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An extended Huff-model for robustly benchmarking and

predicting retail network performance

Abstract

This study proposes a modified Huff model that takes directly into account
spatial competition between stores of the same brand, brand attraction based
on actual brand performance and spatially variable substitution. The model
uses only publicly available or easily acquirable data as input, whereas model
output is extensively validated on various levels. These levels include com-
parison of modeled and real market shares on block, store and brand level
for the Belgian food market. Results show that multi-objective optimization
of model parameters yields comparable results on block level to other models
in the literature but improved results on store and brand levels, thereby en-
suring model robustness. This robustness also enables the application of the
model for various business purposes as store location determination, leaflet
distribution optimization, store and store concept benchmarking, without
loss of spatial generality.

Keywords:
Huff model, retail management, spatial competition, multi-objective
optimization, store benchmarking, turnover prediction

1. Introduction

To monitor operational performance, retailers rely more and more on
objective store benchmarks. Benchmarks are objective in a way that they
quantify internal and external influences on store performance (store size,
brand, competition, geodemographic characteristics of consumers, etc.) to
obtain a measure indicating the performance of the management. The more
fine-grained such store benchmark is, based on for instance loyalty card in-
formation, the more targeted improvement actions can be defined. A store
benchmark on a fine-grained block level is therefore more valuable than a
benchmark on an aggregate store level for defining and monitoring the im-



pact of marketing actions such as door-by-door leaflet drops. In expansion
strategy, accurately predicting turnover for a new outlet is also of primary
importance for today’s retailers. An accurate turnover prediction can quickly
indicate whether it is still worthwhile to pursue a scarce city center develop-
ment opportunity or to accurately assess the opportunity cost on the future
network of opening a new store outside the city center, where supply of po-
tential location alternatives is still more abundant.

In the next chapters, we propose a Huff-model that provides both a ro-
bust benchmark for current stores and an accurate turnover prediction for
new stores, applied to the Belgian food market. In chapter 2, we explain in
what ways our new approach extends the current state-of-art on store bench-
marking and prediction techniques. Chapter 3 covers the development of the
new model. In chapters 4 and 5, we explain what data we use as input and
validation data and how model performance is measured. In chapter 6 we
discuss the performance of our model after optimization, both in comparison
with other Huff-models and of the individual contribution to overall effective-
ness of the model of the different model building blocks. Finally, in chapter
7, the results of this study are summarized and managerial implications and
limitations for using this model in practice are discussed.

2. Literature and own approach

Many approaches to benchmarking and predicting turnover exist, rang-
ing from simple methods as experience and analogs, over regression analyses
to more complex methods as spatial interaction modeling and neural net-
works (1).

Already in 1964, Huff showed that gravity modeling techniques can have a
significant contribution to solving these retail network management issues (2).
By calculating customer’s probabilities for store patronage, the Huff model
embodied an important milestone in scientifically assessing store trade areas.
The model states that the market share of a store in a given region is pro-
portional to the utility for consumers in this region generated by this store
to the total utility generated by all stores in the neighborhood of this region.

Ever since the formulation of the basic model in 1964, many extensions
have been proposed to improve the predictive accuracy of this type of grav-
ity model. Lakshmanan and Hansen (3) argued that a non-linear relationship
between attraction and store size increases patronage prediction accuracy be-
cause the utility trade-off between store size and travel distance was now more
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flexible. Nakanishi and Cooper (4) proposed a strategy to estimate model pa-
rameters using ordinary least square estimations when a log transformation
is applied to the different drivers of store attraction. Stanley and Sewall (5)

added brand image to the attractiveness drivers of a store. Ghosh (6) was
the first to account for spatial non-stationarity of the parameters used in a
gravity model, because the relevance and impact of different drivers of store
attractiveness can vary across geographic regions. Orpana and Lampinen (7)

introduced different store concepts in the gravity model based on the size
of grocery stores. A separate set of parameters for each store concept was
estimated to model the varying impact of store attractiveness drivers on each
store concept as they serve a different shopping purpose.

Next to finding the right drivers and estimation procedures, many ap-
plications of the Huff model have been proposed and tested in literature.
These applications include university campus selection (8), store selection in
the furniture market (9), the choice of movie theater (10), and the analysis of
spatial access to health services (11,12). The most common application in both
literature and practice however, is found in the grocery market, since it is
one of the most saturated markets, for which benchmarking and a predictive
model is most valuable.

