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Abstract. This article describes a new Stata routine, xtbcfe, that performs the
iterative bootstrap-based bias correction for the fixed e↵ects (FE) estimator in
dynamic panels proposed by Everaert and Pozzi (Journal of Economic Dynamics
and Control, 2007). We first simplify the core of their algorithm using the in-
variance principle and subsequently extend it to allow for unbalanced and higher
order dynamic panels. We implement various bootstrap error resampling schemes
to account for general heteroscedasticity and contemporaneous cross-sectional de-
pendence. Inference can be performed using a bootstrapped variance-covariance
matrix or percentile intervals. Monte Carlo simulations show that the simplifi-
cation of the original algorithm results in a further bias reduction for very small
T . The Monte Carlo results also support the bootstrap-based bias correction in
higher order dynamic panels and panels with cross-sectional dependence. We illus-
trate the routine with an empirical example estimating a dynamic labour demand
function.

Keywords: st0001, xtbcfe, bootstrap-based bias correction, dynamic panel data,
unbalanced, higher order, heteroscedasticity, cross-sectional dependence, Monte
Carlo, labour demand

1 Introduction

Many empirical relationships are dynamic in nature as decision makers are not always
able or willing to respond immediately to changes in their environment due to e.g.
contract lock-up periods, capacity or technological constraints, slowly changing habits,
etc. A major advantage of panel data is that repeated observations on the same units
allows to analyze individual dynamics. These dynamic relations are typically modeled
by adding lagged dependent variables to the individual e↵ects panel model specification.
Although the dynamic panel specification may seem straightforward, the combination
of individual e↵ects and lagged dependent variables poses major econometric challenges.

Nickell (1981) has shown that the standard Fixed E↵ects (FE) estimator is incon-
sistent when the number of cross section units N goes to infinity while the number of
time periods T is fixed. Only when T goes to infinity, FE is consistent. Given that
the (asymptotic) bias may be quite sizable in many cases relevant to applied research,
various alternative estimators have been proposed. Particularly popular are a variety of
generalized method of moments (GMM) estimators, most notably the di↵erence GMM
(Arellano and Bond 1991) and system GMM (Arellano and Bover 1995; Blundell and
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2 Bootstrap-based bias correction

Bond 1998) estimators. These GMM estimators are, under appropriate assumptions,
asymptotically unbiased (when N tends to infinity and T is finite), but the fact that
they make use of an instrumental variables technique to avoid the dynamic panel data
bias often leads to poor small sample properties. First, Monte Carlo simulations show
that the GMM estimators have a relatively large standard deviation compared to the
FE estimator (see e.g. Arellano and Bond 1991; Kiviet 1995). Second, they may su↵er
from a substantial finite sample bias due to weak instrument problems (see e.g. Ziliak
1997; Bun and Kiviet 2006; Bun and Windmeijer 2010). Third, GMM estimators re-
quire decisions on which and how many instruments to use. When T is relatively large
compared to N , many valid instruments are available but this instrument proliferation
may render the GMM estimator invalid even though instruments are individually valid
(Roodman 2009). In practice, this typically leads to highly unstable GMM estimates
over alternative instrument sets.

Motivated by these disadvantages, Kiviet (1995) derived a bias-corrected FE estima-
tor using an analytical approximation of its small sample bias in a first-order dynamic
panel data model. Using Monte Carlo simulations, this bias-corrected FE estimator is
shown to have superior small sample properties compared to GMM estimators, i.e. it
is able to remove most of the bias of the FE estimator while maintaining its relatively
small coe�cient uncertainty. An extended version of this bias-corrected FE estimator
is implemented in the xtlsdvc Stata routine written by Bruno (2005). A practical
downside of Kiviet’s correction however is the strict set of assumptions (homoscedas-
ticity, etc.) under which the bias expression of the FE estimator is derived. These are
often violated in practice such that the correction procedure needs to be re-derived to
be applicable in less restrictive settings (see e.g. Bun 2003 for higher-order dynamic
panels, cross-sectional correlation and cross-sectional heteroscedasticity, and Bun and
Carree 2006 for cross-sectional and unconditional temporal heteroscedasticity). Ever-
aert and Pozzi (2007) address this issue by using a bootstrap-based bias correction
procedure. The main advantage of their approach is that it does not require an analyt-
ical expression for the bias of the FE estimator as this is numerically evaluated using
bootstrap resampling. Monte Carlo studies show that the small sample properties of
their bootstrap-based bias-corrected FE estimator are similar to those of the Kiviet cor-
rection. However, it has the potential to be applicable in non-standard cases through
an adequate modification of the bootstrap resampling scheme.

This paper describes a new Stata routine, xtbcfe, that executes a bootstrap-based
bias-corrected FE (BCFE) estimator building on Everaert and Pozzi (2007). We first
simplify the core of their bootstrap algorithm using the fact that the bias of the FE
estimator is invariant to the variance of the individual e↵ects such that these can be
ignored when generating bootstrap samples. Monte Carlo simulations show that this
simplification results in a further bias reduction for very small T , implying the BCFE
to be virtually unbiased for all sample sizes in a standard setting. Next, we extend
the algorithm to allow for higher order and unbalanced panels. Inference can be car-
ried out using either a parametric or non-parametric bootstrapped variance-covariance
matrix or percentile intervals. We allow for a variety of initialization and resampling
schemes to accommodate general heteroscedasticity patterns and error cross-sectional
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dependence (CSD). Especially the latter is important as Phillips and Sul (2007) and
Everaert and De Groote (2014) have shown that error CSD implies a substantial in-
crease in the small T bias of the FE estimator in a dynamic model. When the CSD in
the error terms is restricted to be only contemporaneous, the FE is still consistent as
T ! 1, though. However, for an intertemporal CSD pattern, Everaert and De Groote
(2014) show that the FE estimator is inconsistent even when T ! 1. The bootstrap
algorithm implemented in xtbcfe to obtain the BCFE estimator can only account for
contemporaneous CSD. We leave the extension to an intertemporal CSD pattern for
future research. Using Monte Carlo simulations we show that our extended BCFE es-
timator also has adequate small sample properties in higher order dynamic models and
panels with contemporaneous error CSD.

The remainder of this paper is structured as follows. Section 2 outlines the model
and the bootstrap algorithm together with the various initialization and resampling
schemes. In section 3 we provide the basic syntax for the xtbcfe routine. Some basic
Monte Carlo results are discussed in section 4 and an application of the new routine to
estimate a labour demand function is presented in section 5. Section 6 concludes.

2 Bootstrap-based bias correction for FE

2.1 Model, assumptions and FE estimator

Consider a homogeneous dynamic panel data model of order p

yit = ↵i +
pX

s=1

�syi,t�s + xit� + "it, (1)

with i = 1, ..., N and t = 1, ..., T being the cross-section and time-series dimension
respectively and where yit is the dependent variable, xit is a (1 ⇥ (k � p)) vector of
strictly exogenous explanatory variables, where k is the total number of time-varying
regressors, and ↵i is an unobserved individual e↵ect that may be correlated with xit.
Regarding the error term "it we make the following assumptions

(i) E ["it"js] = 0, 8i, j and t 6= s,

(ii) E
⇥
"

2

it

⇤
= �

2

it, 8i, t,
(iii) E ["it"jt] = �ijt, 8i, j, t and i 6= j,

The first assumption states that the error terms are serially uncorrelated, both within
and over cross-sections. This should not be highly restrictive as it can be accommodated
by including a su�cient number of lagged values of yit amongst the regressors. The sec-
ond assumption allows for a general heteroscedasticity pattern, including cross-sectional
heteroscedasticity (�2

it = �

2

i ), temporal heteroscedasticity (�2

it = �

2

t ) and general het-
eroscedasticity (�2

it). Note that the latter two cases not only allow for unconditional
but also for conditional temporal heteroscedasticity, like e.g. generalized autoregressive
conditional heteroscedasticity (GARCH). Assumption (iii) allows for a general pattern
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of contemporaneous CSD. This includes global CSD induced by a common factor struc-
ture (as in e.g. Stock and Watson 2002; Coakley et al. 2002; Pesaran 2006) and local
CSD induced by spatial dependence (as in e.g. Anselin 1988; Kapoor 2007). Note that
intertemporal cross-sectional dependence is ruled out by assumption (i).

For notational convenience we assume that the initial values (yi,�(p�1)

, . . . , yi0)
are observed such that T is the actual time series dimension available for estimation.
Furthermore, the bias-correction algorithm presented below allows for an unbalanced
data set where the time series dimension is possibly di↵erent over cross-sections, i.e.
t = ⌧i, ..., Ti with ⌧i and Ti respectively the first and last observed time period for
individual i. We present the methodology with a balanced data set for simplicity (in
notation) sake. The developed Stata routine will however automatically recognize and
deal with unbalanced panels.

Stacking observations over time and cross-sections we obtain

y = W � +D↵+ ", (2)

where y is the (NT ⇥ 1) vector stacking the observations yit, W = (y�1

, . . . , y�p, X)
is the (NT ⇥ k) matrix stacking observations on the lags of the dependent variable
(yi,t�1

, . . . , yi,t�p) and the exogenous explanatory variables xit, � = (�0
,�

0)0 is the k⇥ 1
parameter vector of interest and D is a NT ⇥N dummy variable matrix calculated as
D = IN ⌦ ◆T with ◆T a T ⇥ 1 vector of ones. The variance-covariance matrix of " is
denoted ⌃, with elements defined by the assumptions (i)-(iii) above.

Let MD = IN ⌦
�
IT �D(D0

D)�1

D

0� denote the symmetric and idempotent matrix
that transforms the data into deviations from individual specific sample means. Since
MDD = 0, the individual e↵ects ↵ can be eliminated from the model by multiplying
equation (2) by MD

MDy =MDW � +MDD↵+MD",

ey =fW � + e", (3)

where ey = MDy denotes the centered dependent variable and similarly for the other
variables. The least squares estimator for � in model (3) defines the FE estimator:

b
� =

⇣
f
W

0f
W

⌘�1f
W

0ey = (W 0
MDW )

�1

W

0
MDy. (4)

2.2 Outline bootstrap algorithm

The bootstrap algorithm implemented in the xtbcfe routine to correct the bias of the
FE estimator is an extended version of the approach presented in Everaert and Pozzi
(2007). The underlying idea is that the FE estimator b� is biased but still an unknown
function of the true parameter vector, i.e.

