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Abstract
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1 Introduction

Skewness and kurtosis are widely used statistics to describe the non-normality of distri-

butions. In multivariate analysis, they help to characterize non-linear dependence and to

identify latent factors (Mooijaart (1985), Bonhomme & Robin (2009)). The assumption of

a lower dimensional latent factor structure is widespread in multivariate analysis of eco-

nomic and financial time series; see for example Bai & Ng (2013), Ross (1976) and Fan

et al. (2017). In this regard, as mentioned by Ghalanos et al. (2015), an unresolved research

question is how to exploit the latent factor structure for higher-order comoment estima-

tion. Better estimates could improve any application that takes these comoments as input.

Such applications include the identification of factor loadings in a noisy independent com-

ponent model (Bonhomme & Robin (2009)), portfolio allocation based on non-Gaussian

objective functions (Briec et al. (2007), Harvey et al. (2010) and Boudt et al. (2013)), risk

measurement (Zangari (1996) and Stoyanov et al. (2013)) and factor analysis (Mooijaart

(1985)).

To solve the problem of exploiting latent factor models for improved estimation of

higher-order comoments, we propose a minimum distance estimation approach that in-

volves exploiting the non-linearities in the higher-order comoments under a latent factor

model. Based on the sample comoments, the nearest comoment estimates are taken as the

structured comoment matrices closest to the sample comoments in a weighted quadratic

loss while respecting the structure of a latent factor model. We derive the influence func-

tion of the proposed estimator and prove consistency and asymptotic normality based on

the theory of minimum distance estimation (Newey & McFadden (1994)).

An advantage of our approach is that there is no pre-estimation of the factors or factor

loadings involved, which is usually required when estimating a latent factor model (see

e.g., Bai (2003) and Chen et al. (2018)). Moreover, our aim of exploiting the latent factor

structure does not require the dimension to grow, as would be the case when estimating

the factors (Lawley & Maxwell (1963)). A computational disadvantage of the proposed

estimator is the use of a weight matrix of dimension equal to the number of sample moments,

thus growing as O(p4). In the simulations and empirical applications, we therefore consider

only settings of up to p = 10, which is still highly relevant to asset allocation (Boudt
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et al. (2013)) and to identifying loadings in factor analysis (Yuan & Chan (2016)). Future

advances in computing technology will further enlarge the scope of applications in terms

of choice of p.

Since the proposed nearest comoment (NC) estimator depends on higher moments of

different orders, it is important to regularize the influence of each moment order onto

the final estimates. To do so, we propose to use a ridge-based weight matrix (Yuan &

Chan (2016) and Yuan et al. (2017)), together with a bootstrap procedure for selecting the

optimal regularization constant.

We illustrate the novel framework in two settings. First, we show the economic gains

of the proposed NC estimates of the higher-order comoments for portfolio allocation under

non-Gaussian objective functions. Second, we use the proposed methodology for factor ex-

traction in the Holzinger & Swineford (1939) dataset with mental ability scores of seventh-

and eight-grade pupils. Our procedure makes use of the non-normality in the latent vari-

ables to uniquely identify the matrix of factor loadings. A promax rotation (Hendrickson

& White (1964)) then confirms the traditional pattern in the explanatory variables, and

we uncover a new latent relation between the ‘visual’ and ‘textual’ factors.

The remainder of the paper is organised as follows: Section 2 introduces the theoretical

framework. In Section 3 we derive the nearest comoment estimator, and in Section 4 its

asymptotic properties are worked out. Section 5 provides the practical guidelines for the

method. An extensive simulation study, presented in Section 6, examines all aspects of

the NC estimator in different settings. In Section 7 we illustrate the practical usefulness

of the proposed methodology for portfolio optimization and factor selection under non-

normal distributions. We end the paper with a conclusion and with suggestions for further

research.

A supplementary appendix provides more detail about the shape of the influence func-

tion in a single-factor model and contains additional simulation results, including a mis-

specified model. We provide examples of moment expansions that are relevant in economics

and finance and explain how the theory changes when the mean is assumed to be known.

Finally, we demonstrate the R code for our estimator, which is available publicly in the

PerformanceAnalytics package of Peterson & Carl (2018).
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2 Framework

As in Mooijaart (1985), the latent factor model is represented semi-parametrically, based

on a vector of structural parameters θ. We adopt the same notation for the higher-order

comoment matrices as in Jondeau & Rockinger (2006), Martellini & Ziemann (2010) and

Boudt et al. (2015), among others.

2.1 Parameters of interest

Consider a p-dimensional random vector X ∈ Rp with mean µ and finite fourth-order

moments. The covariance, coskewness and cokurtosis matrices are defined by

Σ = E
[
(X − µ) (X − µ)′

]
,

Φ = E
[
(X − µ) (X − µ)′ ⊗ (X − µ)′

]
,

Ψ = E
[
(X − µ) (X − µ)′ ⊗ (X − µ)′ ⊗ (X − µ)′

]
,

(1)

where ⊗ denotes the Kronecker product. Denote by σ = (σ{11} σ{12} · · · σ{pp})
′ the

vector that stacks the unique covariance elements in order of increasing indices. Here, σ{ij}

equals the covariance between Xi and Xj. Analogously, the vectors φ and ψ contain the

unique elements φ{ijk} and ψ{ijkl}, respectively, in order of increasing indices. The vector σ

has p(p+1)/2 elements, while φ and ψ have p(p+1)(p+2)/6 and p(p+1)(p+2)(p+3)/24

elements. Note that these vectors have fewer elements than the matrices in (1) due to

symmetries in the matrix representation. Combine all unique second, third and fourth-

order central moments into the column vector ζ as

ζ = (σ′ φ′ ψ′)
′
. (2)

2.2 Semi-parametric model

In order to model the moments up to the fourth order of X, we employ a semi-parametric

model Pθ = {Pθ,θ ∈ Θ ⊂ Rκ}, with Θ a compact set and κ denoting the dimension of θ.

The observed random variable X is defined through the equation

X = µ+BF + ε, (3)
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where F are the unobserved factors of dimension q < p. The matrix with factor loadings

B ∈ Rp×q is of full column rank and ε ∈ Rp denotes the idiosyncratic term. We further

restrict the structure of the model by assuming that the factors F are independent, have

mean zero and unit variance, the idiosyncratic term ε has independent components and

factors and idiosyncratic terms are mutually independent. These assumptions are common

in the literature in order to limit the number of free parameters (see e.g., Mooijaart (1985)).

Additionally, F and ε are assumed to have finite eighth-order moments in order to have

all necessary moments finite, which is required for the asymptotic analysis in Section 4.

This model is very flexible since it allows up to p− 1 independent common factors with

an additional idiosyncratic term for each variable. Moreover, the model leaves room for

correlated but dependent components due to the codependencies implied by the latent fac-

tors. However, our assumptions do not allow for higher-order dependence between different

variables of ε and F . Doing so would raise the number of parameters too much. We remark

that X is not restricted to the observed variable, but may be a transformation of interest,

as in Luciani & Veredas (2015) and Barigozzi & Hallin (2016, 2017). Finally, note that

under our semi-parametric model, we do not distinguish between two distributions if they

have equal moments up to the fourth order. Hence, some of the independence assumptions

can be weakened.

Under the semi-parametric model Pθ in (3), the covariance, coskewness and cokurtosis

matrices are

Σθ = BB′ + ∆,

Φθ = BΦF (B′ ⊗B′) + Ω,

Ψθ = BΨF (B′ ⊗B′ ⊗B′) + Γ,

(4)

where ΦF and ΨF are the coskewness and cokurtosis matrices of the factors. The matrix

B contains the factor loadings, ∆ and Ω are the covariance and coskewness matrices of

the idiosyncratic term and Γ contains the residual cokurtosis elements not explained by

the factors. This structure is derived in Boudt et al. (2015) and is provided in the supple-

mentary appendix for completeness. In this representation, the vector θ with structural

parameters equals

θ = (vec(B)′ φ′F ψ′F σ′ε φ′ε ψ′ε)
′, (5)
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Table 1: Number of elements in ζ and θ depending on dimensions p and q.

p 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#ζ 12 31 65 120 203 322 486 705 990 1353 1807 2366 3045 3860

#θ (q = 1) 10 14 18 22 26 30 34 38 42 46 50 54 58 62

(q = 2) 19 24 29 34 39 44 49 54 59 64 69 74 79

(q = 3) 30 36 42 48 54 60 66 72 78 84 90 96

(q = 4) 43 50 57 64 71 78 85 92 99 106 113

Note: The vector ζ contains the unique second, third and fourth-order central moments of a random

variable X of dimension p. The number of parameters in the multi-factor model equals #θ = p(q+3)+2q.

where φF ,ψF ∈ Rq are the marginal third and fourth-order central moments of F and

σε,φε,ψε ∈ Rp the marginal second, third and fourth-order moments of ε. Hence, the

number of structural parameters in θ equals

#θ = p(q + 3) + 2q, (6)

which is less than the number of unique comoments up to fourth order if q < p.