We argue that in current approaches proposed in the literature several
shortcomings can be found. Firstly, very few research has looked into the im-
pact of the spatial configuration of the store networks and more specifically
how the presence of multiple stores of the same retail chain in a customer’s
choice set can influence store results in that area. Secondly, we noticed a
lack of variety of information used to validate the proposed models. This is
mainly due to the fact that most, if not all, papers focus solely on answering
one management issue. For example, Orpana and Lampinen (7), Yingru and
Liu (13), and Sandikcioglu et al. (14) focus solely on the prediction accuracy
for retail locations. For this purpose they only use information on a store
level, which yielded good results for their purpose. Less research has been
conducted on block level, based on questionnaires or loyalty card informa-
tion. Gauri et al. (15) use such block level information and gravity modeling
techniques for a store performance benchmark exercise. Although the results
on block level for the performance benchmark were good, the results on a
more aggregate store level were less satisfactory. None of the existing work
on gravity modeling has incorporated results on a higher level, the food re-
tail chain, despite being readily available in a nation’s database of financial
statements. A final shortcoming can be found in the type of input data used
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in existing gravity models. Collecting a wide variety of input data to capture
more influencing factors (16) can be extremely time consuming or very costly
when bought. Retailers are therefore often reluctant to acquire these data
because the marginal benefit of incorporating these data in practice has be-
come questionable. In this paper, we show how easily available information
can be used for maximum applicability and results in practice, ensuring high
return on investment.

This paper aims at constructing a robust gravity model for the whole
Belgian grocery market, using an extensive set of easy-to-gather input and
validation data. In doing so, we address the three aforementioned shortcom-
ings. Firstly, the state of art of the Huff-model is extended by incorporating
more spatially influencing factors, such as brand recognition and internal can-
nibalization of sales between stores of the retail chain. The inclusion of such
factors can provide valuable insights in a retail chain’s network expansion
strategy. Secondly, block level information drawn from a grocery retailer’s
Customer Relationship Management database is used in addition to annual
store turnovers from the same grocery retailer and annually reported group
turnovers for all competitors as reported in their financial statements. Val-
idation on these three levels is applied for an improved robustness of the
proposed model. Lastly, in our approach, only easy-to-gather input data on
a national scale is used. Therefore, we limit our model to the store surface
and the store brand as a measure of store attractiveness. Addresses and
brands of stores can easily be acquired using company websites and common
knowledge of the competitive landscape. While calculating surfaces on a
large scale can be time consuming, the spread of freely accessible aerial pho-
tographs (Google Earth, Bing Maps) (13) and more detailed socio-economic
permits have sped up its calculation considerably.

3. Model Development

Starting from the basic Huff model, this section explains the extensions
that seek to improve predictive and benchmarking accuracy on block, store
and chain level.

Basic Huff model
As a starting point for our model we use the Huff model as proposed in

1964. It states that the patronage probability Pij of a store j for inhabitants
and workers in a given region i (henceforth named ’residents of block i’) is
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equal to the proportional utility of this store (Uij) compared to the total
utility generated by all N stores in the neighborhood of this region:

Pij =
Uij∑N
q=1 Uiq

(1)

The utility generated by grocery store j for residents of block i is calcu-
lated as:

Uij =
Aj

Dij
β

(2)

The value Aj represents the aspatial attractiveness component for store
j. In the basic Huff model, store size is used for Aj. As mentioned in section
2, it is however possible to incorporate more drivers for aspatial store at-
tractiveness by averaging or multiplying different drivers. Dij is the distance
between store j and the centroid of block i. In most research, Euclidian dis-
tance based drive times are used. However, with recent technology advances,
the calculation of fastest route drive times has become feasible, even for large
scale projects. The parameter β shows the relationship between distance and
attractiveness of the store.

To translate probabilities from formula 1 into monetary allocations, it
is assumed that the total spending potential of a block is divided evenly
according to the store visit probabilities Pij for all stores j in close proximity.

Fij = Pij ∗ SPi (3)

Where Fij equals the monetary flow between store j, and block i and SPi
is the total spending potential on groceries of all residents of block i.

Extending the Huff model
Taking the above basic formulation as a starting point, we now further

develop this model to incorporate more influencing factors on store choice
probabilities. The development of the model is explained in three phases.
In the first phase, an Unrelated Total Attraction (UTAij) for every block
i in regard to store j is calculated. In the next phase, UTAij is modified
to account for weakening and fortifying effects of regional brand presence,
resulting in a Related Total Attraction (RTAij). Finally, after incorporating
substitution for grocery spending in grocery stores in the model, store visit
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probabilities are calculated using the Related Total Attraction. The result-
ing monetary allocations then can be validated with real sales information.

Phase 1: the construction of UTAij

Sj - Store size
Larger stores carry a more complete and voluminous range of grocery

products. More choice options and a better product availability tends to be
more attractive to consumers.