E(b� |�,⌃, T ) =

Z
+1

�1
b
�f

⇣
b
� |�,⌃, T

⌘
d

b
� 6= �, (5)
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with E being the expected value and f the probability distribution of b� for given popu-
lation parameter vector �, covariance matrix of the error terms ⌃ and sample size T . If

we are able to generate a sequence
⇣
b
�

1

, . . . ,

b
�J |�,⌃, T

⌘
of J biased FE estimates b� for

�, the integral in equation (5) can be written as

E(b� |�,⌃, T ) = lim
J!1

1

J

JX

j=1

b
�j |�,⌃, T . (6)

Equation (6) shows that an unbiased estimator for � can be obtained as the value b�bc
that yields the FE to have a mean of b� over the J repeated samples. Formally, b�bc is an
unbiased estimator for � if it satisfies

b
� = lim

J!1

1

J

JX

j=1

b
�j

���b�bc,⌃, T . (7)

The proposition in Everaert and Pozzi (2007) is that for any specific value of �⇤, the
condition in equation (7) can be evaluated by generating J bootstrap samples from the
data generating process in equation (2) and applying FE to each of the samples to obtain

the sequence
⇣
b
�

1

, . . . ,

b
�J |�⇤,⌃, T

⌘
. The bias-corrected b�bc can then be obtained by

searching over di↵erent parameter values �⇤ until equation (7) is satisfied. Everaert and

Pozzi further suggest that the search for b�bc can be performed e�ciently by iteratively
updating the parameter vector �⇤ used for the creation of bootstrap samples, taking the
original biased FE estimate as the best initial guess (�⇤

(0)

= b�). The iterative bootstrap
bias-correction procedure is given by the following steps:

1. Using equation (3) and the original centered data, calculate the residuals as b" =

ey �fW �

⇤
().

2. Obtain J bootstrap samples, where in each sample j = 1, . . . , J :

a. Draw a bootstrap sample "

b from b" according to a specified (re)sampling
scheme.

b. Calculate the bootstrap sample yb = W

b
�

⇤
()+"

b whereW b = (yb�1

, . . . , y

b
�p,

e
X).

c. Use FE to estimate b�bj = (W b0
MDW

b)�1

W

b0
MDy

b.

3. Calculate !

(k) = b� � 1

J

PJ
j=1

b
�

b
j .

4. Update the parameter vector �⇤
(+1)

= �

⇤
() + !

().

In other words, step 3 evaluates to what degree the condition in equation (7) is satisfied
when �

⇤
() is used to generate bootstrap samples, with !

() being the approximation

error. When !

() is positive (negative), this means that �⇤
() and the resulting average

of the FE estimates 1

J

PJ
j=1

b
�

b
j over the bootstrap samples is too low (high) for equation
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(7) to be satisfied. In step 4 we therefore update �

⇤
() by adding !

() to obtain �

⇤
(+1)

as a new guess for b�bc. The algorithm (steps 1-4) is then iterated until equation (7) is
satisfied up to a tolerable degree, i.e. !

() is su�ciently close to zero.

In step 2 of the algorithm, it is crucial to obtain a sequence
⇣
b
�

b
1

, . . . ,

b
�

b
J

⌘
that provides

an adequate proxy for the bias of the FE estimator, i.e. the average of the FE estimates
b
�

b
j as calculated in equation (6) should be a good approximation to the integral in
equation (5). To this end, the sampling of the bootstrap data should be consistent with
the properties of the underlying data generating process. A few comments are in order.

First, the bias of the FE estimator is invariant to the variance of the individual e↵ects
↵ as these are e↵ectively wiped out by centering the data. In fact, it is the centering
itself that causes the bias as it induces correlation between fW and e" in equation (3).
As such, in contrast to Everaert and Pozzi (2007) who calculate bootstrap data from
equation (2), we generate bootstrap samples

�
y

b
,W

b
�
using equation (3) in step 2(b) of

the algorithm. In step 2(c), the use of the FE estimator then still implies centering of
the data which causes its bias. The main practical advantage of this is that it simplifies
the bootstrap algorithm as there is no need to estimate the individual e↵ects ↵ and use
them to generate the data. The simplification is also favorable in terms of properties of
the BCFE estimator (see Monte Carlo simulation results in section 5) as it avoids the
nuisance induced by estimating ↵ in combination with deterministic initialization.

Second, in step 2(a) the bootstrap errors "

b should be drawn consistently with the
variance-covariance structure in the population error terms ", as represented by ⌃.
Various (re)sampling schemes are discussed in section 2.3. Furthermore, the calculation
of the bootstrap data y

b
it in step 2(b) requires initial values for (ybi,�(p�1)

, . . . , y

b
i0). The

choice of how these initial values should be generated implicitly entails a decision about
the initial conditions of the data. The possible initialization options are outlined in
section 2.4.

2.3 Error (re)sampling schemes

To accommodate various distributional assumptions about the error term "it, our boot-
strap algorithm includes several parametric error sampling and non-parametric error
resampling options in step 2(a). All of these rely in some way on the rescaled error
terms b"rit

b"rit = b"it
r

NT

NT � k �N

, (8)

where rescaling is necessary to correct for the fact that the estimated error terms b"it,
obtained in step 1 of the bootstrap algorithm outlined above, have a lower variance than
the population error terms "it.
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Parametric sampling schemes

In the parametric schemes, we draw "

b
it from the i.i.d. N

�
0, b�2

it

�
distribution, where

we set �

2

it = b�2

i = 1

T

PT
t=1

(b"rit)
2 to allow for cross-sectional heteroscedasticity or

�

2

it = b�2

t = 1

N

PN
i=1

(b"rit)
2 to allow for temporal heteroscedasticity. Under the as-

sumption of homoscedasticity, we set b�2

it = b�2, which can then be calculated as b�2 =
1

NT

PN
i=1

PT
t=1

(b"rit)
2. Note that the parametric schemes do not take into account gen-

eral heteroscedastiticy (�2

it) or error CSD (�ijt 6= 0) as this would require specific as-
sumptions about the functional form of these error structures.

Non-parametric resampling schemes

In the non-parametric schemes, "bit is obtained by resampling the rescaled error terms
b"rit. This has the advantage that it does not require distributional assumptions about
"it while its covariance structure can be preserved by an appropriate design of the
resampling scheme. In general notation, this implies setting "

b
it = b"rjit,sit with jit and

sit denoting cross-section and time series bootstrap indices drawn specifically for cross-
section i at time t. The way these indices are drawn (with replacement) from the
cross-section index (1, . . . , N) and the time index (1, . . . , T ) is aligned with the alleged
covariance structure in "it. We allow for the following cases1:

1. Under homoscedasticity (�2

it = �

2), b"rit can be resampled both over cross-sections
and time, i.e. jit is drawn from (1, . . . , N) and sit from (1, . . . , T ).

2. Under pure cross-sectional heteroscedasticity (�2

it = �

2

i ), b"rit can be resampled
over time within cross-sections, i.e. sit is drawn from (1, . . . , T ) while for jit we
consider two cases:

a. When �

2

i is random over cross-sections, we can draw entire cross-sections and
resample over time within cross-sections, i.e. restrict jit = ji which implies
drawing a cross-section indicator ji for each i from (1, . . . , N) and using this
in every time period t.

b. When �

2

i is cross-section specific, we can only resample over time within
cross-sections, i.e. restrict jit = i.

3. Under pure temporal heteroscedasticity (�2

it = �

2

t ), b"rit can be resampled over
cross-sections within time periods, i.e. jit is drawn from (1, . . . , N) while for sit

we consider two cases:

a. When the temporal heteroscedasticity pattern is unconditional, we can draw
entire time periods and resample over cross-sections within time periods, i.e.
restrict sit = st which implies drawing a time indicator st for each t from
(1, . . . , T ) and using this for every cross-section i.

1. Note that the downward bias of the FE estimator induces a serial correlation pattern in the esti-
mated error terms b"it that is not present in the population error terms "it. As such, any resampling
scheme should remove this spurious serial correlation pattern in the rescaled estimated error terms
b"rit. This implies that we cannot resample blocks or entire cross-sections of these errors.
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b. When the temporal heteroscedasticity pattern is conditional, we can only
resample over the cross-sectional dimension, i.e. restrict sit = t.

4. Under general heteroscedasticity (�2

it), both the cross-sectional and the temporal
structure of the error terms need to be preserved. To meet this challenge, we use
the wild bootstrap suggested by Liu (1988) and Mammen (1993). The idea is
to resample the residuals by multiplying them by a binomial random variable ◆it

that is equal to -1 with probability 0.5 and equal to 1 with probability 0.5. We
consider two cases:

a. When the unconditional variance �

2

i is random over cross-sections, we can
first resample entire cross-sections and next apply the wild bootstrap, i.e.
"

b
it = ◆itb"rji,t.

b. When the unconditional variance �

2

i is cross-section specific, we cannot re-
sample over cross-sections and therefore apply a pure wild bootstrap, i.e.
"

b
it = ◆itb"rit.

5. Under error CSD (�ijt 6= 0) the covariance between "it and "jt is non-zero and
may be di↵erent at each point in time. We consider two cases:

a. Under global CSD we can still resample over cross-sections within time peri-
ods. As such, both resampling schemes 3a and 3b can be used.

b. Under local CSD we can only resample over time in the same way for each
cross-section, i.e. we restrict jit = i as under 2b and sit = st as under 3a.

Each of the above resampling schemes has been generalized to unbalanced datasets,
except for the randomized wild bootstrap (4a) and local CSD resampling (5b) which
are only possible in balanced panels.

2.4 Initialization

As mentioned above, the calculation of the bootstrap data y

b
it in step 2(b) of the algo-

rithm requires initial values for the lags of the dependent variable (ybi,�(p�1)

, . . . , y

b
i0).

How these initial values are chosen to be generated depends implicitly on the decision
about the initial conditions of the data. The initialization choice will influence the sta-
tistical properties of the estimator (see section 4) and tends to play an important role
for the numerical properties of the algorithm in small datasets. Below we outline several
possibilities that di↵er in the degree of randomness in generating the initial values. In
section 9.1 of the appendix we provide some additional details about convergence and
its relation to the initialization schemes.

