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Abstract

This study applies the Iteratively Weighted Least Squares (IWLS) algorithm to a

Smooth Transition Autoregressive (STAR) model with conditional variance. Monte

Carlo simulations are performed to measure the performance of the algorithm, to

compare its performance with the performances of established methods in the litera-

ture, and to see the effect of initial value selection method. Simulation results show

that low bias and mean squared error are received for the slope parameter estima-

tor from the IWLS algorithm when the real value of the slope parameter is low. In

an empirical illustration, STAR-GARCH model is used to forecast daily US Dol-

lar/Australian Dollar and FTSE Small Cap index returns. 1-day ahead out-of-sample

forecast results show that forecast performance of the STAR-GARCH model im-

proves with the IWLS algorithm and the model performs better that the benchmark

model.
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1. Introduction

Nonlinear models with heteroskedastic variance have been used in analysing financial
time series data for a long time. One special type of models under this family is the
Smooth Transition Autoregressive (STAR) model with conditional variance. Unlike STAR
models, which are estimated by nonlinear least squares (NLS), these models are esti-
mated by maximum likelihood estimation (MLE), or quasi-maximum likelihood estima-
tion (QMLE). However, in real world applications the numerical features of these models
and computational aspects of the method used may lead to a complicated estimation pro-
cedure. For both NLS and MLE, the experience shows that the final estimates are highly
dependent on the starting values (for STAR models, see Teräsvirta (1994), for STAR mod-
els with heteroskedastic variance, see Lundbergh et al. (1999) and Dijk et al. (2002)), the
bias of the slope parameter estimator is higher than the biases of other parameter esti-
mators, and estimation of the slope parameter gets more difficult as the parameter value
gets higher. This study presents a potential solution to these problems by using Iteratively
Weighted Least Squares (IWLS) and compares its performance with other established
algorithms.

As pointed out by Teräsvirta (1994), Lundbergh et al. (1999), Dijk et al. (2002); one
problem with the estimation of STAR type models is to find sensible starting points for
the algorithm. Due to the highly nonlinear nature of STAR type models, estimation re-
sults are sensitive to starting points (Chan and McAleer, 2003). Moreover, according to
Teräsvirta (1994) and Chan and McAleer (2002), the degree of difficulty in estimation
differs depending on the type of the transition function used in the model. A comparison
of the models with logistic transition function and exponential transition function shows
that STAR models with logistic transition function proved to be more problematic than
the other.

Simulation studies of Chan and Theoharakis (2011) show that the main reason for
these problems seem to be the complex nature of the log-likelihoods of these functions
stemmed by slope parameter(s). For STAR-GARCH, Chan and Theoharakis (2011) show
how the log-likelihood function behave around optimum values of the parameters. They
illustrate graphically that the log-likelihood function might be flat for exponential tran-
sition functions or lumpy for logistic transition functions around the optimum value of
the slope parameter(s). These results can be regarded as supporting evidence for solution
methods that are robust to local optima in estimating STAR-type models.

One common feature of the studies that use STAR models with conditional variance
is that the models are estimated by maximum likelihood (ML).1 Although, in theory ML

1 Other solution methods are available for STAR-type models with homoskedastic errors. Teräsvirta
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estimation is the correct way to handle the estimation problem and gives consistent es-
timates; from a numerical point of view, the algorithm used in solving the ML can be
sensitive to starting values and might have poor performance in dealing with local optima
issue; so the algorithm might be the reason for the problems described above. Therefore,
an approach targeting robustness of the ML estimation of nonlinear models would be a
potential solution to the referred problems. One such an approach is the IWLS estima-
tion of nonlinear models with conditional variance. Mak (1993) and Mak et al. (1997)
show that the maximum likelihood problems can be transformed into a problem that can
be solved by IWLS, and the performance of the algorithm is compatible with or better
than the traditionally used ML algorithms in the literature for the set of models we are
interested in.

The purpose of this study is to show the performance of the IWLS algorithm in esti-
mating STAR models with conditional variance in a basic setup. For this purpose, STAR-
GARCH model is chosen to be the model used in the study. Monte Carlo (MC) simula-
tions are carried with a STAR-GARCH model to show the performance of the algorithm
conditional on different initial values. Robustness of the algorithm to initial value selec-
tion is checked by carrying simulations with randomly generated initial values and initial
values provided by a heuristic algorithm, which has been used in the STAR model esti-
mation literature. Brooks et al. (2001) show that there might be significant differences
in the results from different software for the same problem. Therefore, the performance
of IWLS is also compared with other functions that are commonly used for maximum
likelihood and quasi-maximum likelihood estimations. These are fmincon function of
MATLAB, and maxLik function of R. Special attention is paid to the slope and location
parameters of the transition function since in practice, these parameters are found to be the
most difficult to estimate in the literature. In order to account the effect of the dynamics in
the variance component of the model, simulations are carried with several GARCH spec-
ifications. Practical implications of using the IWLS algorithm are studied with empirical
applications.

The contribution of the study to the literature is twofold. First, in a basic setup, it
shows that for the STAR-GARCH model, it is possible to have slope parameter estima-
tors with smaller bias and variance with the IWLS algorithm. Second, as an empirical
contribution, daily exchange rates and stock indices are forecasted by the STAR-GARCH
model; thus, the study contributes to the exchange rate and stock index forecasting dis-

et al. (2010) discuss estimating the models by dividing the parameter vector into two subsets in order
to reduce numerical burden. The method is first proposed by Leybourne et al. (1998). Even though
it eases the numerical burden of the STAR model estimations, Maugeri (2014) show that there are
cases in which the method gives "biased and inconsistent" results and maximum likelihood algorithms
should be preferred.
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cussions in the literature.
Simulation studies convey three key results. The first result is that when the real value

of the slope parameter is low, IWLS performs better than other methods in estimating
the parameter while IWLS does not perform worse in estimating the slope parameter
when the real value of the parameter is high. The second result states that for the IWLS
algorithm, bias of the slope parameter estimator from randomly generated initial values is
smaller than the bias of the estimator received from the benchmark initial value selection
method. According to the third result, estimation performances of the methods change
as the real value of the persistency parameters in the variance equation change. In cases
where performances of other methods deteriorate, IWLS performs better in estimating
these parameters.

In the empirical part of the study, daily US Dollar (USD)/Australian Dollar (AUD)
exchange rate and Financial Times Stock Exchange Small Cap (FTSE SC) returns are
forecasted by using the STAR-GARCH model. According to the out-of-sample forecast
error performance and prediction accuracy tests, the IWLS algorithm performs better than
the benchmark random walk (RW) model as well as the competing algorithms. For the
exchange rate forecasts, the statistical significance of the performance of the IWLS al-
gorithm is robust to different predictive accuracy tests while robustness is not observed
for the stock index forecasts, though most of the tests give significant results. Empirical
exercises suggest that traditional methods used in the literature might give misleading re-
sults in the sense that even though the smooth transition model performs better than the
benchmark model, the algorithms cannot demonstrate the performance. IWLS is shown
to correct this problem in practice.

The study is organised as follows. The model and the IWLS algorithm are described
in the next section. Section 3 presents the simulations, summarises results, and discusses
their implications. In Section 4, the STAR-GARCH model is used in empirical illustra-
tions to forecast daily exchange rate and stock index returns. The final section summarises
and concludes.

2. STAR-GARCH Model and IWLS Estimation

To the best of our knowledge, STAR-type models have never been estimated by the IWLS
algorithm in the literature; so the aim of the study is to first show its performance in a
basic setup. STAR-GARCH model has been selected because of its simplicity within the
available extensions of STAR-type models in the literature and it has a wide range of em-
pirical applications that include estimation of daily and intra-daily S&P 500 index (Chan
and McAleer, 2002, 2003), daily major exchange rates (Westerhoff and Reitz, 2003), and
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monthly commodity prices (Reitz and Westerhoff, 2007). The IWLS algorithm can be
extended to other STAR-type models with conditional variance based on the potential
success of the algorithm in this basic setup.

This section first describes the STAR-GARCH model and gives the non-trivial sta-
tionary conditions both for the mean and variance equations. Then, the IWLS algorithm
is given.

2.1. STAR-GARCH Model

Consider a STAR(p) model with a GARCH(q1,q2) component and with t = 1− p,1−
(p−1), ...,T −1,T as the following:

yt = xtφ
(1)+ xtφ

(2)Gt(.)+ εt , (1)

εt = vt
√

ht , vt ∼ N(0,1), (2)

ht = ω +
q1

∑
i=1

αiε
2
t−i +

q2

∑
j=1

β jht− j, (3)

where xt = (1,yt−1,yt−2, ...,yt−p) is a 1×(p+1) vector; φ (1) = (φ
(1)
0 ,φ

(1)
1 ,φ

(1)
2 , ...,φ

(1)
p )′,

and φ (2) = (φ
(2)
0 ,φ

(2)
1 ,φ

(2)
2 , ...,φ

(2)
p )′ are (p+ 1)× 1 vectors of coefficients; Gt(.) is the

transition function; ω is the constant of the variance process; αi is the ARCH coefficient
for i = 1, ..,q1; β j is the GARCH coefficient for j = 1, ..,q2, and ht is the conditional
variance. The errors in the mean equation, εt , are assumed to be orthogonal to xt . The
logistic transition function, Gt(.), is given by:

Gt(yt−d;eη ,c) =
1

1+ e−eη (yt−d−c)
, (4)

where yt−d , d > 0, is the transition variable, eη is the slope parameter, and c is the location
parameter. The slope parameter is expressed as an exponential function. In contrast to the
traditional literature which gives the slope parameter as γ > 0; following Goodwin et al.
(2011) and Hurn et al. (2014), the parameter is written as a monotonic transformation of
γ . By doing so, the interval for the parameter of interest, η , can take values in the inter-
val (−∞,∞). In this way, one eliminates the non-negativity restriction on the parameter
and the search for the slope parameter focuses on a smaller range of values because of
the exponential mapping of η to γ (Hurn et al., 2014). The interval for Gt(.) stays the
same with the transformation: as η →−∞, Gt(.)→ 0.5 and the model approaches to a
linear AR(p)-GARCH(q1,q2) model. As η → ∞, Gt(.)→ 1 and the model approaches
to a threshold AR (TAR(p))-GARCH(q1,q2) model. The corresponding log-likelihood
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function for observation t of the model is

lt =−
1
2

lnht−
ε2

t
2ht

. (5)

The model is assumed to be weakly stationary. For nonlinear models with heteroskedas-
tic conditional error, Meitz and Saikkonen (2008) give stationary conditions and conclude
the stationary conditions for the mean and the variance can be checked separately. Ac-
cording to Meitz and Saikkonen (2008), one of the following two conditions is sufficient
for the mean to be stationary:

p

∑
i=1

max
{∣∣∣φ (1)

i

∣∣∣ , ∣∣∣φ (1)
i +φ

(2)
i

∣∣∣}< 1, (6a)

ρ({A1,A2})< 1. (6b)

In condition (6b), ρ({A1,A2}) is the joint spectral radius of A1 = Āp([φ
(1)
1 ...φ

(1)
p ]′)

and A2 = Āp([φ
(1)
1 +φ

(2)
1 ...φ

(1)
p +φ

(2)
p ]′) where Āp is defined as the following:

Āp(a) =



a1 a2 ... ap−1 ap

1 0 ... 0 0
0 1 ... 0 0
. . ... . .

