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Weak Signal Identification with Semantic Web Mining 
 
Dirk Thorleuchtera,*, Dirk Van den Poelb 
 
 
Abstract 
 
We investigate an automated identification of weak signals according to Ansoff to improve 
strategic planning and technological forecasting. Literature shows that weak signals can be 
found in the organization’s environment and that they appear in different contexts. We use 
internet information to represent organization’s environment and we select these websites that 
are related to a given hypothesis. In contrast to related research, a methodology is provided 
that uses latent semantic indexing (LSI) for the identification of weak signals. This improves 
existing knowledge based approaches because LSI considers the aspects of meaning and thus, 
it is able to identify similar textual patterns in different contexts. A new weak signal 
maximization approach is introduced that replaces the commonly used prediction modeling 
approach in LSI. It enables to calculate the largest number of relevant weak signals 
represented by singular value decomposition (SVD) dimensions. A case study identifies and 
analyses weak signals to predict trends in the field of on-site medical oxygen production. This 
supports the planning of research and development (R&D) for a medical oxygen supplier. As 
a result, it is shown that the proposed methodology enables organizations to identify weak 
signals from the internet for a given hypothesis. This helps strategic planners to react ahead of 
time. 
 
Keywords: Weak Signal, Ansoff, Latent semantic indexing, SVD, Web Mining. 
 
 
 

1 Introduction 
 
A successful planning of research and development (R&D) requires an overview on current 
and future environmental conditions (Choi, Kim, & Park, 2007) to predict the arising of new 
technological approaches - the technology push - (Thorleuchter, 2008) and to predict changes 
in consumers’ needs - the market pull - (Thorleuchter, Van den Poel, & Prinzie, 2010d) by 
time. Literature introduces a concept of environmental scanning (Abebe, Angriawan, & Tran, 
2010; Tabatabei, 2011) that enables this prediction by extracting and analyzing information 
from the environment especially to identify events, trends, and relationships (Choo & Auster, 
1993). 
 
The concept of environmental scanning realizes a predictive view by applying a weak signal 
approach (Ansoff, 1975). A weak signal is an event or a development where an accurate 
estimation of its impact on a target (e.g. on organization’s R&D) cannot be given because a 
single weak signal probably appears by chance (Ansoff, 1982). However, identifying several 
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weak signals from different sources aiming at a common target is probably a hind that this 
target will be impacted in future. Thus, environmental changes can be predicted in advance 
that show future problem areas and opportunities. This enables the use of weak signals as 
early warning system for strategic planning. 
 
As shown by Decker, Wagner, and Scholz (2005), the internet is a valuable information 
source for an environmental scanning and thus, for detecting weak signals. A website or a 
document itself is normally not a weak signal however; it might be that a website or a 
document contains a textual pattern that represents a weak signal (Uskali, 2005). Thus, a full 
text access to information in the internet is necessary to identify these weak signals. 
Performance reasons based on the large number of internet websites enforces a (semi-) 
automated approach e.g. web mining rather than a human based manual scanning (Gericke et 
al., 2009; Tabatabei, 2011). 
 
Especially for R&D planning, information about three areas has to be considered 
(Thorleuchter, Van den Poel, & Prinzie, 2010c): the science for new technological aspects 
(technology push), the users for new product ideas (market pull), and the industry for new 
product development aspects (the link between technology and market). Technological 
research results are described in articles published in scientific journals, in conference 
proceedings, and in various scientific document repositories. In recent years, access to the full 
text of these articles using the internet becomes much easier because of the increased number 
of open access journals and articles available today. Further, some publishers (e.g. Elsevier) 
offer open archives that enable a full text access to articles after a specific embargo period of 
time. Additionally, some publishers allow manuscript posting where accepted manuscripts 
can be posted on authors’ personal or institutional websites. The Google Books initiative 
enables full text access to selected pages of conference proceedings published in books. This 
shows that in contrast to several years ago, the full text access to a large number of scientific 
articles is available today using the internet (Thorleuchter, Van den Poel, & Prinzie, 2010a). 
 
Information about new product development can be found on companies’ websites and in 
business magazines. Today, many magazines publish articles on their websites and thus, a full 
text access on this information is also available. Patents as representative for both, scientific 
results and industrial products are also published with full text in the internet (Thorleuchter, 
Van den Poel, & Prinzie, 2010b). Information about new product ideas from the users can be 
found in internet forums, blogs, micro blogs, review sites etc. The full text access to this 
information using the internet is possible, too. Overall, the planning of R&D can be supported 
by an environmental scanning and weak signals detection using the full text information in the 
internet today. 
 