BAbj - Brand Attraction
Another important influencing factor on store choice is the brand each

grocery store belongs to, as each grocery store chain has its own store for-
mat. Incorporating a brand related attraction value in the model thereby
reflects two influencing factors: shelve density and attraction of the brand
format to consumers. Although store size is an adequate proxy for the range
of products carried, the different store formats have varying shelve densities,
resulting in fluctuating sales per square meter. The incorporation of such a
brand attraction measure can then refine the impact of store size on store at-
tractiveness. Also, due to pricing and/or product strategy differences, some
grocery store chains are more attractive to consumers than others. Using the
global turnover results of each grocery store chain and the total surface of
their stores in Belgium, an average annual turnover per square meter, BAbj ,
can be calculated, which is a good relative approximation of the attractive-
ness of the brand concept bj, independent of the store j’s size. For a market
entrant the application of this approach is difficult, as they haven’t realized
any turnover yet. This can however be overcome by using the same BA as
an existing firm following a similar strategy.

LBij - Language Borders
Belgium is characterized by its division in three major geodemographic

areas: Flanders, Brussels and Wallonia. In Flanders the mother tongue is
Dutch, while the native language in Wallonia is French. Finally, Brussels is
characterized by both Dutch and French speakers. Due to these language
borders, there is a preference for most people to shop only in their own
geodemographic area. To model these geodemographic borders, penalties
for cross-border utility calculations are calculated, according to which spe-
cific geodemographic border is crossed (Figure 1). These penalty values have
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been estimated based on expert interviews. A penalty of 0.1 corresponds for
example with a 90% reduction of the store attractiveness. Moreover, since
the majority of the focal brand’s stores are located in the southern part of
Belgium, we also took French grocery stores close to the Belgian border into
account. These cross-nation allocations are also subject to a penalty accord-
ing to the language of the resident of a block and the area in which the store
is located.

Kj - Grocery Store Concepts
Different store concepts have also spatial differences in attraction. Hyper-

markets are characterized by the largest store surfaces in the grocery market
and usually have the largest parking spaces. From a spatial point of view, it
significantly increases the fixed time cost of visiting this type of store con-
cept. From an aspatial point of view, they also carry the most complete range
of grocery products, as covered in brand attraction and store surface. This
store configuration tends to be more attractive to consumers from distant
areas, who prefer large quantity one-stop shopping trips, thereby reducing
the relative impact of the larger fixed time costs on the total time cost of
their shopping trips. For residents at closer distances however, the impact of
the higher fixed time costs is often too high for top-up shopping trips, which
reduces the relative attractiveness of these hypermarkets for consumers at
closer distances. Local shops are characterized by the inverse relative at-
tractiveness. They are very attractive for local residents for quick top-up
shopping, while being less attractive to more distant residents as their lim-
ited range of products prevents a time-equitable one-stop shopping trip. To
model these spatial differences in attractiveness between different store con-
cept, we divide the grocery stores in scope into three categories: local grocery
stores, supermarkets and hypermarkets. For each of these grocery store con-
cepts, separate travel-time dependent parameters are introduced. Table 1
presents the classification as proposed by Orpana and Lampinen (7), which is
also used in this study.

Also, a fourth store concept is introduced for the retailer who provided
the sales data, both loyalty card information and store turnovers. This choice
is motivated by the possibility these sales data offer to model their specific
market dynamics more accurately than brands for whom we only have sales
data on brand level, while avoiding overfitting for these other brands. When
using this model for another retailer, it also means the model has to be re-
estimated using their specific data.
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Sales surface Store concept
< 400m2 Local grocery store

≥ 400m2 and < 2, 500m2 Supermarket
≥ 2, 500m2 Hypermarket

Table 1: Different store concepts used.

To accurately model these differences in spatial attractiveness, we in-
troduce both a global attractiveness parameter SC and a distance related
parameter DP for every store concept kj:

SCkj - Global impact of store concepts
The typology of store concept has a fixed influence on the incurred time

cost. Other researchers have also implemented these ideas, either implicitly
or explicitly: Pauler et al. (17) and Gauri et al. (15) augment the Euclidian dis-
tance between consumers and grocery stores by a fixed increment, thereby
implicitly accounting for a fixed time cost. Orpana and Lampinen (7) also
add a fixed time increment to the distance function. We propose a similar
modification in the distance function specification which also accounts for
an incurred fix time cost. Section A of Figure 2 shows such a classic Huff
distance-attraction decay with a fixed time penalty. In literature, many other
forms of distance-attraction decay have been proposed (18). In this study, an
exponential relationship is used: SCkj/exp(Dij ∗DPkj). For every store con-
cept kj, parameter SCkj will indicate the relative fixed time cost increment,
as shown in section B of Figure 2.