Similarly as in Equation (2), the unique covariance, coskewness and cokurtosis elements

under the multi-factor model are gathered in the vectors σθ, φθ and ψθ and combined to

ζθ = (σ′θ φ′θ ψ′θ)
′
. (7)

To illustrate the dimension reduction implied by model Pθ, the number of parameters in

θ needed to determine the moments ζθ is given in Table 1 for different values of p and q.

The asymptotic results of the nearest comoment estimator presented in Section 3 require

the vector θ to be identifiable. Conditions for identifiability are given in Mooijaart (1985),

where the following theorem is proved.

Theorem 2.1. If the factors F in (3) are non-Gaussian, and there are no two factors

with the same skewness and kurtosis, then the parameter vector θ is identifiable up to

trivial permutations and sign-changes.

The remainder of this paper takes the assumption of identifiability for the semi-parametric

model Pθ with true parameter θ? in the interior of Θ, with Θ a compact subspace of Rκ.
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3 Nearest comoment estimator

This section introduces the nearest comoment (NC) estimator in full generality. Asymp-

totic properties of the estimator are derived in Section 4 and practical considerations are

discussed in Section 5.

The most intuitive way to estimate the moments in σ, φ and ψ is by the plug-in sample

comoments. Let (x1, . . . ,xn) with xi ∈ Rp be a sample of n independent and identically

distributed p-dimensional vectors drawn from the distribution of a random variable X

with finite fourth-order moments. Replacing each expected value by a sample average, the

sample comoments are defined as

σ̂s,{ij} =
1

n

n∑
m=1

(xmi − xi) (xmj − xj) ,

φ̂s,{ijk} =
1

n

n∑
m=1

(xmi − xi) (xmj − xj) (xmk − xk) ,

ψ̂s,{ijkl} =
1

n

n∑
m=1

(xmi − xi) (xmj − xj) (xmk − xk) (xml − xl) ,

(8)

for i, j, k, l = 1, . . . , p with i ≤ j ≤ k ≤ l and x = 1
n

∑n
m=1 xm. We gather the elements

σ̂s,{ij}, φ̂s,{ijk} and ψ̂s,{ijkl}(i ≤ j ≤ k ≤ l) into the vectors σ̂s, φ̂s and ψ̂s to define the

sample comoments

ζ̂s =
(
σ̂′s φ̂′s ψ̂′s

)′
. (9)

The estimator ζ̂s is consistent, as will be shown in Section 4, but it may have a large

estimation variance compared to alternative estimators that utilize the structure of the

underlying data-generating model in (3). Therefore, we propose the NC estimator that

takes into account the structure of this model by finding the comoment matrices under

Pθ that are nearest to the sample moments in terms of a weighted quadratic loss function

(Newey & McFadden (1994)); hence the name of the NC estimator.

Formally, the structural parameters θ̂nc minimize a weighted quadratic distance between

the first-step estimate ζ̂s and the model moments ζθ,

θ̂nc = arg min
θ∈Θ

(
ζ̂s − ζθ

)′
Ŵ
(
ζ̂s − ζθ

)
, (10)

with Ŵ a positive semi-definite weight matrix converging in probability to the positive

semi-definite matrix W . The weight matrix is denoted as an estimate since it may depend
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on the sample, but this does not have to be the case. A data-driven way to select an

optimal weight matrix Ŵ is introduced in Section 5. The nearest comoment estimator is

then directly obtained as

ζ̂nc = ζθ̂nc . (11)

We remark that, in the above formulation, the number of factors q is assumed to be

known. Often this is not the case, and therefore we provide a suitable selection criterion

in Section 5.

4 Theoretical results

This section describes the theoretical properties of the sample estimator and the proposed

NC estimator. We first derive the influence function under a finite fourth-order moment

condition on X with distribution function H; see for example Hampel et al. (2011). We

then show consistency and derive the asymptotic covariance matrix under finite eighth-order

moments (Newey & McFadden (1994)) when n → ∞. The results for the NC estimator

are under the additional assumptions of the semi-parametric model Pθ in (3) and the

identifiability constraints in Theorem 2.1.

4.1 Influence function

The influence functions of the sample moments σ̂s,{ij}, φ̂s,{ijk} and ψ̂s,{ijkl} are provided in

the following theorem.

Theorem 4.1 (Influence function of the sample comoments). Assume X has finite fourth-

order moments. The influence functions of the estimators σ̂s,{ij}, φ̂s,{ijk} and ψ̂s,{ijkl} are

IF(x; σ̂s,{ij}, H) = (xi − µi)(xj − µj)− σ{ij},

IF(x; φ̂s,{ijk}, H) = (xi − µi)(xj − µj)(xk − µk)− φ{ijk} − (xi − µi)σ{jk}

− (xj − µj)σ{ik} − (xk − µk)σ{ij},

IF(x; ψ̂s,{ijkl}, H) = (xi − µi)(xj − µj)(xk − µk)(xl − µl)− ψ{ijkl} − (xi − µi)φ{jkl}

− (xj − µj)φ{ikl} − (xk − µk)φ{ijl} − (xl − µl)φ{ijk}.

(12)
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All proofs are provided in Appendix A. The influence function for ζ̂s then equals

IF(x; ζ̂s, H) =
(

IF(x; σ̂s, H)′ IF(x; φ̂s, H)′ IF(x; ψ̂s, H)′
)′
. (13)

The influence function of ζ̂nc is formulated in the following theorem. The chain rule

implies that it is a linear transformation of θ̂nc, and hence a linear transformation of the

influence function of ζ̂s.

Theorem 4.2 (Influence function of the NC estimator). Assume X has finite fourth-order

moments. Under the assumptions of the semi-parametric model Pθ with true parameter θ?

and the assumptions of Theorem 2.1, it holds that the influence function of θ̂nc is given by

IF(x; θ̂nc, H) = (G′WG)
−1
G′W IF(x; ζ̂s, H), (14)

with G the Jacobian of ζθ with respect to θ, evaluated in θ?. The influence function of the

NC estimator ζ̂nc equals

IF(x; ζ̂nc, H) = G IF(x; θ̂nc, H) = G (G′WG)
−1
G′W IF(x; ζ̂s, H). (15)

As for the sample moments, the influence function of the NC estimator is unbounded.

However, the choice of W determines whether or not the influence function is dampened

for certain values of x.

4.2 Asymptotic normality

When eighth-order moments of X exist, the sample moments ζ̂s have asymptotic normal

distribution and the asymptotic covariance matrix can be estimated consistently.

Theorem 4.3 (Asymptotic normality of the sample comoments). Assume X has finite

eighth-order moments. The sample moments ζ̂s have the asymptotic normal distribution

√
n
(
ζ̂s − ζ

)
d−→ N (0,Ξ) , n→∞, (16)

where the entries in the asymptotic covariance matrix Ξ are

ACov(
√
nσ̂s,{ij},

√
nσ̂s,{uv}) = µijuv − µijµuv,

ACov(
√
nσ̂s,{ij},

√
nφ̂s,{uvw}) = µijuvw − µijµuvw − µijuµvw − µijvµuw − µijwµuv,

(17)
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with the central moments defined as

µi1i2···ir = E [(Xi1 − µi1)(Xi2 − µi2) · · · (Xir − µir)] . (18)

The other elements in Ξ are given in Appendix A.

Remark 4.1. The asymptotic covariance matrix Ξ can be estimated consistently by con-

sidering the pseudo-observations ζxt , t = 1, . . . , n, with ζx = (σ′x φ′x ψ′x)′, and

σx,{ij} = (xi − xi)(xj − xj)− σ̂s,{ij},

φx,{ijk} = (xi − xi)(xj − xj)(xk − xk)− φ̂s,{ijk}

− (xi − xi)σ̂s,{jk} − (xj − xj)σ̂s,{ik} − (xk − xk)σ̂s,{ij},

ψx,{ijkl} = (xi − xi)(xj − xj)(xk − xk)(xl − xl)− ψ̂s,{ijkl} − (xi − xi)φ̂s,{jkl}

− (xj − xj)φ̂s,{ikl} − (xk − xk)φ̂s,{ijl} − (xl − xl)φ̂s,{ijk}.

