub-periods of
the sample, there is no need to reduce the row-dimensionality using a projection matrix.
Thus, we perform the testing procedure on the original CSA matrix.

Standard CCE estimator

We start with the standard CCE estimator of Pesaran (2006), which is based on un-
weighted CSA of the observables

Z =
1
N

N

∑
i=1

Zi. (31)

We focus initially on the bottom panel of Table 5, which reports results for the evalu-
ation of the rank condition. The first and second columns correspond to the standard
CCE estimator applied to the periods 2006:Q1–2010:Q4 (Basel I-II) and 2011:Q1–2019:Q4
(Dodd-Frank Act), respectively.

For the period under Basel I-II we estimate three factors, m̂ = 3. The standard set of CSA
Z appears to be unable to proxy these factors as the RC is found to be violated, R̂C = 0,
for the standard CCE estimator. For the period under the Dodd-Frank Act, we obtain
m̂ = 2 and the rank condition now appears to hold for the CCE estimator.
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Table 5: US bank profitability: Evaluating the rank condition
CCE CCEA

Basel I-II Dodd-Frank Act Basel I-II Dodd-Frank Act
m̂ 3 2 3 2
$̂ 1 3 3 2
R̂C 0 1 1 1
Notes: The columns under Basel I-II report results for the first subsample, which
spans 2006:Q1–2010:Q4. The columns under Dodd-Frank Act correspond to the period
2011:Q1–2019:Q4. m̂ is the number of factors estimated from the T × (K + 1)N matrix
Z = [Z1, . . . , ZN ], using the Growth Ratio statistic of Ahn and Horenstein (2013), and $̂ is
the rank estimator of Robin and Smith (2000), with αN = 20αN−1 and Ψ = IT , as explained
in Section 3.2. R̂C is classifier for the rank condition defined in Eq. (18).

Augmented CCE estimator

Given that the RC is violated for the standard CCE approach in the first sub-period of
the sample, we consider a set of potential expansion CSA, which is given by

Z+ = {Z(1)
+ , Z(2)

+ , Z(3)
+ , Z(4)

+ }. (32)

Z(1)
+ ≡ [x(6), x(7)] is a T × 2 matrix, where x(6) and x(7) denote the simple CSA of two

external variables, namely the return to equity (ROE), and the tier 1 risk-based capital
ratio. ROE is defined as annualized net income expressed as a percent of average total
equity on a consolidated basis. The risk-based capital ratio is defined as the tier 1 (core)
capital expressed as a percent of risk-weighted assets. The rationale behind using these
variables as factor proxies lies in that they present alternative measures of profitability
(yi) and capitalization (x(2)i ), respectively. As such, they are expected to be driven by
the same common factors as those entering into the regression model.

Z(2)
+ and Z(3)

+ denote T × (K + 1) matrices of weighted CSA, computed from Zi in Eq.

(30). Z(2)
+ is calculated using as aggregation weight the initial level of bank-specific debt

ratio value, which is defined as total liabilities over total assets. This variable has been
employed in the literature as a measure of interconnectedness of banks (see Fernandez
(2011)). Thus, banks with similar levels of debt ratio may be hit by common shocks in an
alike manner and therefore they take a similar weight in the computation of the CSA of

Zi. Z(3)
+ uses the size of each bank in the beginning of the sample as averaging weight.

This implies that banks of similar size get a similar weight in the computation of Z(3)
+ .

Finally, Z(4)
+ denotes a T × 2(K + 1) matrix of CSA, obtained using two weights that are

constructed by grouping banks according to their size. In particular, we take the CSA of
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the (K + 1) observables over the bottom and as well as of the top quintile (i.e., 20%) of
banks20 by using the following two weights:

wi =


[1/(0.2N), 0]′ if bank i is in the bottom quintile,
[0, 0]′ if bank i is not in the bottom or top quintile
[0, 1/(0.2N)]′ if bank i is in the top quintile

Table 6 reports IC results for each of the suggested additional CSA. Even though the
rank condition for the standard CCE estimator was found to be satisfied in the second
sub-period, for completeness, we report results in terms of the IC for both sub-periods.