Deterministic initialization

The fastest and most straightforward way of initializing the series y

b
it is by setting

(ybi,�(p�1)

, . . . , y

b
i0) equal to the observed (centered) initial values (eyi,�(p�1)

, . . . , eyi0) in
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each bootstrap sample. The advantage of this initialization is that we do not have to
make assumptions about how the initial conditions are generated. In fact, this is the
initialization used by Everaert and Pozzi (2007). Their Monte Carlo simulations show
that it works well for both stationary and non-stationary initial conditions. Moreover,
it has the practical advantage that one can avoid generating initial conditions when the
data is not rich enough (see section 9.1). However, if initial conditions are random, a
deterministic initialization has the obvious risk that it induces a spurious dependency
over bootstrap samples, especially when the time series dimension is short. Therefore,
we further extend the original bootstap procedure of Everaert and Pozzi (2007) by
allowing for random initialization schemes. These assume that initial conditions are in
the infinite past. They are outlined below.

Analytic inititialization

In the analytic initialization scheme, the initial observations are drawn from the multi-
variate normal distribution⇣

y

b
i0, . . . , y

b
i,�(p�1)

⌘
⇠ N

⇣
bµ0

i ,
b⌃0

i

⌘

where bµ0

i = e
Xi0

b
� /(1�

Pp
s=1

b�s) is the unconditional expected value of yi0 for fixed

values of the exogenous variables eXi0 and the unconditional variance-covariance matrix
b⌃0

i is estimated as b⌃0

i = T

�1

PT
t=1

z

0
itzit with zit =

�
y

⇤
it, . . . , y

⇤
i,t�p+1

�
and where y

⇤
it =

eyit � e
Xit
b
� /(1�

Pp
s=1

b�s) is the deviation of yit from its unconditional mean. In the
case of a single lagged dependent variable (p = 1), for instance:

b⌃0

i =
1

T

TX

t=1

 
eyit �

e
Xit
b
�

1� b�
1

!
2

,

which is the variance of yit around its unconditional mean e
Xit
b
� /(1� b�

1

) observed
over the sample. As b⌃0

i is estimated for each cross-section individually, this initial-
ization takes into account cross-sectional heteroscedasticity. Under the assumption of
homoscedasticity, b⌃0

i can be replaced by b⌃0 = N

�1

PN
i=1

b⌃0

i which is the cross-sectional

average of b⌃0

i .

Burn-in initialization

As an alternative to treating the initial observations as fixed or drawing them from the
normal distribution, one may start in the distant past from initial values set to zero, e.g.
(ybi,�50�p+1

= 0, . . . , ybi,�50

= 0), and then generate the series y

b
il, with l = �49, . . . , 0,

as in step 2(b) of the bootstrap algorithm, setting eXil = e
Xi0 and with bootstrap error

terms obtained as in step 2(a). We can then simply use (ybi,�(p�1)

, . . . , y

b
i0) as initial

values and discard the earlier generated values. The advantage of this approach is that
it does not require a distributional assumption for the initial conditions and that the
error resampling scheme used to generate the actual sample can also be used to generate
the initial values.
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2.5 Inference

The small sample distribution of the BCFE estimator can be simulated by resampling
the original data and applying the bootstrap bias-correction to the FE estimates ob-
tained in each of the constructed samples. From this simulated distribution we then
calculate standard errors and confidence intervals. The resampling of the original data
can be done using a parametric or a non-parametric approach.

The parametric approach makes use of the fact that in the last iteration over the bias-
correction procedure, we already obtained J bootstrap samples from a population where
our bias-corrected FE estimate b�bc is used as a proxy for the population parameter vector
�. As such, the distribution of the BCFE estimator can be obtained by applying the
bias-correction procedure to the J FE estimates b�bj obtained in step 2(c) of the iterative

bootstrap procedure using �

⇤
() =

b
�

bc. The advantage of the parametric approach is that
the resampling of the data used to obtain the small sample distribution of the BCFE
estimator is exactly the same as the resampling of the data used to bias-correct the FE
estimator. As such, each of the above mentioned resampling and initialization schemes
can be used.

In the non-parametric approach, as suggested by Kapetanios (2008), we resample
the original data for cross-sectional units as a whole with replacement. The advantage of
this resampling scheme is that it preserves the dynamic panel structure without the need
to make parametric assumptions. Moreover, it is valid under general heteroscedasticity
patterns and a global cross-sectional dependence structure in the data (induced for
instance by a common factor structure). It is however not valid under local cross-
sectional dependence (induced for instance by a spatial panel structure).

3 The xtbcfe routine

3.1 Syntax

The bootstrap procedures presented and tested in this paper are all contained in the
xtbcfe routine. The basic syntax is as follows:

xtbcfe depvar
⇥
indepvars

⇤ ⇥
if
⇤ ⇥

, lags(#) resampling(string)

initialization(string) bciters(#) criterion(#) inference(string)

infiters(#) distribution(string) level(#) param te

⇤

xtbcfe requires that the data are xtset before estimation. The program adds the
lagged dependent variable(s) as the first explanatory variable(s) and can fit the sim-
ple autoregressive model without covariates. Cross-sections that are irregularly spaced
along the time dimension are automatically reduced in size so that the largest block of
uninterrupted observations are maintained (see Millimet and McDonough 2013). Cross-
sections with too few ( 1) usable observations (after lagging) are removed. The xtbcfe
routine requires that the moremata, estout (Jann 2005a,b) and distinct (Cox and
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Longton 2008) packages are installed before use2.

3.2 Options

lags(#) sets the number of lags, p, of the dependent variable to be included. The
default is lags(1).

resampling(scheme) specifies the residual resampling scheme to be used in the boot-
strap procedure. The default is resampling(mcho).

scheme description

mcho drawing from the normal distribution with estimated homogeneous vari-
ance

mche drawing from the normal distribution with estimated heterogeneous
(cross-section specific) variance

mcthe drawing from the normal distribution with period (t-)specific estimated
variance

iid for resampling independently both over cross-sections and time
cshet for resampling within cross-sections (cross-sectional heteroscedasticity)
cshet_r for resampling within cross-sections with randomized indices (random

cross-sectional heteroscedasticity)
thet for resampling within time periods (temporal heteroscedasticity)
thet_r for resampling within time periods with permuted t (random temporal

heteroscedasticity)
wboot for wild bootstrap, i.e. error terms multiplied by ’1’ or ’-1’ (general

heteroscedasticity)
wboot_r for randomized wild bootstrap, i.e. permuted cross-section indices and

error terms multiplied by ’1’ or ’-1’ (random general heteroscedasticity,
balanced panels only)

csd for resampling identically over cross-sections (cross-sectional depen-
dence, balanced panels only)

initialization(scheme) determines the initialization scheme for the bootstrapped
lagged dependent variables (ybi,�(p�1)

, . . . , y

b
i0). The default is deterministic (det).

2. These packages are easily installed by typing ssc install moremata, ssc install estout and ssc
install distinct.
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scheme description

det deterministic initialization, i.e. (ybi,�(p�1)

, . . . , y

b
i0) = (eyi,�(p�1)

, . . . , eyi0)
bi burn-in initialization using the resampling scheme defined by

resampling(string) over the burn-in sample

aho analytical homogeneous initiation (ybi,�(p�1)

, . . . , y

b
i0) ⇠ N

⇣
bµ0

i ,
b⌃0

⌘

ahe analytical heterogeneous initiation (ybi,�(p�1)

, . . . , y

b
i0) ⇠ N

⇣
bµ0

i ,
b⌃0

i

⌘

When the burn-in initialization is combined with the wild bootstrap (wboot), tem-
poral heteroscedasticity (thet) or Monte Carlo temporal heteroscedasticity (mcthe)
(re)sampling schemes, these become blocked variants. This implies that the resam-
pling pattern used for the creation of bootstrapped data is copied (several times) to
generate the initial values over the burn-in period.

bciters(#) sets the number of bootstrap iterations used for the construction of the
bias-corrected FE estimator (at least 50). The default is bciters(250).

criterion(#) alters the convergence criterion used in the estimation algorithm. The
default is criterion(0.005). The specified number will be multiplied by the num-
ber of lags (p) of the dependent variable.

inference(string) specifies the type of standard errors and confidence intervals. Under
the inference(inf se) option, standard errors are bootstrapped and are then used
to calculate confidence intervals using the Student t-distribution. Alternatively, as
this distributional assumption may be violated, especially in small datasets with
high temporal dependence, the inference(inf ci) option calculates confidence in-
tervals directly from the bootstrap distribution. This approach does not make a
distributional assumption but is much more computationally intensive as, compared
to calculating standard errors, adequate calculation of the desired percentiles re-
quires more bootstrap samples. Finally, the inference(inf appr) option is a fast
alternative that approximates standard errors by calculating the dispersion of the
FE estimator over the bootstrap iterations. While this is much faster than other op-
tions, the resulting standard errors are expected to be downward biased so that they
should only be used as a rough approximation. We report some Monte Carlo results
in section 4 to indicate the relative accuracy of the di↵erent inference methods.

infiters(#) specifies the number of bootstrap iterations to be used for inference. The
default is infiters(250) for all choices of inference(string). It is recommended
to have at least 50 iterations for bootstrapping standard errors and 1000 iterations
for bootstrapping percentile intervals. The number of iterations cannot be smaller
than 100 when the inference(inf ci) option is selected.

distribution(string) requests that the bootstrap distribution of xtbcfe obtained by
the inference procedures is saved in e(dist bcfe). This option allows users to
inspect the bootstrap distribution and calculate additional statistics from it. If
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this option is omitted the distribution will be deleted after estimation. Select
distribution(none) to save the bootstrap coe�cient matrix in e(dist bcfe).
Specifying distribution(sum) will additionally display a histogram of the boot-
strap distribution for the sum of autoregressive coe�cients. The distribution(all)
option adds histograms for all autoregressive coe�cients separately.

level(#) specifies the confidence level used to construct confidence intervals. The
default is level(95).

param requests that inference procedures are initiated using the parametric bootstrap
instead of the non-parametric default (see section 2.5).

te requests the addition of time e↵ects to the specification. Time dummies are gen-
erated and named according to the time indicator used in the xtset command.
User-specified variables bearing the same name will be overwritten. Time dummies
included in indepvars will be removed.