(19)

A positive semi-definite consistent estimator of Ξ is then given by

Ξ̂ =
1

n

n∑
t=1

ζxtζ
′
xt
. (20)

The estimator is positive definite when the sample size n is larger than the number of

unique comoments considered, which is the length of the vector ζ. Note that the pseudo-

observations are constructed according to (12) in order to ensure consistency.

A similar result holds when the mean is known, and hence the sample mean can be

replaced by the true mean when estimating the central moments. A typical situation

in which the mean is known is the analysis of financial returns at high frequency where

the authors assume the mean to be zero (Lee & Mykland (2007)). In the supplementary

appendix we discuss how knowing the mean impacts the asymptotic covariance matrix of

the resulting sample moments.

The linear relation between the influence function of the sample moments and the

influence function of the NC estimator provides insight into the asymptotic covariance

matrix of the NC estimator given in the following theorem.

Theorem 4.4 (Asymptotic normality of the NC estimator). Assume X has finite eighth-

order moments. Under the conditions of Theorem 4.2, the estimator θ̂nc has the asymptotic
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distribution

√
n
(
θ̂nc − θ?

)
d−→ N

(
0, (G′WG)

−1
G′WΞWG (G′WG)

−1
)
, n→∞, (21)

with G the Jacobian of ζθ with respect to θ, evaluated in θ?. The NC estimator ζ̂nc has

the asymptotic normal distribution given by

√
n
(
ζ̂nc − ζθ?

)
d−→ N

(
0,G (G′WG)

−1
G′WΞWG (G′WG)

−1
G′
)
, n→∞. (22)

The asymptotic covariance matrix of ζ̂nc depends on the limit W of the weight matrix

Ŵ , the Jacobian G of ζθ evaluated at θ? and the asymptotic covariance matrix Ξ of the

sample moments ζ̂s. When W = Ξ−1, the asymptotic covariance matrix of the estimator

θ̂nc simplifies to G (G′Ξ−1G)
−1
G′, in which case the corresponding NC estimator attains

the lowest asymptotic variance.

Theorem 4.5 (Asymptotic efficiency). The estimator θ̂nc with Ŵ
p−→ Ξ−1 has the lowest

asymptotic variance in the class of all estimators{
θ̂nc(Ŵ )|Ŵ p−→W is positive semi-definite

}
. (23)

The following corollary to Theorem 4.4 shows convergence to a chi-squared distribution

when an appropriate weight matrix is used.

Corollary 4.1 (Asymptotic distribution of objective values). Let ζ̂nc be the nearest como-

ment estimator obtained from θ̂nc, minimizing (10) with a weight matrix Ŵ
p−→ Ξ−1. Then

it holds that

n
(
ζ̂s − ζ̂nc

)′
Ŵ
(
ζ̂s − ζ̂nc

)
d−→ χ2

]ζ−]θ, n→∞, (24)

where the chi-squared distribution has degrees of freedom equal to the number of unique

comoments minus the number of model parameters of the nearest comoment estimator.

Note that this corollary requires that the weight matrix converges in probability to the

inverse of the asymptotic covariance matrix Ξ. Goodness-of-fit tests based on Corollary 4.1

and adjusted test statistics, as in Yuan & Bentler (2010), are studied through simulations

in the supplementary appendix. However, due to the large dimensionality of ζ, these tests

might have considerable size distortions even for moderate values of p. It is outside the

scope of this paper to propose finite sample corrections to cope with these distortions.
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The sandwich standard errors resulting from the diagonal of the asymptotic covariance

matrix of θ in Theorem 4.4 are available to test the model parameters for significance.

These standard errors, however, suffer from the same issues as the goodness-of-fit tests due

to dependence on Ξ̂. Note that redefining the latent factors by a linear combination of

the independent factors is likely to result in a matrix with factor loadings that is easier

to interpret. In this case, the standard errors of elements in the new matrix with factor

loadings can be obtained by left and right multiplication of the estimated asymptotic

covariance matrix by the appropriate transformation matrix.

5 Practical considerations

So far, we have defined the estimator ζ̂nc for second, third and fourth-order multivariate

central moments under the assumption of a latent factor model. Results regarding the

asymptotic distribution of the estimator and asymptotic efficiency were provided in the

previous section. Two ingredients are left in order to generate a fully functioning estimator:

a proposal for the weight matrix Ŵ and a criterion on which to determine the number of

latent factors.

5.1 The weight matrix Ŵ

The choice of weight matrix directly impacts the influence function (Theorem 4.2) and

asymptotic covariance matrix of the NC estimator (Theorem 4.4) and is thus critical.

When the sample size is large enough, ŴA = Ξ̂−1 is an optimal choice of weight matrix

due to the efficiency result in Theorem 4.5. This choice, however, is not always feasible,

leading us to consider the alternative weight matrix ŴD = diag(Ξ̂)−1, which ignores the

off-diagonal elements in Ξ̂.

Recent advances in distribution-free structural equation modelling indicate that regular-

ization of Ξ̂ before inversion typically increases the finite sample efficiency of the estimator

and produces a lower mean squared error (MSE). In Arruda & Bentler (2017) this is done

by altering the large and small eigenvalues of Ξ̂, but the more popular choice is to use a

ridge penalization as in Yuan & Chan (2016) and Yuan et al. (2017). Therefore, we define
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the ridge weight matrix as

ŴR(α) =
[
(1− α)Ξ̂ + α diag(Ξ̂)

]−1
, α ∈ [0, 1]. (25)

The regularization parameter α determines the relative importance of the off-diagonal

elements in Ξ̂. A strictly positive value insures that the matrix ŴR(α) is invertible, even

when Ξ̂ is not positive definite. Yuan & Chan (2016) propose a bootstrap procedure to

select the optimal value of α minimizing the simulated MSE of the structural parameters

of the latent factor model. Our interest lies mainly in estimating the comoment matrices

as accurately as possible, for which we propose a bootstrap procedure where the optimal

value of α is determined by minimizing a simulated weighted MSE of the NC moment

estimates compared to the sample moment estimates. The MSE is weighted such that

it does not depend on the different units of the covariance, coskewness and cokurtosis

elements. In addition, we correct for the different cardinality of the covariance, coskewness

and cokurtosis elements as in Morton & Lim (2009) and Jondeau et al. (2018). Otherwise,

the measure would be dominated by the weighted MSE of the cokurtosis estimates when

the dimension increases. The proposed weighting matrix for the MSE equals

ŴD,w = ŴD

wσI#σ/#σ 0 0

0 wφI#φ/#φ 0

0 0 wψI#ψ/#ψ

 . (26)

The coefficients wσ, wφ and wψ determine the relative importance of the covariance, coskew-

ness and cokurtosis elements. In the simulation study and empirical application we set them

to one. We mention, however, that the choice of relative importance should ultimately de-

pend on the application at hand. For example, one might consider the weights from a

moment approximation to the investors’ utility function (Martellini & Ziemann (2010)). A

further alternative is to consider multiple target matrices in (25), allowing for more flex-

ibility in the choice of regularization parameters. We leave this for further research and

refer to Boudt et al. (2018) for multi-target shrinkage coskewness estimation.

The bootstrap procedure is as follows. Determine M datasets by sampling with re-

placement from the original observed dataset. Then, for a grid of α-values, calculate for

each of the M samples the NC estimates using weight matrix ŴR(α). The value of α that

produces the lowest simulated weighted MSE over the unique covariance, coskewness and
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cokurtosis elements with respect to the sample moments of the original dataset is taken as

optimal. The simulated weighted MSE is computed as follows

wMSE(α) =
1

M

M∑
m=1

∥∥∥Ŵ 1/2
D,w

(
ζ̂nc,m(ŴR(α))− ζ̂s

)∥∥∥2 . (27)

Typically, the cokurtosis estimates have the highest estimation variance in ζ̂s. In some

cases, ignoring these elements might positively influence the MSE of the other comoments.

Remark 5.1. If the fourth moments of the factors are not required for identification, then

it is possible to construct the weight matrix such that none of the cokurtosis elements has

an influence on the objective value. In this case, X only requires finite sixth-order moments

for the NC estimator to be asymptotically normal.

5.2 Determining the number of factors

Increasing the number of latent factors q results in a better fit to the sample moments.