Table 6: US bank profitability: IC for additional CSA
Basel I-II Dodd-Frank Act

IC IC
Z -4.149 -7.664

[Z, Z(1)
+ ] -4.260 -5.510

[Z, Z(2)
+ ] 0.588 -0.516

[Z, Z(3)
+ ] 2.045 0.012

[Z, Z(4)
+ ] 1.529 7.044

Note: the IC criterion is specified in Eq. (25).

Clearly, the unweighted CSA of the two external variables x(6) and x(7) included in Z(1)
+

appear to provide the most new information, both under Basel I-II, as well as the DFA

period. Z(1)
+ is, however, not selected as an expansion in the DFA period as the IC calcu-

lated without expansions (i.e., with Z only) is IC0 = −7.664. The IC thus confirms the
finding in Table 5: no expansions are required in the DFA period as the rank condition
is already satisfied. Under Basel I-II, on the other hand, the RC was found to be violated

and the IC selects only Z(1)
+ as an expansion (the IC based on Z alone is IC0 = −4.149).

This is consistent with the argument above that Z(1)
+ loads on the same factors as in the

regression model, and indicates that the remaining expansions (Z(2)
+ , Z(3)

+ , Z(4)
+ ) do not

provide new information about the factor space given that already present in Z, or that
they load on different factors than those in Zi. Therefore, we consider the augmented
CCE estimator with the following matrix of CSA:

ZA = [Z, Z(1)
+ ]. (33)

Whether this augmented set of CSA is sufficient to restore the rank condition needs to be
verified with the RC classifier. If the RC is still violated, alternative potential expansions

20Note that if weights were constructed by splitting all banks in two groups, these weights would result
in perfect multicollinearity, since we already include simple CSA in the model.
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need to be sought (as the IC indicate that only Z(1)
+ in Z+ is relevant). The results for

evaluating the RC for this augmented-CCE estimator, denoted as CCEA, are reported
in the right panel of Table 5. As we can see, the augmentation has restored the rank
condition (R̂C = 1) for the first sub-period. Hence, there is no need to look for further
expansions. As expected, the RC remains satisfied in the second sub-period should we

also augment the CCE estimator with Z(1)
+ in that sample.

6.3 CCE and CCEA estimation results

Table 7 reports CCE and CCEA estimates of the model parameters for the two sub-
periods 2006:Q1–2010:Q4 and 2011:Q1–2019:Q4. For each coefficient, the top row refers
to the point estimate and the bottom row refers to the standard error, computed using
the parametric sandwich-type formula in Pesaran (2006).

Table 7: US bank profitability: CCE and CCEA estimation results
Basel I-II Dodd-Frank Act

CCE CCEA CCE CCEA

β̂1 (size)
0.959∗∗∗

(0.325)
0.647∗∗∗

(0.196)
0.267∗

(0.149)
0.331∗∗

(0.156)

β̂2 (CAR)
-0.035∗∗

(0.017)
-0.038∗∗∗

(0.015)
-0.027
(0.021)

-0.026
(0.021)

β̂3 (liquidity)
1.045∗∗∗

(0.364)
0.646∗∗∗

(0.251)
0.964∗∗∗

(0.170)
0.871∗∗∗

(0.192)

β̂4 (quality)
-0.943∗∗∗

(0.061)
-0.914∗∗∗

(0.040)
-0.890∗∗∗

(0.050)
-0.905∗∗∗

(0.048)

β̂5 (NPL)
0.016
(0.012)

0.017
(0.011)

-0.027∗∗∗

(0.009)
-0.025∗∗

(0.010)
Notes: The columns under Basel I-II report results for the first subsample, which
spans 2006:Q1–2010:Q4. The columns under Dodd-Frank Act correspond to the
period 2011:Q1–2019:Q4. Standard errors, computed based on the parametric
sandwich-type formula in Eq. (74) of Pesaran (2006), are reported in parentheses.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.

