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Abstract

The increase in trading frequency of Exchanged Traded Funds (ETFs) presents a positive externality for
�nancial risk management when the price of the ETF is available at a higher frequency than the price of the
component stocks. The positive spillover consists in improving the accuracy of pre-estimators of the integrated
covariance of the stocks included in the ETF. The proposed Beta Adjusted Covariance (BAC) equals the pre-
estimator plus a minimal adjustment matrix such that the covariance-implied stock-ETF beta equals a target
beta. We focus on the Hayashi and Yoshida (2005) pre-estimator and derive the asymptotic distribution of its
implied stock-ETF beta. The simulation study con�rms that the accuracy gains are substantial in all cases
considered. In the empirical part of the paper, we show the gains in tracking error e�ciency when using the
BAC adjustment for constructing portfolios that replicate a broad index using a subset of stocks.
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1 Introduction

Accurate estimation of the covariation between asset returns is indispensable in various areas in �nance such as

asset pricing, portfolio optimization, and risk management (Du�e and Pan (1997); Jagannathan and Ma (2003)).

The advent of common availability of high-frequency asset price data has spurred the development of methods for

the ex post estimation of the covariation over a �xed time interval such as a trading day. A seminal contribution

in this �eld is Barndor�-Nielsen and Shephard (2004) introducing the asymptotic distribution theory of realized

covariance estimators. When using ultra high-frequency transaction data, the standard realized covariance

estimator may no longer be a reliable estimator of the covariation of asset returns due to the non-synchronous

trading of assets and microstructure noise. An abundant literature in �nancial econometrics has addressed this

issue by developing alternative methods for computing realized covariances using the vector of high-frequency

stock prices as input (see, e.g., Aït-Sahalia et al. (2010), Christensen et al. (2010), Hayashi and Yoshida (2005),

Aït-Sahalia et al. (2010), Zhang (2011), Mancini and Gobbi (2012), Boudt et al. (2017) and Bollerslev et al.

(2020), among others).

We make further progress by including exchange traded funds (ETFs) price information when estimating the

realized covariance of the assets included in the ETF. The rationale for doing so is that, for popular ETFs like

the SPY and XLF tracking the (�nancial �rms in the) S&P 500, high-frequency ETF prices are today observed

at a higher frequency than the stock prices of most of the ETF components. The joint observation of the ETF

price and the price of one stock thus carries information about the return covariation of that stock and all other

stocks. To capture that information, we study a new integrated quantity called the stock-ETF beta, de�ned as

the continuous part of the quadratic covariation between the e�cient price of a given stock and the weighted

average e�cient price of all stocks included in the ETF.

We describe three ways to estimate the stock-ETF beta. The �rst one is the covariance-implied stock-ETF

beta. It is an integrated version of functions of the spot covariance matrix estimate associated to a realized

covariance matrix estimator of the price vector of all stocks included in the ETF. The second one is the pairwise

realized stock-ETF beta corresponding to an estimate obtained using the synchronized series of stock prices

and ETF prices. The third one is to use expert opinion regarding the stock-ETF beta for each asset. Due

to di�culties of estimating a covariance matrix using high-frequency prices, we expect that the latter two

approaches are more accurate. This insight leads us to develop an estimation framework aiming at improving

the initial realized covariance estimator based on the observed di�erence between its implied stock-ETF beta

and a target stock-ETF beta obtained using pairwise estimation or expert opinion. The proposed framework is

called Beta Adjusted Covariance (BAC) estimation.

Under the BAC framework, we refer to the realized covariance computed from stock prices only as the pre-

estimator, while the pairwise or expert opinion based stock-ETF beta estimate is the target beta. The latter is

the oracle beta when it is free of estimation error. We propose to adjust the pre-estimator such that its implied
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stock-ETF beta equals the target beta under the criterion of minimizing the distance between the adjusted

estimator and the pre-estimator.

The pre-estimator used in our analysis is the one proposed by Hayashi and Yoshida (2005) which remains

consistent and unbiased when using high-frequency prices of transactions of assets occurring asynchronously.

We refer to it as the HY estimator and use its localized version (see e.g. Christensen et al. (2013)) to estimate

the stock-ETF beta. Our choice is motivated by the e�ciency results as obtained in Jacod and Rosenbaum

(2013), and later extended by Li et al. (2019). However, the results obtained in the latter references cannot

be applied to our situation mainly because our parameter of interest is a random transformation of the spot

volatility. Thus, to our knowledge, the asymptotic distribution results presented in this paper are new within

the theory of estimation of volatility functionals. We also propose a modi�cation to the HY and BAC estimator

such that they remains accurate estimators of the integrated covariance in the presence of price jumps and

microstructure noise.

We conduct a Monte Carlo study to evaluate the accuracy gains (in terms of mean squared error) when the

pre-estimator is the traditional realized covariance, the two-time scale estimator proposed by Zhang (2011) or

the Hayashi and Yoshida (2005) estimator. We �nd that the accuracy gains are over 50% in the case in which

the oracle beta is used as target, and remain economically signi�cant when the target beta is estimated using

the ETF and the stock log-price series.

We apply the BAC estimator to the Trades and Quotes millisecond transaction data of stocks included in

the S&P 500 Financial Select Sector SPDR Fund with ticker XLF. Our sample runs from Jan 1, 2018 to Dec 31,

2019. For our sample, only seven out of the around 67 XLF components have a higher number of observations

than the ETF. We study the performance gains of the BAC adjustment to the pre-estimator for constructing

index tracking portfolios for the XLF using di�erent subsets of its components. We �nd that, for the vast

majority of cases, the next day's realized tracking error is lower when the portfolio is optimized using the BAC

adjusted estimator than when using the HY pre-estimator itself.

2 Notation, model and the pre-estimator

2.1 Model and parameters of interest

We consider d assets. Their underlying d-dimensional process of log-prices Xt is de�ned on some �ltered

probability space (Ω,F , (Ft),P) and is supposed to be a continuous Itô's semimartingale, i.e.,

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdBs, t ≥ 0, (1)
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in which µ is predictable and càdlàg (or càglàd) and B is a d′-dimensional standard Brownian motion. We will

also use the notation Σ = σσ′ for the spot covariation, and we write

At =

∫ t

0
µsds, Mt =

∫ t

0
σsdBs, t ≥ 0. (2)

Additionally, σ is assumed to be a d× d′ matrix-valued Itô's semimartingale, i.e., for k = 1, . . . , d, l = 1, . . . , d′,

it holds that

σklt =σkl0 +

∫ t

0
µ̃kls ds+

d′∑
m=1

∫ t

0
σ̃klms dBm

s (3)

+

∫ t

0

∫
E
ϕkl(s, z)1‖ϕ(s,z)‖≤1(N − λ)(dsdz) +

∫ t

0

∫
E
ϕkl(s, z)1‖ϕ(s,z)‖>1N(dsdz),

where µ̃ and σ̃ are predictable and càdlàg (or càglàd), ϕ is predictable and N is a Poisson random measure with

compensator λ(dsdz) = dsν(dz) for some σ-�nite measure ν de�ned in a Polish space E. Moreover, there is a

localizing sequence (τn)n≥1 of stopping times as well as a deterministic sequence of non-negative functions Γn,

such that
∫
E Γn(z)2ν(dz) <∞, and for all (ω, t, z)

‖ϕ(ω, t, z)‖ ∧ 1 ≤ Γn(z), whenever t ≤ τn(ω).

For every l = 1, . . . , d, we denote the set of nl observation times of the l-th log-price contained in Xt by

Tl =
{

0 = tl0 < · · · < tlnl
≤ 1
}
. (4)

Within this framework, we write

n =
d∑

k=1

nk. (5)

The object of interest is the integrated covariance matrix of the process Xt over the interval [0, 1]:

Θ =

∫ 1

0
Σsds. (6)

In order to estimate Θ, we consider an ETF that is invested in each of those d assets with the following

time-varying amounts invested per share of the ETF:

at = (a1
t , . . . , a

d
t )
′. (7)

The process at is assumed to be a càdlàg step function. The corresponding log-transformed Net Asset Value
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(NAV) is equal to the natural logarithm of the weighted sum of the component prices of the ETF:

Y ∗t = log

(
d∑

k=1

akt exp(Xk
t )

)
. (8)

Throughout the paper, we de�ne the stock-ETF beta associated to the l-th asset, further denoted as βl, as

the continuous part of the quadratic covariation between X l and exp(Y ∗). It follows from Itô's lemma that βl

equals

βl =
d∑

k=1

∫ 1

0
wksΣkl

s ds, (9)

where

wls = als exp(X l
s). (10)

2.2 The pre-estimator and its implied stock-ETF beta

For every 0 ≤ t ≤ 1, we denote by Σt a pre-estimator for the integrated covariance matrix
∫ t

0 Σsds.
* Based

on this pre-estimator, we now introduce the implied estimators Σ̂kl
s and β

l
for the spot covariation Σs and the

stock-ETF beta βl, respectively. We use a local estimation window of kn ∈ N observations in order to de�ne

the following pre-estimator for the spot covariance:

Σ̂kl
s =

nk
kn

(
Σ
kl
s+kn/n −Σ

kl
s

)
, (11)

for s ∈ (0, 1−kn/n], while for 1−kn/n < s ≤ 1, Σ̂kl
s := Σ̂kl

1−kn/n. In Section 4 we provide a detailed description of

the asymptotic properties of Σ̂s in the case in which Σt is as in Hayashi and Yoshida (2005). The corresponding

implied estimator for βl (see equation (9)) is given as

β
l

=

d∑
k=1

nk∑
m=1

wk
tkm−1

Σ̂lk
tkm−1

(tkm − tkm−1). (12)

With the aim to improve the accuracy of the the pre-estimator Σ of Θ, we consider a d× d adjustment process

∆s and we de�ne

β
l
∆ =

d∑
k=1

nk∑
m=1

wk
tkm−1

(
Σ̂lk
tkm−1

(tkm − tkm−1)−∆lk
tkm−1

)
. (13)

It will be useful to rewrite (13) using matrix notation. For this, we �rst gather all spot covariation adjustments

into the following vector

δ = (δ11′, δ12′, . . . , δ1d′, . . . , δd1′, . . . , δdd
′
)′, (14)

*In the remainder of the paper, we will omit the subscript when t = 1 and similar for other quantities of interest that we de�ne.
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where δlk = (∆lk
tk0
, . . . ,∆lk

tknk−1
)′. Furthermore, using the notation 0′m := (0, . . . , 0︸ ︷︷ ︸

m

) for m ∈ N, we let W be a

d× dn matrix whose ith row is given by

W i = (0′(i−1)n, w
′, 0′(d−i)n),

in which w is an element of Rn satisfying that

w =
(
w1′, . . . , wj

′
, . . . , wd

′)′
,

with wj = (wj
tj0
, . . . , wj

tjnj−1

)′. Under the preceding notation, equation (13) reads as

β − β∆ = Wδ. (15)

From Equation (13) it follows that the corresponding estimator of Θ is:

Σ−∆, (16)

in which ∆
kl

:=
∑nk

m=1 ∆kl
tkm−1

. Observe that

vec(∆
′
) = Aδ, (17)

where

A(i−1)d+j,l :=

1, l = (i− 1)n+
∑j−1

k=1 nk + 1, . . . , (i− 1)n+
∑j

k=1 nk;

0, otherwise,

for l = 1, . . . , dn and i, j = 1, . . . , d. Finally, it is natural to restrict the adjustment matrices to be symmetric,

namely ∆ = ∆
′
. The latter can be achieved by requiring that

Qδ := 0(d−1)d/2,

in which Q is a d(d−1)
2 × dn dimensional matrix de�ned for l = 1, . . . , dn and for i, j = 1, . . . , d with i > j, as

Q
(i−2)(i−1)

2
+j,l =


1, l = n(j − 1) +

∑i−1
k=1 nk + 1, . . . , n(j − 1) +

∑i
k=1 nk;

−1, l = n(i− 1) +
∑j−1

k=1 nk + 1, . . . , n(i− 1) +
∑j

k=1 nk;

0, otherwise.

In Appendix 10.1, we illustrate how the use of Q guarantees symmetry on ∆.
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3 De�nition of the BAC estimator

The adjustment vector δ can be calibrated in various ways. The central idea of this paper is that in many cases

there is an accurate estimate available for the stock-ETF beta. We call it the target beta and denote this by

β•. It may be an estimate provided by �nancial analysts or an accurate estimator based on the availability of

ETF price data.

Formally, we seek to �nd an optimal adjustment process ∆ that satis�es the condition β∆ = β•. The latter,

according to (15), implies that

β − β• = Wδ.

Among the in�nite number of possibilities for δ, we look for the smallest weighted adjustment:

d∑
k=1

d∑
l=1

nk

nk∑
m=1

(∆kl
tlm−1

)2.

Note that the factor nk is added to adjust for trading frequencies with lower number of observations. Moreover,

as discussed above, in order to account for symmetry, it must hold that Qδ = 0(d−1)d/2. Thus, the adjustment

δ̂ is chosen in such a way that

δ̂ = argmin
δ

δ′Pδ, s.t.

Wδ = β − β•;

Qδ = 0(d−1)d/2,

(18)

in which

P = diag

n11′n1
, . . . , ni1

′
ni
, . . . , nd1

′
nd︸ ︷︷ ︸

×d

 , (19)

where we have let 1m := (1, . . . , 1︸ ︷︷ ︸
m

), m ∈ N.

