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Abstract

This paper replicates the estimation results of three studies on the impact of the age

composition of the labor force on business cycle volatility and investigates whether they signal

a meaningful long-run relationship. We show that both the volatile-age labor force share

variable and the business cycle volatility measure exhibit non-stationary behavior but find no

robust evidence of cointegration. Hence, the estimation results reported in the literature may

be spurious. This conclusion is further supported by the finding that the strong relationship

(i) disappears when cross-sectional dependence is accounted for using the CCEP estimator

and (ii) is highly sensitive to small changes in the composition of the sample, to data revisions,

and to the exact definition of the volatile-age labor share.

1 Introduction

In a well-cited paper Jaimovich and Siu (2009), hereafter Ja&Si, argue that a significant fraction

of the run-up of U.S. volatility in the mid-1960s and of the marked decline since the mid-1980s,

known as the Great Moderation, is accounted for by long swings in the age composition of the U.S.

population induced by the baby boom and subsequent baby bust. Ja&Si start from the empirical

observation that, in their sample of G7 countries, there are clear di↵erences in the responsiveness

of labor market activity to the business cycle over individuals of di↵erent ages. Both ‘the young’

and ‘the old’ tend to experience greater sensitivity of employment and hours worked than the

prime-aged. Given this alleged U-shaped pattern, Ja&Si define the volatile-age labor force share

sit as the fraction of the 15-64-year-old labor force accounted for by those aged 15-29 and 60-64.

Using an unbalanced panel for the G7 countries covering the period 1963-1999, sit is then linked

⇤Correspondence to: Hauke Vierke, Department of Social Economics, Ghent University, Sint-Pietersplein 6,
B-9000 Gent, Belgium, HaukeHendrik.Vierke@UGent.be, +32(0)9 264 95 09
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Herwartz, Steve Lugauer and Gert Peersman. Hauke Vierke acknowledges financial support from Ghent University’s
Special Research Fund (BOF) and from the National Bank of Belgium (NBB).
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to the time-varying standard deviation of output �it in the following benchmark regression

�it = ↵i + �t + �sit + "it, (1)

with ↵i a fixed e↵ect for cross-section i and �t a fixed e↵ect for period t. Using a variety of

alternative measures for �it, Ja&Si show that shifts in the volatile-age share variable sit have a

large and significant e↵ect on cyclical volatility in the G7 countries. Relating their results to the

recent decline in U.S. macroeconomic volatility shows that demographic change is not the sole

factor responsible for this episode but does account for approximately one-fifth to one-third of this

moderation. Similar large and significant e↵ects are obtained by Lugauer and Redmond (2012)

for a panel of 51 advanced and developing countries and by Lugauer (2012) for a panel of 50 U.S.

states.

Although the exact timing and specific evolution has been di↵erent, most developed countries

have experienced a similar shift in the age distribution of the labor force over the postwar period

which seems to coincide with a general decline in macroeconomic volatility. The aim of this

replication paper is to investigate whether this signals a meaningful long-run relationship or is

merely an artifact of common long swings in the data. In Section 2 we first show that the G7 data

used by Ja&Si display non-stationary behavior. Hence, we next test whether estimating equation

(1) results in a cointegrating relation or produces spurious results. As adequately accounting for

the potential common trend in volatility over countries requires a su�ciently large cross-sectional

dimension, in Section 3 we broaden the analysis by using the richer datasets of Lugauer and

Redmond (2012) and Lugauer (2012).

