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Abstract

This paper analyzes the amount of time variation in the parameters of a reduced-form

empirical macroeconomic model for the U.S. economy. We set up an unobserved components

model to decompose output, inflation and unemployment in their stochastic trend and business

cycle gap components. The latter are related through the Phillips curve and Okun’s Law.

Key parameters such as the potential output growth rate, the slope of the Phillips curve

and the strength of Okun’s Law, are allowed to change over time in order to account for

potential structural changes in the U.S. economy. Moreover, stochastic volatility is added

to all components to account for shifts in macroeconomic volatility. A Bayesian stochastic

model specification search is employed to test which parameters are time-varying and which

unobserved components exhibit stochastic volatility. Using quarterly data from 1959Q2 to

2014Q3 we find substantial time variation in Okun’s Law, while the Phillips curve slope

appears to be stable. The potential output growth rate exhibits a drastic and persistent

decline. Stochastic volatility is found to be important for cyclical shocks to the economy,

while the volatility of permanent shocks remains stable.

JEL: C32, E24, E31

1 Introduction

Over the last decades the U.S. economy has experienced a number of notable structural changes.

Well documented are the productivity slowdown in the early 1970s and the reduction in the

volatility of key macroeconomic variables in the mid 1980s, known as the Great Moderation.

More recently, due to the experience of the 2001 recession and the Great Recession, the interest

in the academic literature in analyzing structural changes has been renewed. In particular, during

the Great Recession, with unemployment being very high, most Phillip curve estimates imply

that prices should have fallen much more than what the actual data show. This case of missing

deflation has cast doubt on the stability of the Phillips curve. Moreover, in the aftermath of the

last two recessions, job growth was substantially lower than what the level of output growth would
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have implied. These episodes, known as ‘jobless recoveries’, have let many observers to conclude

that the trade-off between unemployment and output has changed. Finally, the severeness of the

Great Recession and the related increases in the volatility of key macroeconomic variables may

herald the end of the Great Moderation.

A growing literature investigates time variation in macroeconomic relationships. First, the

necessity for empirical models to account for changes in the volatility of macroeconomic variables

has been emphasized by Hamilton (2008) and Fernández-Villaverde and Rubio-Ramı́rez (2010),

the former showing that not accounting for volatility changes can lead to biased estimates and false

hypothesis testing. Second, regarding the relation between inflation and real economic activity,

the literature has collected growing evidence for a change in the slope of the Phillips curve. Ball

and Mazumder (2011) forecast inflation over the period 2008-2010 using backward-looking Phillips

curve estimates for the period 1960-2007. The model predicts substantial deflation, which is not

in line with the slightly positive actual inflation rate observed over this period. Hall (2011)

also emphasizes the case of missing deflation during the Great Recession and notes that inflation

remained remarkably stable at a small but positive rate despite the large and persistent slack in real

activity. Roberts (2006) analyzes data prior to the Great recession and finds that the Phillips curve

slope of a reduced-form equation for the U.S. fell by nearly half between the periods 1960-1983 and

1984-2002. Similar results can be found in Atkeson and Ohanian (2001) and Mishkin (2007). Third,

regarding the relationship between unemployment and real economic activity, a related literature

investigates the stability of Okun’s Law. Daly et al. (2012) note that if Okun’s Law had held in

2009, the U.S. unemployment rate would only have risen by about half of the actual rise. Owyang

and Sekhposyan (2012) conclude that the relation between unemployment and output fluctuations

changes significantly during the most recent recessions. Lee (2000) reports international evidence

for structural breaks in the Okun coefficient during the 1970s. Contradicting evidence is given by

Ball et al. (2013), who find that Okun’s Law is a ‘strong and stable’ relationship.

Measuring these various types of time variation is challenging as it relates to variables that are

not directly observed. The Phillips curve links inflation to expected inflation and to a measure

for the deviation of real economic activity from its potential, such as the output gap or the

unemployment gap. These determinants are unobserved. The same argument holds for Okun’s

Law which models the interaction between the output gap and the unemployment gap.1 To proxy

these unobserved factors, many studies rely on purely statistical trend-cycle decompositions based

on filtering techniques such as the Hodrick-Prescott filter or use external estimates provided by a

statistical bureau such as the Congressional Budget Office’s (CBO) series for the U.S. economy.

The first approach suffers from a lack of structural interpretation while the second entails the risk

of falling into an endogeneity trap. The CBO for instance follows a growth model for calculating

potential output thereby relying on constant values for the slope of the Phillips curve and the

Okun’s Law coefficient. As such, these slopes and their stability are artificially imposed on the

data from the outset.

In this paper, we set up and estimate a multivariate unobserved components model for the

1 An alternative version of Okun’s Law relates the change in the unemployment rate to output growth. This
framework, however, rests on the restrictive assumption of a constant natural rate of unemployment and a constant
growth rate of potential output.
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U.S. economy to jointly estimate a time-varying NAIRU, trend inflation, potential output, and

the respective gaps. Important model parameters are allowed to change over time. Specifically,

we allow the forward-looking New Keynesian Phillips curve slope, the Okun’s Law coefficient, the

growth rate of potential output and the variances of the innovations to all unobserved components

to vary over time.

The model in our paper is most closely related to the following recent papers. First, Stella and

Stock (2012) estimate the time-varying trend inflation and the NAIRU using a bivariate unobserved

components (UC) model with stochastic volatility (SV). While the Phillips curve slope is treated as

constant in the forward-looking inflation equation, the implied backward-looking Philips curve has

a time-varying slope parameter which is found to vary considerably. Second, Chan et al. (2012)

build on this model and use a bounded random walk specification for the trend components.

However, their analysis can be understood as a forecasting exercise as less emphasis is put on time

variation in the parameters. They stick to a bivariate model of inflation and unemployment. Third,

Kim et al. (2014) allow for two structural breaks in the slope of the U.S. New Keynesian Phillips

curve. The sensitivity of inflation to the CBO output gap is found to be small but significant prior

to 1971, while being insignificant from 1971 onwards.

We contribute to this literature in the following way. Our unrestricted model nests important

empirical models with time-varying parameters. In contrast to the existing literature, we start

from a more general framework which allows most of the model’s parameters to vary according

to a random walk process. This allows for a very flexible evolution over time. We then select a

parsimonious model by testing the relevance of the estimated time variation in each of the model’s

components. To this end, we use the Bayesian stochastic model specification search for state

space models as outlined in Frühwirth-Schnatter and Wagner (2010). The Bayesian approach is

well-suited to deal with the non-regular testing problem of deciding whether a component is fixed

or time-varying. To the best of our knowledge, this is the first study to allow and explicitely test

for a wide range of time-varying parameters in a macroeconomic time-series model. A such, our

results will provide new evidence on the form and the degree of structural change in the U.S.

economy.

Our main findings can be summarized as follows. First, the correlation between cyclical un-

employment and cyclical output varies over time and appears to be less pronounced in recessions.

Second, the slope of the Phillips curve is constant over time. This finding is robust over a forward

and backward-looking specification. Third, the growth rate of potential output has decreased from

a quarterly growth rate of 1% in the 1960s to 0.4% in the 2000s. The most substantial decreases

are observed over the 1970s and 2000s. Fourth, shocks to the output gap and to the transitory

inflation component exhibit stochastic volatility while shocks to the NAIRU, potential output and

trend inflation appear to be homoskedastic.

The remainder of the paper is structured as follows: The next section introduces our empirical

model and explains how we test for time variation. Results are presented in section 3. In section

4 we perform several robustness checks and discuss model extensions. The final section concludes.
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2 Empirical approach

This section explains our econometric approach. First, it lays out a multivariate unobserved

components model with time varying parameters and stochastic volatilities, designed to fit U.S.

macroeconomic data. Second, the Bayesian stochastic model selection approach is explained fol-

lowed by a description of the Markov Chain Monte Carlo (MCMC) algorithm employed to estimate

the model.

2.1 An unobserved components model

Output: trend/cycle decomposition

Consider a decomposition of real GDP yt into a stationary cycle yct and a non-stationary trend yτt

referred to as potential output

yt = yτt + yct + εyt , εyt ∼ i.i.d.N (0, σ2
ε,y), (1)

where εyt is included to capture measurement error and non-persistent shocks. Potential output is

modeled as a random walk process with stochastic drift κt

yτt+1 = κt + yτt + exp {hyt }ψyt , ψyt ∼ i.i.d.N (0, 1), (2)

κt+1 = κt + ψκt , ψκt ∼ i.i.d.N (0, σ2
κ). (3)

The stochastic drift is included to capture permanent changes in the growth rate of potential

output. The productivity slowdown in the early 1970s for instance is likely to have lowered the

growth rate of potential output. Demographic changes as well as potential long-run effects of the

Great Recession are other potential drivers of κt. The output gap yct is modeled as a stationary

autoregressive (AR) process of order two

yct+1 = ρ1y
c
t + ρ2y

c
t−1 + exp {hct}ψct , ψct ∼ i.i.d.N (0, 1). (4)

This AR(2) specification allows the output gap to exhibit the standard hump-shaped pattern. The

stochastic volatility terms exp {hyt } and exp {hct} in the innovations to the trend and the cycle are

included to account for changes in macroeconomic volatility such as the Great Moderation or the

recent increase in volatility due to the financial crises. These components are specified below.

Inflation: a time-varying New-Keynesian Phillips curve

In contemporary macroeconomic models, the New-Keynesian Phillips Curve (NKPC) relates actual

inflation to expected inflation and some measure for excess demand. It can be derived from a

micro-founded theoretical model with Calvo (1983) pricing in which firms seek to set their price

as a mark-up over marginal costs but are only randomly allowed to change their prices. However,

in its pristine form the empirical performance of the NKPC is disappointing as the slope of the

NKPC is often found to be small and insignificant. Moreover, it fails to match important stylized
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facts of inflation dynamics. The purely forward-looking specification implies that current inflation

is the discounted present value of expected future activity gaps. As the activity gap is a stationary

process inflation should be stationary as well. This is at odds with the observed high degree of

persistence in inflation, which is typically found to be non-stationary. Fuhrer and Moore (1995),

Mankiw (2001), Rudd and Whelan (2005, 2007) and Mavroeidis et al. (2014) discuss these failures

in greater detail.

An appealing way to match the NKPC with the data is the introduction of stochastic trend

inflation as in Kim et al. (2014); Morley et al. (2013); Stella and Stock (2012).2 Cogley and Sbor-

done (2008) derive a NKPC that allows for a time-varying trend inflation rate. By incorporating

trend inflation their purely forward-looking NKPC fits the data well without the need to include

backward-looking components. We follow this literature and use an inflation gap NKPC in which

inflation is modeled in deviation from trend inflation πτt and the output gap is used as a measure

of real activity, i.e.