Before presenting the solution to (18) (which is derived in Appendix 10.2) we introduce more notation. From

now on W̄ and Q will denote two matrices with dimensions d× d2 and d2 × d2, respectively. Moreover, the kth

row of W̄ satis�es that

W̄ k =

(
0′(k−1)d,

1

n1

n1∑
m=1

w1
t1m−1

, . . . ,
1

nd

nd∑
m=1

wd
tdm−1

, 0′(d−k)d

)
, (20)

while the rows of Q are de�ned for i, j = 1, . . . , d as

Q(i−1)d+j =


(

0′(i−1)d+j−1, 1, 0
′
(d−i+1)d−j

)
+
(

0′(j−1)d+i−1,−1, 0′(d−j+1)d−i

)
if i 6= j;

0′d2 otherwise.

(21)
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Using the notation introduced above, we have that the solution to the minimum adjustment optimization

problem in (18) ful�ls that

vec(∆) = Aδ̂ = L
(
β − β•

)
, (22)

where

L =

(
Id2 −

1

2
Q
)
W̄ ′

Id2

 d∑
k=1

∑nk
m=1(wk

tkm−1
)2

nk

− W̄QW̄ ′

2

−1

. (23)

De�nition 1. Given a pre-estimator Σ with corresponding stock-ETF beta β and associated minimum adjust-

ment projection matrix L, the BAC estimator with target beta β• is

Σ
BAC

= Σ −∆
BAC

, (24)

with

vec(∆
BAC

) = L(β − β•). (25)

In the upcoming sections, we describe the asymptotic properties of the proposed estimator within the

framework of Hayashi and Yoshida (2005). Their estimator is given by

Σ
kl
t =

∑
i,j

∆i,kX
k∆j,lX

l1(0,t](t
k
i ∨ tlj)1Iki ∩Ilj 6=∅, 0 ≤ t ≤ 1, (26)

where we have let

Iki = (tki−1, t
k
i ], i = 1, . . . , nk, k = 1, . . . , d (27)

and

∆i,kX = Xtki
−Xtki−1

, i = 1, . . . , nk, k = 1, . . . , d.

4 Properties

In this part, we provide the asymptotic distribution of the stock-ETF beta associated to the HY pre-estimator.

We would like to emphasize that Theorem 1 below is a simple consequence of our more general result regarding

the asymptotic distribution of estimators for
∫ 1

0 HsΣ
kl
s ds constructed via (26). Note that in our framework, H is

allowed to be a stochastic process. Thus, the parameter of interest can be seen as a random (linear) functional

of the spot volatility. Note that to our knowledge, none of the results available in the literature (see Jacod

and Rosenbaum (2013), Li et al. (2019) and references therein) can be applied to our situation. Therefore,

our general result (which is presented in Appendix 11) adds a new way to estimate random functionals of the

volatility under the presence of non-synchronized observations. We recall to the reader that a sequence of
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random vectors (ξn)n≥1 on (Ω,F ,P) is said to converge stably in law towards ξ (in symbols ξn
s.d→ ξ), which is

de�ned on an extension of (Ω,F ,P), say
(

Ω̃, F̃ , P̃
)
, if for every continuous and bounded function f and any

bounded random variable χ it holds that

E(f(ξn)χ)→ Ẽ(f(ξ)χ),

where Ẽ denotes expectation w.r.t. P̃.

Assumption 1. For k = 1, . . . , d, the process Xk is observed at times tki = i
nk
, i = 0, 1, . . . , nk. Moreover,

nk →∞ and

nk
n
→ 1, n =

d∑
l=1

nl.

Theorem 1. Assume that X is given by (1) and let Assumption 1 holds. If k2
n/n→ 0, then as n→∞

√
n
(
β − β

) s.d→MN (0,Ψ) ,

where

Ψ =

∫ 1

0
Σs(w

′
sΣsw

′
s)ds+

∫ 1

0

[
(Σsws) (Σsws)

′] ds.
Proposition 1. Letting β• = β, it follows that, under the assumptions of Theorem 1, as n→∞

√
n vec

(
∆

BAC
)
s.d→MN

(
0, L∞ΨL′∞

)
, (28)

where L∞ is

L∞ =

(
Id2 −

1

2
Q
)
W ′∞

(
Id2

(∫ 1

0
w′swsds

)
− W̄∞QW̄ ′∞

2

)−1

(29)

and W̄∞ is given by rows

{W̄∞}i =

(
0′(i−1)d,

∫ 1

0
w1
sds, . . . ,

∫ 1

0
wdsds, 0

′
(d−i)d

)
. (30)

Remark 1. Assumption 1 can be replaced by the weaker condition

nk
n
→ θk ∈ (0, 1].

In this situation, the statement of Theorem 1 still holds when we subtitute Ψ by the matrix

Ψ̃k′l′ =
d∑
k,l

{∫ 1

0
wksw

l
sγ
kk′,ll′Σkk′

s Σll′
s ds+

∫ 1

0
wksw

l
sγ
kl′,lk′Σkl′

s Σk′l
s

}
ds,
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with γkk
′,ll′ , γkl

′,lk′ > 0 depending only on (θk)k=1,...,d for k, l, k′, l′ = 1, . . . , d.

We now construct an estimator for Ψ. To do this, note that since for k′, l′ = 1, . . . , d we have

Ψk′l′ =
d∑
kl

∑
m,p

{∫
Ikm∩Ilp

Σk′l′
s wksΣ

kl
s w

j
sds+

∫
Ikm∩Ilp

Σkk′
s wksΣ

ll′
s w

l
s

}
ds,

a feasible estimator for Ψkl is given by

Ψ̂k′l′ =
d∑
kl

∑
m,p

∫
Ikm∩Ilp

Σ̃k′l′

tkm−1
wk
tkm−1

Σ̂kl
tkm−1

wl
tlp−1

ds+

∫
Ikm∩Ilp

Σ̂kk′

tkm−1
wk
tkm−1

Σ̂ll′

tlp−1
wl
tlp−1

ds, (31)

where Σ̂kl
tkm−1

is as in (11) and

Σ̃k′l′
t =

{
Σ̄kl
t+kn/n

− Σ̄kl
t

}
, 0 ≤ t ≤ 1,

in which Σ̄kl is de�ned as in (26).

Proposition 2. Assume that X is given by (1) and let Assumption 1 holds. If kn →∞ and kn/n→ 0, then as

n→∞

Ψ̂k′l′ P−→ Ψk′l′ .

5 BAC estimation in case of microstructure noise and jumps

The consistency and asymptotic normality result for the BAC adjustment matrix in (18) assumes that prices

are generated by the Brownian semimartingale process in (1)-(3). In practice, real-world prices are also a�ected

by price jumps and microstructure noise. In this setting, the BAC adjustment can be expected to still reduce

the mean squared error of the covariance estimate when an accurate target beta is used. We propose here some

bias adjustments in the BAC formula in order to take into account the e�ect of microstructure noise and jumps

on the pre-estimator and the component weights. The adjustment depends on the pre-estimator.

We �rst present the solution when the original Hayashi and Yoshida (2005) pre-estimator is used, which is

robust neither to jumps nor to microstructure noise. We then discuss the case in which a noise and jump robust

pre-estimator is used.

5.1 Adjustments when using the Hayashi and Yoshida (2005) pre-estimator

5.1.1 The case of microstructure noise and no price jumps

Consider �rst the case in which the observed price may deviate from the e�cient price leading to a microstructure

noise term (see e.g., Zhang et al., 2005; Hansen and Lunde, 2006). We then denote the observed prices by
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X̃k
tk

= Xk
tk

+ ζk
tk
.

When the HY estimator is used as pre-estimator, the BAC estimator needs to be adjusted to correct for

the bias in the pre-estimator, as shown in Zhang et al. (2005). To do so, we assume the noise terms to have

zero mean and constant variance. We also assume them to be uncorrelated either with each other or with the

e�cient price.

Assumption 2. E
(
ζktk
)2

= σkζ with Eζk
tk

= E
[
ζk
tk
ζ l
tl

]
= E

[
ζk
tk
X l
tl

]
= E

[
ζk
tk
Xk
tk

]
= 0 for all k 6= l.

Under Assumption 2, the bias in the HY-implied beta for stock i equals its microstructure noise variance

multiplied by two times the number of observations. The bias corrected beta is then:

β − 2 dg
(
w̄(n1σ

1
ζ , . . . , ndσ

d
ζ )
)
, (32)

where w̄ is the vector of averages of observed weights for all assets corrected for noise bias, de�ned as

w̄ =

 1

n1

n1∑
i=1

w̃1
t1i

(
1 +

σ1
ζ

2

)−1

, . . . ,
1

nd

nd∑
i=1

w̃d
tdi

(
1 +

σdζ
2

)−1
′ .

The bias correction is obtained using a second order Taylor series expansion for noise contaminated weights,

namely w̃kt = akt exp(Xk
t + ζkt ) ≈ wkt (1 + ζkt + (ζkt )2/2). The same correction is needed for the weights in the

projection matrix:

L̃ =

(
I − Q

2

)
W̄ ′

 d∑
k=1

∑nk
i=1(w̃k

tki
)2

nk

(
1 + 2σkζ

)
 I − W̄QW̄ ′

2

−1

, (33)

where the rows of W̄ are given by

W̄k =

0′(k−1)d,

∑n1
i=1 w̃

1
t1i

n1

(
1 +

σ1
ζ

2

)−1

, . . . ,

∑nd
i=1 w̃

d
tdi

nd

(
1 +

σdζ
2

)−1

, 0′(d−k)d

 .

In the simulation study and in the empirical application, we estimate the noise variance vector σζ as in Zhang

et al. (2005):

σ̂kζ = max

Σkk
1 − Σ̃

kk

1

2nk
, 0

 , (34)

where Σ
kk

is the tick-by-tick realized variance for asset k and Σ̃
kk

is the two-time scale estimator of the integrated

variance using a combination of K and J step apart returns, with K = 30 and J = 1.
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5.1.2 The case of microstructure noise and jumps

When using the Hayashi and Yoshida (2005) approach, the BAC estimator needs also adjustment in case of

price jumps. To formalize this, we �rst generalize the price process in (1) by including jumps as in Hounyo

(2017)

Xk
t = Xk

0 +

∫ t

0
µksds+

∫ t

0
σksdBs + Jkt , Jkt =

∑
s≤t

∆Xk
s , (35)

where the jump of X at time s is denoted by ∆Xs = Xs − Xs−, Xs− = limt→s,t<sXt, and other de�nitions

are the same as in (1). As our beta adjustment approach by its nature is multivariate, a multivariate �lter is

needed. As proposed in Mancini (2009), we detect the price changes a�ected by jumps by comparing them with

a multiple κ of an estimate of the local variance,

Fk =
⋃
i

(tki−1, ti
k] s.t. (X̃k

tki
− X̃k

tki−1
)2 > κsk

tki
+ 2σkζ , (36)

where skti is a jump robust estimate of the quadratic variation of of Xt on the interval (tki−1; tki ]. We join intervals

where jumps are detected to �lter them out accordingly as

F =
⋃
k

Fk, (37)

removing the returns computed on an interval for which a jump has been detected in any of the d prices�. We

then �lter away the jumps from the HY pre-estimator in (26) as follows:

Σ
kl −

∑
i,j(X̃

k
tki
− X̃k

tki−1
)(X̃ l

tlj
− X̃ l

tlj−1
)1[tlj−1,t

l
j ]∩[tki−1,t

k
i ]∩F 6=0

1−
∑

i,j((min(tki , t
l
j)−max(tki−1, t

l
j−1))1[tlj−1,t

l
j ]∩[tki−1,t

k
i ]∩F 6=0

. (38)

In the simulation and empirical application we set the threshold parameter κ to 25, which is su�ciently high

to distinguish between the jumps and Brownian motion driven price �uctuations as in Corsi et al. (2010) and

Boudt et al. (2011).

5.2 Other pre-estimators

In the presence of jumps, we always recommend �ltering out the jumps from the pre-estimator using the jump

detection rule in (36)-(38). This multivariate �lter aligns the jump detection used for the multivariate covariance

estimation and the pairwise beta estimation used as target in the BAC estimator.

In the presence of microstructure noise, the pre-estimator does not necessarily need to be adjusted. The BAC

adjustment in (22) may remain useful for non-robust pre-estimators provided that the target beta is accurately

�In the simulation study and empirical application, we estimate the local variance as in (11) using MedRV of Andersen et al.

(2012) as an auxiliary estimator for Σ
kk
t , owing to its computational simplicity and robustness to zero returns and price jumps.
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calibrated. The BAC adjustment can then be expected to reduce the bias due to noise. We illustrate this in

the simulation setting when the realized covariance matrix is used as pre-estimator.

When the pre-estimator is robust to microstructure noise, we recommend using (22) with projection matrix

as in (33) where the average weights are corrected for the noise. We illustrate this in the simulation study for

the two-time scale estimator of Zhang (2011).

6 Estimation of target beta

The theoretical results in Section 4 assume the oracle situation in which the target beta (β•) equals the true

beta (β). The assumption of knowing β may seem restrictive. In practice, we can expect to have accurate

estimates of β for several reasons. The �rst reason is that β has d unknowns while Θ has d(d+ 1)/2 unknown

parameters. The second reason is that the accuracy of an estimate of Θ requires synchronizing all d series, while

to estimate β we only need a synchronization of the stock price series with the ETF log-price process denoted

by Y . In our case of interest, the ETF price series is liquid.