2 The Jaimovich and Siu (AER, 2009) regression

Time series properties

As a first step in the empirical analysis, Table 1 reports unit root tests on the cyclical volatility �it

and the volatile-age labor share variable sit taken from the Ja&Si dataset. This is an unbalanced

panel of G7 countries over the period 1993-1999. As proxies for �it we consider the two baseline

measures used by Ja&Si: the standard deviation of HP filtered real GDP over a 10-year window,

hereafter HP, and the instantaneous standard deviation of real output growth calculated using the

stochastic volatility model of Stock and Watson (2003, 2005), hereafter SW. More details on the

construction of these variables can be found in Ja&Si.1

The top left panel of Table 1 reports Maddala and Wu (1999) (MW) panel unit root tests

calculated by combining the p-values from country-specific Augmented Dickey and Fuller (1979)

(ADF) tests for a specification including a constant. The main advantages of the MW test are

that (i) it does not require a balanced panel such that it can be applied to the unbalanced panel

of G7 countries at hand and (ii) it can combine p-values from any individual test such that it can

1The data are available at the AER website: https://www.aeaweb.org/aer/data/june09/20070168 data.zip. Note
that while HP and SW are their baseline measures, Ja&Si also consider alternative de-trending methods (such as
first di↵erencing, calculating four-quarter growth rates, and using the Baxter and King bandpass filter) as robustness
checks. We do not consider these measures as data for these measures are not publicly available.
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not only be used as a panel unit root here but also as a panel cointegration test below. Since a

rejection of the null hypothesis of a unit root based on the MW panel test would not qualify as

evidence that the panel as a whole is stationary, we also report the underlying country-specific

ADF statistics. This allows for a more careful analysis of the time series properties of the panel

(see also Karlsson and Löthgren, 2000). The results show that the null hypothesis of a unit root

in the HP and SW volatility measures cannot be rejected at the 5% level of significance for any of

the individual countries nor for the panel as a whole. For the labor share variable sit the unit root

hypothesis is rejected for only 2 out of 7 countries, i.e. for Canada and Japan, while not being

rejected using the panel MW test.

Insert Table 1 about here

The bottom left panel of Table 1 reports the average cross-sectional correlation b⇢ in the first-

di↵erenced error terms of the ADF regressions together with the Pesaran (2004) cross-sectional

dependence (CD) test.2 For each of the variables significant positive cross-sectional dependence

is found. This is in line with the graphs in Ja&Si which show quite some similarities in the

long-run pattern in �it and sit over countries. O’Connell (1998) shows that ignoring significant

cross-sectional dependence leads to incorrectly sized panel unit root tests, i.e. they are biased

towards finding stationarity. Therefore, the fact that from the MW tests reported in Table 1 we

are not able to reject the null hypothesis of a unit root even reinforces the argument that the data

exhibit non-stationary behavior.

To control for time-varying factors a↵ecting volatility that are common across countries, Ja&Si

include a full set of time dummies. The top right panel of Table 1 therefore also reports unit root

tests after projecting out time e↵ects (model = constant + time dummies). This does not change

the main conclusion with respect to the non-stationary behavior in the data. The null hypothesis

of a unit root can still not be rejected for the HP and SW volatility measures using either the

country-specific ADF tests or the MW panel test. For the labor share sit the unit root hypothesis

is again rejected for Canada and Japan, although here only at the 10% level, while now also

rejected for Germany at the 2% level. As a result the MW panel test also rejects the unit root

hypothesis at the 2% level of significance. The bottom right part of Table 1 shows that the time

dummies are able to remove most of the positive cross-sectional dependence in the data. The

small number of countries available to estimate the time e↵ects even induces significant negative

cross-sectional dependence. Clear positive cross-sectional dependence only remains in the error

terms of the ADF test on the labor share variable. This implies that, given the resulting size bias

referred to above, the rejection of the unit root hypothesis for this variable by the MW panel unit

root test should be treated with caution.

Taking stock, the unit root tests show that the data used in Ja&Si exhibit non-stationary

behavior. This is especially the case for the volatility measures but also the labor share variable is

found to be non-stationary in some countries. Although this is in line with the permanent shifts

2We take first di↵erences to avoid spurious non-zero correlation due to non-stationarity in the error terms when
there is no cointegration. As the Pesaran (2004) CD test relies on the assumption of serial independence, an
additional advantage of taking first di↵erences is that it removes most of the serial correlation from the level error
terms.
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in these variables as documented by the plots in Ja&Si, theoretically both the labor share variable

and the volatility measures cannot be pure random walk processes as they are bounded series while

a random walk is unbounded. However, boundedness does not preclude non-stationary behavior.