Hence, to achieve parsimony, a criterion on which to evaluate the trade-off between model fit

and model simplicity is required in order to select the number of latent factors. The Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) are two popular

approaches in which the model fit is penalized by the number of model parameters. In our

setting, it is natural to define the AIC and BIC by

AIC(ζ̂nc(q))

BIC(ζ̂nc(q))

= n
(
ζ̂s − ζ̂nc

)′
Ŵ
(
ζ̂s − ζ̂nc

)
+ 2 (p(q + 3) + 2q) ,

= n
(
ζ̂s − ζ̂nc

)′
Ŵ
(
ζ̂s − ζ̂nc

)
+ (p(q + 3) + 2q) log n.

(28)

In accordance with the literature, the model with the lowest AIC or BIC is deemed most ap-

propriate, yielding a trade-off between goodness-of-fit and model simplicity. The relevance

of these criteria is shown in a simulation study in the supplementary appendix.

Both information criteria provide data-driven ways in which to select the number of

factors. As an alternative approach, we can plot the objective value versus the number of

factors. This procedure, which is similar to the scree plot in principal component analysis,

usually provides a good indication of the number of latent factors one should use. The scree

plot flattens when adding new factors fails to substantially decrease the objective value,

indicating that the extra factors are not required.
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6 Simulation study

In this section we perform a Monte Carlo study to show the improvements of the NC

estimator over the sample comoments in terms of the MSE of the estimated multivariate

higher-order moments. The bootstrap procedure in selecting an optimal value for the

regularization constant in ŴR is examined. Additionally, we use simulations to show the

accuracy in terms of MSE when estimating the matrix with factor loadings. The set up

is based on (3), calibrated in line with the two empirical applications presented in Section

7. The present section is divided according to the setting, each time introducing the data-

generating process and proceeding to display and discuss the relevant results.

In both settings, the sample moments and a PC-based estimator serve as benchmarks

by which to evaluate the gains in precision achieved by the proposed NC methodology. The

PC-based approach estimates the comoment matrices under the assumption that the first

q principal components are observed factors. Treating these scores as observed factors, mo-

ment estimates are obtained as in Boudt et al. (2015). We emphasize that the factors are

not treated as independent when computing ΦF and ΨF contrary to our model assump-

tions. We denote this approach by PC-FM and set the number of principal components

equal to the true number of factors.

The supplementary appendix includes results of the goodness-of-fit tests under both

simulation settings and illustrates the performance of the AIC and BIC criteria for de-

termining the number of latent factors. Moreover, we study the influence of higher-order

dependence in the idiosyncratic term and consider the case in which p grows with n.

6.1 Setting calibrated on hedge fund returns

Set up. As a first set up, we calibrate a simulation model on the weekly returns of ten

common hedge fund indices, in line with our application as presented in Section 7.1. We

use the NC estimator to obtain the loadings of a latent factor model as data-generating

process; see (3). Factors and idiosyncratic terms are estimated as skewed and heavy-tailed,

and hence we expect the Normal-Inverse Gaussian (NIG) distribution to be a good fit.

The parameters of the NIG are then determined using the method of moments, as given in

Karlis (2002), with the moments provided by the NC estimator. This way, data-generating
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processes are obtained for dimensions p = 3, 5 and 10, which we use for the subsequent

study. All parameter values are reported in the supplementary appendix.

Performance results. We generate M = 1000 samples for dimensions p = 3, 5 and 10.

We consider the sample sizes n = 250, 500 and 1000 and the cases of a single latent factor

and two latent factors. The number of factors in the NC estimator is determined by the

AIC criterion when p = 3, 5 and by the BIC criterion when p = 10. The performance is

measured by the MSE of the comoment vectors σ, φ and ψ, divided by the respective

number of elements in each vector. In addition, we present the weighted MSE of W
1/2
D ζ,

similar to (27), jointly over all moments.

Table 2 confirms the advantage conferred by the proposed NC estimator with the data-

driven selection of the number of factors and the regularization parameter, with gains

between 15% and 50% on the weighted combination of all moments in ζ. The largest

impact is due to the significantly lower MSE when estimating coskewness and cokurtosis

elements. For the covariance elements, the results are better than PC-FM and only slightly

worse than the sample moments. We observe that the relative efficiency increases with the

dimension, with gains up to 75% in dimension p = 10 for the cokurtosis elements. We

further observe the largest reductions in MSE when the sample size is small, indicating

that the finite sample improvements are larger than the asymptotic efficiency gain. Also,

results under a single latent factor are better than those under two latent factors. This

effect derives from the lower dimension, since there are fewer parameters in θ to estimate

when q = 1.

Surprisingly, perhaps, the PC-FM estimator offers no benefits over the sample moments

when estimating the coskewness and cokurtosis matrices. An explanation for this poor

performance is that the principal components are uncorrelated but are not independent

and do not take into account the independence assumption in the idiosyncratic component.

Hence, the PC scores do not sufficiently remove the dependence from the idiosyncratic

component, resulting in a biased model estimate and dependent idiosyncratic terms.

Figure 1a-c illustrates the dependence of the MSE of the NC estimator on the choice

of the regularization parameter α when n = 1000, q = 1 and p = 5. The figures reveal

a smooth convex relation between the regularization parameter α and the resulting MSE.
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Table 2: MSE for the higher-order comoments.

p = 3 p = 5 p = 10

250 500 1000 250 500 1000 250 500 1000

Panel A: q = 1

W
1/2
D ζ Sample 67.17 34.09 17.74 91.02 38.94 22.24 82.18 35.19 20.50

(4.31) (2.41) (0.81) (13.11) (2.35) (1.58) (7.61) (1.83) (1.32)

PC-FM 108.83 75.27 62.01 94.59 51.53 38.25 75.18 38.40 28.15
(6.38) (3.27) (1.78) (9.84) (2.83) (2.12) (6.12) (1.46) (1.04)

NCb 41.03 22.57 11.97 47.38 26.57 15.12 49.71 26.51 14.74
(1.59) (0.76) (0.41 ) (2.40) (1.06) (0.73) (3.32) (1.02) (0.49)

σ Sample 23.36 11.04 5.75 15.00 7.25 3.71 21.02 10.11 5.16
(0.77) (0.31) (0.16) (0.50) (0.22) (0.11) (0.72) (0.27) (0.14)

PC-FM 46.27 32.60 27.64 24.17 15.46 11.99 39.39 28.77 23.20
(1.18) (0.60) (0.39) (0.68) (0.33) (0.21) (0.97) (0.46) (0.29)

NCb 24.38 12.12 6.17 15.76 8.10 4.16 26.48 13.70 7.20
(0.69) (0.33) (0.17) (0.44) (0.23) (0.12) (0.66) (0.34) (0.18)

φ Sample 74.35 37.90 18.93 42.04 20.33 10.61 119.34 41.16 25.80
(4.83) (2.30) (0.78) (3.24) (1.08) (0.53) (27.42) (2.52) (2.83)

PC-FM 73.06 38.18 20.77 39.78 20.08 11.22 119.49 43.87 30.57
(5.16) (2.44) (0.86) (3.23) (1.11) (0.54) (28.51) (2.58) (2.93)

NCb 49.56 27.76 14.26 26.47 15.34 7.97 52.60 26.32 14.13
(2.18) (1.07) (0.47) (1.26) (0.65) (0.31) (3.46) (1.39) (0.51)

ψ Sample 928.65 494.92 249.11 485.40 183.36 119.59 4844.20 726.04 742.64
(112.96) (89.99) (19.97) (89.76) (14.07) (11.48) (2879.63) (102.90) (236.44)

PC-FM 1011.32 567.18 331.69 503.97 200.25 140.24 4999.99 799.38 825.45
(118.17) (91.84) (21.76) (91.72) (15.03) (12.10) (2970.98) (104.23) (235.22)

NCb 503.58 286.01 169.30 230.43 129.38 77.86 1135.06 457.95 284.38
(30.36) (12.22) (8.35) (16.38) (6.20) (4.56) (205.27) (38.34) (19.24)

Panel B: q = 2

W
1/2
D ζ Sample 92.00 41.64 23.47 108.58 46.34 25.78 121.53 64.21 39.74

(5.86) (1.64) (0.88) (12.46) (2.44) (1.37) (12.01) (6.24) (4.98)

PC-FM 89.35 41.95 25.29 93.31 42.95 24.64 110.86 66.36 50.15
(5.82) (1.66) (0.93) (10.61) (2.30) (1.24) (9.49) (4.95) (4.93)

NCb 63.09 34.42 17.41 62.05 32.97 17.53 81.73 37.15 21.07
(1.91) (0.99) (0.43) (3.03) (1.46) (0.60) (8.42) (1.45) (0.71)

σ Sample 26.64 12.72 6.35 15.84 7.69 3.88 23.34 10.77 5.83
(0.87) (0.42) (0.18) (0.52) (0.25) (0.12) (0.75) (0.34) (0.18)