The above RC evaluation implies that in the first sub-period the CCEA estimator is con-
sistent, whereas CCE is not. Such discrepancy is mainly noticeable in the estimated
coefficients of SIZE and LIQUIDITY. In both cases, CCE appears to overestimate the
impact of these variables on bank profitability. This provides further evidence that the
RC is violated under Basel I-II for CCE.

For the period 2011:Q1–2019:Q4, which corresponds to the Dodd-Frank Act, the RC
condition appears to hold for both CCE and CCEA. Thus, in this case it appears that
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there is no need to augment the model with additional CSA. Notably, the estimated
coefficients obtained by the two estimators are not statistically different.

Interestingly, the standard errors for the CCEA estimator are lower than those of the
CCE estimator in the first but not in the second sub-period. This further suggests that
the additional CSA do capture nuisance factors that are left in the error term of the CCE
estimator in the 2006:Q1–2010:Q4 sub-period, while being irrelevant and hence driving
up parameter uncertainty over the 2011:Q1–2019:Q4 sub-period.

Turning to a comparison of the results across the two sub-periods, SIZE appears to be
substantially less important in terms of driving profitability of banks under the DFA
period compared to the Basel I-II. More specifically, the difference between β̂

(τ1)
1 = 0.647

(using the CCEA estimate) and β̂
(τ2)
1 = 0.267 (using the CCE estimate) equals 0.38 and

is statistically significant at the 10% level of significance, with a p-value that is roughly
equal to 0.061 (one-tailed test).21

That is, if large banks exercised market power and implicitly relied on regulatory pro-
tection based on a “too-big-to-fail” presumption, such type of behavior seems to be less
prevalent after the introduction of the Dodd-Frank Act. This outcome is consistent with
the findings of Gao et al. (2018), Cui et al. (2020) and Zhu et al. (2020) and provides evi-
dence that the regulatory reforms introduced by the DFA have succeeded in influencing
banks’ behavior in a substantial manner. Further, note that if we use the standard CCE
estimator under both sub-periods of the sample, the difference between β̂

(τ1)
1 and β̂

(τ2)
1

amounts to 0.959− 0.267 = 0.692. Hence, the impact of the DFA is estimated to be twice
as large as that obtained based on our approach. This further highlights the importance
of evaluating the rank condition for CCE-type estimators.

Other major differences across the two sub-periods include: (i) profitability is negatively
linked with NPL under the DFA, whereas no such link appears to be established under
Basel I-II.22; (ii) although the coefficient of CAR remains negative under DFA, the effect
of capitalisation – conditional on liquidity – is no longer statistically significant at the
10% level.

7 Conclusion

It is well known that the so-called Rank Condition - the requirement that there are at
least as many observables containing independent information about the unobserved
factors as there are factors in the model - is crucial for the statistical properties of the

21The t-statistic is calculated as t = (0.647 − 0.267)/
√

0.1962 + 0.1492 = 1.54. Note that since the CCEA
and CCE estimates are based on different samples, it is natural to assume that their covariance equals
zero.

22A similar outcome is also reported by Cui et al. (2020)
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CCE approach by Pesaran (2006). However, to date this rank condition could not be
verified as it relates to the rank of the unobserved matrix of factor loadings. In practice,
the rank condition is therefore typically assumed to hold.

In this paper we have outlined a straightforward procedure to evaluate whether the
rank condition holds in the model of interest given a chosen set of cross-sectional av-
erages. If the rank condition is found not to hold, the procedure can be applied in an
augmentation strategy, combined with an Information Criterion, to determine the set of
CSA that restores the rank condition. In practice, our approach is therefore generally
applicable to check whether the chosen cross-section averages are sufficient to satisfy
the rank condition or whether additional variables should be explored. This property
was confirmed in simulation experiments and illustrated by analyzing the impact of the
Dodd-Frank Act on the profitability of U.S. banking institutions.
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Appendices

Appendix A Proofs of theoretical results

A.1 Proof of Theorem 1

Let M be a given T × n matrix (T > n) and let Ψ = [ψ1, . . . , ψn]
′ be an n × T random

matrix, where ψ1, . . . , ψn are i.i.d.MN (0, IT) in RT.