πt − πτt = ωEt(πt+1 − πτt+1) + βπt y
c
t + ζ̃t, (5)

where ω is a discount factor. As shown by Beveridge and Nelson (1981), in the presence of a

zero-mean transitory component the trend component πτt equals the long-run inflation forecast

lim
h→∞

E(πt+h). Following Cogley and Sbordone (2008) and Kim et al. (2014), the term ζ̃t is included

to capture variation in the inflation gap that is not explained by the conventional forward-looking

NKPC. According to Mavroeidis et al. (2014) this term can be interpreted as a combination of

cost-push shocks, such as shocks to the markup or to input (e.g. oil) prices. As this term is

potentially serially correlated, it allows for an additional source of inflation persistence not related

to expectations or real activity. Hence, our model resembles alternative hybrid NKPC models that

explicitly add lagged inflation or supply shock variables. A s we want to analyze whether the slope

of the Phillips curve is time-varying we allow βπt to be a time-varying parameter. Our specification

of the Phillips curve is most closely related to that of Kim et al. (2014) who allow βπt to vary using

a three-state Markov switching model. Iterating equation (5) forward and rearranging yields

πt = πτt + lim
j→∞

ωjEt(πt+j − πτt+j) +

∞∑
j=0

ωjEt(β
π
t+jy

c
t+j) + ζt,

= πτt +

∞∑
j=0

ωjEt(β
π
t+jy

c
t+j) + ζt, (6)

with ζt =
∑∞
j=0Et

(
ζ̃t+j

)
and lim

j→∞
ωj = 0. Equation (6) implies that inflation has a trend/cycle

representation, i.e.

πt = πτt + πct + επt , επt ∼ i.i.d.N (0, σ2
ε,π), (7)

2The trend may be attributed to shifts in monetary policy (see e.g. Woodford, 2008; Cogley and Sbordone, 2008;
Goodfriend and King, 2012).

5



where πct is the inflation gap given by

πct =

∞∑
j=0

ωjEt(β
π
t+jy

c
t+j) + ζt. (8)

The idiosyncratic term επt is added in equation (7) to capture measurement error and non-persistent

shocks. Trend inflation πτt is modeled as a driftless random walk

πτt+1 = πτt + exp {hπt }ψπt , ψπt ∼ i.i.d.N (0, 1), (9)

where the innovations ψπt are allowed to exhibit stochastic volatility to capture changes in the

dynamics of long-run inflation, possibly driven by different monetary policy regimes (see e.g.

Stock and Watson, 2007, for a similar specification). The slope of the Phillips curve βπt is allowed

to change over time according to a random walk

βπt+1 = βπt + ηπt , ηπt ∼ i.i.d.N (0, σ2
η,π). (10)

We model the temporary inflation component ζt in equation (8) as an AR(1) process

ζt+1 = %ζt + exp
{
hζt

}
ψζt , ψζt ∼ i.i.d.N (0, 1). (11)

Given the DGPs of yct and βπt in equations (4) and (10) and the assumption that ψct and ηπt are

mutually uncorrelated error terms, the output gap term
∑∞
j=0 ω

jEt(β
π
t+jy

c
t+j) in equation (8) can

be expressed as

πct = βπt

[
1 0

]([ 1 0

0 1

]
− ω

[
ρ1 ρ2

1 0

])−1 [
yct

yct−1

]
, (12)

=
βπt

1− ωρ1 − ω2ρ2

(
yct + ωρ2y

c
t−1
)
. (13)

Hence, the model for inflation in equation (7) can be rewritten as

πt = πτt + βπt ỹ
c
t + ζt + επt , (14)

where ỹct = 1
1−ωρ1−ω2ρ2

(
yct + ωρ2y

c
t−1
)
.

Unemployment: a time-varying Okun’s Law relation

We assume that the unemployment rate ut has the following trend/cycle representation

ut = uτt + βut y
c
t + εut , εut ∼ i.i.d.N (0, σ2

ε,u), (15)
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where εut captures measurement error and non-persistent shocks. Following, among others, Staiger

et al. (1997) and Laubach (2001) we model trend unemployment uτt as a random walk process

uτt+1 = uτt + exp {hut }ψut , ψut ∼ i.i.d.N (0, 1). (16)

We give this component a NAIRU interpretation, i.e. as long as the observed unemployment rate

equals this long-run trend, no inflationary pressure emanates from the labor market. Again, we

allow for stochastic volatility in the trend component so that the variance of permanent shocks to

the labor market can differ over time. The strength of Okun’s Law βut is allowed to change over

time according to a random walk process

βut+1 = βut + ηut , ηut ∼ i.i.d.N (0, σ2
η,u). (17)

Stochastic volatilities

All stochastic volatilities are modeled as random walks

hkt+1 = hkt + γkt , γkt ∼ i.i.d.N (0, σ2
γ,k), (18)

for k = y, π, u, c, ζ. A key feature of the stochastic volatility components exp
{
hkt
}
ψkt is that they

are nonlinear but can be transformed into linear components by taking the logarithm of their

squares

ln
(
exp

{
hkt
}
ψkt
)2

= 2hkt + ln
(
ψkt
)2
, (19)

where ln
(
ψkt
)2

is log-chi-square distributed with expected value −1.2704 and variance 4.93. Fol-

lowing Kim et al. (1998), we approximate the linear model in (19) by an offset mixture time series

model as

gkt = 2hkt + εkt , (20)

where gkt = ln
((

exp
{
hkt
}
ψkt
)2

+ c
)

with c = .001 being an offset constant, and the distribution

of εkt being the following mixture of normals

f
(
εkt
)

=

M∑
i=1

qifN
(
εkt |mi − 1.2704, ν2i

)
, (21)

with component probabilities qi, means mi − 1.2704 and variances ν2i . Equivalently, this mixture

density can be written in terms of the component indicator variable ιkt as

εkt |
(
ιkt = i

)
∼ N

(
mi − 1.2704, ν2i

)
, with Pr

(
ιkt = i

)
= qi. (22)

Following Omori et al. (2007), we use a mixture of M = 10 normal distributions to make the

approximation to the log-chi-square distribution sufficiently good. Values for {qi,mi, ν
2
i } are
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provided by Omori et al. in their Table 1.

2.2 Stochastic model specification search

The empirical model outlined in the Subsection 2.1 nests a number of model specifications used

in the recent literature. The univariate unobserved components model for inflation examined by

Stock and Watson (2007) can for instance be obtained by restricting βπt , % and σ2
ε,π to zero. The

bivariate unobserved components specification for inflation and unemployment of Stella and Stock

(2012) is nested when we replace the output gap by the unemployment gap, set % and σ2
ε,π to zero

and restrict βπt to be constant.

A key question therefore is which model components are relevant and which can be excluded.

However, model specification for state space models is a difficult task as this leads to non-regular

testing problems. Consider for instance the question whether the slope of the Phillips curve should

be modeled as constant or time-varying. This implies testing σ2
η,π = 0 against σ2

η,π > 0, which is

a non-regular testing problem as the null hypothesis lies on the boundary of the parameter space.

A similar problem arises when testing whether the temporary component ζt should be included in

equation (14) or whether the stochastic volatilities are relevant.

In principle we could derive the reduced form VARMA representation of our model and apply

standard structural break tests for mean and variances. However, by testing for time-variation in

the UC model instead of the the reduced form VARMA model, we can distinguish between changes

in the volatilities to permanent versus transitory shocks. Moreover, deriving the reduced form

VARMA representation requires assumptions regarding the order of integration of all variables.

However, for output the order of integration is an outcome of our testing procedure as we allow

potential output growth to be either constant or evolve as a random walk in which case output is

I(2).

As an alternative, we use a Bayesian stochastic model specification search. The Bayesian ap-

proach is well-suited to deal with non-regular testing problems by computing posterior probabilities

for each of the candidate models. In particular, Frühwirth-Schnatter and Wagner (2010) show how

to extend Bayesian variable selection in standard regression models to state space models. Their

approach relies on a non-centered parameterization of the state space model in which (i) binary

stochastic indicators for each of the model components are sampled together with the parameters

and (ii) the standard inverse Gamma prior for the variances of innovations to the components is

replaced by a Gaussian prior centered at zero for the square root of these variances. The exact

implementation applied to our state space model is outlined below.

Non-centered parameterization

Frühwirth-Schnatter and Wagner (2010) argue that a first piece of information on the hypothesis

whether a variance parameter in a state space model is zero or not can be obtained by considering

a non-centered parameterization. For the variances of the innovations to the slope of the Phillips
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curve and Okun’s Law, i.e. σ2
η,π and σ2

η,u, this implies rearranging equations (10) and (17) to

βjt+1 = βj0 + ση,j β̃
j
t+1, (23)

with β̃jt+1 = β̃jt + η̃jt , β̃j0 = 0, η̃jt ∼ i.i.d.N (0, 1), (24)

for j = π, u and where βj0 is the initial value of the level of βjt . A crucial aspect of the non-

centered parameterization is that it is not identified, i.e. the signs of ση,j and β̃jt can be changed

by multiplying both with -1 without changing their product in equation (23). As a result of

the non-identification, the likelihood function is symmetric around 0 along the ση,j dimension

and therefore multimodal. If the slope of the Phillips curve is time-varying, i.e. σ2
η,j > 0, then

the likelihood function will concentrate around the two modes −ση,j and ση,j . For σ2
η,j = 0 the

likelihood function will become unimodal around zero. As such, allowing for non-identification of

ση,j provides useful information on whether σ2
η,j > 0.

Likewise, the non-centered parameterization of the stochastic volatility terms in equation (18)

is given by

hkt+1 = hk0 + σγ,kh̃
k
t+1, (25)

with h̃kt+1 = h̃kt + γ̃kt , h̃k0 = 0, γ̃kt ∼ i.i.d.N (0, 1), (26)

for k = y, π, u, c, ζ and where hk0 = 0 is the initial value of the level of hkt .

Finally, the non-centered parameterization of the time-varying drift in equation (3) is given by

κt+1 = κ0 + σκκ̃t+1, (27)

with κ̃t+1 = κ̃t + ψ̃κt , κ̃0 = 0, ψ̃κt ∼ i.i.d.N (0, 1), (28)

and where κ0 = 0 is the initial value of the level of κt.