6.1 The case of no noise and no jumps

Let T(Y ) =
{

0 = tY0 < · · · < tYnY
≤ 1
}
be the observation times for the ETF log-price Y . The pairwise Hayashi

and Yoshida (2005) stock-ETF beta estimator for asset l over the interval [0, t] is given by:

β
lY
t =

∑
i,j

∆i,lX
l∆j,Y exp(Y )1(0,t](t

l
i ∨ tYj )1Ili∩IYj 6=∅

, 0 ≤ t ≤ 1, (39)

where i = 1, . . . nl, j = 1, . . . , nY and I li , I
Y
j are as in (27).

We now study how to improve the pairwise estimate of the beta vector when a highly accurate estimate is

available for the quadratic variation of the ETF. The improved beta estimate is based on the following result

(proof is given in Appendix).

Proposition 3. The quadratic variation of the synthetic ETF log-price Y* in (8) satis�es that

d[Y ∗]s =
d∑
l=1

wls
exp(2Y ∗s )

dβls, (40)

where

βlt =

d∑
l=1

∫ t

0
wlsΣ

lk
s ds. (41)
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Based on Proposition 3 we have the following estimate of the quadratic variation of the ETF log-price:

γ =
d∑
l=1

nl∑
m=1

wl
tlm−1

exp(2Ytlm−1
)

(
β
lY
tm − β

lY
tm−1

)
. (42)

Suppose we have an alternative highly e�cient estimate that we denote by γ• and that the beta estimates need

to be adjusted in such a way that the beta-implied variance equals γ•. To do so, we propose to determine the

adjustment vector θ = ((θ1
t11
, . . . , θ1

t1n1

), . . . , (θd
td1
, . . . , θd

tdnd

))′ of dimension n such that

γ• =

d∑
l=1

nl∑
m=1

wl
tlm−1

exp(2Ytlm−1
)

(
β
lY
tm − β

lY
tm − θ

l
tlm−1

)
. (43)

Similarly as for the beta adjustment of the covariance matrix in (18)-(19), we de�ne the corresponding opti-

mization problem as

θ̂ = argmin
θ

θ′Dθ, (44)

subject to (43) and where D = diag(n1, . . . , nd).

The resulting variance adjusted beta equals

β
V AB

= β
Y − θ, (45)

where θ is given by

θ =
γ − γ•∑d

j=1 n
−1
j

∑nj

m=1(wj
tjm−1

/exp(2Y
tjm−1

))2

n−1
1

n1∑
m=1

w1
t1m−1

exp(2Yt1m−1
)
, . . . , n−1

d

nd∑
m=1

wd
tdm−1

exp(2Ytdm−1
)

′ . (46)

In the simulation study, we set the target variance to the realized ETF variance when there are no jumps in the

ETF and stock prices:

γ• =

nY∑
i=1

(YtYi
− YtYi−1

)2.

6.2 The case of microstructure noise and jumps

In the case of the ETF price, we denote by microstructure noise all deviations of the observed log-price from

the e�cient log-price, namely YtY = Y ∗
tY

+ ζY
tY
. In contrast to the microstructure noise a�ecting the covariance-

implied beta (denoted by β), the microstructure noise does not induce a bias in the pairwise stock-ETF beta

(denoted by β
l
) under the assumption that microstructure noise has zero mean and is independent of the e�cient

stock price and the microstructure noise of the stock prices, i.e., E
[
ζY
tY

]
= E

[
ζk
tk
ζY
tY

]
= E

[
ζY
tY
Xk
tk

]
= 0, for all

14



k 6= l.

Jumps do a�ect the pairwise stock-ETF beta estimate and need to be removed. To do so, we assume the

noise variance to be constant. Let σYζ = E[(ζY
tY

)2]. We detect all ETF jump intervals as in (36):

FY =
⋃
i

(tYi−1, ti
Y ] s.t. (YtYi

− YtYi−1
)2 > κsY

tYi
+ 2σYζ .

In order to achieve coherence between the jump detection intervals used in the pre-estimator and in the stock-

ETF beta estimator, we take the union between the stock jump time intervals F in (37) and the ETF jump

time intervals by setting

F̃ = F ∪ FY .

The �nal estimator for the jump corrected Hayashi-Yoshida pre-estimator when the stock-ETF beta is also

estimated is then
Σ
kl −

∑
i,j(X̃

k
tki
− X̃k

tki−1
)(X̃ l

tlj
− X̃ l

tlj−1
)1[tlj−1,t

l
j ]∩[tki−1,t

k
i ]∩F̃ 6=0

1−
∑

i,j((min(tki , t
l
j)−max(tki−1, t

l
j−1))1[tlj−1,t

l
j ]∩[tki−1,t

k
i ]∩F̃ 6=0

, (47)

and the lth element of jump bias adjusted pairwise stock-ETF beta estimate is

β
lY −

∑
i,j ∆i,lX̃

l∆j,Y exp(Y )1(tYj−1,t
Y
j ]∩(tli−1,t

l
i]∩F̃ 6=0

1−
∑

i,j((min(tli, t
Y
j )−max(tli−1, t

Y
j−1))1(tYj−1,t

Y
j ]∩(tli−1,t

l
i]∩F̃ 6=0

(48)

for l = 1, . . . , d. In the simulation study and empirical application, we adjust for the presence of microstructure

noise and jumps in the stock and ETF prices by calibrating the target ETF variance as follows:

γ• =

nY∑
i=1

(
(YtYi

− YtYi−1
)2 − 2σYζ

)
1(tYi−1,t

Y
i ]∩F̃=0. (49)

7 Simulation

We now document the accuracy gains when the Hayashi and Yoshida (2005) realized covariance and the two-

time scale estimator proposed by Zhang (2011) are used as pre-estimator. We use here Monte Carlo simulations

to investigate the sensitivity of the mean squared error accuracy gains to the properties of the underlying price

process, the sampling properties and the target beta calibration method.
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7.1 Setup

We simulate a d-dimensional Brownian semimartingale with jumps using a similar simulation setup as in

Barndor�-Nielsen et al. (2011):

dXk
s = µkds+ dV k

s + dFs + dJks ,

dV k
s = ρksσ

k
sdB

k
s ,

dF ks =

√
1− (ρks)

2
σksdWs,

where F k is the common factor, Ws |= Bk
s , µ

k is the constant drift and σks is a stochastic volatility process

σks = exp(βk0 + βk1%
k
s),

d%ks = αk%ksds+ dBk
s ,

where Bk is a standard Brownian motion and Jk is the jump process in (35). The parameters are set as in

Barndor�-Nielsen et al. (2011), namely (µk, βk0 , β
k
1 , α

k, ρk) = (0.03,−5/16, 1/8,−1/40,−0.3). In the case of

jumps, we simulate them as independent jumps with arrivals driven by a Poisson process with frequency of

on average of two jumps per day per asset. The size of the jumps equals M = 10 times the average spot

volatility of the day multiplied by a uniform random variable drawn from a uniform distribution on the interval

([−2,−1] ∪ [1, 2]). In the absence of noise the ETF price is modeled as a logarithm of the sum of the prices

of the components, as in (8). The unit interval [0, 1] corresponds to one day of 7.5 hours of shares trading.

We simulated prices at the frequency of 100 milliseconds, making up to N = 7.5 × 60 × 60/0.1 = 270000

intervals per day. We assume that the ETF prices are observed at this frequency. Stock prices are observed at

a lower frequency. We generate the observation times for the d stocks using an exponential distribution for the

inter-trade durations with rates equal to

λk = λ1 + exp

(
ν
k − d
d− 1

)
(λd − λ1), ∀k = 1, . . . , d, (50)

where ν = 10, λ1 = 2700 and λd = λY = 270000.

Alongside the noise-free setup we also run simulations with microstructure, adding a noise term to the

log-prices

X̃k
tki

= Xk
tki

+ ζk
tki
,

YtYi
= log

(
d∑

k=1

exp(Xk
tYi

)

)
+ ζY

tYi
.

The microstructure noise terms ζk
tki

and ζY
tYi

are simulated as i.i.d. from a normal distribution with zero mean
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and variance such that total noise variance equals κ times the integrated variance, where κ is calibrated at 8.5%,

corresponding to the median value found on the empirical data. As a sensitivity analysis, we let kappa vary

between 0 and 0.2.

7.2 Analysis

We simulate S = 1000 days. For each day, we �rst compute three pre-estimators: the traditional realized

covariance estimator (RC), the two-time scale estimator (TSC) of Zhang (2011) and the Hayashi-Yoshida (HY)

estimator. Each estimator is constructed using a pairwise approach. RC and TSC use refresh-time sampling. RC

is synchronised using refresh-time at the highest frequency available on the interval (0, 1]. TSC is implemented

as in Zhang (2011). For TSC we set the short and long window sizes for the two time scales as J = 1 and

K = 30, respectively. The HY estimator is computed as in (26).

For each pre-estimator we then compute the corresponding BAC estimate obtained using three possible beta

estimates: the oracle beta (β), the pairwise beta (β
Y
) and the variance adjusted beta (β

V AB
).

In total, we then have nine integrated covariance estimates per day of simulated prices. We compare the

accuracy of the estimators using the mean squared error de�ned as follows:

MSE =
1

S

S∑
i=1

tr

((
Θ̂i −Θi

)′ (
Θ̂i −Θi

))
tr (Θ′iΘi)

, (51)

where S is the number of replications and Θi is the true integrated covariance in replication i, while Θ̂i is its

estimate. We express the improvement in MSE achieved by the BAC estimator using the percentage relative

improvement in average loss (PRIAL) frequently used in the shrinkage literature:

PRIALBAC =
MSEPRE −MSEBAC

MSEPRE
, (52)

where MSEPRE is the MSE of the pre-estimator.

7.3 Results

Table 1 reports the mean squared estimation error for the pre-estimator and the PRIAL values for the BAC

estimators. The PRIAL is always computed versus the MSE of the pre-estimator used. As target beta, we

take the oracle beta (β• = β), the pairwise estimated stock-ETF beta (β• = β
Y
) and the variance adjusted

stock-ETF beta (β• = β
V AB

). Our contribution is to improve further the performance of the pre-estimator

by adjusting them such that the implied stock-ETF beta correspond to a target beta. We report the results

for three scenarios: (i) no noise and no jumps (panel A), (ii) noise and no jumps (panel B), and (iii) noise

and jumps (panel C). For the scenarios with noise and/or jumps we perform the same bias corrections for the
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pre-estimator, as explained in Sections 5.1.1 and 5.1.2. For each panel, we consider three dimensions (d = 10,

d = 30 and d = 100) and three estimators (RC, TSC and HY).

Note �rst that the performance pattern of BAC with respect to choice of pre-estimators and betas doesn't

vary much across Panels A, B and C. We will therefore discuss only panel C which covers the realistic case of

prices being a�ected by both microstructure noise and price jumps.

As pre-estimator, the HY estimator stands out in terms of lowest MSE (0.027 for d = 10 and 0.030 for

d = 100). The RC and TSC estimators implemented with refresh time sampling have a larger MSE. Their MSE

is around 200 (respectively 10) times the MSE of the HY estimator.

All PRIAL values are positive indicating the gains in accuracy of the BAC estimator compared to the pre-

estimator. The accuracy of the target beta clearly matters. The PRIAL values are between 56% and 72% when

using the oracle beta (β• = β), between 10% and 74% for the pairwise estimated stock-ETF beta (β• = β
Y
), and

between 16% and 74% when targeting the variance adjusted stock-ETF beta (β• = β
V AB

). The improvement

becomes slightly smaller when the dimension d increases, which is expected as there are more elements to adjust

per element of the beta di�erential vector.

So far we have discussed the results in Table 1 where we have either absence of microstructure noise or when

the microstructure noise to asset noise-free variance ratio κ is equal to 0.085. In Figure 1 we analyze this at

the more granular level by letting the noise variance parameter κ vary from 0 to 0.2. We can see that, while

higher levels of microstructure noise variance reduce the size of the MSE improvement, the overall conclusion

remains that the BAC estimator leads to economically signi�cant improvements of accuracy with PRIAL values

that are above 57%, 5% and 14% when using the oracle beta (β• = β), the pairwise estimated stock-ETF beta

(β• = β
Y
) and the variance adjusted stock-ETF beta (β• = β

V AB
), respectively.

18



Table 1: MSE and PRIAL of integrated covariance estimates

Pre-estimator MSEPRE PRIAL (in %) for BAC with β• =

(in %) β β
Y

β
V AB

Panel A: No noise and no jumps
d = 10 HY 0.023 65.484 6.288 19.433

RC 4.165 72.124 71.743 71.830
TSC 0.238 74.791 68.339 70.119

d = 30 HY 0.026 63.260 10.478 21.418
RC 5.437 76.418 76.161 76.210
TSC 0.265 74.309 68.581 69.936

d = 100 HY 0.025 57.489 9.635 18.356
RC 5.954 74.072 73.886 73.926
TSC 0.277 71.216 66.256 67.398

Panel B: Noise and no jumps (κ = 0.085)
d = 10 HY 0.028 64.437 13.025 21.932

RC 4.177 72.353 72.101 72.133
TSC 0.236 74.700 67.668 68.928

d = 30 HY 0.029 59.936 10.282 17.608
RC 5.394 76.040 75.784 75.825
TSC 0.270 74.115 68.193 69.220

d = 100 HY 0.028 55.817 8.752 14.959
RC 5.950 73.750 73.548 73.574
TSC 0.253 70.190 64.497 65.444

Panel C: Noise and jumps (κ = 0.085)
d = 10 HY 0.027 62.837 13.270 21.659

RC 4.177 71.990 71.679 71.736
TSC 0.240 75.804 69.480 70.730

d = 30 HY 0.028 60.323 10.721 17.886
RC 5.368 76.421 76.063 76.123
TSC 0.279 73.956 68.220 69.246

d = 100 HY 0.030 56.314 9.766 15.805
RC 6.089 74.451 73.879 73.965
TSC 0.296 71.107 64.814 65.906

Note: In Panel A, the HY, RC and TSC pre-estimator are the standard Hayashi-Yoshida, Realized Covariance and Two-time
Scale Covariance estimators. In panels B and C, we remove from the HY and RC estimator the bias due to noise, as explained in
Subsection 5.1.1. In Panel C, we �lter out the returns that are a�ected by jumps, as explained in Subsection 5.1.2.