The proposed methodology uses semantic text classification combined with an automated 
web mining approach for environmental scanning and weak signals detection. This is in 
contrast to related research, where knowledge structure based text classification approaches 
are used (Yoon, 2012). The use of semantic text classification considers the fact, that weak 
signals are formulized by different persons, in different languages, and in different contexts. It 
might be that two textual patterns representing weak signals are related to a specific topic 
even if they do not share a common word. This relationship can only be identified with 
semantic approaches that consider aspects of meaning rather than aspects of words 
(Thorleuchter & Van den Poel, 2013b). 
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A further contrast to related research is the use of a new weak signal maximization approach. 
Existing literature that investigate latent semantic indexing as well known semantic approach 
apply prediction modeling approaches to calculate a performance optimized number of 
singular value decomposition (SVD) dimensions (Thorleuchter & Van den Poel, 2012e). They 
use training and test set that consists of a well-balanced number of positive and negative 
examples (Thorleuchter & Van den Poel, 2013a). The creation of a training and test set is not 
applicable to weak signal identification because weak signals for a specific topic occur low 
frequently. The number of positive examples for a specific topic is not sufficient to create a 
well-balanced training and test set. Further, an evaluation of weak signals’ impacts can only 
be done considering the collection of all weak signals. Thus, a new weak signal maximization 
approach is proposed to identify the maximal number of weak signals for a specific topic to 
enable such an evaluation. 
 
Up to now, the applied practical approaches for weak signal identification using a wide scope 
environmental scanning have failed. High tech companies in Europe had problems realizing a 
weak signal detection and evaluation because of the high manual effort caused by the lack of 
environmental scanning tools and the low quality of the results (Schwarz, 2005). Existing 
successful practical approaches for weak signal are restricted to a small number of documents 
e.g. 50 selected web pages (Decker et al., 2005) or financial news articles of one Finish 
newspaper (Uskali, 2005). Thus, the proposed semi-automated methodology bridges these 
gaps by implementing a web mining based environmental scanning and semantic weak signal 
identification. This enables a wide scope for environmental scanning, a low manual effort for 
human experts, and an improved identification performance. 
 
In a case study, the proposed methodology is applied in the field of on-site medical oxygen 
production. R&D planners have provided a hypothesis concerning future developments. The 
methodology identifies relevant weak signals that are related to the given hypothesis. The 
weak signals do not verify or falsify the hypothesis; however they show that the hypothesis is 
in accordance to current trends extracted from the internet. This supports R&D planners by 
their decision making process. 
 
Overall, a methodology is proposed that enables a practical use of the weak signal concept 
considering a wide scope of information from the internet, aspects of meaning, and 
performance aspects to reduce the manual effort. Trends and developments can be identified 
in advance and they are a valuable source for R&D planners to support their decision making. 
 

2 Background 

2.1 Using	  Internet	  for	  R&D	  environmental	  scanning	  

 
The internet contains a huge amount of information and literature shows that the added value 
of this information outperforms the added value gained from using traditional information 
sources (D’Haen, Van den Poel, & Thorleuchter, 2012). Organizations use the internet in 
different ways e.g. for collecting and analyzing information from organization’s customers 
(Alallak, 2010) and from competitive organizations (Teo & Choo, 2001) to advance 
organization’s strategic planning (Purandre, 2008). Web mining approaches support 
organizations by information collecting because they offer an automated possibility to scan 
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the internet for relevant information on websites (Kosala & Blockeel, 2000; Kobayashi & 
Takeda, 2000). They apply automated filtering algorithms to reduce the large number of 
websites identified by use of search engines. This is necessary to overcome performance 
restrictions because many retrieved and filtered results represent non-relevant information and 
thus, low precision values in information retrieval are obtained. Further, many relevant 
documents are not retrieved by the internet search engine. This leads to low recall values. In 
recent years, information about the R&D environment (science, industry, and consumer) is 
available and accessible in the internet as shown in the introduction chapter. This opened an 
opportunity to use the internet for R&D environmental scanning today. 