Parsimonious specification

A second advantage of the non-centered parameterization is that when e.g. σ2
η,π = 0 the trans-

formed component β̃πt , in contrast to βt, does not degenerate to the time-invariant slope of the

Phillips curve as this is now represented by βπ0 . As such, the question whether the slopes of the

Phillips curve and Okun’s Law are time-varying or not can be expressed as a variable selection

problem in equation (23). To this aim Frühwirth-Schnatter and Wagner (2010) introduce the

parsimonious specification

βjt = βj0 + δjση,j β̃
j
t , (29)

for j = π, u and where δj is a binary indicator which is either 0 or 1. If δj = 0, the component β̃jt

drops from the model such that βj0 represents the constant slope parameter. If δj = 1 then β̃jt is

included in the model and ση,j is estimated from the data. In this case βj0 is the initial value of

the slope parameter.

Likewise, the parsimonious non-centered parameterization of the stochastic volatility terms in
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equation (25) is given by

hkt = hk0 + θkσγ,kh̃
k
t , (30)

for k = y, π, u, c, ζ and where θk is again a binary indicator that is either 0 or 1. If θk = 0, the

component h̃kt drops from the model such that
(
exp{hk0}

)2
is the constant variance of ψkt . If θk = 1

then h̃kt is included in the model and σγ,j is estimated from the data. In this case
(
exp{hk0}

)2
is

the initial value of the time-varying variance of ψkt .

Finally, the parsimonious non-centered parameterization of the time-varying drift term in equa-

tion (27) is given by

κt = κ0 + λσκκ̃t, (31)

where λ is a binary indicator that is either 0 or 1. If λ = 0, the component κ̃t drops from the

model such that κ0 is the constant drift in potential output. If λ = 1 then κ̃t is included in the

model and σκ is estimated from the data. In this case κ0 is the initial value of the time-varying

drift κt.

Collecting the binary indicators in the vector M = (δπ, δu, θy, θπ, θu, θc, θζ , λ), each model is

indicated by a value for M, e.g. M = (0, 1, 0, 0, 0, 1, 0, 1) is a model with a constant Phillips

curve slope, a time-varying Okun’s Law coefficient, stochastic volatility in the innovations to the

output gap component, a constant variance for the innovations to the trend components in output,

inflation and unemployment as well as to the AR(1) inflation gap component and a time-varying

drift in potential output.

Gaussian prior centered at zero

Our Bayesian estimation approach requires choosing prior distributions for the model parameters

ρ = (ρ1, ρ2), %, β0 = (βπ0 , β
u
0 ) and h0 = (hy0, h

π
0 , h

u
0 , h

c
0, h

ζ
0), for the binary indicatorsM and for the

variances of the idiosyncratic factors σ2
ε =

(
σ2
ε,y, σ

2
ε,π, σ

2
ε,u

)
, the innovations to the drift component

σ2
κ, the time-varying parameters σ2

η =
(
σ2
η,π, σ

2
η,u

)
and the stochastic volatility components σ2

γ =(
σ2
γ,y, σ

2
γ,π, σ

2
γ,u, σ

2
γ,c, σ

2
γ,ζ

)
.

It is well-known that when using an inverse Gamma prior distribution for the variance parame-

ters, the choice of the shape and scale hyperparameters that define this distribution have a strong

influence on the posterior when the true value of the variance is close to zero. More specifically, as

the inverse Gamma does not have probability mass at zero, using it as a prior distribution tends

to push the posterior density away from zero. This is of particular importance when estimating

the variances of the innovations to the time-varying parameters, to the drift in potential output

and to the stochastic volatilities, as for these components we want to decide whether they are

relevant or not. A further important advantage of the non-centered parameterization is therefore

that it allows us to replace the standard inverse Gamma prior on a variance parameter σ2 by a

Gaussian prior centered at zero on σ. Centering the prior distribution at zero makes sense as for

both σ2 = 0 and σ2 > 0, σ is symmetric around zero. Frühwirth-Schnatter and Wagner (2010)

show that, compared to using an inverse Gamma prior for σ2, the posterior density of σ is much
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less sensitive to the hyperparameters of the Gaussian distribution and is not pushed away from

zero when σ2 = 0.

As such we choose a Gaussian prior distribution centered at zero for ση, σκ and σγ , which are

the standard deviations of the innovations to the time-varying parameters, to the drift in potential

output and to the stochastic volatilities. For the variances of the idiosyncratic factors σ2
ε , which

are always included in the model, we choose the standard inverse Gamma prior distribution. For

each of the model parameters in ρ, % and β we assume a normal prior distribution. Details on the

prior distributions are presented in Subsection 3.2 below. For the binary indicators M we choose

a uniform prior distribution over all combinations of the indicators such that each model has

the same prior probability, i.e. p(M) = 2−8, and each model component has a prior probability

p0 = 0.5 of being included in the model.

2.3 MCMC algorithm

In a standard linear Gaussian state space model, the Kalman filter can be used to filter the

unobserved states from the data and to construct the likelihood function such that the unknown

parameters can be estimated using maximum likelihood. However, the inclusion of the time-

varying parameters βπt and βut on the unobserved output gap yct and the stochastic volatilities hkt

in the state space model given in eq. (1) - (18) and the use of the stochastic model specification

search outlined in Subsection 2.2 imply a highly non-linear estimation problem for which the

standard approach via the Kalman filter and maximum likelihood is not feasible. Instead we use

the Gibbs sampler which is a MCMC method to simulate draws from the intractable joint and

marginal posterior distributions of the unknown parameters and the unobserved states using only

tractable conditional distributions. Intuitively, this amounts to reducing the complex non-linear

model into a sequence of blocks for subsets of parameters/states that are tractable conditional on

the other blocks in the sequence.

For notational convenience, define a state vector αt = (yτt , π
τ
t , u

τ
t , y

c
t , ζt, κt), a time-varying

parameter vector βt = (βπt , β
u
t ), a stochastic volatilities vector ht =

(
hyt , h

π
t , h

u
t , h

c
t , h

ζ
t

)
and an

indicator vector ιt =
(
ιyt , ι

π
t , ι

u
t , ι

c
t , ι

ζ
t

)
. The unknown parameters are collected in the vector

φ =
(
ρ, %, β0, σ, σ

2
ε

)
, with σ = (ση, σκ, σγ). Finally, let xt = (yt, πt, ut) be the data vector.

Stacking observations over time, we denote x = {xt}Tt=1 and similarly for α, β, h and ι. The

posterior density of interest is then given by f (α, β, h, ι, φ,M|x). Following Frühwirth-Schnatter

and Wagner (2010) our MCMC scheme is as follows:

1. Sample the binary indicators in M from f (M|α, β, h, x) marginalizing over the parameters

φ and sample the unrestricted parameters in φ from f (φ|α, β, h,M, x) while setting the

restricted parameters, i.e. the elements in σ for which the corresponding component is not

included in the model M, equal to 0.

2. Sample the trend and temporary components α from f (α|β, h, φ,M, x), the time-varying

parameters β from f (β|α, h, φ,M, x), the mixture indicators ι from f (ι|α, β, h, φ,M, x) and

the stochastic volatilities h from f (h|α, β, ι, φ,M, x).
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3. Perform a random sign switch for ση,j and {β̃jt }Tt=1; for σκ and {κ̃t}Tt=1 and for σγ,k and

{h̃kt }Tt=1, e.g. ση,π and {β̃πt }Tt=1 are left unchanged with probability 0.5 while with the same

probability they are replaced by −ση,π and {−β̃πt }Tt=1.

Given an arbitrary set of starting values, sampling from these blocks is iterated J times and,

after a sufficiently long burn-in period B, the sequence of draws (B + 1, ..., J) approximates a

sample from the virtual posterior distribution f (α, β, h, ι, φ,M|x). Details on the exact imple-

mentation of each of the blocks can be found in Appendix A. The results reported below are based

on 35,000 Gibbs sampler iterations, with the first 10,000 discarded as a burn-in period. We store

every 5th of the remaining 25,000 iterations, leaving 5,000 draws for inference.

3 Estimation results

3.1 Data

We estimate the model using quarterly U.S. data from 1959Q2 - 2014Q3. Inflation is measured

by the annualized quarterly change in the core personal consumption expenditures (PCE) index.

For unemployment we use the civilian unemployment rate as collected by the Bureau of Labor

Statistics. Output is measured by the log of real GDP. All series are taken from St. Louis Federal

Reserve Economic Data.

3.2 Prior choice

Table 1 reports summary information on our prior distributions for the unknown parameters.

For the variance parameters of the idiosyncratic factors σ2
ε =

(
σ2
ε,y, σ

2
ε,π, σ

2
ε,u

)
we use the inverse

Gamma prior IG(c0, C0) where the shape c0 = ν0T and scale C0 = s0σ
2
0 parameters are calculated

from the prior belief σ2
0 about the variance parameter and the prior strength ν0 which is expressed

as a fraction of the sample size T .3 Following the notation in Frühwirth-Schnatter and Wagner

(2010), for the remaining parameters we use a Gaussian prior N (a0, A0σ
2
e) in a regression with

homoskedastic errors and N (a0, A0) when the errors exhibit stochastic volatility. Details on the

notation are given in Appendix A. Each of the prior choices is discussed below. Note that in Table

1 and in the text we report and discuss standard deviations rather than variances as the former

are easier to interpret

• Idiosyncratic components, σ2
ε,g, σ

2
ε,g, σ

2
ε,π: We set the prior beliefs to σε,y = 0.1, σε,π =

1.0, and σε,u = 0.5. The strength of all three priors is 0.1. The larger value for σε,π is in

line with the literature, which usually finds relative large measurement errors in inflation.