DPkj - The impact of distance
We measured the distance between customers and stores as the average

between Euclidian distance based travel time and fastest route travel time,
since customers not only judge the spatial attractiveness of a store on the
travel time of the fastest route but on geographical proximity as well. We
refer to section 6 for a proof of the contribution of this approach to the overall
effectiveness of the model.
Parameter DPkj , combined with the fixed time cost parameter SCkj , deter-
mine the time-dependent attraction of each store concept. Figure 3 shows
a distance-attraction relation for each store concept. Independent of their
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surface, a local grocery store has greater local attraction then any of the
other store concepts, while a hypermarket has greater attraction on longer
distances.

Combining the previous drivers of store attractiveness, we can now cal-
culate the Unrelated Total Attraction of every grocery store j close to block i:

UTAij =
Sj ∗BAbj ∗ LBij ∗ SCkj

eDij∗DPkj
(4)

The Unrelated Total Attraction of every grocery store j for block i is
thus directly proportional to the average turnover of a store from brand bj
with surface Sj weighted by language border penalties LBij and the store
concept impact SCkj and inversely proportional to an increasing function of
the distance to the store Dij.

Phase 2: the calculation of RTAij
The presence of stores of the same brand in a region can have both fortify-

ing and weakening effects on the attractiveness of a grocery store. First of all,
the biggest competitors of a grocery store that is part of a chain are neigh-
boring stores of the same chain. While the Huff model takes competition
between stores of different brands directly into account in the utility values,
it is not as accurately accommodated to take competition within a brand into
account. If, for example, for a certain geographic area, two grocery stores of
different brands are in scope, customers will divide their purchases according
to the stores’ respective attractiveness values. This division is however much
more unlikely if the stores belong to the same brand. In this situation, the
store with the highest attractiveness is likely to attract more than its share
attributed by a classic Huff model, because both stores are almost perfect
substitutes and rational consumers will virtually only visit the store provid-
ing them with the highest utility. Therefore, we attribute a penalty to all
but the most attractive stores per brand in the eyes of the residents of every
region.
This penalty is calculated as follows:

CFkj
(

∑
q|bq=bj ,UTAiq>UTAij

UTAiq

UTAij
)

(5)

Where CFkj (0 ≤ CFkj ≤ 1) is a cannibalization penalty factor and is a
parameter that will be estimated per store concept k. The power to which
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CFkj is raised depends on the ratio between the Unrelated Total Attraction
of more attractive stores of the same brand for residents of region i and store
j’s Unrelated Total Attraction. A similar approach was used by Kaufmann
and Rangan (19), who developed a model for site location for a franchise
company. In this model, they argue that customers choose the franchisee
that provides them the highest utility among all other available franchisees.
Such an approach can be achieved in our model when CFkj approaches zero.
When CFkj is 1, the classic Huff model is attained. A similar notion is used

by Wan et al. (11) for correctly determining the demand for health services.
In the proposed three-step floating catchment area (3SFCA) method, the
demand for health services provided by a medical facility is also cannibalized
by the presence of other facilities in closer proximity to a block.

At the same time, the presence of multiple stores of the same brand in
close proximity has a reinforcing effect on the attractiveness of all of these
stores. Naert and Bultez (20) argued that a logistic ‘S’ relationship exists
between market share per store and the number of stores of the same brand
in geographic proximity. When opening a first store in a region, consumers
are not yet familiar with the format of the chain. The more stores of the brand
that have opened in the region, the more familiar consumers become with the
concept, hence the increased market share per store. Naturally, with an even
larger increase in numbers, the marginal effects of an additional store start
to decrease. The brand presence BPibj of a brand bj for block i is calculated
as follows:

BPibj = 1 +BPF ∗BPSibj (6)

where BPSibj is defined as the relative share of grocery stores of brand bj
for every geographic block i and BPF is a parameter optimizing the impact
of the brand presence. The relative share of grocery stores of brand bj for
block i is calculated as the number of stores of brand bj within a 20 minute
drive time radius on the total number of stores within the same time radius.
As figure 4 indicates, the BPS factor for the focal retailer is zero for the
majority of blocks, since its network contains only 61 stores. Furthermore,
the maximum BPS of 25% -meaning that 1 in 4 grocery markets within
20 minutes of these blocks belong to the focal retailer- indicates high local
concentrations of focal stores.

When comparing figure 5A with 5B, it is clear that brand presence has
reinforced the individual attraction of each of both stores in close proximity
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to the store, while for the zones in between both stores, where the internal
cannibalization is the strongest, the clear preference for one of both stores
has weakened the aggregated attraction of both stores.

By taking these factors into account, the Indepency of Irrelevant Alterna-
tives (IIA) property from which a classic Huff model suffers, is also partially
addressed. The IIA property states that the ratio of the probabilities of an
individual selecting two alternative stores is unaffected by the addition of a
third alternative store (21). In our model, the introduction of a new alterna-
tive effectively influences the relative preferences of existing choice options
when taking brand into account, as fortifying and weakening effects of brand
presence will also influence the attractiveness of existing store options.