19



Figure 1: Sensitivity of the PRIAL of the BAC estimators to noise variance
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Note: The �gures show the e�ect of noise variance magnitude on the PRIAL of the BAC estimator in the cases of no jumps

(left panel) and jumps (right panel). The pre-estimators have been bias-adjusted for the e�ect of microstructure noise, as explained

in Subsection 5.1. In the case of price jumps, these are also �ltered out using the jump test explained in Subsection 5.1.2.
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8 Empirical application

Our paper is motivated by the opportunity to improve realized covariance estimation by exploiting the increasing

number of transactions involving exchange traded funds. In this section, we document the BAC adjustment for

realized covariance estimation of the stocks for which the market capitalization weighted value is tracked by the

Financial Select Sector SPDR Fund, with ticker XLF. The Financial Select Sector SPDR Fund (XLF) is among

the most frequently traded ETFs (nasdaq.com, 2019).

We �rst describe the data and compare the properties of the ETF data and the stock price data. Second, we

quantify the magnitude of the BAC adjustment and document its heterogeneity across time and stocks. Third,

we show that the adjustment improves the performance of an index tracking investor aiming at tracking the

XLF index with a small number of stocks.

8.1 Data

We use two years - from Jan 2 2018 to Dec 31, 2019 - of transaction prices from the Trades and Quotes (TAQ)

Millisecond database for the XLF fund transaction prices and its 67-69 components. The amount of investment

in the various assets is taken from the CRSP Mutual Funds constituents database. Data cleaning is performed

according to recommendations in Barndor�-Nielsen et al. (2009).� We �nd that, for our sample, the XLF ETF

tracks the value of a market capitalization weighted portfolio invested in �nancial sector stocks included in

the S&P 500 with a tight tracking error.� We refer to citetpetajisto2017ine�ciencies for more dicusion on the

mechanism of shares redemption and the activity of arbitrageurs ensuring such low tracking errors.

Figure 2 reports the daily average number of cleaned trades for all stocks included in the XLF. It varies

between 1987 and 26038 observations per day with a an average (resp. median) value of 7330 (resp. 6091) trades

per day. The XLF fund itself has an average frequency of 12211 trades per day. Only eight stocks have a higher

number of observations, namely JPMorgan Chase (JPM), Bank of America (BAC), Citigroup (C), Wells Fargo

(WFC), Fifth Third Bancorp (FITB), Morgan Stanley (MS), Huntington Bancshares (HBAN) and E*TRADE

Financial Corporation (ETFC).

�One exception is that for each stock we take all trades on the two most liquid exchanges instead of only one exchange. This
modi�cation substantially increases the number of observations with only little e�ect on the microstructure noise variance.

�On our sample, the relative mispricing between the ETF price (exp(Yt)) and the weighted average of the most component
stock prices obtained using last tick interpolation for every minute. We �nd that the relative mispricing is economically small. It
ranges between -0.19% and 0.34%, with zero mean and median and standard deviation of 0.01% .
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Figure 2: Average number of daily cleaned trades for the XLF stocks from Jan 1, 2018-Dec 31, 2019
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Note: We show here the average number of trades for the components of the XLF fund. The horizontal line indicates the average
number of trades for the XLF fund.

8.2 Magnitude of BAC adjustment

The size of the BAC adjustment in (25) is driven by the di�erence between the pre-estimator implied stock-ETF

beta β and the target beta β
Y
in (39).

We gauge the across-asset variation in Figure 3 where we report for each stock in the XLF funcd the

magnitude of the estimated beta-di�erential for the HY estimator. More speci�cally, for each stock k, we report

the following normalized root mean squared adjustment in beta:

Dk = ck

√√√√ 1

T

T∑
t=1

(β
kY
t − βkt )2,

where ck is a normalizing constant equal to the inverse average absolute value of beta over the entire period.

Results are presented for all components of the XLF fund sorted by frequency of trade, from lowest to highest.

The aggregated beta di�erence is clearly higher on the left side, where less frequently traded instruments are

located, implying larger estimation error.

In Figure 4 we show the time series variation in the total magnitude of the BAC adjustment. For each day,

we report the norm of the BAC adjustment matrix divided by the norm of the pre-estimator (
∥∥∥∆

BAC
∥∥∥ /∥∥Σ

∥∥).
We see that there the �uctuations in the magnitude of the adjustment are sizable and that they are serially
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Figure 3: Across-asset variation in magnitude of the HY pre-estimator implied stock-ETF beta and the target
beta for all XLF stocks sorted from lowest to highest number of average observations per day
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Figure 4: Time series variation in the norm of the BAC adjustment matrix
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correlated, indicating that the gains of the BAC adjustment are also time-varying.

8.3 Index tracking portfolio

Now we want to evaluate BAC performance on market data via its application to index tracking. Fastrich et al.

(2014) describe index tracking as a passive �nancial strategy that aims at replicating the performance of a given

index. They note that full replication using all constituents of the index is often not possible since having many

active positions in the tracking portfolio may lead to small and illiquid positions, causing high administrative and

transaction costs. The goal of index tracking is to build a portfolio composed of the minority of the components

of the index such that it follows the price dynamics of the index as precisly as possible, minimizing the variance

of their di�erence. We show here how realized covariance matrices can be used to construct daily index tracking

portfolios by minimizing the covariance-based tracking error. We show that when the performance is evaluated

using the next day's realized tracking error, the BAC adjustment improves the performance on average 85 per

cent of the days.

8.3.1 Methodology

We consider an investor who aims to track the ETF price index using a subset of K < d stocks included in the

ETF portfolio. Let C be the corresponding feasible set. The investor thus seeks the portfolio of weights α ∈ C

such that it minimizes the following integrated tracking error variance:

TE(α; Ω) = (1− α)′Ω(1− α),

where Ω is the integrated covariance matrix of the underlying e�cient ETF logprice Y and the K ≤ d stock

prices used to track Y :

Ω =

 ωY ωY K

ωY K ΘK

 .

The K ×K submatrix Θ̂K is the integrated covariance matrix of the K log-prices used to track Y , ωY is the

integrated variance of Y and ωY K is the K-dimensional integrated covariance vector of Y and the K stocks'

log-prices. From the �rst order conditions, we obtain that the minimum tracking error portfolio weights are

given by

α(Ω) = Θ−1
K ωY K . (53)

We now plug in the Hayashi and Yoshida (2005) pre-estimator for the integrated covariance matrix of the

K stock prices for each day t. Denote these estimates by Θ̂K,t. For ωY and ωY K we use only the HY estimator

and denote the corresponding estimates by ω̂Y,t and ω̂Y K,t. The resulting integrated covariance matrix estimate
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is:

Ω̂t =

 ω̂Y,t ω̂Y K,t

ω̂Y K,t Θ̂K,t

 .

The corresponding estimated minimum tracking error portfolio is α(Ω̂t).
¶ We do the same for the BAC adjusted

pre-estimator leading to α(Ω̂BAC
t ).

In order to evaluate the tracking error performance of portfolio α(Ω̂t) we use the next day's covariance

estimate Ω̂t+1. The next days's tracking error is:

TEt+1(α(Ω̂t)) = ω̂Y,t+1 − 2ω̂Y K,tΘ̂
−1
K,tω̂Y K,t+1 + ω̂Y K,tΘ̂

−1
K,tΘ̂K,t+1Θ̂−1

K,tω̂Y K,t.

If Θ̂K,t = Θ̂K,t+1, then α(Ω̂i) delivers the optimal portfolio by construction. We further create for each day

N = 10000 random sets of K stocks used in the index tracking. We sample K from a uniform distribution

between 10 and 30. For each day t, we then compute the percentage of subsets for which the BAC adjustment

has improved the tracking error:

Gt =
1

N

N∑
i=1

I(TEt+1(α(Ω̂t,i))−TEt+1(α(Ω̂BAC
t,i )))>0, (54)

where the portfolio weights are computed using estimators Ω̂HY
t,i and Ω̂BAC

t,i of the previous day and the per-

formance is evaluated using the tracking error computed using Ω̂t+1,i of the day t+ 1. The latter is computed

using the 1-minute realized covariance as well as the Hayashi-Yoshida covariance estimator using all trades.

8.3.2 Results

We now use the next day's realized covariance to evaluate the gains obtained using the BAC estimator in

terms of achieving a low tracking error portfolio. The evaluation period ranges from Jan 1, 2018 to Dec 31,

2019. Excluding dates with missing data and dates of re-balancing, we have in total 442 days. The results are

presented in Figure 5, where we plot the 10-day moving averages for both pairs of estimators, comparing BAC

HY against HY and variance adjusted BAC HY against HY .

In the top plot, we can see that the BAC estimator outperforms the pre-estimator every day for over 84%

of the random subsets considered when we use the next day's HY estimator to evaluate the trackingerror. In

the bottom plot, we can see that if we use the variance adjusted beta as target beta, the outperformance of the

BAC estimator remains but is less outspoken. However, if we gauge the performance based on the next day's

1-minute realized covariance, then the BAC estimator with variance adjusted beta as target beta outperforms

perfoms simiilarly as the BAC estimator with the pairwise estimate as target beta.

¶When the pre-estimator or its BAC adjustment is not positive de�nite, we perform a spectral decomposition based regularization
as in Aït-Sahalia et al. (2010) and Fan et al. (2012).
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Figure 5: Percentage of outcomes where the BAC estimator-based tracking portfolio has a lower next-day's
tracking error (evaluated using next day's HY, BAC or 1-min RC) than the tracking portfolio based on the HY
pre-estimator
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Note: The �gure shows the 10-day moving average of the percentage of outcomes where the minimum tracking error portfolio
obtained using the BAC estimator outperforms its counterpart obtained using the HY pre-estimator. Portfolios are formed using
the previous day covariance matrix estimate and performance is evaluated using the HY, BAC and �xed grid one-minute RC for
the next day.
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While it remains a topic for further research to obtain even better estimates for the stock-ETF beta (and

possibly exploit expert opinion), we can conclude from the empirical analysis that the BAC adjustment with

the pairwise stock-ETF beta yields improved minimum variance tracking error portfolio in the vast majority of

the random subsets considered.

9 Conclusion

Over the past decade, the trading frequency of several Exchange Traded Funds (ETFs) has surpassed the

frequency at which many of their component stocks trade. In this paper, we show that this trend has a positive

spillover e�ect in terms of improved covariance estimation of the underlying stock returns. We develop an

econometric framework to exploit the information value in the highfrequency comovement between stock and

ETF prices for the estimation of the covariation between stock prices over a �xed time interval.

The proposed Beta Adjusted Covariance estimator improves a pre-estimator in such a way that the implied

stock-ETF beta equals a target value. The latter can either be based on pairwise estimation using stock and ETF

prices or be de�ned using expert opinion. We develop the asymptotic theory for the stock-ETF beta associated

to the Hayashi and Yoshida (2005) pre-estimator. In the simulation study, we show that the accuracy gains

are over 50% in the case in which the target value for the stock-ETF beta is set by an expert to the oracle

beta that is assumed to be free from estimation error. The accuracy gains remain economically signi�cant

when the target beta is estimated using ETF prices and stock prices. The empirical application on Trades and

Quotes millisecond transaction data demonstrates the usefulness of the BAC adjustment for an investor aiming

at tracking an investment index with a small number of stocks.

To help practitioners and academics to implement our methodology in practice, we have included the open

source implementation of the BAC estimator in the R package highfrequency (Boudt et al., 2021) and the

Python package bacpack (Dragun et al., 2021).
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10 Appendix 1: Derivation of the BAC estimator

10.1 Example of Q matrix

The nd-dimensional vector δ corresponds to the adjustment to the n spot covariances estimated using the pre-

estimator. We use the d(d − 1)/2 × dn matrix Q to make sure that symmetry in the adjusted covariance is

guaranteed by imposing Qδ = 0d(d−1)/2. To illustrate this, suppose that d = 2. In this situation, we require

that ∆̄12 = ∆̄21 which, is equivalent to having that

n2∑
l=1

δ12
l =

n1∑
l=1

δ21
l .

Since Q =
[
0′n1

1′n2
−1′n1

0′n2

]
, it follows that

Qδ =

n2∑
l=1

δ12
l −

n1∑
l=1

δ21
l .

We conclude easily from this that ∆̄12 = ∆̄21 if and only if Qδ = 0.