• Volatility of trend components, exp {hy}, exp {hπ}, exp {hu}: The prior beliefs a0 for

the constant volatility part h0 of the level shocks to potential output, trend inflation, and

the NAIRU are set to ln(0.1), ln(0.2), and ln(0.01) respectively with the prior standard

deviation
√
A0 set to 0.1. Note that the prior belief ln(0.1) for potential output implies that,

3Since this prior is conjugate, ν0T can be interpreted as the number of fictitious observations used to construct
the prior belief σ2

0 .
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Table 1: Prior distributions of model parameters

Inverse Gamma priors: IG(c0, C0) = IG(ν0T, ν0Tσ
2
0) Percentiles

σ0 ν0 2.5% 97.5%

idiosyncratic component output σε,y 0.10 0.10 0.080 0.141

idiosyncratic component inflation σε,π 1.00 0.10 0.777 1.408

idiosyncratic component unemployment σε,u 0.50 0.10 0.387 0.701

Gaussian priors homoskedastic errors: N (a0, A0σ
2
e) Percentiles

Regression parameters a0
√
A0 × σe 2.5% 97.5%

const. Phillips curve slope βπ0 0.20 0.25× 1.0 −0.290 0.690

const. Okun coefficient βu0 −0.50 0.25× 0.5 −0.745 −0.255

Non-centered components

std. of time-varying Phillips curve ση,π 0.00 1.00× 1.0 −1.960 1.960

std. of time-varying Okun coefficient ση,u 0.00 1.00× 0.5 −0.980 0.980

Gaussian priors SV errors: N (a0, A0) Percentiles

Regression parameters a0
√
A0 2.5% 97.5%

1st AR lag: output gap ρ1 1.25 0.50 0.270 2.230

sum of AR lags: output gap ρ1 + ρ2 0.90 0.015 0.871 0.930

AR lag: AR(1) inflation component % 0.70 0.05 0.602 0.798

const. output drift κ0 0.75 0.10 0.554 0.946

Stochastic volatility parameters

const. volatility of potential output hy0 ln (0.10) 0.10 ln (0.082) ln (0.122)

const. volatility of trend inflation hπ0 ln (0.20) 0.10 ln (0.164) ln (0.243)

const. volatility of NAIRU hu0 ln (0.05) 0.10 ln (0.041) ln (0.061)

const. volatility of output gap hc0 ln (0.60) 0.10 ln (0.493) ln (0.730)

const. volatility of temporary inflation hζ0 ln (0.70) 0.10 ln (0.575) ln (0.852)

Non-centered components

std. of SV: potential output σγ,y 0.00 1.00 −1.960 1.960

std. of SV: trend inflation σγ,π 0.00 1.00 −1.960 1.960

std. of SV: NAIRU σγ,u 0.00 1.00 −1.960 1.960

std. of SV: output gap σγ,c 0.00 1.00 −1.960 1.960

std. of SV: AR(1) inflation component σγ,ζ 0.00 1.00 −1.960 1.960

std. of time-varying output drift σκ 0.00 1.00 −1.960 1.960

Notes: We set IG priors on the variance parameters σ2 but in the top panel of this table we report details on the
implied prior distribution for the standard deviations σ as these are easier to interpret. Likewise, in the bottom
panel of the table we report

√
A0 instead of A0. For the stochastic volatility parameters h0 we report a logarithm

expression for the mean and percentiles as the arguments can then easily be interpreted as the mean and percentiles
of exp {h0}.

if there is no time-varying volatility, 95% of the innovations lie between −0.2 and +0.2 per

quarter. For inflation and unemployment the 95% interval ranges from −0.4 to +0.4 and
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−0.1 to +0.1 respectively. These values are within the range of previous estimates and are

of an economically reasonable value.4 The prior distribution on the time-varying part of the

volatility of the trends is uninformative and centered at zero: σγ,k ∼ N (0, 1), for k = y, π, u.

• Potential output growth, κ: In line with existing estimates, our prior belief about the

time-invariant part of the output drift is given by κ ∼ N (0.75, 0.12). For example, Morley

et al. (2003), Sinclair (2009) and Mitra and Sinclair (2012) find values between 0.79 and

0.86 for quarterly U.S. postwar data. Similar to the volatilities of the trends, we set the

time-varying part of potential output growth to σκ ∼ N (0, 1).

• Output gap, ρ, exp {hc}: While the output gap is stationary by assumption, it is often

found to be a very persistent process (see e.g. Morley et al., 2003; Kim et al., 2014). In order

to ensure stationarity, we find it useful to impose prior information on the sum of the AR(2)

parameters instead of restricting each parameter separately. Hence, we use an informative

prior on the sum (ρ1 + ρ2) ∼ N (0.9, 0.0152) and a much less informative prior on the first

lag ρ1 ∼ N (1.25, 0.52). The prior belief of 0.90 for (ρ1 + ρ2) is an average of values typically

found in the literature on trend-cycle decomposition of U.S. GDP (see e.g. Kuttner, 1994;

Morley et al., 2003; Luo and Startz, 2014). The small prior standard deviation of 0.015 is

to ensure that the output gap is stationary. Setting a lower belief together with a higher

standard deviations results in a similar posterior, though. The prior belief of 1.25 for ρ1,

which implies a prior belief of -0.35 for ρ2, is in line with the typical hump-shaped pattern in

response to cyclical shocks. With a prior standard deviation of 0.5 we are very uninformative

on these individual parameters, though. The prior distribution for the time-invariant part of

the cyclical volatility is given by hc0 ∼ N (ln(0.6), 0.12), implying that 95% of the shocks lie

between −1.2 and +1.2. Again, an uninformative prior for the time-varying volatility part

is used, i.e. σγ,c ∼ N (0, 1).

• AR(1) inflation component, %, exp
{
hζ
}

: We set the prior distribution for the autore-

gressive coefficient of the AR(1) inflation component to ϕ ∼ N (0.7, 0.052). The relative small

standard deviation ensures that % lies within a region of medium persistence. With values

too close to one, the AR(1) component becomes highly persistent and soaks up all varia-

tion in trend inflation. If % becomes too small, ζ is indistinguishable from the white noise

inflation component επt . The prior distribution of the time-invariant part of the volatility

component is set to hζ0 ∼ N (ln(0.7), 0.12). A loose prior is used for the standard deviation

of the time-varying component: σγ,ζ ∼ N (0, 1), allowing for a high degree of time variation

in ζt as found in Kim et al. (2014).

• Slope of Phillips curve, βπ: Estimates for the slope of the Phillips curve in the literature

differ depending on whether a forward or backward-looking curve is modeled. In forward-

looking specifications, βπ is often found small and statistically insignificant (see e.g. Kim et

al., 2014). For the time-invariant part βπ0 we set a prior distribution of βπ0 ∼ N (0.2, 0.252).

4See for instance Morley et al. (2013); Kim et al. (2014); Stock and Watson (2007). Regarding the smoothness of
the NAIRU, we are close to Fleischman and Roberts (2011) who estimate the NAIRU’s standard deviation around
0.1.
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Figure 1: Posterior distributions of the standard deviations for the non-centered variables in the unre-
stricted model (all binary indicators set to 1)
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Our prior belief about the degree of time variation in the Phillips curve is uninformative,

i.e. ση,π ∼ N (0, 1).

• Okun coefficient, βu: According to Lee (2000) and Reifschneider et al. (2013) the impact of

the unemployment gap on the output gap is close to −2 for the U.S., which would correspond

to a value of −0.5 in our model as we express this relationship in reverse. Owyang and

Sekhposyan (2012) estimate a rolling regression and find a very similar value on average.

Thus, we set the prior distribution to βu0 ∼ N (−0.5, 0.1252). The prior on the degree of time

variation in Okun’s Law is set to ση,u ∼ N (0, 1).

3.3 Results stochastic model specification search

We first estimate an unrestricted model with all binary indicators set to one to generate posterior

distributions for the standard deviations (σ) of the innovations to the 8 non-centered components

of interest. If these distributions are bimodal, with low or no probability mass at zero, this can

be taken as a first indication of time variation in the considered component. Results are shown

in Figure 1. Clear-cut bimodality is found in the posterior distribution of the standard deviation

of the innovations to the Okun’s Law parameter (ση,u), to the volatility of the output gap (σγ,c)

and the temporary inflation component (σγ,ζ) and to the drift in potential output (σκ). For the

stochastic volatility of trend inflation evidence is less clear. While the distribution σγ,π appears

to have two modes, it also has a considerable probability mass at zero. For the innovations to the

Phillips curve parameter and to the stochastic volatility components in trend output and trend

unemployment, the posterior distributions of ση,π, σγ,y and σγ,u are clearly unimodal at zero.

This suggests that these components are stable over time.

As a more formal test for time variation, we next sample the stochastic binary indicators

together with the other parameters in the model. Table 2 displays the individual posterior prob-

abilities for the binary indicators being one. These probabilities are calculated as the average
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selection frequencies over all iterations of the Gibbs sampler. The second row shows results for

our benchmark case A0 = 1. This implies a relatively loose prior on the degree of time variation

σ. To check robustness, the other rows show results over alternative values for A0. The first row

shows results for the case where A0 = 0.1. This corresponds to a relatively stronger prior that

allows for less time variation. The third and fourth row show results for diffuse prior distributions

that allow for large variances on the time-varying components. The following conclusions can be

drawn. First, the model selection rejects time variation in the slope of the Phillips curve. Over all

four prior specifications, the posterior probability for a model with a time-varying Phillips curve

slope is either far below or just above one percent. Second, the data clearly favor time variation in

the Okun’s Law parameter. Third, for the trend components in output, inflation and unemploy-

ment, a model with a constant volatility fits the data best. In our benchmark case (A0 = 1) the

posterior probabilities of a stochastic volatility component in the trend components varies between

8 and 18%, while the probabilities fall well below 5% when more diffuse priors are used. When

the prior distribution allows for little time variation (A0 = 0.1), the inclusion probabilities of the

stochastic volatility components increase, but remain below 0.5.5

Table 2: Posterior inclusion probabilities for the binary indicators over different prior variances A0

Prior Posterior

Time-varying parameter Stochastic volatility

Phillips
curve

Okun’s
law

Output
drift

Potential
output

Trend
inflation

NAIRU Output
gap

Temp.
inflation

p0 A0 δπ δu λ θy θπ θu θc θζ

0.5 0.1 0.0110 1.0000 1.0000 0.2150 0.1704 0.3084 1.0000 1.0000

0.5 1 0.0026 1.0000 1.0000 0.1456 0.0828 0.1992 1.0000 1.0000

0.5 10 0.0007 1.0000 1.0000 0.0247 0.0263 0.0923 1.0000 1.0000

0.5 100 0.0000 1.0000 1.0000 0.0219 0.0206 0.0429 1.0000 1.0000

In the baseline specification, we assign a 0.5 prior probability to each of the binary indicators

being one. As noted by Scott and Berger (2010), this prior choice does not provide multiplicity

control for the Bayesian variable selection. When the number of possible variables is very large and

each of the binary indicators has a prior probability of 0.5, the fraction of selected variables will

very likely be around 0.5. Our findings appear to be unaffected by this issue, though. First, the

number of variables to be selected is only 8 in this paper. Second, we re-estimate the (unrestricted)

model with different priors. Specifically, the prior inclusion probability on each of the 8 components

is set to 0.1 and 0.9 respectively. The resulting posterior probabilities are reported in Table 3.

For all prior choices the same model is selected, i.e. the indicators δu, θc, θζ and λ have inclusion

probabilities of ≥ 0.5, while the indicators δπ, θy, θπ and θu are excluded in the majority of all

draws.