Once all options are specified, the xtbcfe routine will remove any time invariant or
collinear variables and move on to the main estimation bcfe ub (mata) subroutine.

3.3 Saved results

xtbcfe saves the following results in e():

Scalars
e(t min) min number of time periods e(N) number of observations
e(t avg) average number of time periods e(N g) number of groups
e(t max) max number of time periods e(k) number of exogenous regressors
e(irr) number of cross-sections e(conv) convergence of the bootstrap

removed due to irregular algorithm
spacing and/or lack of e(df r) degrees of freedom
observations

Macros
e(cmd) xtbcfe e(depvar) name of the dependent variable
e(ivar) panel variable e(tvar) time variable
e(predict) xtbcfe p

Matrices
e(b) xtbcfe estimates e(V) variance–covariance matrix of
e(res bcfe) xtbcfe error terms the xtbcfe estimator
e(dist bcfe) xtbcfe bootstrap distribution

if dist() option is selected

Functions
e(sample) marks estimation sample

3.4 Postestimation

The program xtbcfe supports the postestimation command predict ([R] predict) to
compute fitted values and residuals. The syntax for predict following xtbcfe is:

predict

⇥
type

⇤ ⇥
newvarname

⇤ ⇥
if
⇤ ⇥

, statistic

⇤
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statistic description

xb
Pp

s=1

b�pyi,t�s +X

b
�, fitted values; the default

ue b↵i + b"it, the combined residuals

⇤ xbu
Pp

s=1

b�syi,t�s +X

b
� + b↵i, prediction, including the fixed e↵ect

⇤ u b↵i, the fixed e↵ect
⇤ e b"it, the observation-specific error component

Unstarred statistics are available both in and out of sample, use predict ... if

e(sample) ... for restricting statistics to the estimation sample. Starred statistics
are calculated only for the estimation sample, even when if e(sample) is not specified.

4 Monte Carlo Experiments

Using Monte Carlo simulations, Everaert and Pozzi (2007) show that the BCFE esti-
mator outperforms the di↵erence and system GMM estimators, both in terms of bias
and inference, in samples with small to moderate T . Furthermore, the BCFE is found
to be insensitive to non-normality of the errors, conditional heteroscedasticity or non-
stationary initial conditions and has a bias comparable to the analytical bias corrections
of Kiviet (1995) and Bun and Carree (2005).

In this section we present some further Monte Carlo simulation results to illustrate
the finite sample properties of our simplified BCFE bootstrap algorithm and its exten-
sion to higher-order dynamic models and error CSD. Data are generated from (1) with
xit restricted to be a single exogenous explanatory variable, generated as

xit = ⇢xi,t�1

+ ⇠it, ⇠it ⇠ i.i.d. N (0,�2

⇠ ). (9)

We normalize the long-run impact of xit to one by setting � = 1 �
Pp

s=1

�s. Each
experiment is based on 1000 iterations, where in each sample we generate 50 + T peri-
ods and discard the first 50 observations. The BCFE estimator is implemented setting
the number of bootstrap iterations (bciters) to 250. We analyze the performance of
alternative initialization schemes and adjust the bootstrap resampling scheme accord-
ing to the properties of the data generating process of yit. We report (i) mean bias
(bias), which is the average of the deviation of the estimates b� from the true population
parameter �, (ii) standard error (se), which is the standard error of the estimates b�,
(iii) mean estimated standard error ( bse), which is the average of the estimated stan-
dard errors, and (iv) real size (size), which is the probability of incorrectly rejecting
the correct null hypothesis using a two-sided t-test at the 5% nominal level of signif-
icance. We also include results for Pooled OLS (POLS), FE and for the analytical
correction (BCFE

an

) implemented in the xtlsdvc routine developed by Bruno (2005)
initiated with the Anderson-Hsiao estimator and standard errors obtained through 200
bootstrap iterations. All simulations were performed using the Ghent University High
Performance Computing infrastructure.
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4.1 Simplification using the invariance principle

In Table 1 we compare the performance of the original algorithm (BCFE
or

) of Everaert
and Pozzi (2007) to our simplified algorithm presented in section 2. We use the high
temporal dependence setting reported in their Table 2 as this is the case where the orig-
inal BCFE estimator still exhibits some small sample bias.3 This setting corresponds
to generating yit from a first-order (p = 1) version of equation (1), setting �

1

= 0.8
and assuming ↵i ⇠ i.i.d. N

�
0, (1� �

1

)2
�
and "it ⇠ i.i.d. N (0, 1), with xit generated

from (9) setting ⇢ = 0.5 and assuming ⇠it ⇠ i.i.d. N (0, 0.65). The BCFE estimator is
implemented setting the number of bootstrap iterations (bciters) to 200. As there is
no structure in the error terms, each of the BCFE estimators uses the iid resampling
scheme. We further use this simulation design to shed some light on the relative per-
formance of the various initialization schemes and alternative approaches to inference.
As such, we report results for three alternative initialization schemes: det (BCFE

de

),
aho (BCFE

an

) and bi (BCFE
bi

). Next, approximate standard errors ( bseappr) obtained
from the bootstrapped distribution of the FE estimator using the inf appr option are
compared to standard errors from the bootstrapped distribution of the BCFE estimator
using the inf se option. For the first option, which is relatively fast, we set the number
of bootstrap iterations (infiters) to 1000. For the computationally more intensive sec-
ond option, we analyze the importance of the number of iterations by reporting results
for 1000 ( bse

1000

) and 50 ( bse
50

) iterations. Finally, we calculate real test sizes using the
above obtained approximate FE (sizeappr) and BCFE (sizese) standard errors and the
bootstrapped percentile confidence interval using the inf ci option (sizeci). These are
all based on 1000 bootstrap iterations. As estimates for � are more or less unbiased for
all estimators, we only report results for estimating �.

The simulation results show that our simplified algorithm yields a considerable im-
provement over the original estimator. Under the analytical and burn-in initialization
schemes, the BCFE estimator is nearly unbiased and bootstrapped standard errors
( bse

1000

) are close to the true standard error. As a result, these versions of the BCFE
estimator have a more or less correct real size, even for very small T . Under the deter-
ministic initialization, a small bias remains for T = 4. Overall we consider the BCFE
initiated with the burn-in initiation the superior alternative because of its low bias and
adequate results in terms of inference. Each of the BCFE variants also displays adequate
convergence rates with 100% convergence for the deterministic initiation and 97.9% and
98.7% for the analytical and burn-in initiations respectively in the N = 20, T = 4 case.
Any other sample size resulted in 100% convergence for all initiations.

Given that the standard errors based on 1000 bootstrap iterations in the bse
1000

column are computationally very intensive, an assessment of the performance of the less
time consuming alternatives is of particular interest for practitioners. As expected, the
approximated standard errors bseappr have a downward bias that has a detrimental e↵ect
on the real test size. The bse

50

column however reveals that on average, the di↵erence
between using 1000 and 50 bootstrap iterations for computing standard errors is only
marginal. This suggests that 50 bootstrap iterations is a reasonable lower bound for

3. Similar results are obtained for other parameter values.
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Table 1: Monte Carlo results for an AR(1) model with �

1

= 0.8: simplification bootstrap algorithm

bias se bse size bias se bse size

appr 1000 50 appr se ci appr 1000 50 appr se ci

T = 4, N = 20 T = 9, N = 20

POLS 0.04 0.06 0.06 - - 0.12 - - 0.04 0.04 0.04 - - 0.22 - -
FE �0.51 0.13 0.12 - - 0.97 - - �0.24 0.07 0.07 - - 0.96 - -
BCFE

an

�0.18 0.17 0.16 - - 0.21 - - �0.05 0.08 0.08 - - 0.09 - -
BCFE

or

�0.14 0.15 - - - - - 0.25 �0.04 0.09 - - - - - 0.11
BCFE

de

0.07 0.17 0.13 0.17 0.17 0.15 0.16 0.09 0.03 0.10 0.07 0.09 0.08 0.21 0.14 0.08
BCFE

an

0.00 0.16 0.13 0.16 0.15 0.08 0.09 0.05 0.00 0.09 0.07 0.08 0.08 0.11 0.09 0.08
BCFE

bi

�0.04 0.17 0.13 0.16 0.16 0.13 0.10 0.09 �0.01 0.09 0.07 0.08 0.08 0.11 0.09 0.10

T = 4, N = 100 T = 9, N = 100

POLS 0.05 0.03 0.03 - - 0.47 - - 0.05 0.02 0.02 - - 0.76 - -
FE �0.51 0.06 0.06 - - 1.00 - - �0.23 0.03 0.03 - - 1.00 - -
BCFE

an

�0.13 0.08 0.09 - - 0.30 - - �0.03 0.04 0.04 - - 0.14 - -
BCFE

or

�0.13 0.07 - - - - - 0.80 �0.04 0.04 - - - - - 0.35
BCFE

de

0.09 0.07 0.06 0.07 0.07 0.40 0.31 0.20 0.03 0.05 0.03 0.05 0.04 0.32 0.13 0.07
BCFE

an

0.04 0.08 0.06 0.07 0.07 0.20 0.15 0.07 0.00 0.04 0.03 0.04 0.04 0.14 0.08 0.07
BCFE

bi

�0.02 0.09 0.06 0.09 0.08 0.21 0.07 0.05 �0.01 0.04 0.03 0.04 0.04 0.13 0.06 0.07

Notes:

(i) Data for yit are generated from a first-order (p = 1) version of equation (1), setting �

1

= 0.8, � = 0.2 and assuming ↵i ⇠ i.i.d. N
�
0, (1� �

1

)2
�

and "it ⇠ i.i.d. N (0, 1), with xit generated from (9) setting ⇢ = 0.5 and assuming ⇠it ⇠ i.i.d. N (0, 0.65). Note that as we assume yi0 to be
observed, the sample sizes T = 5 and T = 10 in Everaert and Pozzi (2007) correspond to T = 4 and T = 9 in our notation.