. . ... . .

. . ... . .

0 0 ... 1 0


.

In the simulations, both stationarity conditions are checked. In practice, it is most con-
venient to use the condition (6a) since computation of the joint spectral density can be
burdensome as p increases.

In the MC simulations, the conditional variance is assumed to follow a GARCH(1,1)
model. The weak stationarity condition of the conditional variance is thus α1 +β1 < 1.
Non-negativity of the conditional variance requires ω > 0, α1≥ 0, and β1≥ 0. Finally, the
conditional variance is assumed to be fourth moment stationary which, when the errors are
normal, implies the condition 3α2

1 + 2α1β1 +β 2
1 < 1 (for the fourth moment conditions

of a GARCH processes see He and Teräsvirta (1999a) and He and Teräsvirta (1999b)).
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2.2. IWLS Estimation of the STAR-GARCH Model

IWLS is a robust regression algorithm that goes back to Beaton and Tukey (1974) and
was first used for robust polynomial fitting. In order to illustrate the basic setup for IWLS
assume that y is a T ×1 vector of observations, X is a T ×n matrix of regressors, β is an
n× 1 vector of parameters, and W is an n× n diagonal weight matrix. Then, parameter
estimates at the rth IWLS iteration at can be written as follows:

β̂r = β̂r−1 +(X′WrX)−1(X′Wr(y−Xβ̂r−1)). (7)

where the weight matrix Wr is a function of the residuals from the previous step. This
is why IWLS is sometimes referred to as "iteratively reweighted least squares". It is
possible to assign a functional structure to the weight matrix by using weight factors (see
Beaton and Tukey (1974) for an example with biweight regression). A simple example of
the weights is one in which the elements of (y−Xβ̂r−1)/k (k is a scale parameter) form
the main diagonal of Wr which itself is a diagonal matrix. The scale parameter k can
be chosen beforehand depending on the data and the purposes of the analysis or can be
determined in step r− 1 to be used in step r. At the initial step, the sum of the weights
can be equal to one or a unit weight can be assigned to each element. IWLS can be
used with numerical algorithms such as Gauss-Newton and Levenberg-Marquardt, and it
has a wide range of application areas besides econometrics such as sparse recovery, face
recognition, and magnetic resonance imaging (see Holland and Welsch (1977), Chartrand
and Yin (2008), Daubechies et al. (2010)).

Mak et al. (1997) show the superiority of IWLS over the BHHH algorithm in the
estimation of an ARCH model. Li and Li (1996) estimate their DTARCH model with
IWLS and show that it is faster than the BHHH algorithm. Biases of some parameter
estimators are comparable with those of the BHHH estimators, whereas for some other
parameters IWLS estimators are less biased of the two. Besides being faster, IWLS is less
sensitive to the choice of starting values. Green (1984) notes that "General experience
seems to be that choice of starting values for the parameter estimates is not particularly
critical". These features of IWLS make it useful in the estimation of STAR models with
heteroskedastic variance.

Based on the results of Mak (1993), Mak et al. (1997) derive an IWLS algorithm for a
very general class of nonlinear models with heteroskedastic errors. For the clarity of the
subsequent application of the algorithm to the STAR-GARCH model, the main results of
Mak (1993) and Mak et al. (1997) are restated here.

Let y be a vector of observations with size T , θ be a q-dimensional vector of parame-
ters, and p(y,θ) be the density function of y under θ . Let θ0 be the true parameter vector
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and assume that θ0 lies in an open parameter space Ω = {θ} ⊆ Rq. Ω is assumed to
contain an estimator of θ0, θ̂ , as a root of

f (y,θ) = 0. (8)

The core assumption of the setup is that an estimator of Equation (8) is unbiased, i.e.
E { f (y,θ)|θ}= 0 where E {.|θ} denotes the expectation operator. The scale of f (y,θ) is
assumed to be the order of Op(T−1/2). Mak (1993) defines the function g(.) for any θ , θ̃

as follows:

g(θ̃ ,θ) = E
{

f (y,θ)|θ̃
}
= 0. (9)

An inductive sequence
{

θ(r)
}∞

0 is defined as follows. Assume θ(r) is given. For large
T , where f (y,θ) ' E

{
f (y,θ(r))|θ0

}
, θ0 can be approximated by a θ which equates the

observed value of f with the expected value under θ such that

f (y,θ(r)) = E
{

f (y,θ(r))|θ(r+1)
}
= g(θ(r+1),θ(r)). (10)

If we take r→∞ and use the condition of unbiasedness, we see that if
{

θ(r)
}∞

0 converges,
it will converge to a root of Equation (8).

Using this result, Mak (1993) reaches the following main results:

∂g(θ̃ ,θ)
∂ θ̃

∣∣∣∣
θ

=−E
{

∂ f (y,θ)
∂θ

∣∣∣∣
θ

}
, (11)

∂ψ

∂θ

∣∣∣∣
θ̂

→ 0 as T → ∞, (12)

Pr(Sn)→ 1 as T → ∞, (13)

and

θ(2)− θ̂ = op(T−1/2), (14)

where Sn is the event that
{

θ(r)
}∞

0 converges, and ψ : Rq→ Rq is an implicit function so
that

f (y,θ) = g{ψ(θ),θ} . (15)

ψ relates θ(r) to θ(r+1) as ψ(θ(r)) = θ(r+1). For maximum likelihood estimations in which
f (y,θ) is a vector of partial derivatives and might be complicated for further differentia-
tion, the result given by Equation (11) (Lemma 1 in Mak (1993)) suggests an alternative
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method. According to Equation (12) (Lemma 2 in Mak (1993)), as T gets larger; when
evaluated at the real value of θ , change in the implicit function ψ with respect to θ will
converge to zero. Result (13) (Theorem 1 in Mak (1993)) denotes the convergence prob-
ability of the sequence

{
θ(r)
}∞

0 will approach to 1 as T gets larger. Finally, result (14)
(Theorem 2 in Mak (1993)) shows that the proposed algorithm converges very fast just in
2 steps.

If Equation (15) does not have an explicit solution, Mak (1993)) suggests using the
following linearisation:

g(θ̃ ,θ)+
[

∂g(θ̃ ,θ)
∂ θ̃

∣∣∣∣
θ̃=θ

]′
(θ̃ −θ) =

[
∂g(θ̃ ,θ)

∂ θ̃

∣∣∣∣
θ̃=θ

]′
(θ̃ −θ) = f (y,θ). (16)

Based on these results, Mak et al. (1997) start building an IWLS algorithm for non-
linear models with heteroskedastic errors first by defining f (y,θ) as follows:

f (y,θ) =
∂ lnp(y,θ)

∂θ
(17)

where lnp(y,θ) is the density of y. The nonlinear model which is used for deriving the
results is given as the following:

yt = µ(zt ,yt−1,yt−2, ...,yt−p,θ)+ εt , (18)

where zt is a vector of regressors and εt is conditionally normally distributed with mean
0, E(εt) = 0, and variance given by

ht = h(zt ,yt−1,yt−2, ...,yt−p,θ). (19)

It has to be noted that the model specification is very general and for derivation of the
further results the model is assumed to satisfy some regularity conditions. Even though
such a general specification is feasible, there might be some practical concerns while
implementing the method for estimating a specific nonlinear model.

Set y=(yT ,yT−1,yT−2, ...), then we have f (y,θ) after differentiating the log-likelihood
function as the following:

f (y,θ) =−1
2 ∑

∂ht

∂θ

{
1
ht
− (yt−µt)

2

h2
t

}
+∑

∂ µt

∂θ

(yt−µt)

ht
. (20)

From Equation (15), we have:

g(θ̃ ,θ) =−1
2 ∑

∂ht

∂θ

{
1
ht
− h̃t +(µ̃t−µt)

2

h2
t

}
+∑

∂ µt

∂θ

(µ̃t−µt)

ht
, (21)
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where µ̃t = µ(zt ,yt−1,yt−2, ...,yt−p, θ̃) and h̃t = h(zt ,yt−1,yt−2, ...,yt−p, θ̃). According
to (11), Fisher’s information matrix can be derived first by differentiating g(θ̃ ,θ) with
respect to θ̃ , which gives

∂g(θ̃ ,θ)
∂ θ̃

=−1
2 ∑

{
− 1

h2
t

(
∂ h̃t

∂ θ̃

)
− 2(µ̃t−µt)

h2
t

(
∂ µ̃t

∂ θ̃

)}(
∂ht

∂θ

)′
+

∑
1
ht

(
∂ µ̃t

∂ θ̃

)(
∂ µt

∂θ

)′
.

(22)

Therefore, at θ̃ = θ , the Fisher’s information matrix can be written as

I(θ) =
1
2 ∑

1
h2

t

(
∂ht

∂θ

)(
∂ht

∂θ

)′
+∑

1
ht

(
∂ µt

∂θ

)(
∂ µt

∂θ

)′
. (23)

The IWLS algorithm is derived by using the Equations (20)-(22) and (16). Inserting
Equations (20)-(22) in (16), we have

∑
1
2

1
h2

t

∂ht

∂θ

{(
∂ht

∂θ

)′
(θ̃ −θ)+ht− (yt−µt)

2
}
+

∑
1
ht

∂ µt

∂θ

{(
∂ µt

∂θ

)′
(θ̃ −θ)− (yt−µt)

}
= 0.

(24)

The terms of (24) can be rearranged in order to have:

∑W1tz1t{y1t− z′1t θ̃}+∑W2tz2t{y2t− z′2t θ̃}= 0, (25)

where

W1t =
1
ht
, z1t =

∂ µt

∂θ
, y1t =

(
∂ µt

∂θ

)′
θ +(yt−µt),

W2t =
1
h2

t
, z2t =

∂ht

∂θ
, y2t =

(
∂ht

∂θ

)′
θ −ht +(yt−µt)

2.

The weights W1t and W2t are based on the conditional variance ht . Intuitively, as the
variance at a certain point in time increases, the weight assigned to that certain point will
decrease.

At the (r+1)th step, θ(r+1) is computed as the weighted least squares estimate:

θ(r+1) =

{
2

∑
m=1

∑
t

Wmtzmtz′mt

}−1{ 2

∑
m=1

∑
t

Wmtzmtymt

}
, (26)

where m = 1,2 represent the mean and variance equations respectively, and θ in the defi-
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nitions of Wmt , zmt , and ymt are replaced with θ(r).
There are some advantages of the algorithm. It only uses the first derivatives of the

log-likelihood function and this gives a computational advantage over the algorithms that
also need second order derivatives. Second, see (14), the algorithm promises a fast con-
vergence. Third, it is a robust algorithm. In this context, this feature of the algorithm is
reflected on the weights that would be low for possible large shocks (i.e. possible outliers
in the sample). Fourth, Green (1984) notes that initial values are not very critical. For the
examples given in Mak (1993), initial values are found to be independent of the starting
values. However, Green (1984) also notes cases in which the final IWLS estimates may
depend on the starting values.