PC-FM 32.08 17.85 11.52 19.17 10.82 6.94 34.34 21.84 16.97
(1.01) (0.51) (0.25) (0.62) (0.31) (0.16) (0.84) (0.39) (0.22)

NCb 27.88 13.89 6.72 17.15 8.73 4.38 28.42 13.96 7.37
(0.77) (0.42) (0.19) (0.46) (0.25) (0.13) (0.70) (0.37) (0.20)

φ Sample 98.23 43.44 24.22 46.94 22.19 11.45 146.45 65.25 40.60
(5.66) (1.93) (0.89) (3.38) (1.07) (0.47) (16.49) (5.16) (5.78)

PC-FM 83.62 37.78 21.26 41.70 19.79 10.61 124.12 54.73 38.38
(5.21) (1.62) (0.75) (3.35) (1.00) (0.45) (14.61) (3.94) (4.34)

NCb 75.97 38.13 19.48 31.92 16.74 8.85 93.81 40.29 23.72
(2.55) (1.25) (0.59) (1.23) (0.70) (0.30) (10.12) (3.33) (3.99)

ψ Sample 1235.34 538.85 327.36 502.80 220.17 120.44 4048.28 1667.36 1742.55
(148.13) (36.89) (19.14) (92.14) (16.46) (8.95) (1118.81) (345.39) (776.73)

PC-FM 1089.31 471.17 292.18 477.14 200.90 118.81 3419.75 1311.43 1326.36
(149.79) (28.95) (16.76) (96.21) (15.4)8 (9.42) (932.53) (220.81) (447.28)

NCb 727.83 401.46 216.17 277.73 149.84 83.18 2152.05 1024.77 1317.96
(35.21) (18.89) (6.83) (19.85) (8.71) (3.78) (466.64) (269.90) (887.63)

Note: this table shows the average MSE per comoment element of the sample, PC-FM and NC estimators.

The NC estimator is provided for α set by the bootstrap (NCb). The study was conducted using 1000

replications in each setting of dimension p = 3, 5 and 10, number of factors q = 1, 2 and sample size

n = 250, 500 and 1000. The lowest MSE per scenario is highlighted in bold. Standard errors are shown in

parentheses and all values are to be multiplied by 10−4.
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Figure 1: MSE of the NC estimator as a function of α.
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Note: Figures (a), (b) and (c) show the MSE of the NC estimator (full line) as a function of the regular-

ization parameters α in combination with the MSE of the sample moments (dashed line). The values and

pointwise 95% confidence bands are based on 10 000 replications. The dimension is p = 5 with a single

latent factor q = 1 and sample size n = 1000. All values are to be multiplied by 10−4. Figure (d) shows

the percentage of times each α is selected by the bootstrap procedure in the same setting for sample sizes

n = 250, 500 and 1000.

For the MSE of the covariance estimates, any value except for very low α results in an

acceptable increase in MSE. Hence, if the aim is solely to estimate the covariance matrix,

the NC estimator is not always recommended. The percentage of times each value of α

is selected in this scenario is shown in Figure 1d. The probability mass of the sample

distribution moves slowly to the left when the sample size grows and the estimate of Ξ̂

increases in accuracy.
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The blow up of the MSE at α = 0 in Figure 1a-c is due to an increase in bias in pursuit

of the lowest possible estimation variance. The bootstrap procedure counters this effect by

selecting α such as to minimize a weighted MSE instead of the estimation variance, hence

optimally balancing bias and variance.

6.2 Setting calibrated on mental ability scores

Set up. In structural equation modelling, the assumption of a latent factor model ex-

plaining the observations is common. Instead of assuming independence of the factors, the

aim is to obtain a sparse and interpretable matrix with factor loadings B. This can be

achieved under (3) by transforming the factors linearly to yield correlated factors for which

the loadings are sparse. Similarly to Yuan & Chan (2016) and Arruda & Bentler (2017),

we consider a multi-factor model of form (3) and define the data-generating process by

X = Λξ + ε = ΛΣ
1/2
ξ z + ε, (29)

where

Λ′ =

0.7 0.8 0.9 0 0 0 0 0 0

0 0 0 0.7 0.8 0.9 0 0 0

0 0 0 0 0 0 0.7 0.8 0.9

 and Σξ =

 1 0.3 0.4

0.3 1 0.5

0.4 0.5 1

 . (30)

The factors z are independent and distributed as standardized chi-squared random variables

with degrees of freedom of 1, 1.5 and 2. The matrix Σ
1/2
ξ is symmetric and has the property

Σ
1/2
ξ Σ

1/2
ξ = Σξ. Finally, the idiosyncratic term ε has mean zero and consists of independent

Gaussian variables with variances such that the variances of X are equal to one. We

simulate 1000 times from this distribution with sample sizes n = 300, 500 and 1000.

Performance results. Our interest also lies in evaluating the estimation accuracy of the

factor loadings B = ΛΣ
1/2
ξ . This parameter matrix is identifiable using the NC estimator

with either the covariance and coskewness elements or with all unique moments up to

the fourth order; see Theorem 2.1. Hence, in this set up it makes sense to compare the

accuracy of the NC estimators when excluding or including the cokurtosis elements. The

sample moments and PC-FM approach do not provide an identifiable matrix with factor
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Table 3: MSE for the matrix with factor loadings and higher-order comoments.

(σ φ) (σ φ ψ)

300 500 1000 300 500 1000

B NCb 97.24 74.94 60.60 128.31 84.03 62.06
(2.85) (1.09) (0.65) (9.27) (2.22) (0.71)

W
1/2
D ζ Sample 67.65 50.73 34.60 114.63 85.51 52.46

(2.37) (1.66) (0.76) (8.61) (6.81) (2.26)

PC-FM 70.81 55.32 40.36 120.25 92.78 60.68
(2.44) (1.72) (0.80) (8.98) (7.15) (2.43)

NCb 39.87 32.17 22.59 55.57 42.20 22.70
(1.36) (1.25) (0.49) (4.54) (3.95) (1.09)

σ Sample 333.21 298.16 268.61 333.21 298.16 268.61
(6.86) (5.26) (3.45) (6.86) (5.26) (3.45)

PC-FM 444.82 410.79 383.01 444.82 410.79 383.01
(7.94) (6.14) (4.08 ) (7.94) (6.14) (4.08)

NCb 254.74 234.42 221.07 239.14 209.80 197.22
(5.71) (4.47) (2.97) (5.25) (4.05) (2.79)

φ Sample 1317.61 935.91 599.98 1317.61 935.91 599.98
(74.11) (37.02) (16.04) (74.11) (37.02) (16.04)

PC-FM 1276.70 918.91 604.35 1276.70 918.91 604.35
(71.12) (35.42) (15.26) (71.12) (35.42) (15.26)

NCb 776.57 604.68 382.15 870.03 612.97 365.31
(32.59) (26.23) (10.27) (42.05) (26.41) (9.73)

ψ Sample 39028.20 25987.45 15891.41
(6131.91) (2083.52) (690.39)

PC-FM 39134.87 26789.15 17230.54
(5794.49) (1987.23) (665.36)

NCb 20756.10 14253.04 7507.80
(2241.73) (1350.64) (270.20)

Note: this table shows the average MSE per comoment element of the sample, PC-FM and NC estimators.

The NC estimator is provided for α set by the bootstrap (NCb). The study was conducted using 1000

replications for sample sizes n = 300, 500 and 1000. The lowest MSE per scenario is highlighted in bold.

In addition, the average MSE per factor loading is given. Standard errors are provided in parentheses and

all values are to be multiplied by 10−4.

loadings, and thus no MSE values are reported. Results are provided in Table 3 and show

that including the cokurtosis elements increases the MSE when estimatingB. When sample

size increases, the difference in MSE between the two methods becomes less pronounced

and is negligible for sample size 1000. Another observation is that the coskewness elements

are better estimated when the cokurtosis elements are excluded when n = 300 and n = 500.

However, for n = 1000, including the cokurtosis elements yields better results. As in the

previous simulations, the NC estimator has gains up to 55% in accuracy compared to the

sample estimator when estimating the higher-order comoments.
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7 Empirical applications

The NC estimates of the higher-order comoments of non-normal random variables can be

used to improve such operations as dynamic portfolio allocation and factor extraction. In

this section, we find that the proposed NC estimator offers a significant economic advantage

over the sample comoments in multiple settings of portfolio allocation under non-Gaussian

objective functions. In addition, we extract the latent factors in the Holzinger & Swineford

(1939) dataset, which is often used as an example in the literature on structural equation

modelling; see Yuan & Chan (2016) for a recent example.