Besides inference on the importance of time variation in the individual components, the model

5The increase in the posterior probability may appear counter intuitive, but is due to the fact that by restricting
the amount of time variation the competing models become similar in their marginal likelihoods and thus the
posterior probability shrinks towards the prior probability p0 = 0.5.
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Table 3: Posterior inclusion probabilities for the binary indicators over different prior probabilities p0

Prior Posterior

Time-varying parameter Stochastic volatility

Phillips
curve

Okun’s
law

Output
drift

Potential
output

Trend
inflation

NAIRU Output
gap

Temp.
inflation

p0 A0 δπ δu λ θy θπ θu θc θζ

0.5 1 0.0026 1.0000 1.0000 0.1456 0.0828 0.1992 1.0000 1.0000

0.9 1 0.0192 1.0000 1.0000 0.4606 0.4478 0.4484 1.0000 1.0000

0.1 1 0.0004 1.0000 1.0000 0.0174 0.0302 0.0496 1.0000 1.0000

selection search also allows to compute overall model probabilities. The introduction of 8 binary

indicators leads to 28 possible models. As 4 out of the 8 binary indicators have low individual

probabilities, most models have a probability of zero. As a result, in the benchmark case where

A0 = 1 only 7 models are selected in more than 1% of the Gibbs iterations. The posterior

probabilities for these models are reported in Table 4. The favored model has a time-varying

Okun’s Law parameter and stochastic volatility in the output gap and the transitory inflation

component, while the Phillips curve slope is constant and there is no stochastic volatility in the

three trend components. This model choice is robust to different prior specification, i.e. the model

in row one has the highest probability for each of the four considered values of A0. In the case of

strict priors (A0 = 0.1), this model has a posterior probability of 45%, which rises to 92% when

diffuse priors (A0 = 100) are used. The three other models with notable probabilities larger than

10% include stochastic volatility in either potential output, trend inflation or in the NAIRU. As

the variance of the prior A0 increases, the probabilities of these models shrink towards zero.

Table 4: Posterior model probabilities over different prior variances A0 (with p0 = 0.5)

Model Posterior probability

δπ δu λ θy θπ θu θc θζ A0 = 0.1 A0 = 1 A0 = 10 A0 = 100

0 1 1 0 0 0 1 1 0.4454 0.6415 0.8620 0.9180

0 1 1 0 0 1 1 1 0.1976 0.1334 0.0864 0.0395

0 1 1 0 1 0 1 1 0.0888 0.1080 0.0228 0.0183

0 1 1 1 0 0 1 1 0.1290 0.0555 0.0223 0.0208

0 1 1 0 1 1 1 1 0.0438 0.0342 0.0034 0.0023

0 1 1 1 1 0 1 1 0.0192 0.0121 0.0001 0.0000

0 1 1 1 0 1 1 1 0.0502 0.0111 0.0023 0.0011

For completeness, Figure 2 shows the evolution of the four components for which the time-

variation does not show up as relevant using the model selection. These components will be

restricted to be constant in the remainder of this paper. The evolution of the significant time-

varying components is discussed more in detail in below.
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Figure 2: Evolution of the time-varying components not selected by the model search
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3.4 Parameter estimates and unobserved components

In this section we present the results of the model that is favored by the stochastic model selection.

We will refer to this as the parsimonious model. As a convergence check we plot the 20th-order

autocorrelations for all parameter and component draws in Figure 3. This diagnostic has been

used before in Primiceri (2005) and Liu and Morley (2014). The majority of autocorrelations lie

well below 0.1, while for a few parameters we find values between 0.2 and 0.3. Only one value is

as high as 0.5. We take this as evidence for satisfactory convergence of the Markov-Chain.

The posterior distributions of the parsimonious model’s time-invariant parameters are plotted

in Figure 4.6 Descriptive statistics are given in Table 5. For the standard deviations of the non-

centered variables the posterior distributions are bimodal. Thus, we report descriptive statistics

on the unimodal posterior of the respective squared standard deviation parameters. The evolution

of the unobserved components is shown in Figures 5-9 and discussed more in detail below.

6Note that the posterior distributions of the standard deviations for the non-centered variables in the unrestricted
model are reported in Figure 1. As there is no noticeable difference in these distributions in the parsimonious model,
they are not included in Figure 4.

18



Figure 3: 20th-order autocorrelations of all parameter and component draws
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Figure 4: Posterior distributions of parameters (parsimonious model)
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Inflation

Figure 5 plots actual inflation against the median of the posterior distribution of trend inflation

and its 90% highest posterior density (HPD) interval for the parsimonious model. Trend inflation

evolves smoothly and tracks the low-frequency movements in observed inflation. It steadily rises

over the Great Inflation period from the late 1960s until the late 1970s and then falls back during

the disinflation period of the 1980s and 1990s. Since the late 1990s trend inflation remains low

and stable at around 2%. Our estimated trend inflation series is very similar to those reported

by Cogley and Sbordone (2008), Kim et al. (2014) and Stella and Stock (2012). The variance of

innovations to trend inflation was found to be constant over time by the model selection procedure

and is estimated with a posterior median of 0.21. This result is consistent with Kim et al. (2014)

who find similar values over three distinct regimes and could not reject the null of constant

volatility for trend inflation. It contrasts with Stock and Watson (2007) who find considerable
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Table 5: Posterior distributions of model parameters (parsimonious model)

Inverse Gamma Percentiles

median 2.5% 97.5%

idiosyncratic component output σε,y 0.122 0.091 0.168

idiosyncratic component inflation σε,π 0.544 0.492 0.607

idiosyncratic component unemployment σε,u 0.239 0.217 0.266

Gaussian Percentiles

Regression parameters median 2.5% 97.5%

const. Phillips curve slope βπ0 0.067 −0.061 0.196

const. Okun coefficient βu0 −0.438 −0.525 −0.350

1st AR lag: output gap ρ1 1.299 1.166 1.418

sum of AR lags: output gap ρ1 + ρ2 0.942 0.922 0.963

AR lag: AR(1) inflation component % 0.759 0.676 0.846

const. output drift κ0 1.023 0.933 1.118

Stochastic volatility parameters

const. volatility of potential output exp {hy0} 0.131 0.113 0.152

const. volatility of trend inflation exp {hπ0} 0.208 0.181 0.239

const. volatility of NAIRU exp {hu0} 0.079 0.070 0.089

const. volatility of output gap exp {hc0} 0.582 0.519 0.646

const. volatility of temporary inflation exp
{
hζ0

}
0.505 0.441 0.579

Non-centered components

variance of time-varying Okun coefficient σ2
η,u 0.0016 0.0009 0.0029

variance of SV: output gap σ2
γ,c 0.0350 0.0131 0.0757

variance of SV: AR(1) inflation component σ2
γ,ζ 0.0155 0.0053 0.0397

variance of time-varying output drift σ2
κ 0.0003 0.0001 0.0007

variability in the variance of innovations to trend inflation. However, they do not allow for a

persistent transitory component (ζt in our model) in the inflation gap such that trend inflation

has to incorporate this component.7 Similar to the recent literature, we find that the inflation gap

and idiosyncratic shocks are the most important driver of inflation. On average, they account for

more than 90% of the variance of inflation changes at the one-quarter horizon. The inflation gap

itself is driven by the output gap yct but more importantly by the persistent AR(1) component ζt.

As can be seen from Figure 6, ζt and its stochastic volatility peak in the 1970s. Inflation is not

very sensitive to the output gap. As shown in panel (a) of Figure 7, we estimate the slope of the

(time-invariant) Phillips curve to be very small with a posterior median of 0.07 and a 90% HPD

interval ranging from -0.06 to 0.20. This finding confirms Kim et al. (2014) but contrasts with

Morley et al. (2013) who find the real activity gap, as measured by the unemployment gap, to be

7In fact when we drop ζt, the model selection procedure selects a specification with stochastic volatility for trend
inflation (results not reported).
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an important driver of the inflation gap.

Our estimates shed light on a number of important episodes of U.S. monetary economic history.

First, the Great Inflation of the late 1960s and the 1970s is reflected in a prolonged rise in trend

inflation combined with an increase in the level and volatility of the temporary inflation component

ζt. In our model, the latter captures the variation in inflation that is not explained by the

conventional forward-looking Phillips curve. From our estimates, this component mainly seems to

capture the extent to which the oil price shocks of 1973-74 and 1979-80 drove up inflation without

increasing inflation expectations or being reflected in the output gap. Second, the aggressive

disinflation strategy pursued by Paul Volcker when he became chairman of the Federal Reserve

in the early 1980s resulted in a steady but strong decline in trend inflation. Together with the

sudden drop in the temporary inflation component, due to a crop in oil prices, this resulted in a

sharp decline in realized inflation. The impact of the disinflation strategy on output depends on

the credibility of monetary policy (see e.g. Ball, 1994). Imperfect credibility raises the output cost

of reducing inflation. Our results point to a large output gap in the beginning of the disinflation

period. In line with the small and stable slope of the Phillips curve, this is accompanied by only

moderate negative deviations of realized inflation from its trend. This pattern changes during the

second half of the disinflationary period, where the output gap decreases and realized inflation

tracks trend inflation more closely. We take this as evidence that the credibility of the FED

improved over time. This explanation is in line with the findings of Goodfriend and King (2005),

who build a model with imperfect credibility, i.e. the FED acquires credibility over time as agents

change their beliefs about whether the new policy regime is permanent. According to the authors,

the initial real effects of the Volcker disinflation were mainly due to its imperfect credibility.

Third, our results also contribute to the discussion on the missing deflation puzzle during the

Great Recession. Specifically, this paper casts doubt on the existence of such a puzzle as the link

between inflation and real activity is week over the full sample. The fact that actual inflation does

not deviate substantially from trend inflation is therefore consistent with a relatively large output

gap.
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Figure 5: Trend inflation (parsimonious model)
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Figure 6: AR(1) inflation component (parsimonious model)
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(a) AR(1) inflation component (ζt)
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(b) Stochastic volatility of ζt

Output

Figure 8 plots the posterior results for the various components in output. Potential output,

depicted in panel (a), is estimated as a smooth upward trend that tracks the low frequency

movements in U.S. real GDP. The constant volatility of shocks to the level of potential output is

found to be small with a posterior median of 0.13, while the drift in potential output, depicted

in panel (b), exhibit substantial time variation. The downward trend in the drift term implies

potential output growth to slow down from around 4% on an annual base in the early 1960s to
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about 1.6% at the end of the sample. This overall movement is highly consistent with the CBO’s

estimates for potential output growth, although this series is more volatile. The first sizable drop

in potential output growth is in the early to mid 1970s. This is a well-known feature of the data

generally referred to as the great productivity slowdown. From the late 1970s to the early 2000s

potential output growth varies around an annual rate of 3%. The second sizable drop occurred

during the 2000s with the most recent estimates pointing to a pessimistic scenario where slow

growth is the ‘new normal’. Our results support Perron and Wada (2009) who highlight the

importance of accounting for breaks in potential output growth for UC models. By analyzing

data from 1974 to 1998 they find one break in 1973.