On the other hand, the behaviour of the algorithm is not tractable except for simple
cases. According to Green (1984), the algorithm can be seen as a fixed point problem and
if the algorithm converges, the results will be a solution to the likelihood equations.

3. Simulation Study

The aim of the simulations is to evaluate the performance of the IWLS algorithm in esti-
mating the STAR-GARCH model, compare the performance of the algorithm with other
functions/algorithms used in the literature, and define cases in which it performs better or
worse, if any.

3.1. Simulation Design

The IWLS algorithm is compared with the fmincon function of MATLAB, and maxLik

function of R. Estimation methods are compared in terms of mean, standard deviation,
median, bias and mean squared error (MSE). Distributional properties of the estimates
are also compared with several distribution comparison tests as robustness checks.

Before going further in describing the simulation setup and results, it is worth noting
the similarities and differences between these methods to better comment on the results.
fmincon2 is a minimisation function of MATLAB that can handle linear and nonlinear
constraints, equality and inequality constraints, and parameter boundaries. In ML esti-
mations, one should insert the negative of the log likelihood function as the objective
function. Interior-point, trust-region-reflective, sequential quadratic programming, and
active-set algorithms are optional in the function. In the simulations, interior-point al-
gorithm has been used with fmincon since active-set algorithm requires a user-supplied
gradient, and trust-region-reflective and sequential quadratic programming algorithms are

2 For a detailed description of the function and its features, please see http://www.mathworks.
com/help/optim/ug/fmincon.html
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not large scale algorithms, which would create problems for long time series. maxLik3

function is the maximisation function of the maxLik package of R that is designed for ML
applications. Newton Raphson, BHHH, BHGS, Simulated ANNealing, Conjugate Gradi-
ents, and Nelder-Mead algorithms are available as optional within the function. maxLik

can also handle linear constraints and parameter boundaries. Inequality constraints are
only allowed for the Nelder-Mead algorithm; so this algorithm has been used with max-

Lik during the study.
The IWLS algorithm cannot handle constraints or boundaries. Instead, following the

recommendation of Mak et al. (1997), if a parameter value at step r happens to be out of
bounds, it is replaced with a value that is close to the boundary.4 This is done by using the
smallest distance between two numbers that is defined by the software. For MATLAB,
the smallest distance is identified as 2.2204×10−16 and when, for instance, a parameter
value is above the boundary at a specific step r, then the value if replace by the boundary
value minus 2.2204×10−16 to be used in the next step.5

Parameters of the simulated series are specified as the following:

yt = 0−0.35yt−1 +0.55yt−2 +(0.02+0.20yt−1−0.25yt−2)G(yt−1;eη ,0.02),

ht = 0.001+αε
2
t−1 +βht−1.

This model parameters are used with two η specifications in order to observe the effect
of the slope parameter on estimation performances. Selected η values are ln5 and ln100,
which correspond to slope parameter values of 5 and 100 in the traditional notation in the
literature and these are commonly used values to show behaviours of the STAR models
for different slope parameters.

This parameterisation is used with 9 different GARCH parameters starting with (α,β )=

(0.09,0.90) and increase (decrease) β (α) by 0.01 until (α,β ) = (0.01,0.98) for each
η values used. The purpose of this exercise is to compare estimation performances of
the methods for low values of α since as it is pointed out by Zivot (2009) for GARCH
estimations, when some parameters are close to be unidentified6, maximum likelihood
estimations may not be reliable.

3 For a detailed description of the function and its features, please see http://www.http://cran.
r-project.org/web/packages/maxLik/maxLik.pdf

4 For their problem, Mak et al. (1997) replace with 0; but for the problem at hand, replacing with a
value that is close to the boundary is seen to work better since value of 0 for some parameters might
lead the function to be undefined. Handling the constraints and boundaries can be seen as the major
disadvantage of IWLS against other algorithms.

5 This procedure implies that the boundaries are defined as real boundary value ±2.2204× 10−16 in
practice; therefore, if a parameter estimate is found to be exactly at this value, then that estimation is
discarded from the simulations.

6 In the case of GARCH, β is unidentified when α = 0.
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Figure (1) depicts selected representative series from the simulated data. The figure
includes plots for yt and ht against time, and Gt against the transition variable yt−1. As it
can be seen on the plots of the transition variables, when the value of the slope parameter
is low, transition from one state to another state is smoother. In addition to that, these
figures show the effect of different GARCH specifications. For higher values of α , the
volatility clusters in the data are more apparent.

A crucial part of estimating STAR-GARCH (or STAR type models) is the sensitivity
of the final estimates to the starting points. For IWLS algorithm; Green (1984), Mak et al.
(1997), and Li and Li (1996) state that initial points are not found to be important. The rel-
evance of this claim for the STAR-GARCH model is tested by comparing estimates from
two different sets of initial values: estimates of the Simulated Annealing (SA) algorithm
and randomly generated initial values.

The SA algorithm is a heuristic algorithm that can be used for optimisation when tradi-
tional algorithms fail to converge or to get values close to the global maximum when there
is local maxima problem in the function of interest. Given the initial temperature, maxi-
mum temperature, temperature reduction function, acceptance criteria, and stopping crite-
rion7(Goffe et al., 1994; Brooks and Morgan, 1995); the SA algorithm can be sketched in
five steps: (i) generate a random point calculate the loss function for this point (e.g. log-
likelihood function), (ii) select another point and decide if this point stays or not based on
an acceptance criterion, (iii) decrease the temperature based on the temperature reduction
function, (iv) reanneal, and (v) end the algorithm when the stopping criterion is satisfied.
The acceptance and temperature reduction functions used in the study can be given as
follows:

acceptance = e
Lossnew−Lossold

Temp , (27)

Temp = Temp0 ∗0.95nSA, (28)

where acceptance is the acceptance probability, Lossnew and Lossold denote loss function
values for the old and new points to be decided on, nSA = 1, ...,NSA is the number of
annealing, Temp0 is the starting temperature, Temp is the new temperature at annealing
number nSA.

Goffe et al. (1994) compare the SA algorithm with a simplex algorithm, a conjugate
gradient algorithm, and a quasi-Newton algorithm and show that the SA algorithm per-
forms better than the others. The performance of the algorithm is supported by Brooks

7 The terminology of the SA algorithm comes from the physics and material sciences literature. In this
context, we can consider temperature only as a parameter of acceptance. High temperature leads to
high acceptance probability. Temperature is systematically decreased with the temperature reduction
function; so that the probability of accepting a point as the optimum gets lower.
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and Morgan (1995) who measure the performance of the algorithm with a problem in
which maximum likelihood estimations fail to converge. It is also noted that the SA al-
gorithm might fail to find the global optimum when the problem at hand is very complex
(Goffe et al., 1994).8,9 In the simulations of this study, the SA algorithm is started by the
randomly generated initial values which are then also used to estimate the model.

A second set of initial values randomly generated with respect to the stationary con-
ditions given for the mean and variance of the STAR-GARCH model. For the slope
parameter, initial values are chosen randomly in the interval [1,4], and for the location
parameter, initial values are chosen to be the mean of the series that are estimated.

The number of replications for each study is 1000. The parameter bias and MSE of
the estimations are calculated as follows:

bias = (
1000

∑
n=1

(θ̂n−θ))/1000,

MSE = (
1000

∑
n=1

(θ̂n−θ)2)/1000,

where θ̂n is the parameter estimates from the nth estimation.

3.2. Simulation Results

Tables 1-4 give mean, median, standard deviation, bias, and MSE for the parameter es-
timates for simulations with GARCH specifications (α,β ) = {(0.09,0.90),(0.01,0.98)}
of both low and high values of the slope parameter. Results from simulations with other
GARCH specifications are similar to the ones reported here.10 The tables also include
average iteration numbers, which show that on average the IWLS algorithm has lower
number of iterations than other methods. Figure 2 shows the fast convergence of the
IWLS algorithm at the first two steps which justifies the theory of Mak (1993).

A number of observations on the simulations results can be listed. First, maxLik per-
forms poorly compared to other methods. The bias and MSE of mean and variance param-
eters are larger than others with the maxLik function for all GARCH and slope parameter
specifications. This function performs well only in the estimation of the slope and location
parameters that in one case is the best of all three methods.

Second; in the estimation of the mean parameters except the slope and location pa-

8 For an application of the algorithm and other heuristic algorithms for STAR type models, please see
Schleer (2015). For other applications of the SA algorithm, please see Nakatsuma (2000) and Bernard
et al. (2012)

9 Despite the desirable features of the SA, it is not chosen to be the estimation algorithm because as the
parameter number increases, the algorithm gets slower.

10 These results are available upon request.

13



rameters, the IWLS algorithm and fmincon perform similarly. None of the methods sys-
tematically outperforms the other with respect to bias and MSE.

The performance of the methods in estimating the slope parameter gets worse when
the value of the parameter is increased. The IWLS algorithm performs best in estimat-
ing the slope parameter when the real value of the parameter is low. The performance of
the algorithm is better with randomly generated initial values and the bias drops to 0.003
with the (α,β ) = (0.09,0.90) specification. This performance of the algorithm is beaten
by the maxLik function only for two GARCH specifications with SA initial values and
sometimes this function performs close to the IWLS; but the performance of the maxLik

is shadowed by its comparatively lower performance in estimating other mean param-
eters. On the contrary; when the slope parameter is high, none of the methods shows
significantly better performance in estimating the slope parameter. In this case, fmincon

performs best and the IWLS algorithm is the second best. Figures 3 and 4 plot kernel
distribution of the slope parameter estimates. As these plots show, the IWLS estimates
are clustered around the real value of the parameter when η = ln5, while the distribution
of fmincon estimates has a fatter right tail. When η = ln100, the differences between the
distributions become more pronounced. Estimates from fmincon are clustered closer to
ln100; but still all methods give high estimator bias.

Significance of the differences between slope parameter estimates are further scruti-
nised by nonparametric distribution comparison tests. Differences are analysed with two-
sample Kolmogorov-Smirnov (KS) (Kolmogorov, 1933; Smirnov, 1948), Ansari-Bradley
(AB) (Ansari et al., 1960), Wilcoxon rank sum (RS) (Wilcoxon, 1945), and Aslan-Zech
(AS) (Aslan and Zech, 2005) tests. The null hypothesis of KS and AZ tests is that the
two same samples come from the same continuous distribution and the alternative is that
they do not. In the AB test, the null hypothesis is that the samples come from the same
distribution against the alternative that they have the same mean but different variances.
When medians of two samples considered are not equal, Ansari et al. (1960) suggest sub-
tracting the medians before the test. The null hypothesis of the RS test is that the samples
are from distributions with equal medians and the alternative is that they are not. The tests
are used to compare IWLS estimates with estimates from other methods both for SA and
random initial values, and for comparing estimates from SA initial values and random
initial values for each method.