(ii) Reported results are for estimating �

1

. POLS and FE refer to the Pooled OLS and Fixed E↵ects estimator respectively. BCFE
an

is the
analytical bias-corrected FE estimator implemented in the xtlsdvc routine developed by Bruno (2005) initiated with the Anderson-Hsiao
estimator and standard errors obtained through 200 bootstrap iterations. BCFE

or

is the original bootstrap-based bias-corrected FE estimator
of Everaert and Pozzi (2007). Results are taken from their Table 2. BCFE

de

, BCFE
an

and BCFE
bi

refer to the simplified BCFE estimator
presented in section 2, with 200 bootstrap samples (bciters) and the deterministic (det), homogeneous analytical (aho) and burn-in (bi)
initialization, respectively. Each of the BCFE estimators uses the iid resampling scheme.

(iii) The bias is the deviation of the estimates b�
1

from the population parameter �

1

while se is the standard error of the distribution of b�
1

over
the Monte Carlo draws. The estimated standard errors bse are obtained in 3 di↵erent ways: bseappr are approximate standard errors based on
the bootstrapped FE distribution (inf appr), while bse

1000

and bse
50

are bootstrapped standard errors (inf se) using respectively 1000 or 50
bootstrap iterations (infiters). The real size (size) is the probability of incorrectly rejecting the correct null hypothesis using a two-sided
t-test at the 5% nominal level of significance. The sizes reported as sizeappr and sizese are calculated using the standard errors bseappr and
bse

1000

respectively, while for sizeci the bootstrap percentile interval inf ci option is used. Standard errors for the BCFE
an

estimator are
obtained using a bootstrap with 200 iterations (infiters). The standard analytical formulas are used for calculating the standard errors of
the POLS and FE estimators.

standard error estimation.

4.2 Error CSD

In Table 2 we analyze the small sample performance of the BCFE estimator in a non-
standard scenario with cross-sectionally dependent errors. To this end, we focus on a
pure (� = 0) first-order autoregressive model with �

1

= 0.8 and assume that the error
term "it in equation (1) has the following common factor structure

"it = �iFt + ✏it, (10)

with Ft ⇠ i.i.d. N (0, 1) and ✏it ⇠ i.i.d. N (0, 1). We follow Sarafidis and Robertson
(2009) and generate the factor loadings as �i ⇠i.i.d.U (1, 4) and set the individual e↵ect
variance to �

2

↵ = (1 � �

1

)(1 + �

1

)�1(µ2

� + �

2

� + 1), with µ� and �

2

� being the mean
and variance of the factor loading distribution. We use the burn-in (bi) initiation for
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the BCFE estimator together with the cross sectional dependence csd (BCFE
csd

) and
randomized temporal heteroscedasticity thet r (BCFE

thet

) resampling schemes. Al-
though csd resampling allows for a more general CSD pattern than thet r resampling,
both are valid given the common factor structure in equation (10). Next to bias and
standard errors, we report real test sizes from t-tests (sizet) and confidence intervals
(sizeci) based on 200 iterations (infiters). The root mean squared error (rmse) is
provided as a performance measure that takes both bias and variance into account.

Table 2: Monte Carlo results for an AR(1) model with �

1

= 0.8: error CSD

bias se bse rmse sizet sizeci bias se bse rmse sizet sizeci

T = 5, N = 20 T = 10, N = 20

POLS 0.088 0.049 0.046 0.101 0.53 - 0.090 0.037 0.032 0.098 0.77 -
FE �0.443 0.120 0.104 0.459 0.98 - �0.226 0.075 0.061 0.238 0.94 -
BCFE

an

�0.169 0.148 0.134 0.225 0.25 - �0.053 0.087 0.077 0.102 0.13 -
BCFE

csd

0.041 0.159 0.143 0.165 0.17 0.09 0.019 0.100 0.084 0.102 0.15 0.10
BCFE

thet

�0.020 0.167 0.146 0.168 0.15 0.10 �0.002 0.097 0.084 0.097 0.13 0.11

T = 5, N = 100 T = 10, N = 100

POLS 0.098 0.020 0.020 0.101 0.99 - 0.098 0.014 0.014 0.099 1.00 -
FE �0.430 0.056 0.046 0.434 1.00 - �0.220 0.034 0.027 0.222 1.00 -
BCFE

an

�0.105 0.076 0.074 0.130 0.30 - �0.029 0.044 0.038 0.053 0.16 -
BCFE

csd

0.070 0.086 0.078 0.111 0.24 0.13 0.022 0.047 0.044 0.052 0.09 0.07
BCFE

thet

�0.003 0.085 0.080 0.085 0.09 0.07 �0.001 0.044 0.042 0.044 0.07 0.08

Notes:

(i) Data for yit are generated from a first-order (p = 1) version of model (1) with �

1

= 0.8, � = 0 and errors generated from the
common factor structure in equation (10). We generate loadings as �i ⇠i.i.d.U (1, 4) and set �2

↵ = (1��

1

)(1+�

1

)�1(µ2

�+�

2

�+1).

(ii) Reported results are for estimating �

1

. POLS and FE refer to the Pooled OLS and Fixed E↵ects estimator respectively. BCFE
an

is the analytical bias-corrected FE estimator implemented in the xtlsdvc routine developed by Bruno (2005) initiated with the
Anderson-Hsiao estimator and standard errors obtained through 200 bootstrap iterations. BCFE

csd

refers to the bootstrap-based
bias-corrected FE estimator presented in section 2, with 250 bootstrap samples (bciters), burn-in (bi) initialization and the csd
resampling scheme. BCFE

thet

is the alternative that uses the random temporal heteroscedasticity (thet r) scheme.

(iii) The bias is the deviation of the estimates b�
1

from the population parameter �

1

, se the standard error of the distribution of b�
1

over the Monte Carlo draws and rmse =
q

(E(b�
1

)� �

1

)2 + �

2

b�1
is the root mean squared error. The estimated standard errors

bse are obtained using the non-parametric bootstrap resampling scheme with 200 iterations (infiters). The real size (size) is the
probability of incorrectly rejecting the correct null hypothesis using a two-sided test at the 5% nominal level of significance, with
sizet based on t-statistics with estimated standard errors using the inf se option and sizeci based on the confidence interval
(inf ci) option.

The results reveal a general deterioration of the estimated standard errors compared
to the real standard errors for all estimators. BCFE standard errors su↵er as well but
compared to the other estimators this does not result in large size distortions. Note
however that the size of the confidence intervals approach is better than that of the
t-test approach, especially for the csd resampling option in smaller sample sizes. This
is due to the skewness of the BCFE distribution caused by the relatively large value of
�

1

. The resulting asymmetry renders normal approximations very inaccurate and leads
to size distortions. The confidence interval approach, in contrast, is not based on any
distributional assumption and therefore has a more appropriate size.

There is also a clear di↵erence in performance between our two alternative resam-
pling schemes. Bias and real size for thet r resampling are generally superior to csd

resampling. This can be explained by the fact that under the thet r option, errors are
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resampled both over time and cross-sections (within time periods). Especially when
the cross-sectional dimension N is large, this results in more randomness in the boot-
strap samples compared to the csd scheme which only resamples over time. In small T
datasets, the latter o↵ers only a very limited number of reshu✏ing options and therefore
induces a dependency over bootstrap samples that leads to bias and an increased real
test size. These results suggest that researchers should in practice opt for the most
random resampling scheme among the appropriate alternatives.

4.3 Second-order dynamic model

In Tables 3 and 4 we analyze the small sample performance of the BCFE estimator in a
second-order (p = 2) version of model (1). We assume ↵i ⇠ i.i.d. N (0, 1) and "it ⇠ i.i.d.
N (0, 1), with xit generated from (9) setting ⇢ = 0.5 and assuming ⇠it ⇠ i.i.d. N (0, 1).
We report results for estimating �

1

and �

2

. The BCFE estimator is implemented with
iid resampling, burn-in (bi) initiation and inference using bootstrapped standard errors
(inf se) and t-tests based on non-parametric bootstrapping. Note that the BCFE

an

is
not included because the xtlsdvc routine does not support higher-order models.

Table 3 reports results for a series with strong temporal dependence, setting �

1

= 0.6
and �

2

= 0.2. The BCFE estimator again appears as a very e↵ective correction for FE.
Its bias is virtually zero at the cost of only a small increase in variance. Standard errors
are estimated well and the resulting real test size is near the nominal 5% level. In line
with results from a first-order model, the standard pooled OLS estimator has a small
but positive bias for both �

1

and �

2

for every combination of N and T while the FE
estimator is strongly downward biased for both �

1

and �

2

for small T . This suggests
that in this setting, an unbiased estimator is expected to lie between POLS and FE,
but probably closer to the former than to the latter.

In Table 4 we set �

1

to 1.1 but maintain the stationarity assumption by setting
�

2

to -0.2. The hump-shaped pattern implied by this parameter combination is often
encountered in practice (see e.g. the application in section 5) but seldom included in
simulation studies. The BCFE estimator is again almost unbiased in all settings with
real test sizes close to the desired nominal level. In line with the results in Table 3, the
POLS estimator has a small upward bias for both �

1

and �

2

. For the FE we note an
important di↵erence, though. While the FE estimator for �

1

is still strongly downward
biased, it is much less biased for �

2

. In this setting, an unbiased estimator is expected
to lie closer to the POLS estimator for �

1

but closer to the FE estimator for �
2

.