7.1 Optimization of a portfolio of hedge fund indices

In this section, we analyse the usefulness of the proposed NC estimator in dynamic port-

folio allocation. The data consist of weekly returns of the five main HFRX indices for

the period January 2, 2004 to December 29, 2017. These are the equity hedge, event-

driven, macro/CTA, relative value arbitrage and global hedge fund indices and are in-

vestible through tracker funds constructed by HFR Asset Management, LLC.

To account for potential time variation of the comoments, we follow the industry practice

of using rolling five-year samples. Hence, the most recent 260 weekly returns are used to

determine the comoments each week. In the NC estimator, the number of factors and

the ridge parameter are re-evaluated annually. We consider three settings. In the first,

the aim is to optimize the portfolio in order to achieve the lowest adjusted Value-at-Risk

(VaR) at a 95% level; in the second, however, we aim to maximize the expected utility of

an investor with constant relative risk aversion (CRRA) γ = 15. In addition, we consider

mean-variance-skewness-kurtosis (MVSK) optimal portfolios as proposed in Briec et al.

(2007) and implemented in Cornilly & Boudt (2019). Their definitions are recalled in

the supplementary appendix. All portfolios assume total investment and no short selling,

and we set the estimated mean equal to zero when maximizing the expected utility, as is

common in the literature.

The out-of-sample returns are compared to those of the equally weighted portfolio and

of the three optimized portfolios based on the sample comoment estimators. All portfolios

are evaluated using several out-of-sample performance measures. For skewness and kurtosis
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Table 4: Out-of-sample performance of the portfolios.

min. VaR max. EU MVSK

EW S NCb S NCb S NCb

Ann. geometric mean (%) 2.46 1.66 2.93 1.90 3.00 2.55 3.03

Ann. standard deviation (10−2) 3.55 2.96 2.98 2.98 3.06 3.10 3.01

Skewness (10−8) -10.78 -6.27 -3.48 -6.36 −3.44 -6.01 -4.94

Standardized skewness -0.91 -0.91 -0.49 -0.90 −0.45 -0.76 -0.68

Kurtosis (10−9) 3.15 1.67 1.66 1.71 1.86 1.87 1.58

Excess kurtosis 2.41 2.88 2.70 2.87 2.79 2.48 2.21

95% VaR (%) 0.85 0.68 0.61 0.68 0.64 0.68 0.65

MUG over EW (bp.) 0 -51.35 72.89 -27.96 76.70 30.19 81.44

Break-even transaction costs ($) 7.76 8.45 1.51 2.86

Note: this table shows out-of-sample performance measures for the various portfolios: annualized geo-

metric mean and standard deviation, skewness, standardized skewness, kurtosis, excess kurtosis and 95%

Value-at-Risk (VaR). In addition, we provide the annualized monetary utility gain (MUG) and break-even

transaction costs (dollar per $1000 traded). The equally weighted portfolio is denoted EW. The minimum

95%-VaR (min. VaR) portfolios are based on the sample moments (S) or the NC estimator (NCb). The

same two estimators are used to construct the maximum expected utility (max. EU) portfolios with risk

aversion parameter γ = 15 and the mean-variance-skewness-kurtosis efficient (MVSK) portfolios. The best

portfolio for each statistic is highlighted in bold.

we report the central moments as used in this paper, as well as the more traditional

standardized definitions. In addition, we report the 95% VaR and Monetary Utility Gain

(MUG) with respect to the equally weighted portfolio. As in Ang & Bekaert (2002) and

Martellini & Ziemann (2010), the MUG equals the additional annual percentage return

required by investors in the benchmark portfolio, rendering these investors indifferent to

a change in investment strategy. In order to measure the relevance of such economic

gains, we also report the break-even transaction costs for which a CRRA investor would

be indifferent with respect to choosing between the optimized portfolio and the equally

weighted portfolio. This measure is denoted in dollars per $1000 traded.

Table 4 reports these summary statistics for the various optimized portfolios and the

equally weighted portfolio. Overall, the optimized portfolios have a lower standard devi-

ation, larger skewness and a lower kurtosis compared to the equally weighted portfolio.

Especially remarkable is the fact that these improvements are relative not only to the

equally weighted portfolio, but also to the three different optimized portfolios based on the

sample comoments, which clearly demonstrates the performance advantage conferred by
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the NC estimator. In terms of return, the NC estimator delivers better performance, while

the sample optimized portfolios are mostly worse.

We further find that the MUG values of the optimized portfolios are all positive if

the moments are estimated using the NC estimator, which represents an advantage over

the equally weighted portfolio. The values are highly economically relevant, ranging from

72 basis points to 81 basis points annually. Surprisingly, a CRRA investor prefers the

equally weighted portfolio over both the sample optimized maximum utility and minimum

VaR portfolios, indicating an amplification of measurement error when utilizing the sample

moments. We verified that different values for γ do not affect the general conclusions

presented in this section. To conclude, the break-even transaction costs with respect to the

equally weighted portfolio range from $2.9 to $8.5 per $1000 traded in the portfolios with

positive MUG, indicating that even with transaction costs included, there is an incentive for

a CRRA investor to invest in the NC optimized portfolios instead of the equally weighted

one.

7.2 Factor loadings of mental ability scores

The NC estimator is also useful for extracting factor loadings if the data are assumed to

have a latent lower dimensional structure. We illustrate this using a study of the classic

Holzinger & Swineford (1939) dataset consisting of mental ability scores of seventh- and

eighth-grade pupils. We follow Jöreskog (1969) and many subsequent studies in considering

a subset of nine variables. The resulting dataset of 301 observations in nine dimensions is

made available in R through the lavaan package of Rosseel (2012). The nine variables are

provided in Table 5. The confirmatory factor analysis model that is often proposed consists

of three latent variables: a visual factor (variables 1, 2, 3, 9), a textual factor (variables 4,

5, 6) and a speed factor (variables 7, 8, 9).

The traditional approach is to estimate the structural model using maximum likelihood

or distribution-free methods, forcing the other factor loadings to be zero. By contrast,

the proposed NC estimator leads to an identified matrix with factor loadings, without

assuming zero factor loadings. This approach makes it possible to explore interactions that

have previously been neglected. As in the simulation study, we consider the NC estimators
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Table 5: Variables from the Holzinger and Swineford dataset.

Variable Meaning Factor

1 visual perception visual

2 cubes visual

3 lozenges visual

4 paragraph comprehension textual

5 sentence completion textual

6 word meaning textual

7 speeded addition speed

8 speeded counting of dots speed

9 speeded discrimination straight and curved capitals visual and speed

Note: this table shows the nine variables in the classic Jöreskog (1969) dataset of mental ability scores of

seventh- and eighth-grade pupils. This is an often studied subset of the dataset in Holzinger & Swineford

(1939). We also provide the traditional three latent factors (visual, textual, speed) and report which ones

influence each of the variables.

containing all joint moments up to the fourth order, as presented in Section 3, as well as

the NC estimator excluding the cokurtosis elements.

A scree plot, not included here, confirms the use of three factors for both estimators.

Next, we determine the optimal ridge parameter α using an equally spaced grid from 0.1

to 1 with increments of 0.1 and 250 bootstrap samples per value of α. When cokurtosis

elements are excluded, the optimal value is estimated as α̂ = 0.9, while the diagonal matrix

is optimal when the cokurtosis elements are included. In this application, the estimated

factor loadings are of interest. Since the factors are latent, the obtained matrices cannot

be interpreted directly. However, a promax rotation (Hendrickson & White (1964)) yields

an interpretable structure of factor loadings.

The obtained factor loadings for both estimators are reported in Table 6, together with

p-values for a one-sided test with alternative hypothesis of the loading being positive. The

loadings significant at a 5% level are highlighted in bold. We clearly recover the traditional

structure of the matrix with factor loadings under both estimators. However, in both cases

there is an additional significant factor loading: variable six (word meaning) is positively

influenced by both the visual and textual latent factors. One explanation could be that

the meaning of a word is related to visual images in memory. Further discussion of why

the visual factor is present in this context lies outside the scope of the present paper, and

we leave this matter to experts in the relevant fields.
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Table 6: Factor loadings implied by the nearest comoment estimator.