With these fortifying and weakening effects of brand presence, we can
now calculate the Related Total Attraction of every store j close to block i:

RTAij = BPibj ∗ UTAij ∗ CFkj
(

∑
q|bq=bj ,UTAiq>UTAij

UTAiq

UTAij
)

(7)

Phase 3: The calculation of the store visit probabilities.
In this final phase, we transform the Related Total Attraction values to

store visit probabilities and finally to monetary allocations.
It is however highly unlikely that all of the grocery budget within a family
will be allocated to the grocery stores in our database. Substitution is often
triggered by the absence of close grocery stores or by servitized alternatives
like restaurants. Therefore, we incorporate two parameters FS and RS that
model these two substitution possibilities when calculating store visit prob-
abilities Pij (see Equation 8). FS reflects a fixed attraction to substitutes
regardless of any region specific characteristics. If there are abundant gro-
cery stores in close proximity, i.e. large aggregated RTA values, much of the
potential demand will be triggered. This is reflected in the fact that FS will
be relatively small compared to

∑N
q=1RTAiq and substitution thus will be

minimal. Servitized substitution alternatives are more likely to be located in
densely populated areas. Therefore, we multiply the population density PDi

in region i with a parameter RS to obtain a measure of servitized substitu-
tion.

Pij =
RTAij

(
∑N

q=1RTAiq) + FS +RS ∗ PDi

(8)

Finally monetary allocations can be calculated using equation 3:
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Fij = Pij ∗ SPi ∗ PM (9)

Where PM is a Potential Multiplier used to fine-tune the spending po-
tential figures SPi we pre-calculated.
After obtaining all allocations, aggregations can be made to obtain results
on store and brand level. Figure 6 shows such an aggregation for the focal
retailer. Comparison with true allocations on block level or turnovers on
store level is then the basis of model optimization.

4. Test Design

Solution procedure
Due to the non-linear nature of the proposed model, linear regression

techniques for parameter optimization cannot be applied. Optimization tech-
niques that are capable of dealing with such highly complex non-linear op-
timization problems, are for example meta-heuristics. They however cannot
ensure an optimal solution. We opted for a simulated annealing (SA) solution
procedure, which is part of the descent family of meta-heuristics. Simulated
Annealing was introduced in 1983 by Kirkpatrick, Gelatt and Vecchi as a
probabilistic solution method capable of finding very good results in limited
computing time. It is also commonly used as a multiobjective optimiza-
tion strategy (23). The use of validation data on different levels allows for a
multiobjective optimization and provides a robust model. When optimizing
a multiobjective optimization problem, a set of pareto-optimal solutions is
obtained. Pareto-optimal solutions are solutions for which there exists no
feasible solution that equals or outperforms this solution on all criteria of the
multiobjective optimization problem, in this on case block, store and brand
level. However, it needs to be pointed out that an intelligent steering of
the SA procedure for this problem formulation is very difficult. The highly
complex definition of the problem makes a neighborhood definition around
an accepted solution very difficult to define. In order to use the benefits of
the SA intelligence to its best, the control of the deterioration acceptance
for temporary solutions was controlled on store level, having stabler neigh-
borhoods than the more fine-grained block level, while allowing for better
parameter fitting than the more aggregated brand level. To ensure good re-
sults within reasonable time however, we opted for a standard multiobjective
simulated annealing (MOSA) procedure with slow temperature decrease and
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allowed the search procedure 10.000 iterations to calibrate the optimization
parameters.

Performance benchmarks
The quality of the proposed model is evaluated in comparison to a classic

Huff model and an extended Huff model found in literature that was appli-
cable to our dataset. Benchmarking with other models in the literature has
indeed proven to be very difficult, since most papers work with a very broad
range of input data, which are often not available or not relevant outside
their test environment. A first benchmark is made with the basic Huff model
as proposed by Huff (see equation 2). Model M1 of the extended Huff model
proposed by Orpana and Lampinen (7) is also tested:

Uij = SCkj ∗ Sj
αkj ∗D

βkj
ij (10)

where the number of store concepts j is only 3, compared to 4 in our
model.