2.2 Weak	  signals	  identification	  for	  R&D	  

 
The concept of weak signals has been introduced as early warning system to advance strategic 
planning (Ansoff, 1975; Tabatabei, 2011). It enables a timely identification of future events or 
developments that are relevant for a decision maker (Kuosa, 2010). Furthermore future events 
and developments are named topics. Literature introduces many different definitions of weak 
signals and most of them describe weak signals as unstructured information with low content 
value (Mendonça et al., 2004). In a first stage, the weak signals reflect aspects of a threat or 
an opportunity. Then, their information content increases more and more e.g. they also 
describe the origin of a threat or an opportunity. Finally, weak signals become strong signals 
in a second stage and they indicate possible actions in future (Holopainen & Toivonen, 2012). 
Examples for weak or strong signals are articles in newspapers describing a specific topic, 
changes in sentiments of experts concerning this topic, and trends in the jurisdiction with 
impact on this topic (Mendonça, Cardoso, & Caraça, 2012). Strong signals point to a concrete 
topic that will occur with medium to high probability. A large number of strong signals for a 
specific topic can be found in the internet. This is because the topic is mentioned and 
discussed widely on several websites, in news articles, in internet blogs etc. Strong signals are 
not of interest for strategic planning because they occur too late for considering in strategic 
decision makings and thus, they do not provide a preview on environmental changes (Yoon, 
2012). In contrast to the high frequent occurrence of strong signals concerning a specific topic, 
weak signals occur low frequently. Further, they can be used for strategic decision making 
because they occur early enough. For a specific topic, a small number of weak signals can be 
seen and it is hard to identify them from the large amount of information in the internet. This 
is the reason why many implementations of weak signal identification approaches fail in 
practice (Schwarz, 2005). Further, the occurrence of one weak signal is not sufficient for a 
predictive view, however; the occurrence of several weak signals that aim to the same topic 
might give a hind for future changes (Hiltunen, 2008). Thus, several weak signals have to be 
identified concerning the same topic and used for a strategic decision making (Ilmola & Kuusi, 
2006; Rossel, 2009; Tabatabei, 2011). 
 
Strategic R&D decisions are a subsection of strategic decisions. Descriptions of R&D topics 
are characterized by the occurrence of domain specific technical words (characteristic terms). 
This is in contrast to the colloquial language where the meaning of a specific term is often not 
clearly defined. Texts describing R&D topics also consist of an above-chance frequent co-
occurrence of technical terms. This means that a specific technical term occurs more 
frequently together with a further term than it would be expected by chance. Both 
characteristics, the occurrence of characteristic terms and the frequent co-occurrences enable 
an easier identification of weak signals than it could be realized by using colloquial texts.  
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2.3 Latent	  semantic	  indexing	  for	  weak	  signals	  identification	  

 
With text classification, texts can be assigned to different classes. The classes have to be pre-
defined in advance. This is done manually by human experts or automated by use of a set of 
training examples and machine based learning (Ko & Seo, 2009; Lin & Hong, 2011; 
Sudhamathy & Jothi Venkateswaran, 2012; Finzen, Kintz, & Kaufmann, 2012). Knowledge 
structure approaches are commonly used as instance-based learning algorithms for 
classification. Examples are the k nearest neighbor classification, simple probabilistic 
algorithms (e.g. naïve Bayes), decision tree models (e.g. C4.5), and support vector machine 
algorithms (Buckinx, Moons, Van den Poel, & Wets, 2004; Lee & Wang, 2012; Shi & Setchi, 
2012). These approaches are already used for identification of weak signals theoretically 
(Tabatabei, 2011). However, they do not consider semantic aspects of the information. This is 
important because several weak signals for a specific topic have to be identified that are 
normally formulized by different persons. Thus, considering aspect of meaning is important to 
identify related weak signals. Further, some of the knowledge structure approaches do not 
consider dependencies of terms. Weak signals in R&D are characterized by the above-chance 
frequent co-occurrence of technical terms thus, it is also important to consider these 
dependencies. 
 
In contrast to knowledge structure approaches, semantic approaches are better suited to 
consider aspect of meaning and to calculate term dependencies. The calculation of these 
semantic relationships between terms based on computational eigenvector techniques from 
algebra (Jiang, Berry, Donato, Ostrouchov, & Grady, 1999; Luo, Chen, & Xiong, 2011). 
Terms that occur together in a textual pattern are considered as well as terms that might be in 
this textual pattern (Thorleuchter & Van den Poel, 2012c; Thorleuchter & Van den Poel, 
2012d). Semantic indexing is normally applied using LSI. Text patterns standing behind 
several documents from a document collection are identified (Park, Kim, Choi, & Kim, 2012). 
These text patterns also enable a clustering of the documents. They consist of a list of 
semantically related terms and the meaning expressed by the set of these terms is stated in 
different documents from the collection (Christidis, Mentzas, & Apostolou, 2012; Tsai, 2012). 
Further, the impact of each document on each text pattern is calculated. This considers well 
term dependencies (Thorleuchter, Van den Poel, & Prinzie, 2012). Thus, LSI they can be used 
to identify weak signals. 
 