Nicolau (2002) for instance proposes a bounded random walk, whose path is indistinguishable

from a pure random walk but is stochastically bounded. Moreover, even if the labor share variable

and the volatility measures are truly stationary, but the unit root tests lack power to detect

this, spurious regression results may still be obtained when there is strong persistence in the

data induced by either near unit root behavior (see e.g. Cavanagh et al., 1995; Granger et al.,

2001; Deng, 2013) or one or more permanent shifts in the mean of the otherwise stationary data

generating process (see e.g. Noriega and Ventosa-Santaularia, 2006, 2007; Chu and Kozhan, 2011).

The main message of the unit root tests is therefore that due to the strong persistence in the data

one should be careful when interpreting the results of a regression of volatility on the labor share

variable. Below we analyze the consequences of this finding for the estimation results in Ja&Si.

Regression results

The top left panel of Table 2 replicates the baseline coe�cient estimates of 4.02 when using the

HP volatility measure and 3.34 when using the SW measure reported by Ja&Si in their Table

4.3 These results show that the volatile-age workforce participants have a strong and significant

positive impact on business cycle volatility. In addition to results for a model with both individual

and time fixed e↵ects (FETE), as used by Ja&Si, we also report fixed e↵ects (FE) estimation

results to signify the di↵erence. For the full G7 sample, excluding the time e↵ects does not result

in fundamentally di↵erent results, i.e. this only leads to slightly higher point estimates and slightly

lower standard errors.

Insert Table 2 about here

Cointegration tests and spurious regression

Given the non-stationary behavior of the data detected above, Table 2 also includes country-

specific ADF and MW panel cointegration tests using the estimated error terms b"it (see note to

Table 2 for technical details). These results show that equation (1) is not a cointegrating relation

as the null hypothesis of a unit root in "it cannot be rejected using either the country-specific

ADF or the panel MW tests. This raises the question whether the strong correlation between

demographics and volatility is spurious. Ja&Si do suggest themselves that the observed strong

positive correlation could be spurious because of omitted non-stationary factors such as unstable

oil prices and monetary policy in the 1970s. They argue however that the di↵erent evolution

in demographics and volatility over countries, most markedly in Japan compared to the other

countries, should avoid spurious correlation.

3Ja&Si also report results using an IV instead of a LS estimator to account for the possible endogeneity of the
labor share variable. We experimented with the IV approach but this did not change the qualitative results.
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The importance of a large number of independent cross-sections

Phillips and Moon (1999) indeed show that pooling over a large number of independent cross-

sections attenuates the strong noise in the non-stationary residuals while retaining the strength

of the signal. When using panel data, a consistent estimate of the long-run relation can thus be

obtained even if there is no cointegration. Besides a su�ciently large cross-sectional dimension,

an important condition for this asymptotic result to hold is that the error terms are independent

over cross-sections (see also Urbain and Westerlund, 2011). The bottom left panel of Table 2

shows that although there are signs of cross-sectional dependence in the error terms this is not

overwhelming especially when using the SW volatility measure. However, given the small cross-

sectional dimension of the G7 panel dataset and some cross-sectional dependence the question

remains whether the Phillips and Moon asymptotic result holds or whether the results are in fact

spurious. In this respect, it is informative to see that the positive correlation disappears, and

even becomes negative, when Japan is excluded from a model with both individual and time fixed

e↵ects. As the Phillips and Moon result builds on the fact that asymptotically the impact of

a single country on the pooled panel estimates is negligibly small, the sensitivity of the results

to the inclusion of Japan further suggests that the cross-sectional dimension of the panel is not

large enough to cancel out the strong noise in the non-stationary error terms of the individual

cross-sections.