For the cases reported in the study, results for the distribution comparison tests are
given in Tables (5)-(8). The tables first list results for comparisons of the IWLS estimates
with estimates from other methods and then results for the comparison of estimates with
the SA initial values and randomly generated initial values. According to the p-values
of the tests, the null hypotheses can be rejected consistently for the comparison of IWLS
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with fmincon when the slope parameter is low. In this case, difference of IWLS esti-
mates from maxLik estimates cannot be significantly rejected only with the RS test for
the (α,β ) = (0.01,0.98) specification and SA initial values. When the slope parameter
is high, the null hypotheses of the test are significantly rejected most of the time but the
evidence against the difference between the distributional properties of the slope param-
eter estimators from IWLS and other methods is not robust. Results for the comparison
of SA and randomly generated initial values are function specific. For IWLS, the null
hypotheses are consistently rejected only for the case (α,β ) = (0.09,0.90) and the slope
parameter is high. For fmincon, they are consistently rejected when the slope parame-
ter is low; and finally for maxLik, they are consistently rejected for all cases. Therefore,
for the comparison of SA and random initial values, the results suggest that there is not
significant evidence supporting the argument that they give significantly different results
with IWLS; but with maxLik the difference is significant while for fmincon, the method
for generating initial values matter only when the slope parameter is low.

For both low and high value specifications of the slope parameter, location parameter
of the IWLS algorithm with the randomly generated initial values always has the smallest
bias and MSE. Overall, the IWLS gives better estimates for this parameter.

Some differences can be observed in the GARCH persistency parameter estimations.
As the β parameter increases, the bias of this parameter estimator increases with all meth-
ods. For the (α,β ) = (0.01,0.98) specification, the bias of β estimator is around -0.25
from fmincon for both slope parameter specifications and initial value generation pro-
cesses. Nevertheless, the bias from the IWLS algorithm gets to 0.055 at most and MSE is
the smallest with the IWLS algorithm.

Overall, the better performance of the IWLS algorithm in estimating the slope param-
eter, location parameter, and the β parameter suggest that this algorithm might provide
better estimation results when the real slope parameter is low, and in all cases it should
not do worse than other methods. On the method of initial value selection, results of dis-
tribution comparison tests suggest that estimates from random initial values and SA initial
values are not significantly different from each other for the slope parameter, which is the
parameter that is shown to be the most different within estimation methods. However,
there are some caveats to be noted on these results. First, results are derived under the
assumption of stationarity for both the mean and the variance equations. If there is signif-
icant evidence against stationarity, comparison results given here may not be reliable and
since the IWLS algorithm is based on these regularity conditions, the algorithm should
not be preferred. Second, the STAR component studied here is a basic model with only
one slope and location parameter that correspond to a two-state model. The performance
of the IWLS algorithm should also be investigated when the number of states increased.
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Third, the current model does not assume any nonlinearities in the variance component;
but there are models such as STAR-STGARCH of Lundbergh et al. (1999) who assume
that there is a smooth transition component in the variance and the transition variable is
the errors of the mean equation.

In order to clarify the implications of the simulation results in practice, the next section
includes forecasting exercises with daily exchange rate and stock index returns. Since
maxLik has a poor performance in the simulations, the empirical exercise does not use
this function.

4. Empirical Application

In this part of the study, two daily series are used for forecasting. The section first de-
scribes the series used, then the model specification is given. Finally, results of the fore-
casting exercises and predictive accuracy tests are reported.

According to the most recent survey of the Bank for International settlements, USD
and AUD is the fourth most traded currency pair globally with a share of 6.8% of the total
$5.3 trillion volume per day (BIS, 2013). The top panel of Figure (5) shows the evolution
of the exchange rate during the period under consideration, 26/12/2007-26/08/2015. USD
appreciates agains AUD during the global financial crisis and returns back to its pre-crisis
level after 2010. It drops to a lower level than the pre-crisis USD/AUD exchange rate.
This depreciation period is common for many currencies against USD until 2013 due
to the Quantitative Easing (QE) policy of the US Federal Reserve (FED). USD starts to
appreciate again in 2013 after by the announcement of end of the QE policy of FED.
The middle panel of the same figure gives the returns of the exchange rates, et , which is
calculated as the following:

et = log(
Et

Et−1
), (29)

where Et denotes the level of the exchange rate at time t.
Exchange rate modelling has been one of the most controversial topics in the inter-

national economics and finance literature since the seminal work of Meese and Rogoff
(1983) empirically showed that exchange rate models are outperformed by the RW model.
Both univariate time series models and models with macroeconomic fundamentals have
been the subject of the discussion. Most of the studies focus on the prediction of exchange
rate levels and at the monthly frequency or lower.11 Arguing modelling of exchange rates

11 Recently, in a detailed literature review, Rossi (2013) shows that the performance of in-sample and
out-of-sample predictive power of exchange rate models depend on the selection of the benchmark
model, exchange rate model considered, selected variables, forecast horizon, and forecast accuracy
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in general is beyond the scope of this study. The purpose of the exercise is merely to
see the forecasting performance of the IWLS algorithm with respect to other estimation
methods and a benchmark model.

The second series to be forecasted by the STAR-GARCH model is FTSE SC daily
returns. FTSE SC consists of companies starting from the 351st to the 619th largest listed
in the FTSE and these companies make around 2% of the market capitalisation. The mo-
tivation in using the index stems from the discussions on the relation between company
size and expected returns of investments. Since the work of Banz (1981) who show small
companies have higher returns than large ones, role of size have been discussed in the lit-
erature and have been relevant for portfolio selection. Recently, Fama and French (2014,
2015) argue the topic in the context of factor models and underline the role of size in asset
pricing. An interesting stylised fact about the FTSE SC is volatility of the series that jus-
tifies the discussions in the literature. During the first years of the global financial crisis
yearly return jumps to 40% in 2009–which was the highest yearly return in the last decade
within FTSE 100, 250, and SC indices–from -61% in 2008. Top panel of Figure (6) shows
the evolution of the stock index for the period between 26/12/2007 and 26/08/2015. The
noted drop in the index in 2008 and rebound in 2009 can be observed in this panel. The
daily return is calculated by Equation (29) and is plotted in the middle panel of Figure (6).

Descriptive statistics of both return series are given in Table (9). Normality hypothesis
of the series is tested by the Jarque-Bera normality test, and the null of normal distribution
is rejected at 1% significance level for both series.

The STAR-GARCH model specification procedure includes several steps and will fol-
low Lundbergh et al. (1999) and Li and Li (1996) who use similar models. The modelling
cycle starts with lag selection. In the second step, a linear model with the selected lag
is fitted and the errors are tested for remaining autocorrelation with the ARCH-LM test.
In the final step, STAR-type nonlinearity is tested and appropriate transition variable is
selected, if any.

Typical financial data series include many data points and for these series, traditional
lag selection criteria tend to give either high or no lag value at all. Rech et al. (2001)
propose a lag selection procedure to solve this problem for series that might have nonlin-
earities. The method calculates traditional information criteria after running regressions
with interactions of the considered variables for a selected polynomial degree. It is shown
that as the degree of the polynomial increases, the reliability of the selection procedure
increases. Rech et al. (2001) recommend running the regressions for several lag values,
calculate SBIC or AIC and then select the appropriate lag. For the lag selection of re-
turn series, the maximum lag length and maximum polynomial level are set to 10 and 4

test used.
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respectively. SBIC is used for lag selection. For the USD/AUD series, with polynomial
levels 1 to 3, the lag is selected to be 3, but at the highest polynomial level, the optimum
lag length is selected to be 2. Based on the theoretical results given in Rech et al. (2001),
lag length of 2 is used in the study. The same selection procedure gives a lag length of 2
for the FTSE SC return series.

AR(2) model is fitted to the series and error terms from both regressions are tested for
autocorrelation with the ARCH-LM test. The maximum lag number for the test is set to
8. According to the results given in Table (10), the null hypothesis of no autocorrelation
is rejected at 1% significance level at any given lag for both error terms.

Then, the STAR-type nonlinearity test of Teräsvirta (1994) has been used to decide
on the nonlinearity in the data and corresponding delay variable. The results of the tests
are given at the bottom of Table (9) for lag values 1 and 2. Similar results are received
from tests with both series. The p-values show that linearity is rejected for both lags and
it is more significant for lag 2; so the second lag is chosen to be the transition variable for
both USD/AUD and FTSE SC returns.

Considering the test results, a STAR-GARCH(2;1,1) model with d = 2 is fitted to the
series. Estimation results with the full samples are given in Table (11) for USD/AUD
and in Table (12) for FTSE SC. According to full sample estimation results, estimate for
the slope parameter is the highest with the IWLS algorithm that is started with SA initial
values for both series. Another observation on the results is that ARCH effect is higher in
FTSE SC series.

For the forecasting exercise, the length of the initial sample is chosen to be 1500 and
500 1-day ahead forecasts are calculated. Mean forecasting error (MFE), mean square
forecasting error (MSFE), mean absolute forecasting error (MAFE), Theil’s U and Pe-
saran and Timmermann (1992) (PT) test of directional forecasting for all models and
methods used in the exercise are given in Tables (13) and (14) for USD/AUD and FTSE
SC respectively. RW with a drift is used as the benchmark model for comparisons and re-
sults of the models for MFE, MSFE, and MAFE are given with respect to the performance
of the RW. Theil’s U has been calculated as follows:

Theil’s U =

√
1
K ∑

K
k=1(eL+k− êL+k)2√

1
K ∑

K
k=1(eL+k)2 +

√
1
K ∑

K
k=1(êL+k)2

(30)

where L is the size of the initial sample, k = 1, ..,K denotes the number of forecasts and
K is the total number of forecasts (i.e. K +L = T ), êL+k is the forecast value of eL+k at
time L+ k. The statistic gives a measure of the forecast performance corrected by the
real values. The statistic takes values between 0 and 1 and as the performance of a model
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gets better, the statistic approaches to 0. Finally, PT is a nonparametric test statistic that
measures the directional forecasting ability of a model. The null hypothesis of the PT
test is that the model at hand is not able to forecast the direction of changes and the test
statistic has a standard normal distribution.

Forecasts statistics for the conditional mean of USD/AUD show that the best per-
forming method is the IWLS algorithm with random initial values. Theil’s U statistics
show that nonlinear the STAR-GARCH model performs better than the linear models ir-
respective of the method and initial value. The best performance is from fmincon function
with SA initial values. However, IWLS algorithm with random initial values is the only
method that beats the RW model for every metric. MSFE and MAFE of the method is
slightly below the values from RW while every other method does worse than the bench-
mark model. For the PT, IWLS with random initial values has the highest value but it is
not significantly able to predict the direction of changes in the data.

In case of FTSE SC conditional mean forecasts, the IWLS algorithm with random ini-
tial values again gives the best performance based on MSFE; but AR(2)-GARCH model
also outperforms the RW model. Based on the Theil’s U, IWLS with random initial val-
ues performs better than the AR(2)-GARCH model. For the directional forecasting, the
models cannot give statistically significant results in this case either.