10.2 Proof of Equation (22)

Let us start by considering the Lagrangian corresponding to the optimization problem (18). Plainly,

L = δ′Pδ −
[
(W ′, Q′)′δ −

(
(β − β•)′, 0′(d−1)d/2

)′]′
λ,

with λ as the vector of Lagrange multipliers. Thus, the n =
∑d

k=1 nk �rst order conditions for the elements of

δ are:
∂L
∂δ

= 2Pδ − (W ′, Q′)λ = 0n. (55)

For the d× 1 Lagrangian multipliers λi, we have:

∂L
∂λ

= (W ′, Q′)′δ −
(

(β − β•)′, 0′(d−1)d/2

)′
= 0d. (56)

From (55) and (56) we obtain:

(W ′, Q′)′P−1(W ′, Q′)λ = 2
(

(β − β•)′, 0′(d−1)d/2

)′
.

Applying the previous relation to (56) and using standard formulas for the inverse of block matrices, we get

that δ equals
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P−1

 D −DWP−1Q′
(
QP−1Q′

)−1

−
(
QP−1Q′

)−1
QP−1W ′D

(
QP−1Q′

)−1
+
(
QP−1Q′

)−1
QP−1W ′DWP−1Q′

(
QP−1Q′

)−1


×

 β − β•
0(d−1)d/2


where

D =
(
WP−1W ′ −WP−1Q′

(
QP−1Q′

)−1
QP−1W ′

)−1
.

Therefore,

vec(∆) = AP−1

W
Q

′ D

−
(
QP−1Q′

)−1
QP−1W ′D

P−1

W
Q

′ D

−
(
QP−1Q′

)−1
QP−1W ′D

(β − β•)
= AP−1

(
I −Q′

(
QP−1Q′

)−1
QP−1

)
W ′D

(
β − β•

)
.

Thus, it only remains to show that

L = AP−1
(
I −Q′

(
QP−1Q′

)−1
QP−1

)
W ′
(
WP−1W ′ −WP−1Q′

(
QP−1Q′

)−1
QP−1W ′

)−1
, (57)

with L as in (23). To do this, observe �rst that

QP−1Q′ = 2Id2 ; AP−1W ′ = W̄ ′. (58)

Indeed, by using the de�nition of Q, it is easy to see that

(
QQ′

) (i−2)(i−1)
2

+j,
(i′−2)(i′−1)

2
+j′

=
1

ni

(j−1)n+
∑i

k=1 nk∑
l=(j−1)n+

∑i−1
k=1 nk+1

Q
(i′−2)(i′−1)

2
+j′,l

− 1

nj

(i−1)n+
∑j

k=1 nk∑
l=(i−1)n+

∑j−1
k=1 nk+1

Q
(i′−2)(i′−1)

2
+j′,l

=(αii
′
αjj

′ − αij′αji′)− (αij
′
αji
′ − αii′αjj′)

for all i, j, i′, j′ = 1, . . . , d, i > j, i′ > j′. Note that if i = j′ and j = i′, we would have that j > i, which is

absurd. Therefore,

(
QQ′

) (i−2)(i−1)
2

+j,
(i′−2)(i′−1)

2
+j′

= 2αii
′
αjj

′
= 2I

(i−2)(i−1)
2

+j,
(i′−2)(i′−1)

2
+j′

d2 .
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Similar arguments can be used to deduce that for all m, r, j = 1, . . . , d

nd∑
l=1

(1/P ll)A(m−1)d+r,lW k,l =
1

nr

(m−1)n+
∑r

x=1 nx∑
l=(m−1)n+

∑r−1
x=1 nx+1

W k,l

=
αmk

nr

nr∑
m=1

wrtrm−1
= W̄ k,(m−1)d+r,

which shows the validity of (58). Applying the latter to the right-hand side of (57) allows us to conclude that

(22) holds if and only if

L =

(
W̄ ′ − 1

2
AP−1Q′QP−1W ′

)(
WP−1W ′ − 1

2
WP−1Q′QP−1W ′

)−1

. (59)

Trivially, WP−1W ′ = Id2

(∑d
y=1

1
ny

∑ny

l=1(wy
tyl−1

)2
)
. Moreover, in view that for all i, j, i′, j′, k,m, r = 1, . . . , d

with i > j and i′ > j′, it holds that

nd∑
l=1

(1/P ll)A(m−1)d+r,lQ
(i−2)(i−1)

2
+j,l =

1

nr

(m−1)n+
∑r

x=1 nx∑
l=(m−1)n+

∑r−1
x=1 nx+1

Q
(i−2)(i−1)

2
+j,l

= αmjαri − αmiαrj ,

(60)

and

nd∑
l=1

(1/P ll)Q
(i−2)(i−1)

2
+j,lW k,l =

1

ni

(j−1)n+
∑i

x=1 nx∑
l=(j−1)n+

∑i−1
x=1 nx+1

W k,l − 1

nj

(i−1)n+
∑j

x=1 nx∑
l=(i−1)n+

∑j−1
x=1 nx+1

W k,l

= αkj
1

ni

ni∑
l=1

witil−1
− αki 1

nj

nj∑
l=1

wj
tjl−1

,

in which we have let αkl denote the Dirac's delta measure. We obtain that

(
W̄AP−1Q′

)k, (i−2)(i−1)
2

+j
=

d∑
m=1

(
αmjαmk

1

ni

ni∑
l=1

witil−1

)
−

d∑
m=1

(
αmjαmi

1

nj

nj∑
l=1

wj
tjl−1

)

=
(
QP−1W ′

) (i−2)(i−1)
2

+j,k
.

Consequently, we can rewrite the right-hand side of (59) as

(
Id2 −

1

2

(
AP−1Q′

) (
AP−1Q′

)′)
W̄ ′

Id2

 d∑
y=1

1

ny

ny∑
l=1

(wy
tyl−1

)2

− 1

2
W̄
(
AP−1Q′

) (
AP−1Q′

)′
W̄ ′

−1

.
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Therefore, in order to �nish the proof, we only need to check that
(
AP−1Q′

) (
AP−1Q′

)′
= Q, where Q is as in

(21). From (60) we obtain that for all m, r,m′, r′ = 1, . . . , d

[(
AP−1Q′

) (
AP−1Q′

)′](m−1)d+r,(m′−1)d+r′

=

d−1∑
j=1

d∑
i=j+1

(αmjαri − αmiαrj)(αm′jαr′i − αm′iαr′j),

which obviously vanishes when m = r. Suppose that m > r. Then,

[(
AP−1Q′

) (
AP−1Q′

)′](m−1)d+r,(m′−1)d+r′

=
d∑

i=r+1

αmi(αm
′iαr

′r − αm′rαr′i)

= αm
′mαr

′r − αm′rαr′m

= Q(m−1)d+r,(m′−1)d+r′ .

Interchanging the roles between r and m above, we obtain the desired relation
(
AP−1Q′

) (
AP−1Q′

)′
= Q,

which completes our argument.

10.3 Proof of Proposition 3

First note that from Itô's lemma

d exp(Xk
s ) = exp(Xk

s )(dXs +
1

2
d[Xk]s)

d exp(Y ∗s ) = exp(Y ∗s )(dY ∗s +
1

2
d[Y ∗]s),

and exp(Y ∗s ) =
∑d

k=1 a
k
s exp(Xk

s ) =
∑d

k=1w
k
s . It thus follows that under the assumptions of Section 2, we have

that

dY ∗s =
1

exp(Y ∗s )

d∑
k=1

wks

(
dXk

s +
1

2
d[Xk]s

)
− 1

2
d[Y ∗]s (61)

[X l, Y ∗]t =
d∑

k=1

∫ t

0

wks
exp(Y ∗s )

d[Xk, X l]s. (62)

For the weighted sum of betas
d∑
l=1

wls
exp(2Y ∗s )

dβls, (63)

with βls as de�ned in (41) we have that from (62) the following result follows:

d∑
l=1

wls
exp(2Y ∗s )

dβls =
d∑
l=1

wls
exp(Y ∗s )

d∑
k=1

wks
exp(Y ∗s )

d[Xk, X l]s =
d∑
l=1

wls
exp(Y ∗s )

d[Y ∗, X l]s = d[Y ∗]s.
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11 Appendix 2: Asymptotics for stochastic functionals of a localized HY

estimator

Consider kn ∈ N a window satisfying that kn ↑ ∞ and kn/n→ 0, as n→∞ for a given Itô's semimartingale H

with representation

Ht =H0 +

∫ t

0
µ′sds+

d′∑
m=1

∫ t

0
σ′ms dBm

s

+

∫ t

0

∫
E
ϕ′(s, z)1‖ϕ′(s,z)‖≤1(N − λ)(dsdz) +

∫ t

0

∫
E
ϕ′(s, z)1‖ϕ′(s,z)‖>1N(dsdz),

(64)

in which µ′, σ′ and δ′ satisfy the same assumptions as µ̃, σ̃ and δ in (3). Within this framework, we de�ne

ψkl(H) =

∫ 1

0
HsΣ

kl
s ds

and

ψkln (H) =
1

nk

nk−kn+1∑
m=1

Htkm−1
Σ̂kl
tkm−1

, (65)

where

Σ̂kl
tkm

=
nk
kn

{
Σ̄kl
tkm+kn/nk

− Σ̄kl
tkm

}
, m = 0, 1, . . . , nk − kn. (66)

For H(1), . . . ,H(N) processes of the form of (64) we use the notation

Λ(H(1), . . . ,H(m)) = (ψkln (H(1))− ψkl(H(1)), . . . , ψkln (H(N))− ψkl(H(N)))k,l=1,...,d.

We have the following result:

Theorem 2. Assume that X is given by (1) and let Assumption 1 hold. If k2
n/n→ 0, then as n→∞

√
nΛ(H(1), . . . ,H(m))

s.d→ Z = (Zkl1 , . . . , Z
kl
N )k,l=1,...,d,

in which Z is an F-conditional centered Gaussian vector satisfying

E
(
Zklx , Z

k′,l′
y

∣∣∣F) =

∫ 1

0
H(x)
s H(y)

s

(
Σk,k′
s Σl,l′

s +Σkl′
s Σk′,l

s

)
ds.

Remark 2. Thanks to Lemma 4.4.9 in Jacod and Protter (2011), in all the proofs below we may and do assume
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that σ, µ, σ̃, µ̃, µ′, σ′ and X are bounded as well as

‖ϕ(ω, t, z)‖+
∥∥ϕ′(ω, t, z)∥∥ ≤ Γ (z),

where Γ is a deterministic bounded measurable function ful�lling that
∫
E Γ (z)2ν(dz) < ∞. Under these strong

assumptions, we have that

Ht = H0 +

∫ t

0
µ̃′sds+

d′∑
m=1

∫ t

0
σ′ms dBm

s +

∫ t

0

∫
E
ϕ′(s, z)(N − λ)(dsdz),

where µ̃′ is bounded. Moreover, for all s ≥ 0 and p ≥ 1

E
(

sup
u≤s
‖Xt+u −Xt‖p

∣∣∣∣Ft) ≤ Csp/2
‖E (Xt+s −Xt| Fs)‖ ≤ Cs,

E
(

sup
u≤s
|Σt+u −Σt|p

∣∣∣∣Ft) ≤ Cs1∧p/2,

‖E (Σt+s −Σt| Fs)‖ ≤ Cs,

E
(

sup
u≤s
|Ht+u −Ht|p

∣∣∣∣Ft) ≤ Cs1∧p/2,

‖E (Ht+s −Ht| Fs)‖ ≤ Cs.

(67)

For more details in this regard we refer to Section 2 in Jacod and Protter (2011).

11.1 First approximation

For the remainder of this work, if Z and Y denote two stochastic processes, we will write

βklp (Y,Z) =
∑
i,j

∆i,kY∆j,lZ1(tkp−1,t
k
p ](t

k
i ∨ tlj)1Iki ∩Ilj 6=∅;

β̃klm(Y,Z) =
∑
i,j

∆i,kY∆j,lZ1(m−1
n

,m
n

](t
k
i ∨ tlj)1Iki ∩Ilj 6=∅,

(68)

for k = 1, . . . , d, l = 1, . . . , d′, p = 1, . . . , nk − 1 and m = 1, . . . , n. Note that

ψkl(H) =

nk∑
p=1

hp,nβ
kl
p (Xk, X l),

where

hp,n =
1

kn

p∧(nk−kn+1)∑
m=1∨(p−kn+1)

Htkm−1
.
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For the rest of this part we focus on showing the following approximation:

Lemma 1. Assume that X and H are given by (1) and (64), respectively. Let Assumption 1 hold and suppose

that k2
n/n→ 0. Then,

ψkl(H) =

nk∑
p=1

Htkp
βklp (Xk, X l) + oP(n−1/2)

=
∑
i,j

Htki−1∧tlj−1
∆i,kX

k∆j,lX
l1Iki ∩Ilj 6=∅

+ oP(n−1/2)

=
n∑

m=1

Hm−1
n
β̃klm(Xk, X l) + oP(n−1/2).

(69)

Proof. We will only show the �rst equality in (69). The other approximations can be shown using the same

method. For n su�ciently large, de�ne the error of the �rst approximation by

Rn,1 =

nk∑
p=1

(
hp,n −Htkp

)
βklp (Xk, X l).