Figure 7: Phillips curve and Okun’s Law (parsimonious model)

−0.2 0 0.2 0.4

Posterior of constant parameter

(a) Phillips curve βπt

1960 1970 1980 1990 2000 2010

−0.8

−0.6

−0.4

−0.2

0

0.2

Okun coefficient

90% HPD interval NBER recessions

(b) Okun’s Law βut

Panel (c) of Figure 8 shows the estimated output gap together with the CBO gap. Both

series evolve very similar and are able to identify the recession periods as dated by the NBER. A

somewhat sizable difference in the level of the two series is observed during the 1980s. This is due

to the fact that our model attributes most of the variation in real GDP during the early 1980s to

cyclical shocks while the CBO assigns a larger fraction to potential output growth-related shocks

as visualized by the sharp drop in the CBO potential growth series displayed in panel (b) in that

period. The Great Moderation shows up in panel (d) as a considerable drop in the stochastic

volatility of innovations to the output gap in the 1980s and a low volatility period that continued

until 2007. During the Great Recession, volatility increases considerably but has not led to a

permanent increase as it returns almost to its pre-crisis level in 2009.
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Figure 8: Output components (parsimonious model)
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(d) Stochastic volatility of output gap

Unemployment

The NAIRU is shown in Figure 9 along with the CBO’s NAIRU estimate and the actual unem-

ployment rate. We find that the NAIRU evolves very smoothly over time which implies that most

of the variations in unemployment are assigned to cyclical (demand-related) factors. However,

the recent decline in the unemployment rate may also partially be driven by people exiting the

labor force, possibly discouraged jobless workers. Our NAIRU estimate is consistent with Laubach

(2001) and Basistha and Startz (2008). Similar to the latter study, our multivariate model results

in a relatively narrow 90% HPD interval for the NAIRU.

Regarding the relation between the output gap and the unemployment gap, we find substantial

time variation in Okun’s Law parameter as displayed in Figure 7, panel (b). The time variation

captures both changes at business cycle frequency and long-run changes, which is similar to the

findings of Knotek (2007). We find that the sensitivity of the unemployment rate to cyclical

output is higher during recessions than during recoveries. This asymmetric pattern holds for most

of the postwar business cycles, except for the period after the 2001 recession, over which labor

market sensitivity continues to increase. Before this turning point, the Okun coefficient fluctuates
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Figure 9: NAIRU (parsimonious model)
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around a value of −0.4, suggesting that a positive output gap of 1% is associated with a negative

deviation of the unemployment rate from the NAIRU of −0.4%. Since the 2001 recession, the Okun

coefficient has decreased to roughly −0.7 in the Great Recession. Recently the Okun coefficient

has quickly returned back to the historical average. According to the reasoning in Daly and Hobijn

(2010), the spike in the Okun coefficient around the year 2009 can be explained by a surge in labor

productivity, accompanied by a reduction in employment and hours worked which led to a break

in the pattern between unemployment and output as observed over the past 60 years.

There exist several explanations for why the correlation between output and unemployment

may depend on the business cycle stance. Starting from a microeconomic model, Campbell and

Fisher (2000) explain how asymmetries in firms’ adjustment costs can lead to asymmetric job

creation and destruction rates at the macro level. Palley (1993) focuses on the aggregate labor

market and explains the negative excess sensitivity of cyclical unemployment to cyclical output

with sectoral shifts and changing behavior of female labor force participants. Silvapulle et al.

(2004) offer an explanation based on over-pessimistic firm behavior. If bad news is believed more

quickly than good news, firms tend to adjust the workforce relatively quick in recessions, but are

reluctant to hire during recoveries. The authors argue that such behavior leads to asymmetry

in the Okun coefficient typically found in U.S. data. Moreover, our findings are in line with the

literature on insider-outsider models pioneered by Lindbeck and Snower (1988) and Blanchard and

Summers (1986). After a cyclical rise in unemployment, the remaining workers (so-called insiders)

may demand higher wages during the following recovery due to labor turnover costs. Instead of

creating new jobs for the unemployed workers (so-called outsiders), economic recovery translates

into higher insider wages. Such behavior gives rise to asymmetry in the Okun coefficient, leading

to persistent cyclical unemployment.

Our estimates also contribute to the discussion on jobless recoveries in the United States.

We do not find that the business cycle sensitivty of the Okun coefficient has changed in the
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1990s. Rather, our results suggest that recoveries have always been ‘jobless’ in the sense that the

unemployment rate adjusts faster during recessions than during recoveries. The argument that

the unemployment rate has become less sensitive to output growth over time is not supported by

our model. However, the notion of ‘jobless recoveries’ is typically related to job growth and thus

makes a statement about employment dynamics. The estimated Okun’s Law coefficient reflects

sensitivity of the unemployment rate and is sensitive to changes in labor force participation. Slower

than average job growth could be counteracted by decreasing labor force participation, leaving the

unemployment rate and therefore also the Okun’s Law coefficient unchanged.

In sum, we find substantial time variation in various model’s parameters. There is a sizable

reduction in the volatility of output gap shocks and inflation gap shocks. We also find a significant

decline in potential output growth in the 1970s and even more pronounced in the 2000s. Moreover,

there is time variation in the Okun’s Law parameter with unemployment being more sensitive to

the output gap in recessions than in expansions.

4 Model Extensions and Robustness Checks

In this section we check the robustness of our results along several dimensions. First, we replace the

NKPC by a backward-looking Phillips curve in order to see if our findings regarding the inflation

dynamics and the stability of βπ depend on the forward-looking specification of the Phillips curve.

Second, we use the unemployment gap, instead of the output gap, as a measure of real activity in

the Phillips curve.

4.1 Backward-looking Phillips curve

As described in Section 3.1, the literature provides mixed support for the NKPC in empirical

applications. In contrast to the theoretical foundations, some studies find an important backward-

looking component in inflation dynamics, i.e. inflation depends on its own lagged values. We

therefore check for the robustness of our findings by replacing equation (14) by the following

backward-looking Phillips curve specification

πt =

4∑
p=1

bpπt−p + βπt ỹ
c
t + επt , (32)

where the sum of the coefficients on lagged inflation is assumed to be one.8 The model is identical

to the baseline model except for the absence of a stochastic trend in inflation and the temporary

inflation component ζ. This specification matches standard backward-looking Phillips curve mod-

els in the literature.9 Table 7 gives the posterior probability of time variation in the slope of the

Phillips curve for both the baseline and the backward-looking model. The Phillips curve is found

to be stable in both specifications. Moreover, the finding is robust to different prior distributions

for the degree of time variation. In all settings, the posterior probability of a time-varying Phillips

8Results are nearly identical when the unit-root assumption is relaxed. The sum of the coefficients in the
unrestricted case is close to one.

9Among many others see e.g. Rudd and Whelan (2005) and Ball and Mazumder (2011).
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Figure 10: Posterior distributions of βπ0 : Backward and Forward-looking

−0.2 −0.1 0 0.1 0.2 0.3 0.4

Backward-looking PC Forward-looking NKPC

curve are in the area of 1% or below. However, the estimated slope coefficients differ between

the forward and the backward-looking model. Figure 10 plots the posterior distributions of the

time-invariant slope parameter for both models. The probability mass of the coefficient in the

backward-looking model is strictly positive and has a slightly higher median. This is in line with

the literature that usually finds a bigger and more significant Phillips curve slope in backward

compared to purely forward-looking models.

4.2 Alternative inflation measures

In the empirical literature on the Phillips curve, no single preferred inflation measure has emerged.

This paper focuses on the core PCE inflation series, since it eliminates large outliers associated

with energy price fluctuations as pointed out by Stock and Watson (2010). However, other inflation

measures have been used repeatedly in the literature such as core and headline CPI inflation or

the implicit GDP deflator. We check the robustness of our results by estimating the model for

different inflation measures but leaving all prior distributions unchanged. Columns 2-4 in Table 6

report the estimated posterior distribution of the constant Phillips curve slope. The median slope

estimates range between 0.067 for the GDP deflator and 0.110 for headline CPI and headline

PCE inflation. In all five specifications the 95% credible interval covers positive and negative

values. Thus, the slope of the Phillips curve is found to be more or less flat regardless of the

inflation measure used. Columns 5-8 report the posterior inclusion probabilities of a time-varying

Phillips curve and the time-varying volatilities in trend and temporary inflation. Again, findings

are robust to the different inflation measures. The posterior probability of time-variation in the

Phillips curve is below 1% in all cases. Results differ more for the stochastic volatility component

in trend inflation. However, probabilities remain below 5% except for the baseline measure and

thus no evidence of time-varying shocks to trend inflation is found. Finally, stochastic volatility is

always included in the temporary inflation component. We conclude that our findings are robust

to alternative measures of price inflation.10

10Estimates for the output and unemployment components do not change notably, but are available on request.
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Table 6: Robustness of parameter estimates to different inflation measures

Posterior parameter distribution Posterior inclusion probability

Slope coefficient βπ0 Phillips
curve

SV
trend
inflation

SV
temp.
inflation

median 2.5% 97.5% δπ θπ θζ

CPI 0.110 -0.080 0.303 0.0070 0.0303 1.0000

CPI excl. F&E 0.094 -0.032 0.245 0.0080 0.0430 1.0000

PCE 0.110 -0.043 0.272 0.0026 0.0378 1.0000

PCE excl. F&E 0.067 -0.061 0.196 0.0026 0.0828 1.0000

GDP deflator 0.076 -0.072 0.235 0.0024 0.0476 1.0000

Priors are set to p0 = 0.5 and A0 = 1.

4.3 Unemployment gap instead of output gap

The baseline model finds a constant Phillips curve slope and a time-varying Okun’s Law parameter.

Consequently, when we replace the output gap by the unemployment gap in the Phillips curve,

the impact of unemployment on inflation is time-varying. However, when we estimate the model

with the unemployment gap in the Phillips curve, the model selection procedure rejects a time-

varying slope parameter. We believe that this is due to the fact that the real activity measure,

independently on weather we proxy it by the output gap or the unemployment gap, has little

impact on inflation. Thus, all conclusions drawn remain unchanged when replacing the output

gap by the unemployment gap.