The significance of the difference between the RW and other models are further tested
with the predictive ability tests. The first test to be used in the analysis is the Diebold
et al. (1995) (DM) test of equal predictive accuracy. The test statistic of the DM test has a
standard normal distribution. However, in cases where two nested models are compared
with the test, it is shown that asymptotically the test statistic does not have a standard
normal distribution and rejects null too often (McCracken, 2007). For comparison of
forecasts from nested models, Clark and West (2007) (CW) propose a test that uses and
"adjusted" MSFE term which is the sample average of the squares of the differences
between two model forecasts. CW is the second test to compare predictive ability of
forecasts.

As shown by Rossi (2013) for the case of exchange rates, results on the forecast per-
formance of models might change depending the predictive ability tests used. In order
to see the robustness of the DM and CW test results, predictive ability of the models are
tested by the encompassing and mean squared error based test statistics.12 These tests are
ENC_t (Harvey et al., 1998), ENC_F (Clark and McCracken, 2001), MSE_t, and MSE_F
(McCracken, 2007). Let ε̂0,t+1 denote the 1-day ahead forecast error from the benchmark
model (i.e. RW) and ε̂1,t+1 denote the forecast error from the model to be compared. De-

12 Corradi and Swanson (2002) propose a nonparametric test for comparison of from nonlinear models
and linear models. The test is also recommended by Teräsvirta (2006) for STAR-type models. This
test could also be used in checking the predictive accuracy of the models
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fine d̂t+1 = ε̂2
0,t+1− ε̂2

1,t+1, ĉt+h = ε̂0,t+1(ε̂0,t+1− ε̂1,t+h), and σ̂2
1 =(K−1+1)∑

T−1
t=L ε̂2

1,t+1.
Then the test statistics can be written as the following:

ENC_t =
K−1/2

∑
T−1
t=L ĉt+1

Ŝ1/2
cc

, (31)

ENC_F =
∑

T−1
t=L ĉt+1

σ̂2
1

, (32)

MSE_t =
K−1/2

∑
T−1
t=L d̂t+1

Ŝ1/2
dd

, (33)

MSE_F =
∑

T−1
t=L d̂t+1

σ̂2
1

, (34)

where Ŝcc and Ŝdd denote Newey and West (1987) heteroskedasticity and autocorrelation
consistent (HAC) variance for ĉt+h and d̂t+h respectively. In cases where the assumptions
of the test statistics are violated, Clark and McCracken (2010) propose to use a bootstrap-
ping method in which "artificial" samples are used to calculate the test statistics. In order
to create the artificial samples, first the benchmark model is estimated and the estimates
are stored, then the forecast errors of the bigger model is fitted with an moving average
model and the estimates of the moving average model is used to create artificial forecast
errors by changing the moving average model with draws form standard normal distribu-
tion. Finally, the artificial forecast errors are added to the fitted values of the benchmark
model to create the artificial samples. In this study, this procedure is repeated for 10,000
times to calculate the test statistics and the p-values for each is calculated.

Test statistics for the predictive ability test are given in Tables (15) and (16); and ac-
companying bootstrapped p-values for ENC_t, ENC_F, MSE_t, and MSE_F test statistics
are given in Tables (20) and (21). For the case of the exchange rate series, DM test statis-
tics suggest that fmincon forecasts with SA initial values are significantly different from
the RW forecasts. The negative values of these test statistics imply that the performance
of the RW model is better than the performance of these models. On the other hand, the
DM test statistic is also negative for IWLS with SA initial values but not significant; and
even though the DM test is not significant for the IWLS with random initial values, other
test statistics suggest that IWLS forecasts with random initial values are significantly bet-
ter than the RW forecasts. The significance level is lower with the ENC_F test which is,
according to Busetti and Marcucci (2013), the most powerful of the given tests used here.

For the case of stock index series; according to the CW test, AR(2)-GARCH and
IWLS with random initial values perform significantly better than the RW. However, in
this case neither of the performances is robust to different tests. Performance of IWLS
with random initial values is significantly better according to the MSE_t and MSE_F tests
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while the performance of the AR(2)-GARCH is significantly better according to ENC_t
and MSE_t test statistics. ENC_F test does not report any significant result in this case.

Forecasts tests statistics for the variance component of the models are given in Tables
(17) and (18) and predictive accuracy test statistics are given in Table (19). We do not
have a nested model issue for the volatility forecasts; so only DM test is used for compar-
ison of accuracy. In both cases, STAR-GARCH models cannot outperform the benchmark
model based on the MSFE statistic and on the contrary to the conditional mean forecasts,
results for the Theil’s U statistics are mixed. DM test statistics suggest that in the case
of USD/AUD, IWLS with SA initial values is the only method that does not significantly
perform worse than the benchmark model; and in the case of FTSE SC, the only method
that does not significantly perform worse than the benchmark is IWLS with random ini-
tial values. fmincon with both SA and random initial values perform significantly worse
than the benchmark in both cases. Differences in the IWLS and fmincon suggest that, as
shown in the simulation studies, estimation method has practical implications also for the
conditional variance component.

Empirical studies show that the IWLS algorithm with random initial values give better
forecasts than the benchmark model and more relevant to the argumentation of this study,
it gives better forecast results than the fmincon function.

5. Conclusions

This study considers application of the IWLS algorithm to STAR-GARCH models in
order to find a solution to initial value selection and slope parameter estimation in STAR-
type models. Performance of the algorithm is compared with other methods in a simula-
tion study for different values of slope parameter, GARCH persistency parameters, and
initial value selection procedure. Real data application of the algorithm is shown in an
empirical exercise with USD/AUD daily exchange rate and FTSE SC stock index returns.

Simulation studies show the cases when IWLS algorithm performs better than consid-
ered maximum likelihood estimation functions based on bias and MSE of the parameter
estimators. MSE and bias of the slope parameter estimator are shown to be the lowest
with the IWLS algorithm with randomly generated initial values when the real value of
the slope parameter is low. When the real value of the slope parameter is high, MSE and
bias of the slope parameter turns out to be high with all methods; thus, the IWLS algo-
rithm does not deliver desired results in this case. In addition to that, for the GARCH
parameter estimators, the IWLS algorithm give better results compared to other methods
as the real value of the ARCH decreases. Practical implications of these results are shown
with two empirical cases in which the IWLS algorithm significantly performs better than

21



the benchmark model and fmincon function.
Another result received from the simulation study is that for the slope parameter es-

timator, initial value selection method delivers significantly different results for fmincon

and maxLik but not for the IWLS algorithm. However, in the forecasting exercises, it
is observed that the IWLS algorithm with randomly generated initial values outperforms
IWLS with SA initial values, which might be taken as evidence for the use of random
initial values with IWLS as it is argued in the literature.

The model used in this study is a basic one and there are some regularity conditions.
Further research is needed to see the performance of the algorithm with more complex
models such as STAR model with more than one location parameters or models that also
include nonlinearities in the conditional variance. The algorithm can easily be extended
to estimate such kind of models as long as their first order derivatives are provided.

In conclusion, the simulation study and empirical applications show that the IWLS
algorithm can be chosen as an estimation method for STAR-type models with conditional
variance by concerning less about initial value selection.
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Table 1: Monte Carlo simulation results ((α,β ) = (0.09,0.90) and η = ln5)

SA random
IWLS fmincon maxLik IWLS fmincon maxLik

φ
(1)
0 mean 0.030 0.025 0.150 0.022 0.025 0.130

std. 0.085 0.064 0.192 0.074 0.066 0.271
median 0.007 0.009 0.081 0.005 0.010 0.034
bias 0.030 0.025 0.150 0.022 0.025 0.130
MSE 0.008 0.005 0.059 0.006 0.005 0.090

φ
(1)
1 mean -0.305 -0.311 -0.159 -0.318 -0.311 -0.153

std. 0.121 0.098 0.233 0.104 0.095 0.241
median -0.331 -0.327 -0.208 -0.337 -0.324 -0.221
bias 0.045 0.039 0.191 0.032 0.039 0.197
MSE 0.017 0.011 0.091 0.012 0.011 0.097

φ
(1)
2 mean 0.533 0.525 0.503 0.530 0.518 0.391

std. 0.071 0.061 0.183 0.066 0.064 0.266
median 0.522 0.519 0.489 0.519 0.514 0.429
bias -0.017 -0.025 -0.047 -0.020 -0.032 -0.159
MSE 0.005 0.004 0.036 0.005 0.005 0.096

φ
(2)
0 mean -0.015 -0.003 -0.199 -0.008 -0.001 -0.135

std. 0.139 0.117 0.290 0.120 0.122 0.401
median 0.002 0.002 -0.143 0.002 0.004 -0.105
bias -0.035 -0.023 -0.219 -0.028 -0.021 -0.155
MSE 0.020 0.014 0.132 0.015 0.015 0.185

φ
(2)
1 mean 0.162 0.159 0.093 0.172 0.156 0.032

std. 0.113 0.101 0.277 0.100 0.101 0.351
median 0.176 0.171 0.101 0.185 0.170 0.032
bias -0.038 -0.041 -0.107 -0.028 -0.044 -0.168
MSE 0.014 0.012 0.088 0.011 0.012 0.152

φ
(2)
2 mean -0.228 -0.219 -0.181 -0.222 -0.214 -0.116

std. 0.110 0.094 0.275 0.104 0.101 0.395
median -0.213 -0.207 -0.174 -0.209 -0.202 -0.140
bias 0.022 0.031 0.069 0.028 0.036 0.134
MSE 0.013 0.010 0.081 0.012 0.012 0.174

η mean 1.527 1.863 1.397 1.613 2.038 2.546
std. 1.415 1.377 1.405 1.355 1.435 1.198
median 1.163 1.401 1.049 1.268 1.617 2.532
bias -0.082 0.254 -0.213 0.003 0.428 0.937
MSE 2.008 1.958 2.016 1.835 2.242 2.310

c mean 0.030 0.039 -0.019 0.029 0.067 0.118
std. 0.197 0.216 0.439 0.177 0.270 0.717
median 0.015 0.033 -0.071 0.027 0.052 0.125
bias 0.010 0.019 -0.039 0.009 0.047 0.098
MSE 0.039 0.047 0.194 0.031 0.075 0.523

ω mean 0.002 0.001 0.005 0.002 0.001 0.015
std. 0.008 0.001 0.011 0.005 0.001 0.039
median 0.001 0.001 0.002 0.001 0.001 0.003
bias 0.001 0.000 0.004 0.001 0.000 0.014
MSE 0.000 0.000 0.000 0.000 0.000 0.002

α mean 0.096 0.095 0.133 0.096 0.095 0.174
std. 0.033 0.012 0.071 0.029 0.012 0.121
median 0.092 0.095 0.111 0.092 0.095 0.132
bias 0.006 0.005 0.043 0.006 0.005 0.084
MSE 0.001 0.000 0.007 0.001 0.000 0.022