As a performance measure on all 3 levels, the Mean Average Percentage
Error (MAPE) is calculated:

MAPE =
1

N

∑N

n=1

|On −Mn|
On

(11)

Where N is the number of observations depending on the level of the
validation data (block, store or brand level). On is the true observed result
for area n, while Mn is the modeled result for area n (if on block level, Mn

= Fij). For more comparative results, the pseudo R2 fit measure, used by
Gauri et al. (15), is also reported:

PseudoR2 =
var(O(MSn))− var(εn)

var(O(MSn))
(12)

Where O(MSn) is the observed market share for area n (block, store or
brand level) and εn = O(MSn) − E(MSn) where E(MSn) is the expected
market share in area n according to the model. This fit measure thus indi-
cates how much of the observed variance is explained by the model. How-
ever, since we are unable to use regression techniques and have opted for a
meta-heuristic, E(εn) 6= 0. If optimized towards this performance measure,
robustness of the solution cannot be guaranteed as skewness in the results
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cannot be prevented. To still ensure comparable results, we added a 6% de-
viation constraint to the mean percentage deviation of the results on store
level. Due to the limited number of observations on brand level, the pseudo
R2 will be reported only on block and store level. To avoid overfitting, we
subdivided the allocations on block level into a 2/3 training and a 1/3 vali-
dation set. We did not opt for a test and validation set on store and brand
level, given the limited number of observations.

Calculation performance improvements
Because of the scale of this research, calculation time per iteration can

be quite long. To reduce the calculative burden, we added constraints on
how many stores are evaluated per block. Indeed, it can be assumed that
from a certain number of stores on, the true allocations of spending poten-
tial become negligible. We fixed this number on the 18 closest local grocery
stores and supermarkets and the 2 closest hypermarkets. Preliminary ev-
idence showed that this number yielded sufficiently accurate results while
maintaining acceptable calculation times.

5. Data

The proposed model was tested on a national scale. For this purpose,
an inventory of grocery stores in Belgium was fetched. For ease of gathering
this information, only grocery stores belonging to a food chain were added,
provided that the food chain had at least seven grocery stores in Belgium.
This process yielded a database with 3,420 grocery stores, belonging to 34
food chains. To complete this database, we added net sales surfaces of these
grocery stores. Due to the availability of high resolution aerial photographs it
is much easier to accurately estimate sales surfaces of stores. This process is
for example used by Yingru and Liu (13). Next, we obtained annual sales data
from a major food retailer in Belgium for the year 2010. For 61 (out of 63)
supermarkets (with surfaces between 600m and 2, 400m) we obtained loyalty
card information. After geocoding the addresses, the annual sales quantities
were allocated to the different blocks in Belgium. This aggregation resulted
in 27,143 monetary allocations from geographic blocks in Belgium to the
61 stores for which loyalty card information was available. Since not every
transaction is logged with a loyalty card, the current spread of sales regis-
tered with loyalty cards is corrected to obtain the complete annual turnover
for every store. From the National Institute for Statistics, we obtained geode-
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mographic information on the 19,781 geographic blocks in Belgium. Taking
the number of families and the average revenue of each block into account,
a partial expenditure potential on groceries was calculated. This potential
was further augmented with an expenditure potential of the total workforce
active in each block, since they too are prone to buy groceries before, after
or during their stay at their workplace. This resulted in a total expenditure
potential per block i, SPi. Since the expenditure potentials are indications,
parameter PM was introduced in the model to fine-tune the global expen-
diture potential. Fastest route driving times were calculated from the center
of the geographic block to the exact location of the store using Microsoft
MapPoint Europe 2011.

6. Results

In this section, the results of a 10,000 iteration optimization run are pre-
sented. In the first section we discuss the optimized parameters and compare
the results with the performance of other gravity models from literature on
our dataset. In the second section, we perform iterative sensitivity analyses
to measure the contribution of several proposed drivers of store attractive-
ness to the overall performance of the model.

Comparative results
Table 2 shows the optimized parameters for each tested model after a

10,000 iterations optimization run. Due to the fact that substitution was
explicitly taken into account in our model, the potential multiplier PM is
higher compared to the other models as part of the market is not allocated
to stores in our database. The store concept multipliers SC are both used
in our model and the M1 model of Orpana and Lampinen. The difference
in absolute magnitude of the parameter values between both models is not
important as store visit probabilities are calculated, which involves a relative
weighing of attraction scores (see equation 1). The relative difference in pa-
rameter value between store concepts however, is much more important and
is relatively comparable between both models, indicating the same capture of
store concept dynamics. This finding is also confirmed when looking to the
distance related parameters DP for our model and β for the other 2 models:
the larger the store concept, the lower the impact of distance becomes. More-
over, in our model the impact of distance for our focal retailer is larger than
for a comparable supermarket, indicating the somewhat more ’local store’
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image of the focal retailer. To correctly interpret the resulting cannibaliza-
tion factors CF , it is to take the varying impact of distance for different store
concepts into account. For local stores, having very small trade areas, it is
much more difficult to accurately assess internal cannibalization as it is not
so common that their trade areas converge. The bigger the stores become
however, the more the trade areas of stores of the same branch are likely
to converge and internal cannibalization becomes more important, hence the
increasing penalty values for bigger store concepts.