Part (i). We wish to prove that

Pr [rank (ΨM) = rank (M)] = 1.

Case 1. M has full column rank, i.e., rank(M) = n.

Consider the row-matrix representation of a product of two matrices:

ΨM =


ψ′

1M
ψ′

2M
...

ψ′
nM

 .

It suffices to show that

Pr
[{

ψ′
1M, . . . , ψ′

nM
}

are linearly independent
]

= 1 ⇔
Pr
[{

M′ψ1, . . . , M′ψn
}

are linearly independent
]

= 1. (A-1)

Let zi = M′ψi denote an n× 1 vector, for i = 1, . . . , n. Since ψ1, . . . , ψn are i.i.d.MN (0, IT),
it follows that z1, . . . , zn are i.i.d.MN (0, M′M), with M′M non-singular because M
has full rank. Let z̃i denote a specific realization of zi, where z̃i ∈ Rn. Define y =
vec (z1, . . . , zn) and ỹ = vec (z̃1, . . . , z̃n), both n2 × 1 vectors. Let

A =
{

ỹ ∈ Rn2
: z̃1, . . . , z̃n are linearly dependent

}
.

We have

Pr [z1, . . . , zn are linearly dependent]
= E (I [y ∈ A])

= E (E (I [y ∈ A] |z1, . . . , zn−1)) = 0 (A-2)

because
E (I [y ∈ A] |z1, . . . , zn−1) = 0.
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Therefore, we have proved that

Pr [z1, . . . , zn are linearly dependent] = 0,

and thereby
Pr [rank (ΨM) = rank (M) = n] = 1.

Case 2. M has less than full column rank, i.e., rank(M) = n1 < n.

Partition M = [M1
... M2], where M1 is T×n1 and M2 is T× (n − n1), such that rank(M1) =

n1. Similarly, partition Ψ such that

Ψ =

[
Ψ1
Ψ2

]
where Ψ1 and Ψ2 are n1 × T and (n − n1) × T respectively with rank(Ψ1) = n1 with
probability 1. Thus, the product between Ψ and M can be written as

ΨM =

[
Ψ1M1 Ψ1M2
Ψ2M1 Ψ2M2

]
n×n

. (A-3)

Based on exactly the same arguments as in Case 1, it can be shown that rank(Ψ1M1) =
n1 with probability 1. However, since Ψ1M1 is a submatrix of ΨM, rank(ΨM) ≥ n1.
Therefore, we have

n1 = rank (Ψ1M1) ≤ rank (ΨM) ≤ min {rank (Ψ) , rank (M)} = n1.

Hence, rank(ΨM) = n1 = rank(M) with probability 1. This completes part (i) of the
theorem.

Part (ii). Note that we can write by simple addition and subtraction

T−1/2ΨZ = T−1/2(ΨFC + ΨU) = T−1/2ΨFC + T−1/2ΨF(C − C) + T−1/2ΨU.

Recall that Ψ = [ψ1, . . . , ψn]
′, with its rows given by ψk ∼ iidMN (0T×1, IT) for k =

1, . . . , n. Consider then the kth row of T−1/2ΨU, and write it as T−1/2 ∑T
t=1 ψktu′

t, with
ψk = [ψk1, . . . , ψkT]

′ and U = [u1, . . . , uT]
′. By the independence of Ψ and U we have for

every k = 1, . . . , n that E(∑T
t=1 ψktu′

t) = 01×n and

Var

(
∑T

t=1 ψktu′
t√

T

)
=

1
T

T

∑
t=1

T

∑
t′=1

E (ψktψkt′) E
(
utu′

t′
)
=

1
T

T

∑
t=1

E
(
utu′

t
)
= O(N−1),

because E (ψktψkt′) = 0 for t′ 6= t, E (ψktψkt) = E
(
ψ2

kt
)
= 1 and E(‖ut‖2) = O

(
N−1) by

A.4 of Lemma 1 in Pesaran (2006) under Assumptions 1 and 5. Hence,
∥∥T−1/2ΨU

∥∥ =
Op(N−1/2) as (N, T) → ∞.
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Consider next T−1/2ΨF. By the independence of Ψ and F we have E (ΨF) = 0n×m, and
since F = [f1, . . . , fT]