β mean 0.892 0.888 0.806 0.892 0.888 0.678
std. 0.036 0.015 0.179 0.029 0.015 0.288
median 0.896 0.888 0.874 0.896 0.889 0.825
bias -0.008 -0.012 -0.094 -0.008 -0.012 -0.222
MSE 0.001 0.000 0.041 0.001 0.000 0.132
Aver. iterations 15.763 57.056 325.347 16.887 67.076 513.803

Monte Carlo simulation results for the STAR-GARCH model with (α,β ) = (0.09,0.90) and η = ln5. For
each parameter; the mean, standard deviation, median, bias and MSE of estimates are given. Sample size is
2000 and the number of replications is 1000.
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Table 2: Monte Carlo simulation results ((α,β ) = (0.01,0.98) and η = ln5)

SA random
IWLS fmincon maxLik IWLS fmincon maxLik

φ
(1)
0 mean 0.032 0.024 0.133 0.025 0.022 0.143

std. 0.097 0.064 0.177 0.083 0.061 0.269
median 0.007 0.009 0.060 0.003 0.009 0.045
bias 0.032 0.024 0.133 0.025 0.022 0.143
MSE 0.010 0.005 0.049 0.007 0.004 0.093

φ
(1)
1 mean -0.311 -0.319 -0.191 -0.320 -0.322 -0.162

std. 0.115 0.094 0.211 0.111 0.092 0.241
median -0.337 -0.336 -0.244 -0.341 -0.336 -0.239
bias 0.039 0.031 0.159 0.030 0.028 0.188
MSE 0.015 0.010 0.070 0.013 0.009 0.093

φ
(1)
2 mean 0.536 0.524 0.503 0.533 0.520 0.402

std. 0.068 0.057 0.148 0.066 0.058 0.240
median 0.525 0.517 0.488 0.522 0.513 0.434
bias -0.014 -0.026 -0.047 -0.017 -0.030 -0.148
MSE 0.005 0.004 0.024 0.005 0.004 0.079

φ
(2)
0 mean -0.018 -0.003 -0.176 -0.011 -0.001 -0.133

std. 0.148 0.116 0.267 0.132 0.110 0.378
median 0.001 0.002 -0.138 0.004 0.001 -0.114
bias -0.038 -0.023 -0.196 -0.031 -0.021 -0.153
MSE 0.023 0.014 0.109 0.018 0.013 0.166

φ
(2)
1 mean 0.169 0.169 0.122 0.178 0.173 0.050

std. 0.109 0.098 0.261 0.104 0.098 0.342
median 0.183 0.180 0.139 0.184 0.185 0.068
bias -0.031 -0.031 -0.078 -0.022 -0.027 -0.150
MSE 0.013 0.010 0.074 0.011 0.010 0.139

φ
(2)
2 mean -0.233 -0.220 -0.184 -0.228 -0.213 -0.078

std. 0.099 0.086 0.218 0.095 0.088 0.341
median -0.219 -0.207 -0.173 -0.215 -0.198 -0.100
bias 0.017 0.030 0.066 0.022 0.037 0.172
MSE 0.010 0.008 0.052 0.010 0.009 0.146

η mean 1.478 1.951 1.574 1.591 2.191 2.624
std. 1.332 1.371 1.390 1.367 1.415 1.155
median 1.117 1.516 1.324 1.213 1.947 2.586
bias -0.131 0.342 -0.036 -0.018 0.581 1.015
MSE 1.790 1.995 1.931 1.866 2.338 2.363

c mean 0.030 0.059 0.043 0.031 0.065 0.097
std. 0.204 0.207 0.428 0.185 0.221 0.662
median 0.025 0.048 0.046 0.029 0.056 0.106
bias 0.010 0.039 0.023 0.011 0.045 0.077
MSE 0.042 0.044 0.184 0.034 0.051 0.443

ω mean 0.006 0.027 0.053 0.005 0.027 0.050
std. 0.016 0.032 0.034 0.015 0.032 0.034
median 0.001 0.004 0.058 0.001 0.003 0.052
bias 0.005 0.026 0.052 0.004 0.026 0.049
MSE 0.000 0.002 0.004 0.000 0.002 0.004

α mean 0.023 0.034 0.061 0.024 0.033 0.140
std. 0.021 0.013 0.061 0.033 0.013 0.145
median 0.021 0.032 0.046 0.021 0.032 0.091
bias 0.013 0.024 0.051 0.014 0.023 0.130
MSE 0.001 0.001 0.006 0.001 0.001 0.038

β mean 0.925 0.702 0.457 0.936 0.704 0.451
std. 0.143 0.313 0.314 0.117 0.315 0.318
median 0.965 0.931 0.407 0.965 0.932 0.416
bias -0.055 -0.278 -0.523 -0.044 -0.276 -0.529
MSE 0.024 0.175 0.372 0.016 0.175 0.380
Aver. iterations 24.642 58.851 250.351 27.381 71.213 418.890

Monte Carlo simulation results for the STAR-GARCH model with (α,β ) = (0.01,0.98) and η = ln5. For
each parameter; the mean, standard deviation, median, bias and MSE of estimates are given. Sample size is
2000 and the number of replications is 1000.
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Table 3: Monte Carlo simulation results ((α,β ) = (0.09,0.90) and η = ln100)

SA random
IWLS fmincon maxLik IWLS fmincon maxLik

φ
(1)
0 mean 0.007 0.005 0.145 0.006 0.008 0.119

std. 0.037 0.022 0.173 0.030 0.034 0.278
median 0.003 0.002 0.079 0.003 0.003 0.044
bias 0.007 0.005 0.145 0.006 0.008 0.119
MSE 0.001 0.001 0.051 0.001 0.001 0.091

φ
(1)
1 mean -0.333 -0.337 -0.161 -0.335 -0.334 -0.163

std. 0.074 0.061 0.233 0.070 0.063 0.239
median -0.343 -0.342 -0.212 -0.343 -0.339 -0.223
bias 0.017 0.013 0.189 0.015 0.016 0.187
MSE 0.006 0.004 0.090 0.005 0.004 0.092

φ
(1)
2 mean 0.552 0.550 0.538 0.553 0.544 0.409

std. 0.048 0.038 0.176 0.043 0.050 0.274
median 0.553 0.551 0.527 0.553 0.549 0.436
bias 0.002 0.000 -0.012 0.003 -0.006 -0.141
MSE 0.002 0.001 0.031 0.002 0.003 0.095

φ
(2)
0 mean 0.016 0.020 -0.183 0.017 0.019 -0.099

std. 0.060 0.039 0.278 0.047 0.055 0.412
median 0.019 0.020 -0.131 0.019 0.020 -0.072
bias -0.004 0.000 -0.203 -0.003 -0.001 -0.119
MSE 0.004 0.001 0.118 0.002 0.003 0.184

φ
(2)
1 mean 0.174 0.177 0.085 0.178 0.172 0.023

std. 0.082 0.070 0.274 0.073 0.078 0.339
median 0.177 0.180 0.092 0.178 0.177 0.017
bias -0.026 -0.023 -0.115 -0.022 -0.028 -0.177
MSE 0.007 0.005 0.088 0.006 0.007 0.146

φ
(2)
2 mean -0.265 -0.260 -0.253 -0.265 -0.254 -0.141

std. 0.073 0.054 0.258 0.061 0.067 0.395
median -0.261 -0.259 -0.248 -0.261 -0.256 -0.167
bias -0.015 -0.010 -0.003 -0.015 -0.004 0.109
MSE 0.006 0.003 0.067 0.004 0.005 0.168

η mean 2.581 3.431 1.360 2.785 3.430 2.550
std. 1.363 1.075 1.425 1.198 1.053 1.133
median 2.526 3.572 0.975 2.720 3.553 2.561
bias -2.024 -1.174 -3.245 -1.820 -1.175 -2.055
MSE 5.954 2.534 12.559 4.747 2.488 5.505

c mean 0.026 0.028 0.012 0.023 0.055 0.094
std. 0.098 0.085 0.422 0.061 0.209 0.711
median 0.021 0.022 -0.019 0.024 0.023 0.084
bias 0.006 0.008 -0.008 0.003 0.035 0.074
MSE 0.010 0.007 0.178 0.004 0.045 0.511

ω mean 0.001 0.001 0.005 0.001 0.001 0.014
std. 0.005 0.001 0.011 0.004 0.001 0.037
median 0.001 0.001 0.002 0.001 0.001 0.003
bias 0.000 0.000 0.004 0.000 0.000 0.013
MSE 0.000 0.000 0.000 0.000 0.000 0.002

α mean 0.092 0.096 0.132 0.092 0.096 0.174
std. 0.022 0.012 0.063 0.015 0.012 0.120
median 0.091 0.095 0.110 0.091 0.095 0.134
bias 0.002 0.006 0.042 0.002 0.006 0.084
MSE 0.001 0.000 0.006 0.000 0.000 0.021

β mean 0.895 0.887 0.806 0.895 0.888 0.684
std. 0.024 0.015 0.176 0.016 0.015 0.281
median 0.897 0.888 0.873 0.896 0.888 0.828
bias -0.005 -0.013 -0.094 -0.005 -0.012 -0.216
MSE 0.001 0.000 0.040 0.000 0.000 0.125
Aver. iterations 13.077 52.991 331.108 10.040 62.154 517.008

Monte Carlo simulation results for the STAR-GARCH model with (α,β ) = (0.09,0.90) and η = ln100.
For each parameter; the mean, standard deviation, median, bias and MSE of estimates are given. Sample
size is 2000 and the number of replications is 1000.
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Table 4: Monte Carlo simulation results ((α,β ) = (0.01,0.98) and η = ln100)

SA random
IWLS fmincon maxLik IWLS fmincon maxLik

φ
(1)
0 mean 0.010 0.009 0.148 0.008 0.009 0.138

std. 0.036 0.027 0.172 0.033 0.029 0.259
median 0.006 0.006 0.076 0.004 0.005 0.055
bias 0.010 0.009 0.148 0.008 0.009 0.138
MSE 0.001 0.001 0.051 0.001 0.001 0.086

φ
(1)
1 mean -0.330 -0.331 -0.167 -0.333 -0.332 -0.167

std. 0.066 0.058 0.217 0.064 0.057 0.252
median -0.337 -0.336 -0.229 -0.339 -0.336 -0.240
bias 0.020 0.019 0.183 0.017 0.018 0.183
MSE 0.005 0.004 0.080 0.004 0.004 0.097

φ
(1)
2 mean 0.553 0.551 0.540 0.554 0.550 0.417

std. 0.043 0.038 0.143 0.041 0.039 0.242
median 0.552 0.552 0.540 0.554 0.552 0.446
bias 0.003 0.001 -0.010 0.004 -0.000 -0.133
MSE 0.002 0.001 0.021 0.002 0.002 0.076

φ
(2)
0 mean 0.012 0.013 -0.180 0.013 0.014 -0.119

std. 0.058 0.041 0.271 0.055 0.044 0.366
median 0.015 0.015 -0.134 0.016 0.015 -0.084
bias -0.008 -0.007 -0.200 -0.007 -0.006 -0.139
MSE 0.003 0.002 0.114 0.003 0.002 0.153