3 Two datasets with a richer cross-sectional dimension

Accounting for cross-sectional dependence using the CCEP estimator

Banerjee and Carrion–i–Silvestre (2015) show that consistent estimation is again possible once

cross-sectional dependence is controlled for using the pooled common correlated e↵ects (CCEP)

estimator of Pesaran (2006) and Kapetanios et al. (2011). In this approach, cross-sectional aver-

ages of the data are included to proxy for the unobserved (stationary and non-stationary) common

factors. As such, the CCEP estimator is not only able to account for more general heterogeneous

cross-sectional dependence, compared to the homogeneous pattern when using time fixed e↵ects,

but also allows for consistent estimation under very general integration properties of both the

idiosyncratic errors and the unobserved common factors that generate the cross-sectional depen-

dence. More specifically, both the idiosyncratic error terms and the common factors are allowed

to be non-stationary. As consistency of the CCEP estimator requires the number of cross-sections

to grow to infinity, in this section we look at two panels with a larger cross-sectional dimension

than the G7 panel considered by Ja&Si.4

4We have also considered the more general mean group version of the CCE estimator. Across all specifications
and datasets used below, the CCEMG estimates were found to vary substantially with very large standard errors.
As such, we did not find a robust statistically significant relationship using the CCEMG. Results are available upon
request.
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The Lugauer and Redmond (EconLet, 2012) dataset for 51 countries

Lugauer and Redmond (2012) collect a balanced panel dataset for 51 countries over the period

1957-2000. GDP data from the Penn World Table (2009, version 6.3) are used to calculate output

volatility, which is defined as the 9-year rolling standard deviation of log annual GDP, de-trended

using the HP filter. Demographic data are taken from the United Nations World Population

Prospects (2008). Following Ja&Si, the volatile-age labor share variable is defined as the fraction

of the working age population aged 15 to 29 plus those aged 60 to 64.5 Country-specific ADF unit

root tests (not reported) after projecting out time fixed e↵ects show that the null hypothesis of a

unit root is rejected at the 5% level of significance in 3 countries for the volatility measure and in

14 countries for the age share variable. A MW panel unit root test rejects the unit root hypothesis

for the age share variable but not for the volatility measure. This marked di↵erence in time series

behavior already suggests that demographics alone can probably not explain the stochastic trend

in volatility in all of the included countries.

The FETE column in the upper left panel of Table 3 replicates the result in Lugauer and

Redmond that the age distribution has an economically large impact on volatility, i.e. a 10%

points increase in the share variable raises the standard deviation of cyclical output by 0.38,

although the e↵ect is only significant at the 10% level. The CCEP estimator yields an even larger

estimate which is moreover significant at the 5% level. Cointegration tests (see note to Table 3 for

technical details) show that only for a small number of countries this constitutes a cointegration

relation while the panel MW test does not reject the null hypothesis of no cointegration. Despite

the finding of no cointegration but given that the error terms of the FETE and CCEP regressions

are found to be independent over cross-sections, the result in Banerjee and Carrion–i–Silvestre

(2015) implies that these estimators should still yield consistent estimates. In this respect, only

the FE estimate is not trustworthy as there is significant cross-sectional dependence left in the

error terms.

Insert Table 3 about here

However, having a closer look at the data reveals that the estimates are driven by only a small

number of countries. After removing 5 outlying countries (i.e. the Democratic Republic of the

Congo, Nicaragua, Ethiopia, Nigeria and Mauritius) that exhibit very large swings in volatility, the

relation between demographics and volatility completely disappears. More specifically, the FETE

and CCEP estimates drop to 0.25 and 0.28 respectively and are no longer significant (more detailed

results are available on request). As dropping specific countries is a somewhat ad hoc choice,

Table 3 reports results of two alternative robustness checks. First, the middle panel shows that

demographics also have no significant impact on volatility when using only the more homogeneous

panel of OECD countries.6 As a further robustness check, we use a more recent version of the

Penn World Table (2012, version 7.1) and the 2012 revision of the World Population Prospects,

but leave the sample period unchanged (1957 - 2000). The estimation results in the right panel

5Although these data are publicly available, we thank Steven Lugauer for kindly providing the original data.
6Note that the MW test on the error terms of the FE and FETE regressions rejects the null of no cointegration.