5 Application

In this section, we illustrate the use of the xtbcfe routine by reporting some estimation
results for labour demand by U.K. firms using the Arellano and Bond (1991) dataset
(abdata.dta). This has become a prominent example in dynamic panel data model-
ing as labour demand is known to react very slowly to movements in its explanatory
variables due to for instance considerable adjustment costs. Typically, lags of the depen-
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Table 3: Monte Carlo results for an AR(2) model with �

1

= 0.6 and �

2

= 0.2

�

1

�

2

�

1

�

2

bias se bse sizet bias se bse sizet bias se bse sizet bias se bse sizet

T = 5, N = 20 T = 10, N = 20

POLS 0.08 0.09 0.10 0.10 0.10 0.09 0.10 0.17 0.09 0.07 0.07 0.25 0.09 0.07 0.07 0.26
FE �0.39 0.12 0.11 0.92 �0.20 0.11 0.11 0.40 �0.18 0.08 0.07 0.63 �0.11 0.07 0.07 0.33
BCFE �0.03 0.14 0.13 0.09 �0.02 0.13 0.13 0.07 �0.01 0.09 0.08 0.09 �0.01 0.08 0.08 0.08

T = 5, N = 100 T = 10, N = 100

POLS 0.09 0.04 0.04 0.59 0.09 0.04 0.04 0.58 0.09 0.03 0.03 0.87 0.09 0.03 0.03 0.87
FE �0.38 0.05 0.05 1.00 �0.19 0.05 0.05 0.97 �0.17 0.04 0.03 1.00 �0.11 0.03 0.03 0.90
BCFE �0.01 0.07 0.07 0.07 �0.01 0.06 0.06 0.06 �0.01 0.04 0.04 0.08 �0.01 0.04 0.04 0.07

Notes:

(i) Data for yit are generated from a second-order (p = 2) version of equation (1), setting �

1

= 0.6, �
2

= 0.2, � = 0.2 and assuming ↵i ⇠
i.i.d. N (0, 1) and "it ⇠ i.i.d. N (0, 1), with xit generated from (9) setting ⇢ = 0.5 and assuming ⇠it ⇠ i.i.d. N (0, 1).

(ii) Reported results are for estimating �

1

and �

2

. POLS and FE refer to the Pooled OLS and Fixed E↵ects estimator respectively. BCFE
refers to the bootstrap-based bias-corrected FE estimator presented in section 2, with 250 bootstrap samples (bciters), burn-in (bi)
initialization and iid resampling scheme.

(iii) The bias is the deviation of the estimates b� from the population parameter � while se is the standard error of the distribution of b� over
the Monte Carlo draws. The estimated standard errors bse are obtained using the non-parametric resampling scheme with 200 iterations
(infiters). The real size (sizet) is the probability of incorrectly rejecting the correct null hypothesis using a two-sided t-test with
estimated standard errors (inf se) at the 5% nominal level of significance.

Table 4: Monte Carlo results for an AR(2) model with �

1

= 1.1 and �

2

= �0.2

�

1

�

2

�

1

�

2

bias se bse sizet bias se bse sizet bias se bse sizet bias se bse sizet

T = 5, N = 20 T = 10, N = 20

POLS 0.02 0.10 0.10 0.05 0.07 0.10 0.10 0.09 0.04 0.07 0.07 0.07 0.05 0.07 0.07 0.10
FE �0.42 0.12 0.11 0.95 �0.02 0.11 0.11 0.06 �0.18 0.08 0.07 0.66 �0.04 0.08 0.07 0.09
BCFE �0.05 0.13 0.13 0.08 0.00 0.13 0.13 0.09 �0.00 0.09 0.08 0.10 �0.01 0.08 0.08 0.09

T = 5, N = 100 T = 10, N = 100

POLS 0.04 0.04 0.04 0.16 0.05 0.04 0.04 0.19 0.05 0.03 0.03 0.28 0.05 0.03 0.03 0.33
FE �0.40 0.06 0.05 1.00 �0.02 0.05 0.05 0.08 �0.18 0.04 0.03 1.00 �0.04 0.03 0.03 0.21
BCFE �0.01 0.06 0.06 0.06 �0.00 0.06 0.06 0.05 �0.00 0.04 0.04 0.06 �0.00 0.03 0.04 0.05

Notes:

(i) Data for yit are generated from a second-order (p = 2) version of equation (1), setting �

1

= 1.1, �
2

= �0.2, � = 0.1 and assuming ↵i ⇠
i.i.d. N (0, 1) and "it ⇠ i.i.d. N (0, 1), with xit generated from (9) setting ⇢ = 0.5 and assuming ⇠it ⇠ i.i.d. N (0, 1).

(ii) Reported results are for estimating �

1

and �

2

. POLS and FE refer to the Pooled OLS and Fixed E↵ects estimator respectively. BCFE
refers to the bootstrap-based bias-corrected FE estimator presented in section 2, with 250 bootstrap samples (bciters), burn-in (bi)
initialization and iid resampling scheme.

(iii) The bias is the deviation of the estimates b� from the population parameter � while se is the standard error of the distribution of b� over
the Monte Carlo draws. The estimated standard errors bse are obtained using the non-parametric resampling scheme with 200 iterations
(infiters). The real size (sizet) is the probability of incorrectly rejecting the correct null hypothesis using a two-sided t-test with
estimated standard errors (inf se) at the 5% nominal level of significance.

dent variable are added to the explanatory variables to capture this adjustment process.
However, as the dataset has a moderately large cross-section (140 U.K. companies) but
only a relatively short time series dimension (max 9 observations between 1976 and
1984), the standard FE estimator is expected to be strongly downward biased. As such,
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Arellano and Bond (1991) use this example to advocate the use of their GMM estima-
tor as an alternative to FE. They suggest two lags of log employment (nit) and further
model the dynamics by adding a single lag for log wages (wit) and two lags for the logs
of industry output (ysit) and capital (kit). This yields the following specification

nit =
2X

s=1

�sni,t�s +
1X

q=0

�w,qwi,t�q +
2X

r=0

(�k,rki,t�r + �ys,rysi,t�r) +↵i + �t + "it, (11)

where ↵i is included to capture individual e↵ects and �t is a time dummy that serves
to capture aggregate demand shocks. The data is mildly unbalanced with a minimum
of 7 observations (prior to lagging) and no gaps.

Table 5 reports estimation results for the POLS, FE, di↵erence GMM (dGMM),
system GMM (sGMM) and BCFE estimators. Looking first at the POLS and FE
estimates, the coe�cient on the first lag is much bigger for the POLS than for the FE
estimator, although still relatively high for the latter. The coe�cient on the second
lag is small and negative for both estimators. For the POLS estimator it is clearly
not significantly di↵erent from zero, while for FE it is somewhat more negative and
significant at the 7% level of significance. This pattern is in line with expectations as
in general, the POLS estimator is expected to be upward biased, as not accounting for
individual e↵ects implies positive correlation between the error terms and the lagged
dependent variable, while the FE estimator is expected to be biased downwards, as the
centering used to wipe out the individual e↵ects results in negative correlation between
the centered lagged dependent variables and the error terms. The simulation results in
section 4.3 show, more specifically, that in a second-order dynamic model like equation
(11), the POLS estimator has a more or less equal small upward bias for the coe�cients
on the first and second lag while the FE has a strong downward bias for the coe�cient
on the first lag but is much less biased for the coe�cient on the second lag. Hence an
unbiased estimate for the coe�cient on ni,t�1

is expected to lie somewhere in between
the FE estimate 0.734 and the POLS estimate 1.045, but closer to the POLS than to
FE estimate. An unbiased estimate for the coe�cient on ni,t�2

is expected to lie close
to the FE estimate of -0.141 and below the POLS estimate of -0.077. Note that this
only holds in expectations; sampling error can still imply that an unbiased estimator
results in estimates that are outside the POLS-FE bounds in a specific sample. This
risk is more pronounced in a higher order dynamic model as the di↵erent lags of the
dependent variables are typically highly correlated. This multicollinearity problem tends
to increase the variance of the estimates. Therefore, we also report the sum of the
autoregressive coe�cients (�

1

+�

2

) as a rough measure of overall temporal dependence.
For the POLS estimator the sum is 0.97, which is close to non-stationarity, while for
the FE estimator this is much lower at 0.59.

Looking at the GMM results, the dGMM estimator behaves rather poorly as the co-
e�cient estimate of 0.686 on ni,t�1

is even lower than the downward biased FE estimate
while the coe�cient estimate of -0.085 on ni,t�2

is close to the upward biased POLS es-
timate. The sum of the dGMM AR term estimates equals 0.601, which is highly similar
to the sum of 0.593 implied by the downward biased FE estimates. This suggests that
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Table 5: Estimated employment equations: full sample
Dependent variable: nit Sample period: 1976-1984, 140 U.K. firms

POLS FE dGMM sGMM BCFE

ni,t�1

1.045 (0.051) 0.734 (0.058) 0.686 (0.145) 0.914 (0.127) 1.008 (0.057)
ni,t�2

�0.077 (0.048) �0.141 (0.077) �0.085 (0.056) �0.068 (0.055) �0.161 (0.069)
wit �0.524 (0.172) �0.557 (0.155) �0.608 (0.178) �0.652 (0.182) �0.560 (0.163)
wi,t�1

0.477 (0.169) 0.326 (0.143) 0.393 (0.168) 0.524 (0.168) 0.495 (0.192)
kit 0.343 (0.048) 0.385 (0.056) 0.357 (0.059) 0.341 (0.062) 0.385 (0.051)
ki,t�1

�0.202 (0.064) �0.084 (0.053) �0.058 (0.073) �0.148 (0.075) �0.202 (0.060)
ki,t�2

�0.116 (0.035) �0.025 (0.042) �0.020 (0.033) �0.059 (0.039) �0.053 (0.037)
ysit 0.433 (0.176) 0.521 (0.193) 0.608 (0.172) 0.660 (0.178) 0.455 (0.178)
ysi,t�1

�0.768 (0.248) �0.659 (0.208) �0.711 (0.232) �0.836 (0.234) �0.746 (0.271)
ysi,t�2

0.312 (0.130) 0.001 (0.139) 0.106 (0.141) 0.111 (0.158) 0.133 (0.171)

No. of obs 751 751 611 751 751

Sum AR 0.968 (0.007) 0.593 (0.067) 0.601 (0.125) 0.846 (0.100) 0.847 (0.050)

Notes:

(i) Pooled OLS (POLS), Fixed E↵ects (FE) and di↵erence GMM (dGMM) estimates are taken from Arellano and Bond (1991).
System GMM (sGMM) estimates are obtained using the xtdpdsys Stata routine with the vce(robust) option to calculate
standard errors.

(ii) The instrument sets used by the GMM estimators are constructed under the assumption that all regressors, except the lagged
dependent variables, are strictly exogenous. The reported GMM estimates are one-step results.

(iii) The BCFE estimator uses 250 bootstrap samples (bciters) with a burn-in (bi) initialization and the wild bootstrap (wboot) to
allow for general heteroskedasticity.

(iv) Estimated standard errors are reported in brackets. They are robust to general cross-section and time-series heteroskedasticity.
For the BCFE they are calculated using 50 bootstrap iterations (infiters).