Table 7: Stability of Phillips curve for different models

Prior Posterior probability of δπ = 1

p0 A0 New-Keynesian Backward-looking

0.5 0.1 0.0110 0.0040

0.5 1 0.0026 0.0012

0.5 10 0.0007 0.0008

0.5 100 0.0000 0.0004
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5 Conclusion

We have investigated the degree of time variation in the parameters of a multivariate unobserved

components model designed for the U.S. economy over the period 1959 to 2014. The empirical

model decomposes real GDP, inflation and the unemployment rate into a common stochastic cycli-

cal factor and their respective stochastic trends and idiosyncratic components. Key parameters

such as the growth rate of potential output, the slope of the Phillips curve, Okun’s Law coefficient

as well as all variance parameters are allowed to vary over time. Importantly, while allowing for

time variation the priors in the Bayesian estimation strategy are set to nest the case that the

parameters are actually time-invariant. In a first estimation step, a stochastic model selection

procedure is employed to test which parameters are time-varying. We find that potential output

growth, Okun’s Law coefficient, the variance of innovations to the output gap and to a persistent

inflation gap component are time-varying while the slope of the Phillips curve and the variances

of innovations to all trend components are time-invariant. Our estimation result show a clear

decrease in potential output growth, which can be characterized by substantial drops in the 1970s

and the 2000s. Okun’s Law coefficient is found to be lower in recessions than in expansions, i.e.

unemployment is more sensitive to the output gap in a downturn and reacts less sensitive in a

recovery. With regard to the dynamics of inflation, we find that the inflation gap and idiosyncratic

shocks are the major determinants of inflation changes. However, the inflation gap is not very

sensitive to the output gap but is driven by a persistent AR(1) component. The latter compo-

nent exhibits stochastic volatility and mainly captures the large and persistent swings in inflation

during the inflationary period in the 1970s and 1980s.
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Appendix A Gibbs sampling algorithm

In this appendix we provide details on the Gibbs sampling algorithm used in Subsection 2.3 to

jointly sample the binary indicators M, the hyperparameters φ, the trend and temporary com-

ponents α, the time-varying parameters β, the mixture indicators ι and the stochastic volatilities

h. The structure of our Gibbs sampling approach is based on Frühwirth-Schnatter and Wagner

(2010).

Block 1: Sampling the binary indicators M and the parameters φ

For notational convenience, let us define a general regression model

w = zMbM + e, e ∼ N (0,Σ) , (A-1)

with w a vector including observations on a dependent variable wt and z an unrestricted predictor

matrix with rows zt that contain the state processes from the vectors αt, βt and ht that are

relevant for explaining wt. The corresponding unrestricted parameter vector with the relevant

elements from φ is denoted b. zM and bM are then the restricted predictor matrix and restricted

parameter vector that exclude those elements in z and b for which the corresponding indicator in

M is 0. Furthermore, Σ is a diagonal matrix with elements σ2
e,t that may vary over time to allow

for heteroskedasticity of a known form.

A naive implementation of the Gibbs sampler would be to sampleM from f (M|α, β, h, φ, w )

and φ from f (φ |α, β, h,M, w ). However, this approach does not result in an irreducible Markov

chain as whenever an indicator in M equals zero, the corresponding coefficient in φ is also zero

which implies that the chain has absorbing states. Therefore, as in Frühwirth-Schnatter and Wag-

ner (2010) we marginalize over the parameters φ when samplingM and next draw the parameters

φ conditional on the indicators M. The posterior distribution f (M|α, β, h, w ) can be obtained

using Bayes’ Theorem as

f (M|α, β, h, w ) ∝ f (w |M, α, β, h ) p (M) , (A-2)

with p (M) being the prior probability of M and f (w |M, α, β, h ) being the marginal likelihood

of the regression model (A-1) where the effect of the parameters bM and σ2
e has been integrated

out. The closed form solution of the marginal likelihood depends on whether the error term et is

homoskedastic or heteroskedastic. More specifically:

• In the homoskedastic case Σ = σ2
eIT , under the normal-inverse gamma conjugate prior

bM ∼ N
(
aM0 , AM0 σ2

e

)
, σ2

e ∼ IG (c0, C0) , (A-3)

the closed form solution for f (w |M, α, β, h ) is

f (w |M, α, β, h ) ∝
∣∣AMT ∣∣0.5∣∣AM0 ∣∣0.5

Γ (cT )Cc00
Γ (c0)

(
CMT

)cT , (A-4)
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and the posterior moments aMT , AMT , cT and CMT of bMand σ2
e can be calculated as

aMT = AMT
((
zM
)′
w +

(
AM0

)−1
aM0
)
, (A-5)

AMT =
((
zM
)′
zM +

(
AM0

)−1)−1
, (A-6)

cT = c0 + T /2 , (A-7)

CMT = C0 + 0.5
(
w′w +

(
aM0
)′ (

AM0
)−1

aM0 −
(
aMT
)′ (

AMT
)−1

aMT
)
. (A-8)

• In the heteroskedastic case Σ = diag
(
σ2
e,1, ..., σ

2
e,T

)
, under the normal conjugate prior bM ∼

N
(
aM0 , AM0

)
the closed form solution for the marginal likelihood f (w |M, α, β, h ) is

f (w |M, α, β, h ) ∝ |Σ|
−0.5 ∣∣AMT ∣∣0.5∣∣AM0 ∣∣0.5 exp

(
−1

2

(
w′Σ−1w +

(
aM0
)′ (

AM0
)−1

aM0

−
(
aMT
)′ (

AMT
)−1

aMT
))

, (A-9)

with

aMT = AMT
((
zM
)′

Σ−1w +
(
AM0

)−1
aM0
)
, (A-10)

AMT =
((
zM
)′

Σ−1zM +
(
AM0

)−1)−1
. (A-11)

Following George and McCulloch (1993), instead of using a multi-move sampler in which all

the elements in M are sampled simultaneously, we use a single-move sampler in which each of

the binary indicators δj (for j = π, u), θk (for k = y, π, u, c, ζ) and λ in M is sampled from

f
(
δj |δ\j , θ, λ, α, β, h, x

)
, f
(
θk|δ, θ\k, λ, α, β, h, x

)
and f (λ|δ, θ, α, β, h, x) respectively. Block 1 is

therefore split up in the following subblocks:

Block 1(a): Sampling the binary indicators δ and the parameters β, ση and σ2
ε

In this block we sample the binary indicators δ = (δπ, δu) and the parameters β = (βπ0 , β
u
0 ),

ση = (ση,π, ση,u) and σ2
ε =

(
σ2
ε,y, σ

2
ε,π, σ

2
ε,u

)
conditional on the states α, β and h. First, as there

is no binary indicator in equation (1), σ2
ε,y can be sampled directly from IG (cT , CT ) with cT as

in equation (A-7) and CT = C0 + 0.5(εy
′
εy) with εy calculated from εyt = yt − yτt − yct .

Next, using equation (29), equations (14) and (15) can be rewritten in the general linear

regression format of (A-1) as

wt︷ ︸︸ ︷
πt − πτt − ζt =

zMt︷ ︸︸ ︷[
ỹct δπβ̃

π
t ỹ

c
t

] bM︷ ︸︸ ︷[
βπ0

ση,π

]
+

et︷︸︸︷
επt , (A-12)

ut − uτt︸ ︷︷ ︸
wt

=
[
yct δuβ̃

u
t y

c
t

]
︸ ︷︷ ︸

zMt

[
βu0

ση,u

]
︸ ︷︷ ︸
bM

+ εut︸︷︷︸
et

, (A-13)
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where in both the restricted vector zMt and the restricted parameter vector bM the second term is

excluded when δj = 0 (for j = π, u). Note that, next to the parameters in bM and σ2
e , each of the

specifications (A-12) and (A-13) depends only on the data wt, on some of the states in αt and βt

and on δj . As such, we can simplify the specification of the posterior from f
(
δj |δ\j , θ, λ, α, β, h, x

)
to f (δj |α, β, w ) for which we have f (δj |α, β, w ) ∝ f (w |δj , α, β ) p (δj). As the error terms επt in

the inflation equation and εut in the employment equation are homoskedastic, we have Σ = σ2
eIT

in the general notation of equation (A-1) such that the marginal likelihood f (w |δj , α, β ) can be

calculated as in equation (A-4). The binary indicator δj can then be sampled from the Bernoulli

distribution with probability

p (δj = 1 |α, β, w ) =
f (δj = 1 |α, β, w )

f (δj = 0 |α, β, w ) + f (δj = 1 |α, β, w )
, (A-14)

while σ2
ε,j can be sampled from IG

(
cT , C

M
T

)
and, conditionally on σ2

ε,j , b
M fromN

(
aMT , AMT σ2

ε,j

)
,

for j = π, u and with aMT , AMT , cT and CMT as defined in equations (A-5)-(A-8). Note that

bM =
(
βj0, ση,j

)′
when δj = 1 and bM = βj0 when δj = 0. In the former case ση,j is sampled from

the posterior while in the latter case we set ση,j = 0.

Block 1(b): Sampling the binary indicators θ and the parameters h0 and σγ

In this block we sample the binary indicators θ = (θy, θπ, θu, θc, θζ) and the parameters h0 =(
hy0, h

π
0 , h

u
0 , h

c
0, h

ζ
0

)
and σγ = (σγ,y, σγ,π, σγ,u, σγ,c, σγ,ζ) conditional on the states α, β and h.

Using equation (30), equation (20) can be rewritten in the general linear regression format of

(A-1) as

wt︷ ︸︸ ︷
gkt −

(
mιkt
− 1, 2704

)
=

zMt︷ ︸︸ ︷
2
[

1 θkh̃
k
t

] bM︷ ︸︸ ︷[
hk0

σγ,k

]
+

et︷︸︸︷
ε̃kt , (A-15)

for k = y, π, u, c, ζ, with ε̃kt = εkt −
(
mιkt
− 1, 2704

)
is εkt recentered around zero and where using

equations (2), (9), (16), (4) and (11), gkt = ln
((

exp{hkt }ψkt
)2

+ .001
)

can be calculated as

gyt = ln
((
yτt − yτt−1 − κt

)2
+ .001

)
, (A-16)

gπt = ln
((
πτt − πτt−1

)2
+ .001

)
, (A-17)

gut = ln
((
uτt − uτt−1

)2
+ .001

)
, (A-18)

gct = ln
((
yct − ρ1yct−1 − ρ2yct−2

)2
+ .001

)
, (A-19)

gζt = ln
(

(ζt − %ζt−1)
2

+ .001
)
. (A-20)

As specification (A-15) depends only on the data wt, on the stochastic volatility term hkt and on

θk, we can simplify the specification of the posterior from f
(
θk|δ, θ\k, λ, α, β, h, x

)
to f (θk |h,w ).

Using Bayes’ Theorem, we have f (θk |h,w ) ∝ f (w |θk, h ) p (θk). Given the mixture distribution

36



of εkt defined in equation (22), the error term ε̃kt in equation (A-15) has a heteroskedastic variance

v2
ιkt

such that Σ = diag
(
v2
ιk1
, ..., v2

ιkT

)
in the general notation of equation (A-1). In this case, the

marginal likelihood f (w |θk, h ) can be calculated as in equation (A-9). The binary indicator θk can

then be sampled from the Bernoulli distribution with probability p (θk = 1 |h,w ) calculated from

an equation similar to (A-14). Next, bM can be sampled from N
(
aMT , AMT

)
for k = y, π, u, c, ζ

and with aMT and AMT as defined in equations (A-10) and (A-11). Note that bM =
(
hk0 , σγ,k

)′
when θk = 1 and bM = hk0 when θk = 0. In the latter case, we set σγ,k = 0.