This is due to the fact that for the OECD sample the MW test also rejects the null of a unit root in the HP volatility
measure.
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of Table 3 show that also data revisions remove the alleged strong relation between demographics

and volatility. When looking at the countries that are subject to data revisions7, among the 5

outlying countries that are argued above to drive the strong e↵ect in the original dataset, 4 are also

subject to substantial revisions to either the volatile-age share variable (Ethiopia and Nigeria) or

the volatility measure (Mauritius) or both (the Democratic Republic of the Congo). This further

strengthens the argument that the alleged signal in the large swings in the original data for these

outlying countries may very well be noise resulting in a spurious relationship between volatility

and demographics.

The Lugauer (ReStat, 2012) dataset for 50 U.S. states

Lugauer (2012) uses a panel of 50 U.S. states over the period 1981-2004. Output volatility is

defined as in Lugauer and Redmond (2012), with state-level GDP data taken from the Bureau of

Economic Analysis. Demographic variables are based on U.S. Census data. The age share variable

used in the baseline regression is the youth share, defined as the fraction of the population aged

20 to 54 under the age of 35.8 State-specific ADF unit root tests (not reported) after projecting

out time fixed e↵ects show that the null hypothesis of a unit root is rejected at the 5% level of

significance in 1 state for the HP volatility measure and in 3 states for the youth share variable.

For both variables, the null hypothesis of a unit root is not rejected using a MW panel unit root

test.

Table 4 replicates the FETE estimate of 3.13 reported by Lugauer. Again this is not a cointe-

grating relation as the null hypothesis of a unit root in the error terms is rejected in only 1 out

of the 50 states while the MW panel test does not reject the null hypothesis. Also note that the

time dummies are now no longer able to remove all of the cross-sectional dependence. The CCEP

estimate of 1.20 is much smaller but still significant at the 5% level. Interestingly, this estimator

is able to remove all of the cross-sectional dependence with the MW test on the idiosyncratic part

of the error term rejecting the null of no cointegration.

Insert Table 4 about here

Important to note is that the youth share used by Lugauer as demographic variable is di↵erent

from the volatile-age share variable suggested by Ja&Si. As such, this variable does not capture

the alleged U-shaped pattern of employment volatility as it excludes the youngest (15-19) and

oldest (60-64) workers. As a first robustness check, in columns 5-7 of Table 4 we therefore present

regression results when the demographic variable is defined as in Ja&Si.9 The coe�cient turns

negative and, in the case of the FETE estimator, is even statistically significant. The CCEP

regression is now no longer a cointegrating relation. In fact, the youth share used by Lugauer

7For the volatile-age share variable, data revisions are most pronounced for Bolivia, the Democratic Republic
of Congo, Egypt, El Salvador, Ethiopia, Morocco, Nigeria, Pakistan and Turkey. For the volatility measure, the
largest revisions occur for Australia, Colombia, the Democratic Republic of Congo, Mauritius, Morocco, South
Africa, and Trinidad & Tobago.

8The data are available at the Review of Economics and Statistics Database:
http://hdl.handle.net/1902.1/19663.

9To construct the volatile-age share variable we had to make us of the most recent Census revision. Replacing
the original with the revised data but keeping the youth share definition did not notably change the results reported
in columns 2-4 of Table 4.
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is more in line with the theoretical model in Jaimovich et al. (2013), which only distinguishes

between young and old workers. This distinction is motivated by the empirical observation that

in the U.S., unlike in the other G7 countries, the cyclical volatility of the labor market activity

of 60-64-years-old workers is not higher than that of 40-49-year-olds. For the 15-19 and 20-24-

year-old workers, this sensitivity is five and two times that of 40-49-year-olds, respectively. For

25-29 and 30-39-year-olds volatility is only 1.6 and 1.4 times as large. Although for the U.S. this

motivates the use of a youth share instead of the original volatile-age share, there is no clear

motivation for why Lugauer excludes the 15-19-years-olds from his definition of the youth share.