(σ φ) (σ φ ψ)

Variable visual textual speed visual textual speed

1 visual perception 0.53 0.18 0.10 0.58 0.20 0.10
(<0.01) (0.07) (0.25) (<0.01) (0.05) (0.26)

2 cubes 0.71 -0.06 -0.17 0.76 -0.06 -0.23
(<0.01) (0.73) (0.90) (<0.01) (0.73) (0.95)

3 lozenges 0.72 -0.13 0.07 0.71 -0.09 0.07
(<0.01) (0.89) (0.30) (<0.01) (0.80) (0.33)

4 paragraph comprehension 0.05 0.91 -0.01 -0.01 0.99 0.00
(0.32) (<0.01) (0.52) (0.53) (<0.01) (0.51)

5 sentence completion -0.21 1.11 0.07 -0.12 1.04 0.05
(0.97) (<0.01) (0.37) (0.85) (<0.01) (0.40)

6 word meaning 0.22 0.93 -0.10 0.19 0.92 -0.08
(0.02) (<0.01) (0.68) (0.03) (<0.01) (0.65)

7 speeded addition -0.17 0.04 0.71 -0.22 0.03 0.83
(0.88) (0.38) (<0.01) (0.94) (0.42) (<0.01)

8 speeded counting of dots 0.03 -0.03 0.76 0.09 -0.06 0.74
(0.42) (0.57) (<0.01) (0.28) (0.64) (<0.01)

9 speeded discrimination 0.33 -0.01 0.49 0.35 0.00 0.50
(<0.01) (0.53) (<0.01) (<0.01) (0.49) (<0.01)

Note: this table shows the factor loadings obtained after a promax rotation for two NC estimators. In

column (σ φ), only the second and third-order moments are used in the NC estimation procedure, while

in column (σ φ ψ) all moments up to the fourth order are included. The latent factors are named after

their traditional interpretation, and we provide p-values for a one-sided test with alternative hypothesis of

the loadings being positive.

8 Conclusion

We propose the NC estimator for joint estimation of the covariance, coskewness and cokur-

tosis matrices under the assumption of a latent factor model. The estimator exploits the

resulting structure in the higher-order comoments to improve finite sample and asymp-

totic estimation accuracy. An advantage of our approach is that no ex ante selection of

factors is required, yet the benefits of the factor structure still pertain. Asymptotic nor-

mality was proven, and its relation to the sample comoments was shown by means of the

influence function. An extensive simulation study with data-generating processes based on

the empirical applications showed improvements in MSE of up to 55% over all covariance,

coskewness and cokurtosis elements jointly. We have also illustrated the usefulness of the

novel framework in dynamic portfolio allocation and factor extraction.

Further prospective work in this regard consists of including dynamic behaviour in the

factor model to accommodate time-variation in the conditional comoments, as in Bauwens

& Laurent (2005), Bauwens et al. (2006) and Barigozzi & Hallin (2016, 2017). In addition,

as the higher-order comoments are very sensitive to influential observations, it would be
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useful to make the NC estimator more robust to observations that do not follow the same

model as the majority of the data.

Acknowledgements
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A Proofs

Proof of Theorem 4.1. We generalize the proof given in Serfling (2009) and derive the

influence function of multivariate central moments of any order.

Consider the functional µi1i2···ir(F ) with ij ≥ 1, j = 1, . . . , r, depending on the r-

dimensional distribution F , defined by

µi1i2···ir(F ) = E
[
(X1 − µ1)

i1(X2 − µ2)
i2 · · · (Xr − µr)ir

]
=

∫
Rr

r∏
j=1

(xj − µj)ijdF (x). (31)

For a certain x0 ∈ Rr, define the distribution Fλ = F + λ(δx0 − F ), which has mean

µλ = µ+ λ(x0 − µ). Then

µi1i2···ir(Fλ) =

∫
Rr

r∏
j=1

(xj − µλ,j)ijdF (x) + λ

∫
Rr

r∏
j=1

(xj − µλ,j)ijd(δx0 − F )(x) (32)

and
dµi1i2···ir(Fλ)

dλ
= −

r∑
k=1

[
(x0,k − µk)

∫
Rr

1

(xk − µλ,k)

r∏
j=1

(xj − µλ,j)ijdF (x)

]

+

∫
Rr

r∏
j=1

(xj − µλ,j)ijd(δx0 − F )(x) + λ · (?).
(33)

Hence, the influence function of the multivariate central moments equals

IF(x;µi1i2···ir , F ) =
dµi1i2···ir(Fλ)

dλ

∣∣∣∣
λ=0

(34)

= −
r∑

k=1

[
(xk − µk)

∫
Rr

1

(xk − µk)

r∏
j=1

(xj − µj)ijdF (x)

]
+

r∏
j=1

(xj − µj)ij − µi1i2···ir(F ).

The functions given in Theorem 4.1 are then obtained by substitution.
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Proof of Theorem 4.2. Define the functional ζ̂(F ), stacking the unique second, third

and fourth-order central moment functionals in (31). For some x0 ∈ Rp, consider the

contaminated distribution Fλ = F + λ(δx0 − F ). Define the functional θλ

θλ = arg min
θ∈Θ

(
ζ̂(Fλ)− ζθ

)′
W (Fλ)

(
ζ̂(Fλ)− ζθ

)
, (35)

for some λ ∈ [0, ε] and functional W (·) satisfying Ŵ (x1, . . . ,xn)
p−→W (F ), for x1, . . . ,xn

a sample of n independent and identically distributed random vectors with distribution F .

To obtain an explicit representation of θλ, we define the function

` : Θ× [0, ε]→ Rκ : `(θ, λ) = G(θ)′W (Fλ)
(
ζ̂(Fλ)− ζθ

)
, (36)

for some ε > 0, with G(θ) the Jacobian function of ζθ. We then note that `(θλ, λ) = 0 for

all λ ∈ [0, ε] and θ? satisfies `(θ?, 0) = 0.

We do a Taylor expansion around the point (θ?, 0) for λ > 0:

`(θλ, λ) = `(θ?, 0) +
∂`

∂θ

∣∣∣∣
(θ?,0)

(θλ − θ?) +
∂`

∂λ

∣∣∣∣
(θ?,0)

λ+
∂2`

∂λ2

∣∣∣∣
(θ̃,λ̃)

λ2

+
∂2`

∂λ∂θ

∣∣∣∣
(θ̃,λ̃)

λ (θλ − θ?) +
∂2`

∂θ2

∣∣∣∣
(θ̃,λ̃)

((θλ − θ?)⊗ (θλ − θ?)) ,
(37)

where ∂2`
∂θ2

is the κ× κ2 matrix containing all second-order derivatives of the vector-valued

function ` and (θ̃, λ̃) is a value between (θ?, 0) and (θλ, λ). It holds that

∂`

∂θ

∣∣∣∣
(θ?,0)

=
∂

∂θ

[
G(θ)′W (Fλ)

(
ζ̂(Fλ)− ζθ

)] ∣∣∣∣
(θ?,0)

= −G(θ?)′W (F )G(θ?). (38)

The partial derivative of ` with respect to λ equals

∂`

∂λ

∣∣∣∣
(θ?,0)

=
∂

∂λ

[
G(θ)′W (Fλ)

(
ζ̂(Fλ)− ζθ

)] ∣∣∣∣
(θ?,0)

= G(θ?)′
[
∂

∂λ
W (Fλ)

∣∣
0

(
ζ̂(F )− ζθ?

)
+W (F )

∂

∂λ
ζ̂(Fλ)

∣∣
0

]
= G(θ?)′

[
0 +W (F ) IF(x0; ζ̂, F )

]
= G(θ?)′W (F ) IF(x0; ζ̂, F ).

(39)

Since `(θ?, 0) = `(θλ, λ) = 0, it holds that

θλ − θ?

λ
= (G(θ?)′W (F )G(θ?))

−1

[
G(θ?)′W (F ) IF(x0; ζ̂, F ) + λ

∂2`

∂λ2

∣∣∣∣
(θ̃,λ̃)

+
∂2`

∂λ∂θ

∣∣∣∣
(θ̃,λ̃)

(θλ − θ?) +
1

λ

∂2`

∂θ2

∣∣∣∣
(θ̃,λ̃)

((θλ − θ?)⊗ (θλ − θ?))

]
.

(40)
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Taking the limit λ→ 0 we obtain the influence function of the estimator θ̂nc:

IF(x; θ̂nc, F ) = (G(θ?)′W (F )G(θ?))
−1
G(θ?)′W (F ) IF(x; ζ̂s, F ). (41)

Since W (F ) = W , we obtain the expression for the influence function in Theorem 4.2.

Because ζθ is a differentiable function with Jacobian G(θ?) at θ?, it follows from the

chain rule that IF(x; ζ̂nc, F ) = G(θ?) IF(x; θ̂nc, F ).