(v) Sum AR is the sum of the estimated AR coe�cients b�
1

and b�
2

.

(vi) Time dummies are included in every specification but not reported.

the temporal dependence implied by the dGMM estimates is also downward biased.
Moreover, the standard deviation of the dGMM estimator is much bigger than that of
the FE estimator, especially for the coe�cient on ni,t�1

. The sGMM estimator improves
on these results as the coe�cient of 0.914 on ni,t�1

is now between the POLS and FE
estimates, as is expected for an unbiased estimator. Moreover, the overall temporal
dependence of 0.846 is higher than that implied by the downward biased FE estimates.
However, the coe�cient of -0.068 on ni,t�2

is now even higher than the upward biased
POLS estimate and statistically not significantly di↵erent from zero. Furthermore, the
standard deviation has decreased a little but is still much higher than that of the FE
estimator.

The last column in Table 5 reports BCFE estimates. Since firms operating in dif-
ferent industries may have considerably di↵erent error variances, which are also likely
to change over time, we use the wild bootstrap (wboot) resampling scheme as this is
robust to heteroskedasticity. We further use the burn-in (bi) initialization, which is
the most flexible approach. The Stata commands to obtain the BCFE results and full
estimation output are reported in section 9.2 of the Appendix. This appendix also con-
tains estimation results for alternative resampling schemes. Turning to the estimation
results, in line with what we expect, the coe�cient of 1.008 on ni,t�1

is closer to the
POLS estimate than to the FE estimate while the coe�cient of -0.161 on ni,t�2

is close
to the FE estimate. Moreover, the standard errors of the BCFE are close to that of
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the FE estimator and much lower than that of the GMM estimators, especially for the
coe�cient on ni,t�1

. Also note that although its standard error is higher than that of
the sGMM estimator, ni,t�2

now even shows up as significantly negative at the 5% level
of significance.

As the error terms are potentially correlated over cross-sections, Table 6 reports
BCFE estimates using the bootstrap resampling scheme csd, which reshu✏es error
terms using the same time index for each cross-section in order to preserve a general
type of contemporaneous error CSD. It also takes into account cross-sectional and un-
conditional temporal heteroskedasticity. As this resampling scheme requires a balanced
panel, we take a subset of the original data which includes 80 firms over the period
1978-1982. As a benchmark, Table 6 also contains the POLS and FE estimates for this
reduced dataset. The BCFE estimate of 1.179 on ni,t�1

is now somewhat above the
POLS estimate of 1.104 while the BCFE estimate of -0.319 on ni,t�2

is now slightly be-
low the FE estimate of -0.229. However, the overall temporal dependence, as measured
by the sum of the AR coe�cients, of 0.86 for the BCFE estimator is still in the range
[0.535,0.974] implied by the POLS and FE estimates.

Table 6: Estimated employment equations: balanced panel

Dependent variable: nit Sample period: 1978-1982, 80 U.K. firms

POLS FE BCFE

ni,t�1

1.104 (0.048) 0.764 (0.048) 1.179 (0.058)
ni,t�2

�0.130 (0.047) �0.229 (0.064) �0.319 (0.063)
wit �0.087 (0.084) �0.108 (0.116) �0.107 (0.125)
wi,t�1

0.049 (0.088) �0.021 (0.120) 0.049 (0.169)
kit 0.326 (0.044) 0.376 (0.054) 0.383 (0.058)
ki,t�1

�0.221 (0.059) �0.090 (0.054) �0.269 (0.075)
ki,t�2

�0.083 (0.036) 0.001 (0.043) �0.015 (0.036)
ysit 0.095 (0.187) 0.034 (0.204) 0.034 (0.228)
ysi,t�1

�0.385 (0.208) �0.326 (0.194) �0.375 (0.284)
ysi,t�2

0.257 (0.123) 0.305 (0.176) 0.417 (0.220)

Sum AR 0.974 (0.009) 0.535 (0.070) 0.860 (0.046)

Notes:

(i) Pooled OLS (POLS) and Fixed E↵ects (FE) estimates are obtained using the
Stata routines regress and xtreg respectively with the vce(robust) option to
calculate standard errors.

(ii) The BCFE estimator uses 250 bootstrap samples (bciters) with a burn-in (bi)
initialization and the csd resampling option to allow for general error CSD and
cross-sectional as well as unconditional temporal heteroskedasticity.

(iii) Estimated standard errors are reported in brackets. They are robust to gen-
eral cross-section and time-series heteroskedasticity. For the BCFE they are
calculated using 50 bootstrap iterations (infiters).

(iv) Sum AR is the sum of the estimated AR coe�cients b�
1

and b�
2

.

(v) Time dummies are included in every specification but not reported.
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6 Conclusion

This paper has described a new Stata routine, xtbcfe, that executes an iterative
bootstrap-based bias-corrected fixed e↵ects estimator for dynamic panels building on
Everaert and Pozzi (2007). We first simplify the core of their algorithm using the in-
variance principle and next extend it to allow for unbalanced and higher-order dynamic
panels. We implement various bootstrap error resampling schemes to account for general
heteroscedasticity and contemporaneous cross-sectional dependence and include several
options for the initial conditions. The choice of an appropriate resampling scheme is
important to preserve the structure of the error terms in the resampling process. Several
resampling options will often be applicable in practice but tend to imply a di↵erent de-
pendency over bootstrap iterations in small datasets. As the xtbcfe algorithm performs
better when the generated samples are independent, researchers are advised to choose
the alternative that incorporates the highest degree of randomness in the resampling
process.

Inference can be carried out using either parametric or non-parametric bootstrapped
variance-covariance matrices or percentile intervals. The latter have the advantage of
not making any distributional assumptions and may be more suited in smaller datasets.
Monte Carlo simulations show that the simplification of the original algorithm results in
a BCFE estimator that is virtually unbiased for very small T . The Monte Carlo results
also support the BCFE in higher order dynamic panels and panels with contemporane-
ous error CSD.

Future extensions of the code will include allowing for predetermined and endogenous
covariates and for intertemporal cross-sectional dependence.
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9 Appendix

9.1 Convergence, initiation and non-stationarity

In this subsection we provide some additional technical details regarding the xtbcfe

routine. As this is an iterative bias-correction procedure, an important issue is that of
convergence. When evaluating equation (7), the convergence criterion is by default set
to 0.005. Point estimates emerging from a divergent estimator will, in general, not have
appropriate statistical properties and hence are not reliable for inference (the routine will
therefore not initiate the inference sequence in this case). However, the relatively strict
convergence criterion may also cause the algorithm to alternate indefinitely within a very
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small band without ever converging. We accommodate this issue by altering the criterion
after a few iterations to measure the di↵erence in the average over the last 4 iterations
and the average over the previous 4 iterations. This results in a significant increase
in the speed of convergence without a material impact on the statistical properties.
Additionally, the criterion is more di�cult to satisfy in bigger models. It is therefore
automatically adjusted to be more lenient as more lags enter the model, i.e. the criterion
0.005 is multiplied by the number of lags p. Finally, users are also able to specify their
own criterion with the criterion() option.

Non-convergence in itself also entails important information about the model consid-
ered by the researcher. Our (Monte Carlo) experiments have shown that the algorithm
has good convergence properties, even in small datasets, when the model is correctly
specified. However, if the model is misspecified these properties tend to deteriorate,
especially when the considered lag length for the dependent variable is set much too
high. As such, failure to converge can be seen as a rough indication for the model being
too large and can be used as a tool for model building.

If the researcher is confident about the specified model, a divergent estimator may
be remedied by an alternative initialization scheme. Generally speaking, the stability of
the algorithm tends to increase when more restrictions are put on the initial conditions.
A purely data-driven initialization like the burn-in tends to be less stable whereas the
aho/ahe options and especially the det option impose more structure and therefore
more likely lead to convergence. This is of particular importance for small datasets
where the data may be (nearly) non-stationary or very noisy. Parameter estimates may
imply non-stationarity in which case a burn-in initialization can result in generated
initial conditions that are close to infinity and not of practical use4. Similarly, the
original data may not be rich enough to allow meaningful estimation of the initial
condition covariance matrix ⌃ used in the analytical initializations aho/ahe.5 In case
the generated initial values are unreasonably large, the xtbcfe estimator will issue a
warning alerting the user of numerical problems that may follow. A less data-driven
initiation like the deterministic (det) option should then be considered as an alternative.

9.2 Commands and estimation output

We obtained the results for the xtbcfe routine from section 5 using the commands and
output outlined below. First we load the dataset

. webuse abdata

4. The burn-in generates initial conditions from the model with estimated parameters. Therefore, if
parameter roots imply non-stationarity, the unrestricted burn-in would generate observations from
a non-stationary autoregressive process and quickly obtain very large numbers that cause numerical
problems. We have therefore adjusted the burn-in to attenuate this issue by imposing stationarity
over the burn-in period.

5. To ensure positive definiteness, the estimation of ⌃ occurs in a restricted manner. We start from
a diagonal matrix (estimating variances) and fill in the kth diagonal (estimating covariances) only
if the resulting matrix remains positive definite. If this is not the case, all the remaining diagonals
(k up to p) are kept at zero.