As a second robustness check, in columns 8-10 of Table 4 we therefore present regression results

when the youth share is redefined as the fraction of the working age population accounted for

by the 15-24-years-olds. Again a significant negative impact is found using the FETE estimator,

while the CCEP estimator produces insignificant results. This finding is robust over alternative

specifications of the youth share variable whenever this includes the 15-19-years-old workers.

4 Conclusion

This paper has replicated three important studies that find a large and significant impact of the age

distribution of the workforce on cyclical output volatility. As each of these studies largely ignores

the time series properties of the data, the aim of this replication paper is to investigate whether the

reported strong impact signals a meaningful long-run relationship or is in fact spurious. We first

show that the volatility measures and the labor share variable used by Ja&Si for the G7 countries

exhibit non-stationary behavior. This is most pronounced for the volatility measures. We then

argue that the reported long-run relationship between these variables in Ja&Si is not a cointe-

grating relation. This does not automatically imply that the results are not meaningful, though,

as Phillips and Moon (1999) have shown that a spurious regression can be avoided when pooling

over a large number of independent cross-sections. However, the small cross-sectional dimension of

the G7 panel dataset in combination with the presence of some cross-sectional dependence raises

doubts about whether this asymptotic result applies.

To shed further light on whether there is a stable long-run relation between business cycle

volatility and demographics, we consider the richer datasets of Lugauer and Redmond (2012)

and Lugauer (2012), including 51 countries and 50 U.S. states respectively. After replicating their

results, we still find no clear evidence in favor of cointegration. Although the richer panel dimension

allows the authors to pool over a larger number of cross-sections, cross-sectional dependence can

still render their estimation results spurious (see Urbain andWesterlund, 2011). However, Banerjee

and Carrion–i–Silvestre (2015) show that consistent estimation is possible once cross-sectional

dependence is controlled for using the CCEP approach of Pesaran (2006). Remarkably, most of

the CCEP estimation results do no longer show a significant relationship. This reinforces our

argument that the strong correlation between demographics and business cycle volatility reported

in the literature may be spurious rather than signaling a meaningful long-run relationship. This

argument is further supported by the finding that, for each of the three datasets used in this

replication, the estimation results are very sensitive to small changes in the composition of the
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sample, to data revisions, and to the exact definition of the volatile-age labor share variable.

Our finding that there is no cointegrating relation does not imply that demographics do not

a↵ect business cycle volatility. However, it does show that the current set-up of using a composite

demographic change variable as the sole explanatory variable is probably too restrictive and more

work is needed to come up with a satisfactory explanation for the Great Moderation and for shifts

in volatility more in general.
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Table 1: Time series properties of the Jaimovich and Siu (AER, 2009) data

Sample period: 1963-1999, unbalanced panel of G7 countries

Model: constant constant + time dummies

�it sit �it sit

HP SW HP SW

Country-specific ADF unit root tests

Canada �0.88 �2.44 �3.87 �1.28 �2.33 �2.82
[0.79] [0.14] [0.01] [0.63] [0.17] [0.07]

France �2.76 �2.38 1.40 �0.31 �0.56 �0.01
[0.08] [0.16] [0.99] [0.91] [0.87] [0.95]

Germany �0.17 �1.45 0.41 �2.14 �1.27 �3.40
[0.94] [0.55] [0.98] [0.23] [0.63] [0.02]

Italy �0.48 �1.28 �0.60 �0.54 �0.73 �1.80
[0.88] [0.63] [0.84] [0.85] [0.81] [0.37]

Japan �1.26 �1.60 �4.64 �1.37 �1.43 �2.88
[0.64] [0.48] [0.00] [0.59] [0.56] [0.06]

U.K. �0.34 �0.99 2.34 1.17 �1.57 �1.85
[0.91] [0.75] [0.99] [0.99] [0.48] [0.35]

U.S. �0.42 �0.92 �1.63 �1.69 �2.02 �2.30
[0.90] [0.77] [0.45] [0.44] [0.28] [0.18]

Panel unit root tests

MW 7.36 12.40 20.45 7.13 10.37 26.45
[0.92] [0.57] [0.12] [0.93] [0.74] [0.02]

Cross-sectional dependence in the error terms of the ADF regressions

b⇢ 0.11 0.13 0.21 �0.11 0.03 0.20
CD 2.92 3.28 4.94 �2.63 0.50 4.24

[0.00] [0.00] [0.00] [0.00] [0.61] [0.00]

Notes: ‘Model = constant’ refers to results for projecting out fixed e↵ects while ‘Model = constant + time
dummies’ refers to projecting out both fixed e↵ects and time e↵ects.