Results from table 3 show that our proposed model outperforms the ba-
sic Huff model significantly on all performance measures, although our model
only uses global brand results as additional input data. This also indicates
that the complex non-linear relationships in our model result in significant
improvements in overall accuracy. More specifically, a 66.4% mean average
deviation was found on the test set on block level, whereas the validation set
confirmed this result with a MAPE of 62.99%. The performance measures on
block level result in relatively high mean average percentage errors, especially
compared to the MAPE on store level. Since we did not trim the observed
allocations, every observed allocation that did not have a modeled counter-
part (or vice versa) resulted in a 100% deviation for that block. When taking
only the 500 biggest allocations into account, we see a remarkable decrease in
MAPE on block level to 37%. Since these minor allocations have a relatively
small impact on store level, the mean average percentage error on store level
drops significantly to 22.34%. On brand level a MAPE of 22.28% was found,
which is very satisfactory given the fixed nature of the Brand Attractions.
Furthermore, a nearly 50% increase in explanatory power of the model com-
pared to the basic Huff model is found when looking at the pseudo R2. Our
model explains 76% of the variance in market share on block level, which is
in line with the results of Gauri et al. (15). When looking at the M1 model of
Orpana and Lampinen, it also outperforms the basic Huff model on all levels,
thanks to the addition of parameters on store concept level. Compared to our
model, results are comparable on block level, while our model outperforms
the M1 model on store level, indicating that the addition of extra spatial
or brand related attractiveness drivers in our model have improved accuracy
on store level. Finally, the addition of Brand Attraction indicators for each
brand in our model clearly benefits the result on brand level, thereby also
drastically improving model robustness when for instance testing a potential
store location in this competitive landscape.
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Figure 7 shows the distribution of the 63 focal stores according to their
percentage error. The maximum absolute error for one store was 66%. For all
other stores the absolute percentage error was contained within 50%. Com-
pared with other results in literature, this is a very solid outcome. Although
comparison between two different geographic regions is difficult, our model
returns for instance a modeled store turnover for 98.41% of the focal stores
within a 50% deviation from their real turnover while the Store Performance
Index presented by Gauri et al. (15) yields modeled store turnovers of ap-
proximately 85% of the focal stores within a 50% deviation from their real
turnover. From a practical point of view, these deviations can be discussed
with store management to improve performance or learn best practices. For
simulation purposes, these figures however indicate that individual on-the-
field insight in each case is necessary for an even more accurate prediction.

Sensitivity analysis
Next to comparative results, we also measured the impact of the different

newly proposed attractiveness drivers on the total performance of the model.
We iteratively dropped or changed one of the model building blocks to mea-
sure the drop in model accuracy. Table 4 shows the optimization results after
10,000 iterations. For generality purposes we did not test the impact of lan-
guage border penalties since it is a specific Belgian characteristic. On block
level, we noticed no clear evidence with the MAPE measure of contribution
to overall effectiveness in all sensitivity tests. However, the R2 measure indi-
cates that the contribution of brand attraction, internal cannibalization and
the combination of real and Euclidian distance based drive times are signif-
icant. The improvement with the incorporation of brand presence on block
level is rather small, as was also noticed when comparing our model to the
M1 model of Orpana and Lampinen (7), but can be explained recalling 4, as
it has a significant impact on few blocks with high brand presence.

Looking at store level results, we noticed a decrease in error terms in all
six test cases. Small deteriorations are found when dropping brand attraction
and brand presence drivers. The limited effect on brand attraction is due to
the fact that the focal retailer has its own store concept, for which SCkj is
now optimized to act as a brand attraction driver for the focal retailer. Brand
presence in turn, has only a small spatial impact due to the focal retailer’s
specific network configuration, as shown in Figure 4, but has a strong local
impact in the few areas with high brand presence. The most significant
decrease in predictive error is found in the use of hybrid drive times. Figure

17



8 shows the accumulated turnover for blocks located at a certain drive time
(x-axis) to the stores for whom we have loyalty card information. From these
graphs it is clear that that our proposed model closely matches the real sales
from a spatial point of view. Using solely Euclidian distance based drive
times however, is clearly not as capable to capture the spatial dynamics in
the market, specifically at shorter distances. Using fastest route drive times,
on the other hand, enables accurate modeling at shorter distances while it
fails to do so at longer distances. Using hybrid drive times significantly
mitigates the shortcomings of both approaches.

Finally, on brand level, the deterioration of dropping Brand Attraction is
significantly, as expected. Dropping other drivers has only marginal effects
on brand level, except for the moderate influence of Internal Cannibalization,
which indicates that it is an important concept to take into account when
modeling a whole market segment.