Block 1(c): Sampling the binary indicator λ and the parameters κ0 and σκ

In this block we sample the binary indicator λ and the parameters κ0 and σκ conditional on

the states α, β and h. Using equation (31), equation (2) can be rewritten in the general linear

regression format of (A-1) as

wt︷ ︸︸ ︷
yτt − yτt−1 =

zMt︷ ︸︸ ︷[
1 λκ̃t

] bM︷ ︸︸ ︷[
κ0

σκ

]
+

et︷ ︸︸ ︷
exp{hyt }ψyt , (A-21)

with Σ = diag
(
exp{hy1}2, . . . , exp{hyT }2

)
. The indicator λ can then be sampled from the posterior

distribution f (λ |α,w ) ∝ f (w |λ, α ) p (λ) with the marginal likelihood f (w |λ, α ) calculated from

equation (A-9). Next, bM can be sampled from N
(
aMT , AMT

)
with aMT and AMT as defined in

equations (A-10) and (A-11). Note that bM = (κ0, σκ)
′

when λ = 1 and bM = κ0 when λ = 0. In

the latter case, we set σλ = 0.

Block 1(d): Sampling the parameters ρ and %

For filtering ρ = (ρ1, ρ2) conditional on the states α, β and h, equation (4) can be written in the

general notation of equation (A-1) as: wt = yct , zt =
(
yct−1, y

c
t−2
)
, b = (ρ1, ρ2)

′
and et = exp{hct}ψct ,

such that Σ = diag
(
exp{hc1}2, . . . , exp{hcT }2

)
. Under the normal prior distribution N (a0, A0), ρ

can then be sampled from the posterior N (aT , AT ) with aT and AT as in equations (A-10) and

(A-11).

Likewise, for filtering % conditional on the states α, β and h, equation (11) can be written in

the general notation of equation (A-1) as: wt = ζt, zt = ζt−1, b = % and et = exp{hζt }ψζt , such that

Σ = diag
(

exp{hζ1}2, . . . , exp{hζT }2
)

. Under the normal prior distribution N (a0, A0), % can again

be sampled from the posterior N (aT , AT ) with aT and AT as in equations (A-10) and (A-11).

Block 2: Sampling the state vectors α, β and h and mixture indicators ι

In this block we use a forward-filtering and backward-sampling approach for the states α, β and

h based on a general state space model of the form

wt = ZMt sMt + et, et ∼ iidN (0, Ht) , (A-22)

st+1 = R0 +R1st +Ktvt, vt ∼ iidN (0, Qt) , s1 ∼ iidN (a1, A1) , (A-23)
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where wt is now a vector of observations and st an unobserved state vector. The matrices Zt,

R0, R1, Kt, Ht, Qt and the expected value a1 and variance A1 of the initial state vector s1 are

assumed to be known (conditioned upon). The vector sMt and the matrix ZMt are again restricted

versions of st and Zt with the elements excluded depending on the model indicatorsM. The error

terms et and vt are assumed to be serially uncorrelated and independent of each other at all points

in time. As equations (A-22)-(A-23) constitute a linear Gaussian state space model, the unknown

state variables in st can be filtered using the standard Kalman filter. Sampling s = [s1, . . . , sT ]

from its conditional distribution can then be done using the multimove Gibbs sampler of Shephard

(1994).

Block 2(a) Sampling the trend and temporary components α

We first filter and draw the state vector α = (yτ , πτ , uτ , κ, yc, ζ) conditionally on the time-varying

parameters β, the stochastic volatilities h and the hyperparameters φ. More specifically, using the

general notation in equations (A-22)-(A-23), the unrestricted (i.e. λ = 1) conditional state space

representation is given by

wt︷ ︸︸ ︷
yt

πt

ut

 =

ZMt︷ ︸︸ ︷
1 0 0 0 0 1 0

0 1 0 0 1 aβπt bβπt

0 0 1 0 0 βut 0



sMt︷ ︸︸ ︷

yτt

πτt

uτt

κ̃t

ζt

yct

yct−1


+

et︷ ︸︸ ︷
εyt

επt

εut

, (A-24)



yτt+1

πτt+1

uτt+1

κ̃t+1

ζt+1

yct+1

yct


︸ ︷︷ ︸
st+1

=



κ0

0

0

0

0

0

0


︸ ︷︷ ︸
R0

+



1 0 0 σκ 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 % 0 0

0 0 0 0 0 ρ1 ρ2

0 0 0 0 0 1 0


︸ ︷︷ ︸

R1



yτt

πτt

uτt

κ̃t

ζt

yct

yct−1


︸ ︷︷ ︸

st

+Kt



ψyt

ψπt

ψut

ψκt

ψζt

ψct


︸ ︷︷ ︸

νt

, (A-25)

with Kt =



exp{hyt } 0 0 0 0 0

0 exp{hπt } 0 0 0 0

0 0 exp{hut } 0 0 0

0 0 0 σψ,κ 0 0

0 0 0 0 exp{hζt } 0

0 0 0 0 0 exp{hct}
0 0 0 0 0 0
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and where a =
(
1− ωρ1 − ω2ρ2

)−1
, b = aωρ2, Ht = diag

(
σ2
ε,y, σ

2
ε,π, σ

2
ε,u

)
and Qt = I6. The

random walk components yτt , πτt , uτt and κ̃t are initialized by setting a1 = 0 and A1 = 1000 for

each of these components while the stationary components ζt and yct are initialized from their

unconditional distributions. Note that using κ0, σκ and κ̃t, κt can easily be reconstructed from

equation (27).

In the restricted model (i.e. λ = 0) κ̃t is excluded from sMt , with appropriate adjustment of

the other matrices. In this case, no forward-filtering and backward-sampling is needed and κ̃t can

be sampled directly from its prior using equation (28).

Block 2(b): Sampling the time-varying parameters β

We next filter and draw the time-varying parameters β = (βπ, βu) conditionally on the state

vector α, the stochastic volatilities h, the hyperparameters φ and the binary indicators M. More

specifically, using equation (29) in (14) and (15), the unrestricted (i.e. δj = 1) conditional state

space representations for the time-varying parameters β̃πt and β̃ut are given by

wt︷ ︸︸ ︷[
πt − πτt − ζt − βπ0 ỹct

]
=

ZMt︷ ︸︸ ︷[
ση,π ỹ

c
t

] sMt︷ ︸︸ ︷[
β̃πt

]
+

et︷ ︸︸ ︷[
επt

]
, (A-26)[

β̃πt+1

]
︸ ︷︷ ︸
st+1

=
[

1
]

︸ ︷︷ ︸
R1

[
β̃πt

]
︸ ︷︷ ︸
st

+
[

1
]

︸ ︷︷ ︸
Kt

[
η̃πt

]
︸ ︷︷ ︸
νt

, (A-27)

with Ht = σ2
ε,π and Qt = 1, and

wt︷ ︸︸ ︷[
ut − uτt − βu0 yct

]
=

ZMt︷ ︸︸ ︷[
ση,uy

c
t

] sMt︷ ︸︸ ︷[
β̃ut

]
+

et︷ ︸︸ ︷[
εut

]
, (A-28)[

β̃ut+1

]
︸ ︷︷ ︸
st+1

=
[

1
]

︸ ︷︷ ︸
R1

[
β̃ut

]
︸ ︷︷ ︸
st

+
[

1
]

︸ ︷︷ ︸
Kt

[
η̃ut

]
︸ ︷︷ ︸
νt

, (A-29)

with Ht = σ2
ε,u and Q = 1. Both random walk components β̃πt and β̃ut are initialized by setting

a1 = 0 and A1 = 1000.

In the restricted model (i.e. δj = 0), ZM and sM are empty. In this case, no forward-filtering

and backward-sampling is needed and β̃jt can be sampled directly from its prior using equation

(24). Note that the sampling of the state vector α in block 2(a) depends on βjt rather than on β̃jt .

Using βj0, ση,j and β̃jt , β
j
t can easily be reconstructed from equation (23).

Block 2(c): Sampling the mixture indicators ι and the stochastic volatilities h

In this block we draw the mixture indicators ι =
(
ιy, ιπ, ιu, ιc, ιζ

)
and the stochastic volatilities

h =
(
hy, hπ, hu, hc, hζ

)
conditionally on the state vector α, the time-varying parameters β, the

hyperparameters φ and the binary indicatorsM. Following Del Negro and Primiceri (2014), in this

block we first sample the mixture indicator ιkt (for k = y, π, u, c, ζ) from its conditional probability
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mass

p
(
ιkt = i|hkt , εkt

)
∝ qifN

(
εkt |2hkt +mi − 1.2704, ν2i

)
, (A-30)

with values for {qi,mi, ν
2
i } taken from Table 1 in Omori et al. (2007).

Next, we filter and sample the stochastic volatility terms h̃kt (for k = y, π, u, c, ζ) conditioning

on the transformed states gkt defined in equations (A-16)-(A-20), on the mixture indicators ιkt and

on the parameters φ. More specifically, the unrestricted (i.e. θk = 1) conditional state space

representation is given by

wt︷ ︸︸ ︷[
gkt −

(
mιkt
− 1, 2704

)
− 2hk0

]
=

ZMt︷ ︸︸ ︷[
2θkσγ,k

] sMt︷ ︸︸ ︷[
h̃kt

]
+

et︷ ︸︸ ︷[
ε̃kt

]
, (A-31)[

h̃kt+1

]
︸ ︷︷ ︸
st+1

= [1]︸︷︷︸
R1

[
h̃kt

]
︸ ︷︷ ︸
st

+
[

1
]

︸ ︷︷ ︸
Kt

[
γ̃kt

]
︸ ︷︷ ︸
νt

, (A-32)

with Ht = v2
ιkt

, Qt = 1 and where ε̃kt = εkt −
(
mιkt
− 1, 2704

)
is εkt recentered around zero. The

random walk components h̃kt are initialized by setting a1 = 0 and A1 = 1000.

In the restricted model (i.e. θk = 0), ZM and sM are empty. In this case, no forward-filtering

and backward-sampling is needed and h̃kt can be sampled directly from its prior using equation

(26). Note that the sampling of the state vector α in block 2(a) depends on hkt rather than on h̃kt .

Using hk0 , σγ,k and h̃kt , hkt can easily be reconstructed from equation (25).
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