φ
(2)
1 mean 0.176 0.176 0.087 0.179 0.176 0.033

std. 0.075 0.070 0.238 0.074 0.071 0.332
median 0.175 0.176 0.104 0.180 0.177 0.050
bias -0.024 -0.024 -0.113 -0.021 -0.024 -0.167
MSE 0.006 0.005 0.069 0.006 0.006 0.138

φ
(2)
2 mean -0.265 -0.262 -0.247 -0.264 -0.259 -0.118

std. 0.066 0.055 0.217 0.062 0.055 0.345
median -0.261 -0.260 -0.251 -0.263 -0.259 -0.160
bias -0.015 -0.012 0.003 -0.014 -0.009 0.132
MSE 0.005 0.003 0.047 0.004 0.003 0.137

η mean 2.623 3.305 1.472 2.674 3.353 2.659
std. 1.383 1.144 1.330 1.312 1.124 1.158
median 2.568 3.457 1.165 2.593 3.495 2.649
bias -1.983 -1.300 -3.134 -1.931 -1.253 -1.946
MSE 5.841 2.998 11.587 5.451 2.831 5.126

c mean 0.024 0.029 0.032 0.021 0.032 0.109
std. 0.094 0.094 0.419 0.092 0.126 0.646
median 0.021 0.022 0.003 0.022 0.022 0.066
bias 0.004 0.009 0.012 0.001 0.012 0.089
MSE 0.009 0.009 0.176 0.008 0.016 0.425

ω mean 0.005 0.027 0.053 0.004 0.026 0.053
std. 0.014 0.032 0.034 0.014 0.032 0.039
median 0.001 0.004 0.057 0.001 0.004 0.053
bias 0.004 0.026 0.052 0.003 0.025 0.052
MSE 0.000 0.002 0.004 0.000 0.002 0.004

α mean 0.022 0.034 0.058 0.022 0.033 0.141
std. 0.013 0.013 0.051 0.014 0.013 0.148
median 0.021 0.032 0.045 0.020 0.032 0.089
bias 0.012 0.024 0.048 0.012 0.023 0.131
MSE 0.000 0.001 0.005 0.000 0.001 0.039

β mean 0.928 0.705 0.459 0.941 0.710 0.440
std. 0.140 0.313 0.307 0.108 0.312 0.324
median 0.965 0.931 0.416 0.965 0.932 0.385
bias -0.052 -0.275 -0.521 -0.039 -0.270 -0.540
MSE 0.022 0.173 0.366 0.013 0.170 0.397
Aver. iterations 23.220 55.510 265.642 21.220 67.647 416.994

Monte Carlo simulation results for the STAR-GARCH model with (α,β ) = (0.01,0.98) and η = ln100.
For each parameter; the mean, standard deviation, median, bias and MSE of estimates are given. Sample
size is 2000 and the number of replications is 1000.
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Table 5: Distribution comparisons ((α,β ) = (0.09,0.90) and η = ln5)

KS AB RS AZ
IWLS random vs.
fmincon 0.000 0.000 0.000 0.000
maxLik 0.000 0.000 0.000 0.000
IWLS SA vs.
fmincon 0.000 0.000 0.000 0.000
maxLik 0.000 0.000 0.002 0.000
random vs. SA
IWLS 0.075 0.360 0.023 0.077
fmincon 0.012 0.000 0.010 0.107
maxLik 0.000 0.002 0.000 0.000

P-values of the distribution comparison tests for the STAR-GARCH model with (α,β ) = (0.09,0.90) and
η = ln5. The columns give results for two-sample Kolmogorov-Smirnov test (KS), Ansari-Bradley test
(AB), Wilcoxon rank sum test (RS), and Aslan-Zech test (AZ). Null hypotheses of the tests are given in the
text.

Table 6: Distribution comparisons ((α,β ) = (0.01,0.98) and η = ln5)

KS AB RS AZ
IWLS random vs.
fmincon 0.000 0.000 0.000 0.000
maxLik 0.000 0.000 0.000 0.000
IWLS SA vs.
fmincon 0.000 0.000 0.000 0.000
maxLik 0.000 0.000 0.491 0.000
random vs. SA
IWLS 0.075 0.455 0.026 0.512
fmincon 0.001 0.000 0.000 0.001
maxLik 0.000 0.000 0.000 0.000

P-values of the distribution comparison tests for the STAR-GARCH model with (α,β ) = (0.01,0.98) and
η = ln5. The columns give results for two-sample Kolmogorov-Smirnov test (KS), Ansari-Bradley test
(AB), Wilcoxon rank sum test (RS), and Aslan-Zech test (AZ). Null hypotheses of the tests are given in the
text.
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Table 7: Distribution comparisons ((α,β ) = (0.09,0.90) and η = ln100)

KS AB RS AZ
IWLS random vs.
fmincon 0.000 0.247 0.000 0.000
maxLik 0.014 0.686 0.000 0.004
IWLS SA vs.
fmincon 0.000 0.018 0.000 0.000
maxLik 0.000 0.116 0.000 0.000
random vs. SA
IWLS 0.001 0.090 0.000 0.001
fmincon 0.999 0.771 0.850 1.000
maxLik 0.000 0.000 0.000 0.000

P-values of the distribution comparison tests for the STAR-GARCH model with (α,β ) = (0.09,0.90) and
η = ln100. The columns give results for two-sample Kolmogorov-Smirnov test (KS), Ansari-Bradley test
(AB), Wilcoxon rank sum test (RS), and Aslan-Zech test (AZ). Null hypotheses of the tests are given in the
text.

Table 8: Distribution comparisons ((α,β ) = (0.01,0.98) and η = ln100)

KS AB RS AZ
IWLS random vs.
fmincon 0.000 0.311 0.000 0.000
maxLik 0.105 0.284 0.897 0.015
IWLS SA vs.
fmincon 0.000 0.017 0.000 0.000
maxLik 0.000 0.760 0.000 0.000
random vs. SA
IWLS 0.459 0.148 0.405 0.478
fmincon 0.855 0.954 0.403 1.000
maxLik 0.000 0.010 0.000 0.000

P-values of the distribution comparison tests for the STAR-GARCH model with (α,β ) = (0.01,0.98) and
η = ln100. The columns give results for two-sample Kolmogorov-Smirnov test (KS), Ansari-Bradley test
(AB), Wilcoxon rank sum test (RS), and Aslan-Zech test (AZ) respectively. Null hypotheses of the tests are
given in the text.
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Table 9: Descriptive statistics

Min. Max. Mean Var. Skewness Kurtosis Normality
USD/AUD -0.0670 0.0883 0.0001 0.0001 0.8623 15.5294 0.0001
FTSE SC -0.0615 0.0377 0.0001 0.0001 -0.8860 9.1194 0.0001

LM-test for nonlinearity of STAR type
d=1 d=2

USD/AUD 1.62×10−7 9.78×10−13∗

FTSE SC 0.097 8.23×10−6∗

Descriptive statistics for the daily USD/AUD returns. The column "Normality" gives the p-value for the
Jarque-Bera normality test.

Table 10: ARCH-LM test

USD/AUD FTSE SP
statistic p-value statistic p-value

53.05 3.24×10−13 114.58 0
358.01 0 151.59 0
443.75 0 203.43 0
473.27 0 285.53 0
478.87 0 305.25 0
479.16 0 331.36 0
480.12 0 345.79 0
484.00 0 356.31 0

ARCH-LM test results for the AR(2) model errors
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Table 11: Estimation results-USD/AUD

RW AR(2) IWLS (SA) fmincon (SA) IWLS (R) fmincon (R)

φ
(1)
0 4.83×10−5 4.99×10−5 0.0001 0.0001 0.0005 4.79×10−5

(0.0001) (0.0012) (7.82×10−6) (4.51×10−5) (1.07×10−5) (4.93×10−6)
φ
(1)
1 -0.0224 -0.0103 0.0708 -0.0122 -0.0196

(0.6679) (0.0007) (0.0015) (0.0006) (0.0005)
φ
(1)
2 0.0001 -0.0281 0.0091 -0.0022 0.0089

(0.7879 (0.0009) (0.0021) (0.0011) (0.0006)
φ
(2)
0 -6.88×10−5 -6.83×10−5 -0.0014 -0.0315

(1.33×10−5) (4.78×10−5) (2.58×10−5) (0.0002)
φ
(2)
1 -0.0329 -0.1027 -0.0117 -0.1576

(0.001) (0.0018) (0.0011) (0.003)
φ
(2)
2 0.1017 -0.0062 0.0947 0.5421

(0.0013) (0.0021) (0.0016) (0.004)
η 5.936 1.3532 2.042 1.7535

(1.5383) (0.067) (0.057) (0.0275)
c 0.0016 -0.0107 0.0041 0.0304

(4.64×10−5) (0.0002) (9.24×10−5) (6.50×10−5)
ω 3.91×10−7 3.60×10−7 3.81×10−7 1.10×10−6 3.78×10−7 1.02×10−6

(1.24×10−5) (1.91×10−5) (1.05×10−7) (1.57×10−7) (1.04×10−7) (1.53×10−7)
α 0.0768 0.0766 0.0756 0.0877 0.0741 0.0854

(0.3889) (0.5447) (0.0012) (0.0016) (0.0012) (0.0018)
β 0.9214 0.9221 0.9224 0.8982 0.9234 0.9018

(0.0272) (0.7891) (0.0013) (0.0021) (0.0013) (0.0022)
N. Ite. 17 24 7 28 10 57
Estimation results for the full sample of USD/AUD returns. Standard deviations are in the parentheses.
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Table 12: Estimation results-FTSE SC

RW AR(2) IWLS (SA) fmincon (SA) IWLS (R) fmincon (R)

φ
(1)
0 0.0005 0.0004 1.39×10−4 -7.69×10−4 -1.67×10−3 -0.009

(0.0001) (0.0001) (9.95×10−6) (3.07×10−5) (4.44×10−5) (0.0001)
φ
(1)
1 0.097 0.1469 0.1995 0.1987 0.3807

(0.0253) (0.0007) (0.0011) (1.13×10−3) (0.0018)
φ
(1)
2 0.0642 0.0945 -4.59×10−5 -2.85×10−2 -0.2884

(0.0267) (0.001) (0.0017) (0.0021) (0.0034)
φ
(2)
0 5.05×10−4 1.67×10−3 2.50×10−3 0.0098

(1.44×10−5) (3.89×10−5) (5.74×10−5) (0.0001)
φ
(2)
1 -0.0341 -0.1496 -0.102 -0.2895

(0.0011) (0.0016) (0.0016) (0.0019)
φ
(2)
2 -0.1137 -0.0121 -0.0008 0.3485

(0.0016) (0.0019) (0.0023) (0.0034)
η 3.2368 1.2127 0.9956 2.2101

(0.1262) (0.025) (0.025) (0.0292)
c 1.09×10−4 -3.89×10−3 -4.39×10−3 -1.81×10−2

(3.97×10−5) (7.53×10−5) (9.67×10−5) (3.56×10−5)
ω 1.22×10−6 1.24×10−6 1.26×10−6 1.54×10−6 1.25×10−6 1.53×10−6

(3.97×10−7) (3.54×10−7) (1.88×10−7) (2.07×10−7) (1.88×10−7) (2.07×10−7)
α 0.1302 0.1309 0.1327 0.1388 0.1318 0.1369

(0.0198) (0.0199) (0.0035) (0.0038) (0.0036) (0.0038)
β 0.8556 0.8541 0.8518 0.8395 0.8529 0.8414

(0.0224) (0.0217) (0.0043) (0.0048) (0.0043) (0.0048)
N. Ite. 14 18 23 41 87 72

Estimation results for the full sample of FTSE Small Cap index returns. Standard deviations are in the
parentheses.