In view that Iki ∩ I lj 6= ∅ if and only if the following four scenarios occur



tki ≥ tlj ≥ tki−1 and tki−1 ≥ tlj−1

tlj ≥ tki ≥ tlj−1 and tki−1 ≥ tlj−1

tki ≥ tlj ≥ tki−1 and tlj−1 ≥ tki−1

tlj ≥ tki ≥ tlj−1 and tlj−1 ≥ tki−1

, (70)

we deduce, from Assumption 1, the estimates in (67), Jensen's inequality and the Cauchy-Schwarz inequality

that for all J ≥ 1

E
(∣∣∣βklp (Xk, X l)

∣∣∣J) ≤ C/nJ , p = 1, . . . , nk. (71)

Thus, letting ln = kn/nk and using once again the Cauchy-Schwarz inequality, we obtain that

kn∑
p=1

E
(∣∣∣(hp,n −Htkp

)
βklp (Xk, X l)

∣∣∣) ≤ C
nk

kn∑
p=1

E

∣∣∣∣∣Htkp
− 1

kn

p∑
m=1

Htkm−1

∣∣∣∣∣
2
1/2

=C

∫ ln

0
E

∣∣∣∣∣H [snk]+1

nk

− 1

ln

∫ [snk]+1

nk

0
H [rnk]

nk

dr

∣∣∣∣∣
2
1/2

ds

=Cln

∫ 1

0
E

∣∣∣∣∣H [hnrnk]

nk

−
∫ [snk]+1

nk
hn

0
H [hnsnk]

nk

ds

∣∣∣∣∣
2
1/2

dr ≤ Cln.
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Similar calculations show that

nk∑
p=nk−kn+1

E
(∣∣∣(hp,n −Htkp

)
βklp (Xk, X l)

∣∣∣) ≤ Cln.
Thus, using that

√
nln → 0, we conclude that

Rn,1 =
1

kn

nk−2kn∑
q=kn+1

∆q,kH

q+kn−1∑
p=q

βklp (Xk, X l)(q − p+ kn)

+
1

kn

kn∑
q=1

∆q,kH

q+kn−1∑
p=kn

βklp (Xk, X l)(q − p+ kn)

+
1

kn

nk−kn−1∑
q=nk−2kn+1

∆q,kH

nk−kn∑
p=q

βklp (Xk, X l)(q − p+ kn) + oP(n−1/2).

Furthermore, in view that
q+kn−1∑
p=q

(q − p+ kn) = O(k2
n), q = 1, . . . , nk − kn, (72)

we can apply (71) to deduce that

Rn,1 =
1

kn

nk−2kn∑
q=kn+1

∆q,kH

q+kn−1∑
p=q

βklp (Xk, X l)(q − p+ kn) + oP(n−1/2). (73)

Now, let Ar be the set of indexes (i, j) satisfying the rth scenario in (70), put

βklp,r(X
k, X l) =

∑
i,j∈Ar

∆i,kX
k∆j,lX

l1(tkp−1,t
k
p ](t

k
i ∨ tlj)1Iki ∩Ilj 6=∅

and de�ne

Un,1(r) =

√
n

kn

nk−2kn∑
q=kn+1

q+kn−1∑
p=q+1

∆q,kHβ
kl
p,r(X

k, X l)(q − p+ kn);

Ũn,1(r) =
√
n

nk−2kn∑
q=kn+1

∆q,kHβ
kl
q,r(X

k, X l).

Since
√
nRn,1 =

∑4
r=1

(
Un,1(r) + Ũn,1(r)

)
, we need to show that Un,1(r) and Ũn,1(r) are asymptotically negli-

gible for r = 1, 2, 3, 4. We will only show the case for r = 1. By Jensen's inequality and Lemma 2.2.12 in Jacod
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and Protter (2011), we need to show that

mn,U =

√
n

kn

nk−2kn∑
q=kn+1

q+kn−1∑
p=q+1

E
(

∆q,kHβ
kl
p,1(Xk, X l)

∣∣∣Ftkq−1

)
(q − p+ kn) = oP(1),

mn,Ũ =
√
n

nk−2kn∑
q=kn+1

E
(

∆q,kHβ
kl
q,1(Xk, X l)

∣∣∣Ftkq−1

)
= oP(1)

(74)

and

vn,U =
n

k2
n

nk−2kn∑
q=kn+1

E

∆q,kH

q+kn−1∑
p=q+1

βklp,1(Xk, X l)(q − p+ kn)

2∣∣∣∣∣∣Ftkq−1

 = oP(1),

vn,Ũ = n

nk−2kn∑
q=kn+1

E
[(

∆q,kHβ
kl
q,1(Xk, X l)

)2
∣∣∣∣Ftkq−1

]
= oP(1).

(75)

From Remark 2 and Itô's formula, we have that for any t ≥ s ≥ u and k, l = 1, . . . , d

E
[

(Ht −Hs)
(
Xk
t −Xk

s

)∣∣∣Fu] =E
[∫ t

s
(Hr −Hs)µ

k
rdr

∣∣∣∣Fu]+ E
[∫ t

s
(Xk

r −Xk
s )µ̃′rdr

∣∣∣∣Fu]
+ E

[∫ t

s
ϕ(1)
r dr

∣∣∣∣Fu] . (76)

We also have that

E
[

(Ht −Hs)
(
Xk
t −Xk

s

)(
X l
t −X l

s

)∣∣∣Fu] =E
[∫ t

s
(Hr −Hs)

(
Xk
r −Xk

s

)
µlrdr

∣∣∣∣Fu]
+ E

[∫ t

s
(Hr −Hs)

(
X l
r −X l

s

)
µkrdr

∣∣∣∣Fu]
+ E

[∫ t

s

(
Xk
r −Xk

s

)(
X l
r −X l

s

)
µ̃′rdr

∣∣∣∣Fu]
+ E

[∫ t

s

(
Xk
r −Xk

s

)
ϕ(2)
r dr

∣∣∣∣Fu]
+ E

[∫ t

s

(
X l
r −X l

s

)
ϕ(1)
r dr

∣∣∣∣Fu]+ E
[∫ t

s
(Hr −Hs)Σ

kl
r dr

∣∣∣∣Fu] ,
(77)

for some càdlàg processes ϕ(1), ϕ(2) depending only on σ and σ′. Let q ∈ {kn + 1, . . . , nk − 2kn}. It follows from

(76), (77), Assumption 1 and (67) that if (p, j) ∈ A1 is such that tlj−1 ≥ tkq and p ≥ q + 1, we have as in (76)

that

∣∣∣E(∆p,kX
k∆j,lX

l
∣∣∣Ftkq)− (tlj − tkp−1)Σkl

tkq−1

∣∣∣ ≤ Cn−3/2, (78)
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while for tkq ≥ tlj−1

E
(

∆p,kX
k∆j,lX

l
∣∣∣Ftkq) =

(
X l
tkq
−X l

tlj−1

)
E
(

∆p,kX
k
∣∣∣Ftkq)

+ E
(

∆p,kX
k
(
X l
tlj
−X l

tkq

)∣∣∣Ftkq)
=
(
X l
tkq
−X l

tlj−1

)∫ tkp

tkp−1

E
(
µkr

∣∣∣Ftkq) dr
+ (tlj − tkp−1)Σkl

tkq−1

+ OP(n−3/2).

We conclude that

E
[∣∣∣E(∆q,kH∆p,kX

k∆j,lX
l
∣∣∣Ftkq−1

)
− (tlj − tkp−1)Σkl

tkq−1
E
(

∆q,kH| Ftkq−1

)∣∣∣] ≤ Cn−2.

Therefore,

mn,U =

√
n

kn

nk−2kn∑
q=kn+1

q+kn−1∑
p=q+1

∑
j

(tlj − tkp−1)Σkl
tkq−1

E
(

∆q,kH| Ftkq−1

)
1(p,j)∈A1

(q − p+ kn) + oP(1) = oP(1),

where we have also used (72) and (67). To deal with mn,Ũ �rst note that

E
(

∆q,kH∆q,kX
k∆j,lX

l
∣∣∣Ftkq−1

)
=(X l

tkq−1
−X l

tkj−1
)× E

(
∆q,kH∆q,kX

k
∣∣∣Ftkq−1

)
+ E

((
Htlj
−Htkq−1

)(
Xk
tlj
−Xk

tkq−1

)(
X l
tlj
−X l

tkq−1

)∣∣∣Ftkq−1

)
+ E

((
Htkq
−Htlj

)(
Xk
tkj
−Xk

tkq−1

)(
X l
tlj
−X l

tkq−1

)∣∣∣Ftkq−1

)
+ E

((
Htlj
−Htkq−1

)(
Xk
tkq
−Xk

tkj

)(
X l
tlj
−X l

tkq−1

)∣∣∣Ftkq−1

)
+ E

((
Htkq
−Htlj

)(
Xk
tkq
−Xk

tkj

)(
X l
tlj
−X l

tkq−1

)∣∣∣Ftkq−1

)
=OP(n−2) + E

[∫ tkq

tkq−1

(
X l
tkq−1
−X l

tkj−1

)
ϕ(1)
r dr

∣∣∣∣∣Ftkq−1

]

+ E

[∫ tlj

tkq−1

(
Xk
r −Xk

tkq−1

)
ϕ(2)
r dr

∣∣∣∣∣Ftkq−1

]
+ E

[∫ tkj

tkq−1

(
X l
r −X l

tkq−1

)
ϕ(1)
r dr

∣∣∣∣∣Ftkq−1

]

E

[∫ tkq

tlj

(
X l
tkj
−X l

tkq−1

)
ϕ(1)
r dr

∣∣∣∣∣Ftkq−1

]
;
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so

mn,Ũ =
√
n

nk−2kn∑
q=kn+1

∑
j

E

[∫ tkq

tkq−1

(
X l
tkq−1
−X l

tkj−1

)
ϕ(1)
r dr

∣∣∣∣∣Ftkq−1

]
1(q,j)∈A1

+
√
n

nk−2kn∑
q=kn+1

∑
j

E

[∫ tlj

tkq−1

(
Xk
r −Xk

tkq−1

)
ϕ(2)
r dr

∣∣∣∣∣Ftkq−1

]
1(q,j)∈A1

+
√
n

nk−2kn∑
q=kn+1

E

[∫ tkj

tkq−1

(
X l
r −X l

tkq−1

)
ϕ(1)
r dr

∣∣∣∣∣Ftkq−1

]
1(q,j)∈A1

+
√
n

nk−2kn∑
q=kn+1

E

[∫ tkq

tlj

(
X l
tkj
−X l

tkq−1

)
ϕ(1)
r dr

∣∣∣∣∣Ftkq−1

]
1(q,j)∈A1

+ oP(1).

(79)

Since ϕ(1) is càdlàg, the Cauchy-Schwarz inequality and the Dominated Convergence Theorem guarantee that

the sum

√
n

nk−2kn∑
q=kn+1

∑
j

E

{∣∣∣∣∣E
[∫ tkq

tkq−1

(
X l
tkq−1
−X l

tkj−1

)(
ϕ(1)
r − ϕ

(1)

tkq−1

)
dr

∣∣∣∣∣Ftkq−1

]∣∣∣∣∣
}
1(q,j)∈A1

is bounded (up to a constant) by

nk−2kn∑
q=kn+1

∫ tkq

tkq−1

E

(∥∥∥∥ϕ(1)
r − ϕ

(1)

tkq−1

∥∥∥∥2
)1/2

dr → 0. (80)

Consequently, the �rst term in (79) equals

√
n

nk−2kn∑
q=kn+1

∑
j

ϕ
(1)

tkq−1

∫ tkq

tkq−1

E
[(
X l
tkq−1
−X l

tkj−1

)∣∣∣Ftkq−1

]
dr1(q,j)∈A1

+ oP(1) = oP(1), (81)

thanks to (67). A similar argument can be applied to the other summands in (79) in order to deduce that (74)

is indeed true. Now we concentrate on showing that (75) is satis�ed. Fix q ∈ {kn + 1, . . . , nk − 2kn} and pick

(p, j), (p′, j′) ∈ A1 such that q + kn − 1 ≥ p, p′ ≥ q + 1 and put

αklp,p′,j,j′(q) = E
(

∆p,kX
k∆p′,kX

k∆j,lX
l∆j′,lX

l
∣∣∣Ftkq) .
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Suppose �rst that j′ ≥ j. Then,

αklp,p′,j,j′(q) =



O(n2) if tlj−1 ≥ tkq ;(
X l
tkq
−X l

tlj−1

)
E
(

∆p,kX
k∆p′,kX

k∆j′,lX
l
∣∣Ftkq)+ O(n−2) if tlj′−1 ≥ tkq > tlj−1;(

X l
tkq
−X l

tlj−1

)(
X l
tkq
−X l

tl
j′−1

)
E
(

∆p,kX
k∆p′,kX

k
∣∣Ftkq)+ O(n−2) tkq > tlj′−1 ≥ tlj−1.

Moreover, thanks to (76) and (78), if tlj′−1 ≥ tkq > tlj−1,

∣∣∣E(∆p,kX
k∆p′,kX

k∆j′,lX
l
∣∣∣Ftkq)∣∣∣ ≤

C/n
2 if tkp > tkp′ or if t

l
j′−1 ≥ tkp;

C/n3/2 tkp′ ≥ tkp > tlj′−1,

as well as ∣∣∣E(∆p,kX
k∆p′,kX

k
∣∣∣Ftkq)∣∣∣ ≤

C/n
2 if p 6= p′;

C/n if p = p.