Proof of Theorem 4.3. Establishing asymptotic normality of the sample comoments

will be done with the multivariate Lindeberg-Lévy Central Limit Theorem. First, the sam-

ple moments will be rewritten in terms of their influence functions. The sample covariance

estimator σ̂{ij} equals

√
nσ̂{ij} =

1√
n

n∑
m=1

(xmi − µi)(xmj − µj) +
√
n(xi − µi)(xj − µj). (42)

Since
√
n(xi − µi)

d−→ N (0, σ{ii}) and (xj − µj)
a.s.−−→ 0, it follows by Slutsky’s Lemma that

√
nσ̂{ij} =

1√
n

n∑
m=1

(xmi − µi)(xmj − µj) + oP (1), (43)

where oP (1) is a term converging in probability to zero. Note that this is equivalent to

√
n

(
σ̂{ij} − σ{ij} −

1

n

n∑
i=1

IF(xi; σ̂{ij}, F )

)
= op(1). (44)

For the coskewness estimator we write

√
nφ{ijk} =

1√
n

n∑
m=1

(xmi − µi)(xmj − µj)(xmk − µk)−
√
n (xi − µi)σ{jk}

−
√
n (xj − µj)σ{ik} −

√
n (xk − µk)σ{ij}

−
√
n (xi − µi)

(
1

n

n∑
m=1

(xmj − µj)(xmk − µk)− σ{jk}

)

−
√
n (xj − µj)

(
1

n

n∑
m=1

(xmi − µi)(xmk − µk)− σ{ik}

)

−
√
n (xk − µk)

(
1

n

n∑
m=1

(xmi − µi)(xmj − µj)− σ{ij}

)
+ 2
√
n (xi − µi) (xj − µj) (xk − µk) .

(45)
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Again, by Slutsky’s lemma, the last four terms are oP (1) and it holds that

√
n

(
φ̂{ijk} − φ{ijk} −

1

n

n∑
i=1

IF(xi; φ̂{ijk}, F )

)
= op(1). (46)

By similar arguments, the following expression for the cokurtosis estimators is obtained

√
n

(
ψ̂{ijk} − ψ{ijkl} −

1

n

n∑
i=1

IF(xi; ψ̂{ijkl}, F )

)
= op(1). (47)

Define the function IF(x; ζ̂s, F ) =
(

IF(x; σ̂s, F )′ IF(x; φ̂s, F )′ IF(x; ψ̂s, F )′
)′

. The

sample moments ζ̂s equal ζ̂s = 1
n

∑n
i=1 IF(xi; ζ̂s, F )+oP (1), where IF(xi; ζ̂s, F ), i = 1, . . . , n

are independent and identically distributed vectors. Hence, by the multivariate Lindeberg-

Lévy Central Limit Theorem it holds that
√
n(ζ̂s − ζ)

d−→ N (0,Ξ) as n → ∞, where

Ξ = E
[
IF(X; ζ̂s, F )′ IF(X; ζ̂s, F )

]
.

Under the moment conditions, the matrix Ξ exists and has finite elements which are

straightforward to compute. Using the summation notation as in Stuart & Ord (1994),

they are defined by

ACov(
√
nσ̂s,{ij},

√
nσ̂s,{uv}) = µijuv − µijµuv,

ACov(
√
nσ̂s,{ij},

√
nφ̂s,{uvw}) = µijuvw − µijµuvw − µijuµvw − µijvµuw − µijwµuv,

ACov(
√
nσ̂s,{ij},

√
nψ̂s,{uvwz}) = µijuvwz − µijµuvwz −

∑
4

µvwzµiju,

ACov(
√
nφ̂s,{ijk},

√
nφ̂s,{uvw}) = µijkuvw − µijkµuvw −

∑
3

µijkuµvw −
∑
3

µiuvwµjk

+ µij
∑
3

µkuµvw + µik
∑
3

µjuµvw + µjk
∑
3

µiuµvw, (48)

ACov(
√
nφ̂s,{ijk},

√
nψ̂s,{uvwz}) = µijkuvwz − µijkµuvwz −

∑
4

µvwzµijku

−
∑
3

µjkµiuvwz + µij
∑
4

µvwzµku + µik
∑
4

µvwzµju + µjk
∑
4

µvwzµiu,

ACov(
√
nψ̂s,{ijkl},

√
nψ̂s,{uvwz}) = µijkluvwz − µijklµuvwz −

∑
4

µijkluµvwz −
∑
4

µiuvwzµjkl

+ µijk
∑
4

µvwzµlu + µijl
∑
4

µvwzµku + µikl
∑
4

µvwzµju + µjkl
∑
4

µvwzµiu,

where the sums are over the different ways of combining the indices in that particular

way, for example
∑

4 µvwzµiju = µvwzµiju + µuwzµijv + µuvzµijw + µuvwµijz, summing the
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four different ways of multiplying a coskewness element with indices out {u, v, w, z} with

a coskewness element containing the remaining index together with i and j.

Proof of Theorem 4.4. The proof of asymptotic normality of the NC estimator

ζ̂nc consists of two steps. First, asymptotic normality of the estimator θ̂nc is established,

according to Theorem 3.2 in Newey & McFadden (1994). Second, asymptotic normality of

the NC estimator ζ̂nc follows from the delta-method.

First, the conditions of Theorem 3.2 in Newey & McFadden (1994) are checked. By

assumption it holds that θ? lies in the interior of Θ. Also, ζθ is continuously differentiable

with respect to θ, as can be seen from their expressions in Boudt et al. (2015). Theorem

4.3 provides asymptotic normality of
√
n(ζ̂s − ζθ?) with mean vector zero and covariance

matrix Ξ. The Jacobian function G(θ) is continuous in θ? and independent of the sample.

We assume that W is such that G′WG is nonsingular, with G = G(θ?). It holds that

Ŵ
p−→W is a positive semi-definite matrix by the assumptions of the estimator. Finally,

when θ̂nc
p−→ θ? it follows from Theorem 3.2 in Newey & McFadden (1994) that

√
n
(
θ̂nc − θ?

)
d−→ N

(
0, (G′WG)

−1
G′WΞWG (G′WG)

−1
)
, n→∞. (49)

Second, since the Jacobian function G(θ) is continuous at θ?, Theorem (4.4) follows

from the multivariate Delta-method (see e.g. Theorem A in Section 3.3 of Serfling (2009)).

Note that in the first step it was assumed that θ̂nc
p−→ θ?. This is not trivial. Under the

assumptions of Theorem 2.1 it holds that θ? is identifiable. Hence there exists compact Θ

such that Q(θ) = (ζ − ζθ)′W (ζ − ζθ) is uniquely maximized at θ?. The function Q(θ)

is continuous due to continuity of ζθ. Due to the moment conditions and compactness of

Θ it also holds that E[supθ∈Θ ‖ζ̂s − ζθ‖] < ∞. Hence, (ζ̂s − ζθ)′Ŵ (ζ̂s − ζθ) converges

uniformly in probability to Q(θ). Thus, by Theorem 2.1 in Newey & McFadden (1994) it

follows that θ̂nc
p−→ θ?.

Proof of Theorem 4.5. The proof is identical to the proof of Theorem 5.2 in Newey

& McFadden (1994), but given here for completeness. Let Z be any (mean zero) random

vector such that Ξ = E[ZZ ′] and let m = G′WZ and m = G′Ξ−1Z. Then by G′WG =

E[mm′] and G′Ξ−1G = E[mm′], it holds that (G′WG)−1G′WΞWG (G′WG)−1 −

(G′Ξ−1G)
−1

= (G′WG)−1 E[UU ′] (G′WG)−1, with U = m − E[mm′] (E[mm′])−1m.

Since E[UU ′] is positive semi-definite, the difference of the asymptotic variances is positive
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semi-definite.

Proof of Corollary 4.1. This proof follows the outline of Newey & McFadden (1994).

From Theorem 4.3 and Theorem 4.4 it follows that

√
n
(
ζ̂s − ζ̂nc

)
= Ξ1/2

(
I −Ξ−1/2G′

(
G′Ξ−1G

)−1
GΞ−1/2

)
Un + oP (1), (50)

where Un = Ξ−1/2
√
n
(
ζ̂s − ζ

)
d−→ N (0, I). Since I − Ξ−1/2G′ (G′Ξ−1G)

−1
GΞ−1/2 is

idempotent of rank ]ζ − ]θ, it holds that n
(
ζ̂s − ζ̂nc

)′
Ŵ
(
ζ̂s − ζ̂nc

)
d−→ χ2

]ζ−]θ, when

n→∞.
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