Table 13: Forecasts statistics-USD/AUD (conditional mean)

MFE MSFE MAFE Theil’s U PT
RW 0.0006 3.72×10−5 0.0045 0.9839 -0.4866
AR(2) 1.0002 1.0000 1.0002 0.9844 -0.2145
IWLS (SA) 1.1344 1.0259 1.0302 0.8618 -0.6627
fmincon (SA) 1.6050 1.6258 1.1239 0.7289 0.0819
IWLS (random) 0.8637 0.9911 0.9964 0.9025 1.2945
fmincon (random) 1.0419 1.0206 1.0076 0.9171 -1.2478

Forecasts statistics for the 500 1-day ahead forecasts with the daily USD/AUD returns. The columns respec-
tively give mean forecasting error (MFE), mean square forecasting error (MSFE), mean absolute forecasting
error (MAFE), Theil’s U and Pesaran and Timmermann (1992) (PT) test statistic of directional forecasting.
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Table 14: Forecasts statistics-FTSE SC (conditional mean)

MFE MSFE MAFE Theil’s U PT
RW -0.0005 2.58×10−5 0.0035 0.9027 0.0000
AR(2) 0.9100 0.9965 1.0001 0.9066 1.1168
IWLS (SA) 0.9358 1.0431 1.0357 0.8403 -0.6893
fmincon (SA) 1.0111 1.8748 1.1609 0.7151 -1.1157
IWLS (random) 0.8113 0.9902 1.0127 0.8177 0.8206
fmincon (random) 0.9500 1.0415 1.0180 0.8021 0.3126

Forecasts statistics for the 500 1-day ahead forecasts with the daily FTSE Small Cap returns. The columns
respectively give mean forecasting error (MFE), mean square forecasting error (MSFE), mean absolute
forecasting error (MAFE), Theil’s U and Pesaran and Timmermann (1992) (PT) test statistic of directional
forecasting.

Table 15: Predictive accuracy tests-USD/AUD (conditional mean)

DM CW ENC_t MSE_t ENC_F MSE_F
AR(2) -0.04 0.06 0.06 -0.04 0.00 -0.01
IWLS (SA) -1.43 0.33 0.26 -1.44 1.16 -12.64
fmincon (SA) -1.84∗ -0.99 -0.99 -1.84 -9.94 -192.45
IWLS (R) 0.84 1.97∗∗ 1.95∗∗∗ 0.84∗∗∗ 4.95∗∗ 4.50∗∗∗

fmincon (R) -1.74∗ -1.00 -1.00 -1.75 -2.59 -10.07
Predictive accuracy test statistics for the daily USD/AUD return forecasts. The columns respectively give
statistics for Diebold-Mariano (DM), Clark-West (CW), ENC_t, MSE_t, ENC_F, and MSE_F tests. P-
values for the ENC_t, MSE_t, ENC_F, and MSE_F tests are calculated by bootstrapping. * p<0.10, **
p<0.05, *** p<0.01

Table 16: Predictive accuracy tests-FTSE SC (conditional mean)

DM CW ENC_t MSE_t ENC_F MSE_F
AR(2) 1.37 1.81∗ 1.50∗∗∗ 1.37∗∗∗ 0.96 1.75
IWLS (SA) -1.73 -0.37 -0.26 -1.73 -1.50 -20.66
fmincon (SA) -1.66 -0.42 -0.42 -1.66 -6.09 -233.30
IWLS (R) 0.43 1.63∗ 2.06 0.43∗∗ 12.67 4.96∗∗

fmincon (R) -0.73 0.60 0.60 -0.73 5.54 -19.90
Predictive accuracy test statistics for the daily FTSE Small Cap return forecasts. The columns respectively
give statistics for Diebold-Mariano (DM), Clark-West (CW), ENC_t, MSE_t, ENC_F, and MSE_F tests.
P-values for the ENC_t, MSE_t, ENC_F, and MSE_F tests are calculated by bootstrapping. * p<0.10, **
p<0.05, *** p<0.01
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Table 17: Forecasts statistics (conditional variance), USD/AUD

MFE MSFE MAFE Theil’s U

RW -3.79×10−6 4.52×10−9 4.19×10−5 0.5402
AR(2) 0.969 0.9987 0.9979 0.5407
IWLS (SA) 1.3332 1.0281 1.0236 0.5380
fmincon (SA) 4.4476 2.2516 1.2720 0.5959
IWLS (R) 1.2064 1.0298 1.0193 0.5422
fmincon (R) 3.9215 2.2363 1.1998 0.5714

Forecasts statistics for the 500 1-day ahead forecasts with the daily USD/AUD return realised variance.
The columns respectively give mean forecasting error (MFE), mean square forecasting error (MSFE), mean
absolute forecasting error (MAFE), and Theil’s U.

Table 18: Forecasts statistics (conditional variance), FTSE SC

MFE MSFE MAFE Theil’s U

RW -2.24×10−6 9.11×10−9 2.96×10−5 0.6957
AR(2) 0.8736 1.0125 0.9993 0.702
IWLS (SA) 1.0795 1.0243 1.0148 0.7017
fmincon (SA) 4.3977 1.2421 1.2139 0.6551
IWLS (R) 1.6562 1.0971 1.0554 0.6796
fmincon (R) 5.8406 1.6196 1.3314 0.6471

Forecasts statistics for the 500 1-day ahead forecasts with the daily FTSE SC return realised variance. The
columns respectively give mean forecasting error (MFE), mean square forecasting error (MSFE), mean
absolute forecasting error (MAFE), and Theil’s U.
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Table 19: Predictive accuracy test, DM (conditional variance)

USD/AUD FTSE SC
AR(2) 1.33 -1.62
IWLS (SA) -1.03 -1.96∗∗

fmincon (SA) -2.35∗∗ -1.84∗

IWLS (R) -1.74∗ -1.38
fmincon (R) -1.73∗ -1.84∗

DM test statistics for the daily USD/AUD and FTSE SC returns conditional variance forecasts. * p<0.10,
** p<0.05, *** p<0.01

Table 20: Predictive accuracy tests p-values-USD/AUD

ENC_t MSE_t ENC_F MSE_F
AR(2) 90th 0.15 0.05 0.03 0.01

95th 0.18 0.07 0.08 0.01
99th 0.47 0.08 0.60 0.01

IWLS (SA) 90th 2.99 1.92 33.81 12.58
95th 3.08 2.16 41.90 13.37
99th 3.35 2.39 53.43 14.47

fmincon (SA) 90th 1.88 1.86 369.10 287.38
95th 1.89 1.87 391.28 303.53
99th 1.94 1.87 404.23 310.51

IWLS (R) 90th 0.23 -0.55 1.54 -1.87
95th 0.33 -0.43 3.34 -1.26
99th 0.82 -0.26 9.82 -0.61

fmincon (R) 90th 2.27 1.89 23.17 11.10
95th 2.32 1.98 30.85 11.64
99th 2.52 2.07 40.22 12.18

Bootstrapped percentile values for ENC_t, MSE_t, ENC_F, and MSE_F test statistics. Number of bootstrap
is 10,000.
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Table 21: Predictive accuracy tests p-values-FTSE SC

ENC_t MSE_t ENC_F MSE_F
AR(2) 90th 1.23 1.04 2.57 2.33

95th 1.32 1.07 4.59 2.95
99th 1.48 1.12 13.38 4.43

IWLS (SA) 90th 3.16 1.56 48.62 16.95
95th 3.77 1.97 100.48 30.44
99th 4.78 2.77 281.12 119.21

fmincon (SA) 90th 1.68 1.65 472.91 389.80
95th 1.69 1.66 502.61 410.99
99th 1.80 1.67 527.83 428.04

IWLS (R) 90th 2.09 -0.49 34.16 -3.79
95th 2.78 -0.09 72.96 -0.72
99th 4.01 0.81 196.32 21.28

fmincon (R) 90th 1.35 0.79 47.07 17.42
95th 1.56 0.91 61.87 19.62
99th 2.63 1.03 95.78 23.81

Bootstrapped percentile values for ENC_t, MSE_t, ENC_F, and MSE_F test statistics. Number of bootstrap
is 10,000.
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Figure 1: Simulated data
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Representative plots of the simulated data with (α,β ) = (0.09,0.90) with ηre = ln5 (on the left) and (α,β ) = (0.01,0.98) specifications with ηre = ln100 (on the right)
. Top panels: yt against t, middle panels: ht against t, bottom panels: Gt against yt−1. Sample size is 2000.
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Figure 2: IWLS log-likelihood function
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Evaluation of the log-likelihood function values during the IWLS estimation. This is a representative plot
from the simulations with (α,β ) = (0.09,0.90) specification and ηre = ln5.
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Figure 3: Estimated η ((α,β ) = (0.09,0.90))
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Kernel density plots of the slope parameter estimations for the (α,β ) = (0.09,0.90) specification. Top left
panel: real slope parameter value is ln5, with SA initial values, top right panel: real slope parameter values
is ln5, random initial values; bottom left panel: real slope parameter value is ln100, with SA initial values,
bottom right panel: real slope parameter value is ln100, with random initial values. Vertical dashed line
represents the real value of the slope parameter.
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Figure 4: Estimated η ((α,β ) = (0.01,0.98))
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Kernel density plots of the slope parameter estimations for the (α,β ) = (0.01,0.98) specification. Top left
panel: real slope parameter value is ln5, with SA initial values, top right panel: real slope parameter values
is ln5, random initial values; bottom left panel: real slope parameter value is ln100, with SA initial values,
bottom right panel: real slope parameter value is ln100, with random initial values. Vertical dashed line
represents the real value of the slope parameter.
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Figure 5: USD/AUD data
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Plots for the daily USD/AUD exchange rates. Top panel: daily exchange rate levels, middle panel: daily exchange rate returns, bottom panel: realised variance of the
daily exchange rate returns. The dashed vertical line marks the start of the forecasting period.
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Figure 6: FTSE SC data
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Plots for the daily FTSE Small Cap stock index. Top panel: daily index levels, middle panel: daily index returns, bottom panel: realised variance of the daily index
returns. The dashed vertical line marks the start of the forecasting period.
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