Hence, if j ≥ j′,

E
{∣∣∣E [(∆q,kH)2 ∆p,kX

k∆j,lX
l∆p′,kX

k∆j′,lX
l
∣∣∣Ftkq−1

]∣∣∣} ≤ Cn−5/2,

whenever tlj′−1 ≥ tkq > tlj−1 and tkp′ ≥ tkp > tlj′−1 or when tkq > tlj′−1 ≥ tlj−1 and p 6= p′. Otherwise, we have that

E
{∣∣∣E [(∆q,kH)2 ∆p,kX

k∆j,lX
l∆p′,kX

k∆j′,lX
l
∣∣∣Ftkq−1

]∣∣∣} ≤ Cn−3.

Interchanging j with j′ above and applying (72), we can conclude that

E (|vn,U |) ≤C
1

n3/2

nk−2kn∑
q=kn+1

q+kn−1∑
p,p′=q+1

∑
j′≥j

1tl
j′−1
≥tkq>tlj−1

1(p,j),(p′,j′)∈A1
1tk

p′≥t
k
p>t

l
j′−1

+ o(1).

The �rst part of (75) now follows from the fact that the last sum contains O(nkn) terms due to Assumption 1.

Finally, from the estimates in (67), the Cauchy-Schwarz inequality and (71) we obtain that

E
[(

∆q,kHβ
kl
q,1(Xk, X l)

)2
]
≤ C/n5/2,

which trivially implies that vn,Ũ is negligible as n→∞. This concludes our argument.
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11.2 Negligibility of the drift component

From Lemma 1, we have that

ψkl(H) =
∑
i,j

Htki−1∧tlj−1
∆i,kM

k∆j,lM
l1Iki ∩Ilj 6=∅

+ oP(n−1/2)

+
∑
i,j

Htki−1∧tlj−1

(
∆i,kM

k∆j,lA
l + ∆i,kA

k∆j,lM
l + ∆i,kA

k∆j,lA
l
)
1Iki ∩Ilj 6=∅

, (82)

whenever k2
n/n → 0. For the rest of this subsection we will show that under our framework the last summand

in (82) is oP
(
n−1/2

)
. From Assumption 1, it follows easily that

∑
i,j

1Iki ∩Ilj 6=∅
= O (n) .

From this, the boundedness of H and the fact that
∣∣∆i,kA

k∆j,lA
l
∣∣ ≤ C/n2 , we easily deduce that

∑
i,j

Htki−1∧tlj−1
∆i,kA

k∆j,lA
l1Iki ∩Ilj 6=∅

= oP

(
n−1/2

)
.

On the other hand, reasoning as in (80), let us conclude that

∑
i,j

Htki−1∧tlj−1
∆i,kA

k∆j,lM
l1Iki ∩Ilj 6=∅

=
1

nk

∑
i,j

Htki−1∧tlj−1
µk
tki−1∧tlj−1

∆j,lM
l1Iki ∩Ilj 6=∅

+ oP

(
n−1/2

)
.

Hence, in view that µk
tki−1∧tlj−1

Htki−1∧tlj−1
is Ftlj−1

-measurable and bounded, E
(

∆j,kM
l
∣∣Ftlj−1

)
= 0, and E

(∣∣∆j,kM
l
∣∣2∣∣∣Ftlj−1

)
≤

C/n, it follows from Lemma 2.2.11 in Jacod and Protter (2011) that

∑
i,j

Htki−1∧tlj−1
∆i,kA

k∆j,lM
l1Iki ∩Ilj 6=∅

= oP

(
n−1/2

)
,

as claimed. The negligibility of the sum involving ∆i,kM
k∆j,lA

l can be shown in the same way.

11.3 Freezing the volatility

In this part we show that under our set-up we can replace ∆i,kM
k with

∑
x σ

k,x

tki−1∧tlj−1

∆i,kB
x in

Skln =

∑
i,j

Htki−1∧tlj−1
∆i,kM

k∆j,lM
l1Iki ∩Ilj 6=∅

.
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Lemma 2. Assume that H is given by (64) and let Assumption 1 hold. Then,

Skln =

∑
x,y

∑
i,j

Htki−1∧tlj−1
σk,x
tki−1∧tlj−1

σl,y
tki−1∧tlj−1

χkli,j1Iki ∩Ilj 6=∅
+ oP

(
n−1/2

)
, (83)

where

χkli,j = ∆i,kB
x∆j,lB

y.

Proof. We have that

Skln =
∑
i,j

Htki−1∧tlj−1
χkli,j1Iki ∩Ilj 6=∅

,

+

3∑
r=1

∑
i,j

Htki−1∧tlj−1
χkli,j(r),

where

χkli,j(1) =
∑
x,y

∫ tki

tki−1

(
σk,xs − σk,x

tki−1∧tlj−1

)
dBx

s

∫ tlj

tkj−1

(
σl,ys − σ

k,y

tki−1∧tlj−1

)
dBy

s ;

χkli,j(2) =
∑
x,y

∫ tki

tki−1

(
σk,xs − σk,x

tki−1∧tlj−1

)
dBx

s σ
l,y

tki−1∧tlj−1

∆j,lB
y;

χkli,j(3) =
∑
x,y

∫ tlj

tkj−1

(
σl,ys − σ

k,y

tki−1∧tlj−1

)
dBy

sσ
k,x

tki−1∧tlj−1

∆i,kB
x.

The Cauchy-Swartz inequality and (67) imply that

E
(∣∣∣χkli,j(1)

∣∣∣) ≤ C/n2,

so
∑

i,j Htki−1∧tlj−1
χkli,j(1) = oP(n−1/2). Under the notation of the proof of Lemma 1, it is left to show that

En,v(r) =
∑
i,j∈Av

Htki−1∧tlj−1
χkli,j(r) = oP(n−1/2), v = 1, . . . , 4, r = 2, 3.
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We concentrate only on En,1(2), since the other terms require similar calculations. If (i, j) ∈ A1, then

χkli,j(2) =
∑
x,y

∫ tki

tlj

(
σk,xs − σk,x

tlj−1

)
dBx

s σ
l,y

tlj−1

∫ tlj

tlj−1

dBy
s

∑
x,y

∫ tlj

tki−1

(
σk,xs − σk,x

tlj−1

)
dBx

s σ
l,y

tlj−1

∫ tlj

tki−1

dBy
s

∑
x,y

∫ tlj

tki−1

(
σk,xs − σk,x

tlj−1

)
dBx

s σ
l,y

tlj−1

∫ tki−1

tlj−1

dBy
s

=

3∑
w=1

χkli,j(2, w).

We start by decomposing

∫ tki

tlj

(
σk,xs − σk,x

tlj−1

)
dBx

s σ
l,y

tlj−1

∫ tlj

tlj−1

∆j,lB
y =σl,y

tlj−1

∫ tki

tlj

(
σk,xs − σk,x

tlj−1

)
dBx

s

∫ tki−1

tlj−1

dBy
s

+ σl,y
tlj−1

∫ tki

tlj

(
σk,xs − σk,x

tlj−1

)
dBx

s

∫ tlj

tki−1

dBy
s

=:γx,yi,j (1) + γx,yi,j (2).

Thus, for J = 1, 2, E
(
γx,yi,j (J)

∣∣∣Ftki−1

)
= 0 and

E
(
γx,yi,j (J)2

)
≤ C

n

∫ tki

tki−1

E
[∥∥∥σs − σtlj−1

∥∥∥4
]1/2

ds.

Since σ is càdlàg, we can argue as in (80) and obtain that

∑
i,j∈A1

Htki−1∧tlj−1
χkli,j(1, 1) = oP(n−1/2).

Analogous reasoning it follows also that
∑

i,j∈A1
Htki−1∧tlj−1

χkli,j(1, 3) = oP(n−1/2). For χkli,j(1, 2) we �rst note that

it is Ftlj -measurable, so from (67)

E

(∫ tlj

tki−1

(
σk,xs − σk,x

tlj−1

)
dBx

s

∫ tlj

tki−1

∆j,lB
y

∣∣∣∣∣Ftlj−1

)
=

∫ tlj

tki−1

E
((

σk,xs − σk,x
tki−1

)∣∣∣∣Ftlj−1

)
dsδx,y

=O(n−2).
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where δx,y denotes the Dirac's delta measure. Thus,

∑
i,j∈A1

Htki−1∧tlj−1
E
(
χkli,j(1, 2)

∣∣∣Ftlj−1

)
= oP(n−1/2).

Finally, by Itô's formula,

E

(∫ tlj

tki−1

(
σk,xs − σk,x

tlj−1

)
dBx

s

∫ tlj

tki−1

∆j,lB
y

)2
∣∣∣∣∣∣Ftlj−1

 =

∫ tlj

tki−1

E

(∫ s

tki−1

dBy
r

)2(
σk,xs − σk,x

tlj−1

)2
∣∣∣∣∣∣Ftlj−1

 ds
+

∫ tlj

tki−1

∫ s

tki−1

E

[(
σk,xr − σk,x

tlj−1

)2
∣∣∣∣∣Ftlj−1

]
drds

+ 4

∫ tlj

tki−1

E

[∫ s

tki−1

(
σk,xr − σk,x

tlj−1

)
dBx

r

∫ s

tki−1

∆j,lB
y
r

∣∣∣∣∣Ftlj−1

]
dsδx,y

=

∫ tlj

tki−1

E

(∫ s

tki−1

dBy
r

)2(
σk,xs − σk,x

tlj−1

)2
∣∣∣∣∣∣Ftlj−1

 ds
+ O(n−3).

Hence,

E


∣∣∣∣∣∣E
(∫ tlj

tki−1

(
σk,xs − σk,x

tlj−1

)
dBx

s

∫ tlj

tki−1

∆j,lB
y

)2
∣∣∣∣∣∣Ftlj−1

∣∣∣∣∣∣
 ≤ C

n

∫ tlj

tlj−1

E
[∥∥∥σs − σtlj−1

∥∥∥4
]1/2

ds+ O(n−3),

which, as above, implies that ∑
i,j∈A1

Htki−1∧tlj−1
χkli,j(1, 2) = oP(n−1/2).

11.4 Proof for Theorem 2

The proof resembles the proof of Theorem 3.4 in Christensen et al. (2013). Let us start by stating some

consequences of the previous subsections: From Lemmas 1 and 2 and the arguments therein, we have that if

k2
n/n→ 0 as n→∞, then for k, l, k′, l′ = 1, . . . , d and u, v = 1, . . . , N

ψkl(H(u)) =
∑
i,j

∑
x,y

Y
(u),k,x,l,y

tki−1∧tlj−1

∆i,kB
x∆j,lB

y1Iki ∩Ilj 6=∅
+ oP(n−1/2),

where Y
(u),k,x,l,y
t = H

(u)
t σk,xt σl,yt . In order to deal properly with measurability issues and correlation structure,

we will make use of the big and small blocks technique introduced in Jacod et al. (2009). Thus we introduce

the following objects: Let Θ > 0 and n0 ∈ N such that Θ > maxk=1,...,d(n/nk) for all n ≥ n0. For p > 0 and
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m = 1, . . . ,
[

n
p+Θ

]
, put

I
(1)
m,Θ(p) =

[
(m− 1)(p+ Θ)

n
,
(m− 1)(p+ Θ) + p

n

)
;

I
(2)
m,Θ(p) =

[
(m− 1)(p+ Θ) + p

n
,
m(p+ Θ)

n

)
,

and Im,Θ(p) = I
(1)
m,Θ(p) ∪ I(2)

m,Θ(p). Using this notation, it is easy to see that for p > Θ and n ≥ n0 it holds that

∑
i,j

ai,j1Iki ∩Ilj 6=∅
=

[n/(p+Θ)]∑
m=1

∑
i,j

ai,j1Iki ∩Ilj 6=∅
1
I

(1)
m,Θ(p)

(tki−1)1
I

(1)
m,Θ(p)

(tlj−1)

+

[n/(p+Θ)]∑
m=1

∑
i,j

ai,j1Iki ∩Ilj 6=∅
1
I

(2)
m,Θ(p)

(tki−1)1
I

(2)
m,Θ(p)

(tlj−1)

+

[n/(p+Θ)]∑
m=1

∑
i,j

ai,j1Iki ∩Ilj 6=∅
1
I

(1)
m,Θ(p)

(tki−1)1
I

(2)
m,Θ(p)

(tlj−1)

+

[n/(p+Θ)]∑
m=1

∑
i,j

ai,j1Iki ∩Ilj 6=∅
1
I

(1)
m,Θ(p)

(tki−1)1
I

(2)
m−1,Θ(p)

(tlj−1)

+

[n/(p+Θ)]∑
m=1

∑
i,j

ai,j1Iki ∩Ilj 6=∅
1
I

(2)
m,Θ(p)

(tki−1)1
I

(1)
m,Θ(p)

(tlj−1)

+

[n/(p+Θ)]∑
m=1

∑
i,j

ai,j1Iki ∩Ilj 6=∅
1
I

(2)
m,Θ(p)

(tki−1)1
I

(1)
m+1,Θ(p)

(tlj−1)

+
∑
i,j

ai,j1Iki ∩Ilj 6=∅
1
I

(2)
[n/p+Θ],Θ

(p)
(tki−1)1[

[n/p+Θ]
(p+Θ)

n
,1
)(tlj−1)

+
∑
i,j

ai,j1Iki ∩Ilj 6=∅
1
I

(2)
[n/p+Θ],Θ

(p)
(tlj−1)1[

[n/p+Θ]
(p+Θ)

n
,1
)(tki−1)