′ we can write the k-th row of ΨF as ∑T
t=1 ψktf′t such that

Var

(
∑T

t=1 ψktf′t√
T

)
=

1
T

T

∑
t=1

E (ψktψkt) E
(
ftf′t
)
=

1
T

T

∑
t=1

E
(
ftf′t
)
= O(1),

because E (ftf′t) = O(1) for every t (Assumption 2). Hence, we have
∥∥T−1/2ΨF

∥∥ =
Op (1). Noting then that

∥∥C − C
∥∥ = Op(N−1/2) under Assumption 3, it follows that∥∥∥T−1/2ΨF(C − C)
∥∥∥ ≤

∥∥∥T−1/2ΨF
∥∥∥ ∥∥C − C

∥∥ = Op(N−1/2)

Hence, combining the results above, as (N, T) → ∞

T−1/2ΨZ = T−1/2ΨFC + T−1/2ΨF(C − C) + T−1/2ΨU = T−1/2ΨFC + Op(N−1/2)

where also
∥∥T−1/2ΨFC

∥∥ ≤
∥∥T−1/2ΨF

∥∥ ‖C‖ = Op(1) since ‖C‖ < ∞ under Assumption
3. Hence, the proof of part (ii) of the theorem is complete.
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Appendix B Additional simulation results

Table 8: Algorithm 1: Selection percentages for expansion CSA

Zw,1 Zw,2 Z(e) Z(g)

(N,T) 20 50 100 200 20 50 100 200 20 50 100 200 20 50 100 200
Experiment 1 20 2 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0

50 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Experiment 2 20 37 42 46 51 33 43 48 47 23 10 1 0 0 0 0 0

50 34 39 43 47 28 40 50 52 32 19 4 0 0 0 0 0
100 32 32 41 50 27 30 47 49 35 38 11 1 1 0 0 0
200 27 32 35 46 26 30 33 47 42 37 32 7 1 0 0 0
500 22 25 34 39 27 29 32 39 42 46 34 22 0 0 0 0

1000 21 25 29 27 22 26 25 35 50 49 46 38 1 0 0 0
Experiment 3 20 4 1 0 0 3 0 0 0 93 98 100 100 1 0 0 0

50 3 0 0 0 2 0 0 0 96 99 100 100 2 0 0 0
100 1 0 0 0 2 0 0 0 96 100 100 100 1 0 0 0
200 1 0 0 0 1 0 0 0 96 100 100 100 2 0 0 0
500 0 0 0 0 0 0 0 0 98 99 100 100 1 0 0 0

1000 1 0 0 0 1 0 0 0 98 100 100 100 1 0 0 0
Experiment 3 20 26 20 19 27 23 18 24 18 0 0 0 0 2 0 0 0
Z+,sub = Z+\Z(e) 50 22 13 20 21 17 17 13 18 0 0 0 0 2 0 0 0

100 22 11 12 15 16 16 15 19 0 0 0 0 2 0 0 0
200 24 13 15 16 18 14 12 19 0 0 0 0 4 0 0 0
500 22 11 12 16 18 11 14 19 0 0 0 0 3 1 0 0

1000 19 14 14 18 19 14 17 16 0 0 0 0 2 0 0 0
Notes: Reported are percentages out of 2000 Monte Carlo iterations that the CSA stated in the column has been selected as an expansion
by the IC given in Eq. (25). Since multiple expansions can be selected on each sample size, the percentages do not necessarily sum to

100. The bottom panel displays selection frequencies in Experiment 3 when Z(e) is not a selectable option. That is, the set of proposal

expansions is Z+,sub = {Zw,1, Zw,2, Z(g)}.
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Table 9: Algorithm 1: Sensitivity and Specificity
RC satisfied rate Sensitivity Specificity