The lag length of the country-specific ADF unit root tests is selected using the Akaike information criterion with
a maximum lag length of int{12 (T /100 )0.25}. The ADF tests for the model with constant include a constant
while for the model with constant and time dummies the data are first regressed on fixed and time e↵ects and
the residuals are next used to calculate the ADF statistics. The p-values are calculated from ADF distributions
obtained from Monte Carlo simulations that take into account the number of observations available for each
cross-section and the deterministic terms present in the model.

The MW panel unit root test is defined as �2
PN

i=1 ln (pi) where pi is the p-value corresponding to the unit
root test of the ith country.

The average cross-correlation coe�cient b⇢ = (2 /N (N � 1) )
PN�1

i=1

PN
j=i+1 b⇢ij is the average of the country-

by-country cross-correlation coe�cients b⇢ij (for i 6= j). The cross-sectional dependence CD test is defined asp
2T /N (N � 1)

PN�1
i=1

PN
j=i+1 b⇢ij , which is asymptotically standard normal under the null of cross-sectional

independence.

p-values are in square brackets.
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Table 2: The Jaimovich and Siu (AER, 2009) regression

Sample period: 1963-1999, unbalanced panel of G7 countries

Full G7 sample G7 sample excl. Japan

HP SW HP SW

FE FETE FE FETE FE FETE FE FETE

Estimation results

� 4.70 4.02 4.89 3.34 4.39 �0.34 4.24 �3.09
(0.79) (1.13) (0.70) (1.17) (0.95) (1.64) (0.82) (1.78)

Country-specific ADF cointegration tests
Canada �1.22 �1.15 �2.78 �2.35 �1.25 �1.31 �2.92 �2.35

[0.70] [0.73] [0.09] [0.19] [0.69] [0.66] [0.07] [0.19]
France �1.01 0.11 1.40 �0.40 �1.11 �0.44 1.21 �0.72

[0.78] [0.98] [0.99] [0.93] [0.74] [0.92] [0.99] [0.86]
Germany �1.62 �1.67 �0.92 �1.37 �1.60 �2.69 �0.77 �1.93

[0.51] [0.48] [0.81] [0.63] [0.52] [0.11] [0.85] [0.35]
Italy �1.62 �2.21 �0.48 �1.82 �1.59 �0.50 �0.66 �1.33

[0.51] [0.25] [0.91] [0.41] [0.53] [0.91] [0.88] [0.65]
Japan �2.15 �1.93 �2.11 �1.82

[0.26] [0.35] [0.27] [0.41]
U.K. 1.55 0.88 �2.68 �2.34 �0.17 0.40 �2.45 �1.90

[0.99] [0.99] [0.12] [0.21] [0.96] [0.99] [0.17] [0.38]
U.S. �1.05 �1.48 �1.54 �1.84 �1.00 �1.52 �1.42 �1.82

[0.76] [0.58] [0.55] [0.39] [0.78] [0.56] [0.61] [0.40]

Panel cointegration test

MW 7.26 8.16 13.73 13.06 4.56 6.90 10.69 10.38
[0.92] [0.88] [0.47] [0.52] [0.97] [0.86] [0.56] [0.58]

Cross-sectional dependence in the first-di↵erenced error terms

b⇢ 0.10 �0.15 0.06 �0.03 0.14 �0.17 0.08 �0.04
CD 2.35 �3.42 1.16 �0.93 2.65 �3.08 1.32 �1.12

[0.02] [0.00] [0.25] [0.35] [0.01] [0.00] [0.19] [0.26]

Notes: Newey-West standard errors in parentheses, p-values in square brackets.