+
∑
i,j

ai,j1Iki ∩Ilj 6=∅
1[

[n/p+Θ]
(p+Θ)

n
,1
)(tlj−1)1[

[n/p+Θ]
(p+Θ)

n
,1
)(tki−1),

for an arbitrary collection (ai,j). Thus, in view that Y (u),k,x,l,y is again a semimartingale, we can apply As-

sumption 1, (67), Remark 2 and similar arguments as in the preceding sections to obtain that for n and p

large

Un =
√
n

(
ψkl(H(u))−

∫ 1

0
H(u)
s Σsds

)
=
√
n

[n/(p+Θ)]∑
m=1

ξ(u),k,l
m (p)

+

5∑
r=1

√
n

[n/(p+Θ)]∑
m=1

∑
i,j

ζ
(u),k,l
i,j (r, p)1Iki ∩Ilj 6=∅

+ oP(1),
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where

ξ(u),k,l
m (p) =

∑
i,j

∑
x,y

Y
(u),k,x,l,y

min I
(1)
m,Θ(p)

χ̃kli,j(x, y)1
I

(1)
m,Θ(p)

(tki−1)1
I

(1)
m,Θ(p)

(tlj−1)1Iki ∩Ilj 6=∅
;

ζ
(u),k,l
i,j (1, p) =

∑
x,y

Y
(u),k,x,l,y

min I
(2)
m,Θ(p)

χ̃kli,j(x, y)1
I

(2)
m,Θ(p)

(tki−1)1
I

(2)
m,Θ(p)

(tlj−1);

ζ
(u),k,l
i,j (2, p) =

∑
x,y

Y
(u),k,x,l,y

min I
(1)
m,Θ(p)

χ̃kli,j(x, y)1
I

(1)
m,Θ(p)

(tki−1)1
I

(2)
m,Θ(p)

(tlj−1);

ζ
(u),k,l
i,j (3, p) =

∑
x,y

Y
(u),k,x,l,y

min I
(2)
m−1,Θ(p)

χ̃kli,j(x, y)1
I

(1)
m,Θ(p)

(tki−1)1
I

(2)
m−1,Θ(p)

(tlj−1);

ζ
(u),k,l
i,j (4, p) =

∑
x,y

Y
(u),k,x,l,y

min I
(1)
m,Θ(p)

χ̃kli,j(x, y)1
I

(2)
m,Θ(p)

(tki−1)1
I

(1)
m,Θ(p)

(tlj−1);

ζ
(u),k,l
i,j (5, p) =

∑
x,y

Y
(u),k,x,l,y

min I
(2)
m,Θ(p)

χ̃kli,j(x, y)1
I

(2)
m,Θ(p)

(tki−1)1
I

(1)
m+1,Θ(p)

(tlj−1),

in which

χ̃kli,j(x, y) =∆i,kB
x∆j,lB

y − Leb(Iki ∩ Iki )δx,y.

Furthermore, by letting Vn(p) =
√
n
∑[n/(p+Θ)]

m=1

∑
i,j ξ

(u),k,l
i,j (p)1Iki ∩Ilj 6=∅

and following the argument in 6.1.5 in

Christensen et al. (2013), we deduce that for all ε > 0

lim
p→∞

lim sup
n→∞

P (|Un − Vn(p)| > ε) = 0.

Hence, in view of the fact that ξ
(u),k,l
m (p) is Gp,nm = Fm(p+Θ)

n

measurable, we deduce from Proposition 2.2.4

and Theorem 2.2.15 in Jacod and Protter (2011) that the conclusion of Theorem 2 is valid whenever for all

k, l, k′, l′ = 1, . . . , d and u, v = 1, . . . , N

1. n2

[n/(p+Θ)]∑
m=1

E
(∣∣∣ξ(u),k,l

m (p)
∣∣∣4) −−−→

n→∞
0;

2.
√
n

[n/(p+Θ)]∑
m=1

E
(
ξ(u),k,l
m (p)

(
Bk′

max Im,Θ(p) −B
k′

min Im,Θ(p)

)∣∣∣Gp,nm−1

)
P−−−→

n→∞
0;

3.
√
n

[n/(p+Θ)]∑
m=1

E
(
ξ(u),k,l
m (p)

(
Nmax Im,Θ(p) −Nmin Im,Θ(p)

)∣∣∣Gp,nm−1

)
P−−−→

n→∞
0;

4. n

[n/(p+Θ)]∑
m=1

E
(
ξ(u),k,l
m (p)ξ(v),k′,l′

m (p)
∣∣∣Gp,nm−1

)
P−−−→

n→∞
Υ(u),k,l,(v),k′,l′
p ;

5. Υ(u),k,l,(v),k′,l′
p

P−−−→
p→∞

∫ 1

0
H(u)
s H(v)

s

(
γkk

′,ll′Σk,k′
s Σl,l′

s + γkl
′,l,k′Σk,l′

s Σk′,l
s

)
ds,

(84)
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in which N is a bounded martingale satisfying that [N,B] = 0 and Υ
(u),k,l,(v),k′,l′
p is a certain F-measurable

array.

In the remainder of this section we verify that 1.-3. hold, while conditions 4. and 5. are veri�ed in the

following subsection. A simple application of Jensen's inequality, Assumption 1 and (67) gives us that

E
(∣∣∣ξ(u),k,l

m (p)
∣∣∣4) ≤ C∑

i,j

∑
x,y

E
(∣∣∣χ̃kli,j(x, y)

∣∣∣4)1
I

(1)
m,Θ(p)

(tki−1)1
I

(1)
m,Θ(p)

(tlj−1)1Iki ∩Ilj 6=∅
≤ C/n4,

which implies 1. Condition 2. follows easily from the independence of the increments of the Brownian motion.

Since [N,B] = 0, we infer from Itô's formula that for all tki−1, t
l
l−1 ∈ Im,Θ(p) , such that Iki ∩ I lj 6= ∅ it holds that

E
(

∆i,kB
x∆j,lB

y
(
Nmax Im,Θ(p) −Nmin Im,Θ(p)

)∣∣∣Gp,nm−1

)
= E

(∫
Iki ∩Ilj

dBx
s

∫
Iki ∩Ilj

dBy
s

∫
Iki ∩Ilj

dNs

∣∣∣∣∣Gp,nm−1

)
= 0,

so 3. in (84) also holds.

11.4.1 Asymptotic variance

In this part we will show that 4. and 5. in (84) are satis�ed. Using the fact that B has independent increments,

one easily deduces that

E
(
ξ(u),k,l
m (p)ξ(v),k′,l′

m (p)
∣∣∣Gp,nm−1

)
= Ỹ u,v,k,k′,l,l′

min Im,Θ(p)Γ
k,k′,l,l′
m + Ỹ u,v,k,l′,k′,l

min Im,Θ(p)Γ̃
k,l′,k′,l
m ,

where Ỹ u,v,k,k′,l,l′ = H
(u)
t H

(v)
t Σk,k′

t Σl,l′

t and

Γk,k
′,l,l′

m =
∑
i,j

∑
i′,j′

Leb(Iki ∩ Ik
′
i′ )Leb(I lj ∩ I l

′
j′)1I(1)

m,Θ(p)
(tki−1)1

I
(1)
m,Θ(p)

(tlj−1)1Iki ∩Ilj 6=∅
1
I

(1)
m,Θ(p)

(tk
′
i′−1)1

I
(1)
m,Θ(p)

(tl
′
j′−1)1

Ik
′

i′ ∩I
l′
j′ 6=∅

;

Γ̃k,l
′,k′,l

m =
∑
i,j

∑
i′,j′

Leb(Iki ∩ I l
′
j′)Leb(I

l
j ∩ Ik

′
i′ )1

I
(1)
m,Θ(p)

(tki−1)1
I

(1)
m,Θ(p)

(tlj−1)1Iki ∩Ilj 6=∅
1
I

(1)
m,Θ(p)

(tk
′
i′−1)1

I
(1)
m,Θ(p)

(tl
′
j′−1)1

Ik
′

i′ ∩I
l′
j′ 6=∅

.

We proceed as in Christensen et al. (2013) and we concentrate on the interval

Ĩm(p) =

[
(m− 1)(p+ Θ) + 2Θ

n
,
(m− 1)(p+ Θ) + p− 2Θ

n

)

for p > 4θ. Fix now tki−1 ∈ Ĩm(p) ⊆ I(1)
m,Θ(p). Note that Iki ∩ I lj 6= ∅ if and only if

tki > tlj−1 ≥ tki−1, or t
k
i−1 > tlj−1 ≥ tki−1 −

1

nl
;

or, in other words, for
nl
nk

(i− 1) ≤ j < nl
nk
i+ 1. (85)
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Similarly, Leb(Iki ∩ Ik
′
i′ ) 6= 0 and Leb(I lj ∩ I l

′
j′) if and only if

nk′

nk
(i− 1) < i′ <

nk′

nk
i+ 1 (86)

and
nl′

nl
(j − 1) < j′ <

nl′

nl
j + 1, (87)

respectively. Moreover, in view that

(m− 1)(p+ Θ) + Θ

n
≤ tki−1 −

1

nr
and tki <

(m− 1)(p+ Θ) + p−Θ

n

for every r = 1, . . . , d, then those times satisfying (85), (86) and (87) necessarily belong to I
(1)
m,Θ(p). Thus,

Γk,k
′,l,l′

m =
∑

tki−1∈Ĩm(p)

∑
nl
nk

(i−1)≤j< nl
nk
i+1

∑
nk′
nk

(i−1)<i′<
nk′
nk

i+1

∑
nl′
nl

(j−1)<j′<
nl′
nl
j+1

Leb(Iki ∩ Ik
′
i′ )Leb(I lj ∩ I l

′
j′)1Ik′

i′ ∩I
l′
j′ 6=∅

+ O(n2)

=:Γ̄k,k
′,l,l′

m (p) + O(n2).

Furthermore,

n

[n/(p+Θ)]∑
m=1

Ỹ u,v,k,k′,l,l′

min Im,Θ(p)Γ
k,k′,l,l′
m =

1

n

[n/(p+Θ)]∑
m=1

Ỹ u,v,k,k′,l,l′

min Im,Θ(p)n
2Γ̄k,k

′,l,l′
m (p) +

1

p+ Θ
O(1).

From here we easily identify that

n2Γ̄k,k
′,l,l′

m (p)→ (p− 4Θ)γk,k
′,l,l′ .

Consequently,

n

[n/(p+Θ)]∑
m=1

Ỹ u,v,k,k′,l,l′

min Im,Θ(p)Γ
k,k′,l,l′
m

P−→ (p− 4Θ)

p+ Θ

∫ 1

0
H(u)
s H(v)

s γkk
′,ll′Σk,k′

s Σl,l′
s ds+ oP(1).

In a similar way, it is possible to deduce that

n

[n/(p+Θ)]∑
m=1

Ỹ u,v,k,k′,l,l′

min Im,Θ(p)Γ̃
kl′,k′,l
m

P−→ (p− 4Θ)

p+ Θ

∫ 1

0
H(u)
s H(v)

s γkl
′,l,k′Σkl′

s Σk′l
s ds+ oP(1).

Relations 4. and 5. in (84) are now obtained by letting p→∞.
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12 Appendix 3: Consistency of the asymptotic covariance estimator

Proof. Itô's formula and (67) show that for all t ≥ 0

Σ̄kl
t =

∫ Tkl(t)

0
Σkl
s ds+

∑
i,j

ξi,j1(0,t](t
k
i ∨ tlj)1Iki ∩Ilj 6=∅,

where T kl(t) = [nkt]
nk
∧ [nlt]

nl
and for certain r.vs satisfying that

∣∣∣E(ξi,j | Ftlj−1∧tki−1

)∣∣∣ ≤ C/n3/2, E
[
(ξi,j)

2
]
≤ C/n2.

Thus, by arguments similar to those used in the preceding sections, we get that

Σ̄kl
t+kn/n

− Σ̄kl
t = ∆n

knT
kl(t)

∫ 1

0
Σkl
Tkl(t)+∆n

kn
Tkl(t)rdr +

∑
i,j

ξi,j1(t,t+ kn
n

](t
k
i ∨ tlj)1Iki ∩Ilj 6=∅

= ∆n
knT

kl(t)

∫ 1

0
Σkl
Tkl(t)+∆n

kn
Tkl(t)rdr + oP(kn/n),

in which we have let ∆n
kn
T kl(t) = T kl(t+kn/n)−T kl(t+kn/n). Furthermore, using that x− [x] ≤ 1, we conclude

that
n

kn
∆n
knT

kl(t)→ 1.

This implies that

Σ̃k′,l′

t = Σkl
t + oP(1).

Replacing n by nk results in a similar statement for Σ̂kl
tkm−1

. We conclude that

Ψ̂k′,l′ = Cθ

∫ 1

0
fn(s)ds+ oP(1),

where

fn(s) =
d∑
kl

∑
m,p

(
Σ̃k′,l′

tkm−1
wk
tkm−1

Σ̂kl
tkm−1

wl
tlp−1

+ Σ̂k,k′

tkm−1
wk
tkm−1

Σ̂l,l′

tlp−1
wl
tlp−1

)
1Ikm(s)1Ilp(s), 0 ≤ s ≤ 1,

which converges for almost all s toward

Σk′,l′
s wksΣ

kl
s w

j
sds+Σk,k′

s wksΣ
l,l′
s wls.

The Dominated Convergence Theorem and Remark 2 conclude the proof.
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