(N, T) 20 50 100 200 20 50 100 200 20 50 100 200

Experiment 1 20 1.00 1.00 1.00 1.00 0.65 0.74 0.67 0.67 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 0.73 0.81 0.80 0.81 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 0.83 0.80 0.84 0.86 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 0.85 0.88 0.89 0.91 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 0.87 0.92 0.92 0.92 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 0.89 0.93 0.93 0.95 1.00 1.00 1.00 1.00
Experiment 2 20 0.92 0.95 0.96 0.97 0.80 0.94 0.98 0.98 0.00 0.00 0.00 0.00

50 0.94 0.98 0.96 0.99 0.92 0.96 0.99 1.00 0.00 0.00 0.00 0.00
100 0.93 0.99 1.00 1.00 0.96 1.00 1.00 1.00 0.00 0.00 1.00 1.00
200 0.94 0.99 1.00 1.00 0.96 1.00 1.00 1.00 0.00 0.00 1.00 0.00
500 0.91 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.00 0.00 1.00 1.00

1000 0.92 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.00 1.00 1.00 1.00
Experiment 3 20 0.92 0.97 0.99 0.99 0.36 0.39 0.38 0.40 0.63 0.95 0.22 0.00

50 0.96 0.99 0.99 1.00 0.64 0.68 0.67 0.73 0.94 0.52 0.00 1.00
100 0.96 0.99 1.00 1.00 0.85 0.93 0.96 0.91 1.00 1.00 1.00 1.00
200 0.96 1.00 1.00 1.00 0.91 0.98 0.98 0.96 0.89 1.00 1.00 1.00
500 0.98 0.99 1.00 1.00 0.93 0.99 0.99 0.97 1.00 1.00 1.00 1.00

1000 0.98 1.00 1.00 1.00 0.93 0.99 0.99 0.99 1.00 1.00 1.00 1.00
Experiment 3 20 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.92 0.96 0.92 0.94
Z+,sub = Z+\Z(e) 50 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.97 0.97 0.98 0.99

100 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00
200 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.97 0.99 0.99 0.98
500 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.96 0.99 1.00 1.00

1000 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 0.99
Notes: (i) Reported in the left panel is the fraction of MC samples where the rank condition ($ = m) is satisfied (restored)
after application of Algorithm 1. The middle panel displays the ’Sensitivity’ of the RC classifier, or the rate of correctly
obtaining R̂C = 1 for the cases where the RC is satisfied/restored ( #true RC=1 conclusions

#true RC=1 conclusions+#false RC=0 conclusions ), and the right-
most panel gives the ’Specificity’, or the rate of correctly obtaining R̂C = 0 when the RC is indeed violated/not restored
( #true RC=0 conclusions

#true RC=0 conclusions+#false RC=1 conclusions ). Note that when there are no RC = 0 cases and also no R̂C = 0 conclusions, then
Specificity = 1, and similarly for the Sensitivity. The inverse of Sensitivity and Specificity give respectively the false positive
(false RC holds conclusions) and false negative rates (false RC violated conclusions). (ii) The RC classifier employs the GR
estimator with mmax = 7 to estimate m, and the rank estimator employs the random projection with αN = 20αN−1. (iii) The

bottom panel gives outcomes for Algorithm 1 when the rank-restoring expansion CSA Z(e) is not among the set of proposal
expansions such that it is impossible to restore the RC. (iv) Note that the classifier Sensitivity/Specificity are not separately
reported when evaluating the RC based on Z, because they are identical to the ’Classification Accuracy’ reported in the
main text. That is, when the RC is satisfied for Z (experiment 1), then Specificity=1 and Sensitivity equals the classifica-
tion accuracy reported in table 2. Conversely, when RC is violated for Z, then Sensitivity=1 and Specificity is the reported
accuracy.