The cointegration tests are ADF unit root tests on the estimated error terms b"it of the FE and FETE model.
The p-values are calculated from ADF distributions obtained from Monte Carlo simulations that take into
account the number of observations available for each cross-section, the deterministic terms present in the
model, and the fact that this is a unit root test on error terms obtained from estimating a homogeneous
panel data model instead of raw data.

See Table 1 for further notes.
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Table 3: The Lugauer and Redmond (EconLet, 2012) regression

Sample period: 1957-2000, balanced panel of 51 countries

Original sample, all Original sample, OECD Revised sample, all
(N = 51) (N = 22) (N = 51)

FE FETE CCEP FE FETE CCEP FE FETE CCEP

Estimation results

� 7.71 3.84 5.99 4.47 2.19 0.01 5.77 �0.62 0.92
(1.46) (1.99) (2.49) (1.04) (1.89) (2.34) (1.40) (1.74) (2.11)

Cointegration tests
ADF: # pi < 5% 4 2 3 3 2 1 4 4 1

Panel MW 112.28 101.58 96.71 68.88 68.32 48.85 111.61 122.27 95.30
[0.23] [0.49] [0.63] [0.01] [0.01] [0.28] [0.24] [0.08] [0.67]

r � � 4 � � 2 � � 4

Cross-sectional dependence in the first-di↵erenced error terms

b⇢ 0.04 0.01 �0.00 0.12 �0.03 �0.04 0.04 �0.00 �0.01
CD 8.72 1.54 �0.34 11.51 �3.43 �3.62 8.66 �0.09 �1.43

[0.00] [0.12] [0.74] [0.00] [0.00] [0.00] [0.00] [0.93] [0.15]

Notes: Newey-West standard errors in parentheses, p-values in square brackets.

For the country-specific ADF cointegration test we report the number of countries for which the unit root hypothesis is
rejected, i.e. for which the p-value pi is smaller than 5%. As in Table 2, the p-values for the country-specific cointegration
tests on the residuals of the FE and FETE regressions are calculated from simulated ADF distributions. For the CCEP
estimator, the cointegration test is a unit root test on the idiosyncratic part of the error terms. Building on the PANIC
approach suggested by Bai and Ng (2004), the idiosyncratic error terms are obtained by removing r common factors from
the estimated error terms using principal components. The p-values can be calculated from the standard ADF distribution
for the case of no constant (see Bai and Ng, 2004, p. 1135). The value of r is chosen to make sure that the idiosyncratic
error terms are cross-sectionally independent. See Everaert (2014) for more details.

See Table 1 for further notes.

Table 4: The Lugauer (ReStat, 2012) regression

Sample period: 1981-2004, balanced panel of 50 U.S. states

sit = youth share sit = volatile-age share sit = youth share
[20� 34] /[20� 54] ([15� 29] + [60� 64]) /[15� 64] [15� 24] /[15� 64]

FE FETE CCEP FE FETE CCEP FE FETE CCEP

Estimation results

� 4.64 3.13 1.20 6.50 �2.92 �1.01 10.21 �5.10 �0.68
(0.24) (1.24) (0.51) (0.31) (1.11) (0.83) (0.52) (1.51) (0.87)

Cointegration tests
ADF: # pi < 5% 1 1 4 1 0 4 7 1 2
Panel MW 77.42 101.27 124.07 101.58 88.76 103.08 161.30 96.72 103.61

[0.95] [0.45] [0.05] [0.44] [0.78] [0.40] [0.00] [0.58] [0.38]
r - - 2 - - 2 - - 2

Cross-sectional dependence in the first-di↵erenced error terms

b⇢ 0.44 0.06 0.00 0.39 0.06 �0.01 0.41 0.05 �0.00
CD 73.32 9.33 0.80 66.04 9.80 �1.30 68.67 8.86 �0.74

[0.00] [0.00] [0.42] [0.00] [0.00] [0.19] [0.00] [0.00] [0.46]

Notes: Newey-West standard errors in parentheses, p-values in square brackets.

See Tables 1, 2 and 3 for further notes.
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