I. De Vos, G. Everaert and I. Ruyssen 27

As this dataset is already xtset we do not need to do so again. We specify to generate
250 bootstrap samples with wild bootstrap resampling in combination with the burn-in
initiation, 2 lags, 50 iterations for bootstrapped standard errors and the inclusion of
time dummies

. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) res(wboot) ini(bi) infer(
> inf_se) infit(50) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 751
Group variable : id Number of groups = 140

Resample : Wild bootstrap Obs per group: min = 5
Initialization : Burn-in avg = 5.4
Convergence : Yes max = 7

Dependent variable : n

Results
Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.0080990 0.0574874 17.54 0.000 0.8951962 1.1210019
L2.n -0.1610846 0.0694129 -2.32 0.021 -0.2974086 -0.0247606
w -0.5601488 0.1625968 -3.45 0.001 -0.8794822 -0.2408154
wL1 0.4952296 0.1922564 2.58 0.010 0.1176460 0.8728132
k 0.3849128 0.0507612 7.58 0.000 0.2852199 0.4846056
kL1 -0.2016635 0.0595062 -3.39 0.001 -0.3185311 -0.0847958
kL2 -0.0530621 0.0378414 -1.40 0.161 -0.1273810 0.0212568
ys 0.4548348 0.1783124 2.55 0.011 0.1046367 0.8050330
ysL1 -0.7455434 0.2705431 -2.76 0.006 -1.2768789 -0.2142079
ysL2 0.1329351 0.1708564 0.78 0.437 -0.2026200 0.4684901
year4 0.0146121 0.0128807 1.13 0.257 -0.0106851 0.0399094
year5 0.0265182 0.0199924 1.33 0.185 -0.0127460 0.0657824
year6 -0.0088682 0.0264345 -0.34 0.737 -0.0607846 0.0430481
year7 -0.0117055 0.0208444 -0.56 0.575 -0.0526430 0.0292320
year8 0.0010984 0.0224391 0.05 0.961 -0.0429711 0.0451679
year9 0.0187045 0.0247321 0.76 0.450 -0.0298683 0.0672773

Notes:
- Bootstrapped standard errors
- Confidence bounds for the t- distribution calculated with bootstrapped

standard errors
- Inference performed with non-parametric bootstrap

where after estimation we obtain the covariance matrix (only partly displayed here)

. matrix list e(V)

symmetric e(V)[16,16]
L. L2.
n n w wL1 k

L.n .0033048
L2.n -.00278868 .00481814

w .00384405 -.00582258 .02643771
wL1 -.00368057 .00500156 -.02946648 .03696251

k -.00127285 .00008722 -.00001881 -.00065258 .0025767
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(output omitted )

We next select the randomized temporal heteroscedasticity resampling scheme (thet r).
We use this to account for cross-sectional dependence without having to balance the
data (the csd resampling scheme requires a balanced dataset). Moreover, it has the
advantage that even though the time series dimension is short, we make use of the
large cross-section size to limit the dependency over bootstrap samples and maintain
the favorable properties of our estimator (see section 4.2).

. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) res(thet_r) ini(bi) infer
> (inf_se) infit(50) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 751
Group variable : id Number of groups = 140

Resample : random T-Heteroscedasticity Obs per group: min = 5
Initialization : Burn-in avg = 5.4
Convergence : Yes max = 7

Dependent variable : n

Results
Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.0497798 0.0771825 13.60 0.000 0.8981965 1.2013630
L2.n -0.1679384 0.0674475 -2.49 0.013 -0.3004025 -0.0354743
w -0.5560476 0.1495334 -3.72 0.000 -0.8497251 -0.2623700
wL1 0.5086207 0.1781491 2.86 0.004 0.1587433 0.8584982
k 0.3810623 0.0660147 5.77 0.000 0.2514121 0.5107125
kL1 -0.2214609 0.0607838 -3.64 0.000 -0.3408378 -0.1020840
kL2 -0.0446566 0.0323679 -1.38 0.168 -0.1082259 0.0189126
ys 0.4662594 0.1775042 2.63 0.009 0.1176485 0.8148704
ysL1 -0.7721300 0.2518845 -3.07 0.002 -1.2668208 -0.2774392
ysL2 0.1531533 0.1304085 1.17 0.241 -0.1029637 0.4092703
year4 0.0203758 0.0109208 1.87 0.063 -0.0010721 0.0418238
year5 0.0344659 0.0178722 1.93 0.054 -0.0006345 0.0695662
year6 -0.0014030 0.0268697 -0.05 0.958 -0.0541740 0.0513681
year7 0.0000237 0.0192105 0.00 0.999 -0.0377049 0.0377524
year8 0.0137072 0.0189288 0.72 0.469 -0.0234681 0.0508825
year9 0.0316466 0.0244391 1.29 0.196 -0.0163509 0.0796440

Notes:
- Bootstrapped standard errors
- Confidence bounds for the t- distribution calculated with bootstrapped

standard errors
- Inference performed with non-parametric bootstrap

Subsequently, we estimate the model with the csd resampling option. As this re-
quires a balanced panel, we balance the data using the xtbalance package (xtbalance,
range(1976 1982)). We keep the burn-in initiation to also incorporate cross-sectional
dependence in the generation of the initial conditions.
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. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) res(csd) ini(bi) infer(in
> f_se) infit(50) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 400
Group variable : id Number of groups = 80

Resample : Cross-section dependence Obs per group: min = 5
Initialization : Burn-in avg = 5.0
Convergence : Yes max = 5

Dependent variable : n

Results
Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.1791647 0.0577193 20.43 0.000 1.0655878 1.2927416
L2.n -0.3189932 0.0629156 -5.07 0.000 -0.4427952 -0.1951913
w -0.1072298 0.1253633 -0.86 0.393 -0.3539129 0.1394533
wL1 0.0496606 0.1687568 0.29 0.769 -0.2824100 0.3817313
k 0.3833026 0.0581229 6.59 0.000 0.2689314 0.4976739
kL1 -0.2695174 0.0752560 -3.58 0.000 -0.4176022 -0.1214326
kL2 -0.0146591 0.0368312 -0.40 0.691 -0.0871336 0.0578154
ys 0.0337995 0.2279966 0.15 0.882 -0.4148401 0.4824391
ysL1 -0.3751031 0.2839324 -1.32 0.187 -0.9338102 0.1836039
ysL2 0.4174060 0.2198262 1.90 0.059 -0.0151563 0.8499684
year4 0.0136099 0.0125602 1.08 0.279 -0.0111054 0.0383251
year5 -0.0313750 0.0310202 -1.01 0.313 -0.0924148 0.0296649
year6 -0.0992146 0.0384908 -2.58 0.010 -0.1749547 -0.0234745
year7 -0.0195502 0.0195095 -1.00 0.317 -0.0579399 0.0188395

Notes:
- Bootstrapped standard errors
- Confidence bounds for the t- distribution calculated with bootstrapped

standard errors
- Inference performed with non-parametric bootstrap

. matrix list e(V)

symmetric e(V)[14,14]
L. L2.
n n w wL1 k

L.n .00333152
L2.n -.0025691 .00395837

w .00030945 -.00043054 .01571595
wL1 -.00114287 .00126991 -.01784427 .02847886

k -.00162874 .00034465 .00114095 -.00028964 .00337828

(output omitted )

As the time series dimension is now shortened, the distribution of the xtbcfe routine
may be poorly approximated by the normal distribution. A percentile interval may be
the better choice for inference here because it does not make any symmetry or normality
assumptions. We select it by specifying the inference(inf ci) option and increase the
number of inference iterations to 200.

. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) res(csd) ini(bi) infer(in
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> f_ci) infit(200) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 400
Group variable : id Number of groups = 80

Resample : Cross-section dependence Obs per group: min = 5
Initialization : Burn-in avg = 5.0
Convergence : Yes max = 5

Dependent variable : n

Results
Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.1791647 0.0604333 19.51 0.000 1.0527685 1.2954533
L2.n -0.3189932 0.0672792 -4.74 0.000 -0.4449091 -0.1578264
w -0.1072298 0.1208303 -0.89 0.376 -0.3784196 0.0993305
wL1 0.0496606 0.1584258 0.31 0.754 -0.1936102 0.3992755
k 0.3833026 0.0532620 7.20 0.000 0.2632709 0.4742108
kL1 -0.2695174 0.0746871 -3.61 0.000 -0.3728123 -0.1027051
kL2 -0.0146591 0.0415927 -0.35 0.725 -0.1086166 0.0629152
ys 0.0337995 0.2057357 0.16 0.870 -0.2999481 0.4710875
ysL1 -0.3751031 0.2672561 -1.40 0.161 -0.9478765 0.0263027
ysL2 0.4174060 0.2055512 2.03 0.043 0.0411414 0.8130541
year4 0.0136099 0.0135002 1.01 0.314 -0.0144991 0.0360641
year5 -0.0313750 0.0292467 -1.07 0.284 -0.0912637 0.0245360
year6 -0.0992146 0.0347852 -2.85 0.005 -0.1616807 -0.0307033
year7 -0.0195502 0.0200393 -0.98 0.330 -0.0542770 0.0118444

Notes:
- Bootstrapped standard errors
- Bootstrap 95% (percentile-based) confidence intervals
- Inference performed with non-parametric bootstrap

Given the limited time series size, this resampling scheme may also su↵er from correlated
bootstrap samples. To alleviate this issue, we use randomized temporal heteroscedas-
ticity resampling.

. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) res(thet_r) ini(bi) infer
> (inf_ci) infit(200) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 400
Group variable : id Number of groups = 80

Resample : random T-Heteroscedasticity Obs per group: min = 5
Initialization : Burn-in avg = 5.0
Convergence : Yes max = 5

Dependent variable : n

Results
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Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.1283840 0.0602031 18.74 0.000 0.9849712 1.2351810
L2.n -0.2800163 0.0630316 -4.44 0.000 -0.3680919 -0.1256024
w -0.1139698 0.1065288 -1.07 0.286 -0.3373439 0.0698350
wL1 0.0493259 0.1495614 0.33 0.742 -0.1886080 0.4095369
k 0.3815278 0.0543022 7.03 0.000 0.2784973 0.4824990
kL1 -0.2431629 0.0695407 -3.50 0.001 -0.3617617 -0.0987648
kL2 -0.0229568 0.0396791 -0.58 0.563 -0.1457693 0.0426496
ys 0.0409369 0.1990656 0.21 0.837 -0.3281545 0.4940364
ysL1 -0.3802078 0.2439174 -1.56 0.120 -0.9901919 0.0201739
ysL2 0.4098277 0.1773858 2.31 0.022 0.0536915 0.7672914
year4 0.0123800 0.0111948 1.11 0.270 -0.0086366 0.0371148
year5 -0.0311606 0.0256305 -1.22 0.225 -0.0820865 0.0169481
year6 -0.1005774 0.0299376 -3.36 0.001 -0.1591851 -0.0424375
year7 -0.0241097 0.0161215 -1.50 0.136 -0.0619703 0.0002694

Notes:
- Bootstrapped standard errors
- Bootstrap 95% (percentile-based) confidence intervals
- Inference performed with non-parametric bootstrap

About the authors

Ignace De Vos, Gerdie Everaert and Ilse Ruyssen are researchers at the Study Hive for Economic

Research and Public Policy Analysis (SHERPPA), Ghent University.