41



B.1 Estimation results for β = 3

Table 10: Estimation results for β = 3 in Experiment 1

bias rmse

(N, T) 20 50 100 200 20 50 100 200

CCE 20 0.053 0.051 0.051 0.047 0.120 0.089 0.075 0.059
50 0.021 0.020 0.021 0.023 0.065 0.048 0.040 0.032

100 0.011 0.011 0.011 0.013 0.050 0.032 0.024 0.020
200 0.005 0.004 0.007 0.006 0.034 0.021 0.017 0.013
500 0.002 0.001 0.002 0.003 0.020 0.013 0.010 0.007

1000 0.002 0.002 0.001 0.001 0.015 0.009 0.007 0.005

CCEA 20 0.052 0.051 0.051 0.047 0.118 0.089 0.075 0.059
50 0.021 0.020 0.021 0.023 0.065 0.048 0.040 0.032

100 0.011 0.011 0.011 0.013 0.051 0.032 0.024 0.020
200 0.005 0.004 0.007 0.006 0.034 0.021 0.017 0.013
500 0.002 0.001 0.002 0.003 0.020 0.013 0.010 0.007

1000 0.002 0.002 0.001 0.001 0.015 0.009 0.007 0.005

Note: Reported are estimation bias for β and root mean square error (rmse).

Table 11: Estimation results for β = 3 in Experiment 2

bias rmse

(N, T) 20 50 100 200 20 50 100 200

CCE 20 0.819 0.839 0.839 0.844 0.826 0.842 0.841 0.846
50 0.815 0.839 0.849 0.851 0.820 0.841 0.850 0.852

100 0.825 0.835 0.848 0.853 0.830 0.837 0.849 0.854
200 0.825 0.845 0.850 0.854 0.829 0.847 0.851 0.854
500 0.824 0.832 0.849 0.852 0.828 0.834 0.850 0.852

1000 0.823 0.841 0.848 0.852 0.826 0.843 0.848 0.852

CCEA 20 0.090 0.068 0.062 0.043 0.246 0.201 0.186 0.138
50 0.063 0.029 0.040 0.022 0.219 0.137 0.162 0.101

100 0.066 0.016 0.006 0.006 0.237 0.080 0.022 0.016
200 0.057 0.016 0.005 0.006 0.211 0.104 0.017 0.058
500 0.082 0.003 0.002 0.002 0.263 0.049 0.010 0.006

1000 0.069 0.001 0.001 0.001 0.237 0.009 0.007 0.005

Note: Reported are estimation bias for β and root mean square error (rmse).
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Table 12: Estimation results for β = 3 in Experiment 3

bias rmse

(N, T) 20 50 100 200 20 50 100 200

CCE 20 0.655 0.677 0.680 0.682 0.672 0.685 0.687 0.687
50 0.670 0.689 0.694 0.698 0.679 0.695 0.698 0.701

100 0.669 0.689 0.698 0.707 0.680 0.695 0.701 0.708
200 0.678 0.694 0.704 0.705 0.687 0.700 0.707 0.707
500 0.681 0.682 0.701 0.711 0.691 0.687 0.705 0.713

1000 0.671 0.690 0.700 0.705 0.680 0.694 0.702 0.707

CCEA 20 0.051 0.033 0.029 0.020 0.149 0.083 0.060 0.041
50 0.026 0.010 0.012 0.010 0.096 0.059 0.050 0.024

100 0.015 0.009 0.006 0.007 0.069 0.040 0.022 0.017
200 0.016 0.002 0.004 0.003 0.079 0.021 0.016 0.012
500 0.006 0.002 0.001 0.002 0.056 0.035 0.010 0.006

1000 0.008 0.001 0.000 0.000 0.055 0.009 0.007 0.005

CCEA,sub 20 0.504 0.544 0.535 0.535 0.539 0.574 0.566 0.566
50 0.556 0.591 0.590 0.581 0.580 0.614 0.613 0.604

100 0.550 0.592 0.604 0.597 0.577 0.616 0.627 0.622
200 0.548 0.602 0.614 0.600 0.575 0.625 0.635 0.622
500 0.551 0.604 0.614 0.600 0.578 0.625 0.635 0.625

1000 0.549 0.592 0.594 0.591 0.577 0.616 0.619 0.617

Note: Reported are estimation bias for β and root mean square error (rmse). CCEA,sub de-
notes the outcome of Algorithm 1 with the set of potential augmentations given by Z+,sub =

{Zw,1, Zw,2, Z(g)} in stead of Z+.
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