7. Managerial implications, limitations and suggestions for future
research

We showed that starting from a limited variety of input data that are
easy to acquire, a robust multi-purpose gravity model with high accuracy
can be formulated. Moreover, for the first time a gravity model has been
validated on three different levels: block, store and brand level. On all three
levels the results clearly indicate the benefit of our proposed model compared
to a standard gravity model and models previously proposed in literature.
More precisely, we showed that incorporating both spatial and aspatial brand
related drivers of store attractiveness have a significant positive impact on
predictive accuracy for a focal retailer.

The model can be used for multiple purposes in practice. The deviations
on block level can be discussed with the management, and targeted actions
can be defined. On a more aggregate leve, the store level, we see that the
predictive accuracy is very satisfactory. Such predictive accuracy can be used
for predicting turnover of a new location and, especially for our model, for ac-
curately predicting the impact on existing stores. Although a gravity model
can rapidly indicate potential turnovers and impacts on current networks, it
still must be used with caution. Although we believe we have captured the
most important drivers of store success in the model - except for difficult to
capture drivers as store management- many more drivers have an influence
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on store success. Therefore, a model can never replace a visit on site as it
will provide many more insights in the choice behavior of local consumers (1).

The aim of a model should then not be to act as a final predictor, but
as an effective funneling instrument to filter sets of potential locations, as
shown in figure 9.

This paper therefore aims to provide a valuable, robust starting point for
retailers in their attempt to formulate a good predictive and benchmarking
model. Augmenting the model with more elaborate and relevant data will
virtually always contribute to an increased model accuracy and should thus
be encouraged. In order to deepen the impact of brands on individual store
results even further, it is for instance worthwhile looking into geodemographic
segmentation of the population to model the targeted population groups of
the different retailers (25). Also, a more extensive validation based on de-
tailed results on block and store level from multiple retailers across multiple
store concepts can increase model robustness and generalization. Finally, as
pointed out in section 4, an intelligent optimization procedure is very difficult
to configure for the highly complex formulation of the model. Limited intelli-
gence was introduced in our optimization due to very difficult neighborhood
definitions. Although the used procedure yielded satisfactory results on all
levels, it cannot be assured the optimal solution was found, and a better
solution still can be found using an improved optimization methodology.
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Figure 1: Graphical depiction of the attraction multipliers across geodemographic borders.
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Figure 2: Comparison between classic Huff decay with time penalty and the Huff decay
proposed in this study.
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Local grocery storewith SC=901andDP=0.6
Supermarket with SC=347andDP=0.3
Hypermarket with SC=156andDP=0.25
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Figure 3: The distance-attraction relationship for each store concept. The values for SC
and DP were chosen based on the optimal solution obtained in the results section.
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Figure 4: The spread of Brand Presence factors for the focal retailer for all geodemographic
blocks.
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Figure 5: The aggregated Unrelated and Related Total Attraction values per geographic
block for 2 stores of the focal retailer.

Figure 6: Graphical depiction of the three benchmarking levels.
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Parameter
Our model Basic Huff M1

Name Store concept
FS - 570 - -
SF - 0.0798 - -
PM - 0.94 0.6 0.6
BPF - 2.1 - -
SC 1 901 - 8

2 347 - 4
3 156 - 2
4 347 - -

DP/β 1 0.6 2 3.2
2 0.3 - 3
3 0.25 - 2
4 0.4 - -

CF 1 0.6 - -
2 0.35 - -
3 0.2 - -
4 0.6 - -

α 1 - - 0.7
2 - - 1
3 - - 1

Table 2: Parameters of the best solutions found.

Level Block Store Brand
Performance measure MAPE R2 MAPE MAPE

Set Test Validation Complete Complete Complete
Our model 66.40% 62.99% 76.11% 22.34% 22.28%
Basic Huff 117.48% 115.66% 26.47% 35.17% 57.36%

M1 Orpana and Lampinen (7) 66.19% 58.23% 71.56% 26.78% 47.78%

Table 3: Comparative results
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Figure 7: Distribution of percentage errors on store level

����a���	
���
�
���a���	
���

�
�
�
�
��
��
�
�a
��
�	


�
��
av
�	
a�
M

�����a����a����av�	a��	����M
) 0 H) H0 y) y0

����a���	
���
�
���a���	
���

�
�
�
�
��
��
�
�a
��
�	


�
��
av
�	
a�
M

�������a�
���a����a����av�	a��	����M

) 0 H) H0 y) y0

����a���	
���
�
���a���	
���

�
�
�
�
��
��
�
�a
��
�	


�
��
av
�	
a�
M

������a����a����av�	a��	����M

) 0 H) H0 y) y0

Figure 8: Comparison between modeled and true turnover for every minute driving time
using different driving time calculations.
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Figure 9: The process of retail location assessment (24)
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