Many modern approaches with better theoretical foundation and better performance than LSI 
have been introduced and applied in literature e.g. ‘Probabilistic Latent Semantic Indexing’ 
(Hofmann, 1999), ‘Latent Dirichlet Allocation’ (Blei, Ng, & Jordan, 2003; Ramirez, Brena, 
Magatti, & Stella, 2012), and ‘Non-Negative Matrix Factorization’ (Lee & Seung, 1999; Lee 
& Seung, 2001). In contrast to LSI, the improved approaches are of higher computational 
complexity than LSI. Applying them to a very large-scale document collection retrieved from 
the internet is difficult. Thus, LSI is used in the proposed approach to show the feasibility of 
this approach - in the knowledge that the performance can be improved by using the modern 
approaches instead of LSI. A very new and also very interesting approach is proposed by 
Ramírez and Brena (2012). Their query based topic modeling approach allows analyzing very 
large-scale collections with at least similar or even better performance than the above 
mentioned modern approaches by reducing computational complexity. As the case study (see 
Sect. 4) was already finished before we have been aware of this new approach, the use of this 
new approach might be interesting as an avenue of future research. 
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As mentioned in Sect. 2.2, weak signals occur with low frequency that means they occur on a 
few numbers of websites in the internet. Using weak signals as classes for text classification 
fails because the classes cannot be defined in advance by human experts. Further, a machine 
based learning approach cannot be performed because it could not be guaranteed that the 
number of positive training examples is above a specific threshold to ensure statistical 
significance for the classification results. This excludes the use of knowledge structure or 
semantic classification approaches. To overcome these limitations, the classes have to be 
defined by a semantic clustering approach where the identified semantic textual patterns are 
evaluated to identify weak and strong signals in a textual collection. 

3 Methodology 

 
Fig. 1 shows the processing of the proposed methodology in different steps. 
 
The proposed methodology in Fig. 1 identifies semantic textual patterns from the internet and 
it analyzes them to identify weak and strong signals. It applies an environmental search as 
described in Sect. 2.1 by using the internet. It considers the characteristics of weak signals as 
described in Sec. 2.2 by applying a semantic clustering approach (see Sect. 2.3). 
 
The methodology starts with a hypothesis where an existing strategic decision problem is 
described. The weak signals are identified based on the topic described in this hypothesis. 
Thus, it is important that the hypothesis is formulized clearly and comprehensibly. The words 
that are used to formulize the hypothesis are considered for the next step, the creation of 
search queries. It is important that the search queries are created by human experts in high 
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quality that many relevant documents are retrieved and that non-relevant documents are not 
considered. The full text of the retrieved documents is crawled. Terms in the full text are 
compared to terms in the hypothesis to identify relevant sections within each document. These 
sections are used for further processing while the other sections are discarded. LSI is applied 
on the data and it creates a number of k different semantic textual patterns. They represent 
semantic aspects that occur on several different documents retrieved from the internet and 
thus, they can be used to represent strong and weak signals (see Sect. 2.2). The selection of k 
is based on a new weak signal maximization approach that leans on the weak signal 
characteristics from Sect. 2.2. This ensures that k is large enough to consider all weak signals 
and that k is small enough to discard semantic textual patterns that are not in accordance to 
the weak signal characteristics. The semantic textual patterns are split in weak signals and in 
strong signals. The relevance of each weak signal is analyzed manually concerning its impact 
on relevant terms. The development of a weak signal is calculated. As a result, the 
developments of weak signals are presented to the decision maker to improve strategic 
decision making.  
 

3.1 Web	  Mining	  and	  Text	  Mining	  

 
Search queries are created manually to represent the hypothesis. A single search query is 
often not suited to cover a topic. Thus, several search queries have to be created to cover all 
different aspects of the hypothesis. To ensure an environmental scanning, it has to be 
considered that websites are written in different languages. Thus, created search queries for a 
specific language have to be translated in different languages. This should also be done 
manually by human experts to ensure a higher quality than a search engine can offer by 
automated translation. 
 
The next steps are processed automatically. Each query is executed by an internet search 
engine and the search is restricted to the corresponding language from the query. The query 
results (the URLs of the websites) are used with a crawler that extracts the full text from all 
URLs. The retrieved results are stored as documents (one document per URL) in folders 
separated by the languages of the corresponding websites (Thorleuchter & Van den Poel, 
2011b). 
 
The full text from the retrieved documents are preprocessed and filtered to reduce complexity. 
In a first step, the raw test is cleaned from existing scripting code, images, and html-tags. 
Specific characters and punctuation are eliminated and typographical errors are corrected by 
using a dictionary from the corresponding language. Single words (terms) are identified by 
tokenization and case conversion is applied. In a second step, filtering methods are applied to 
reduce the number of terms for further processing. This includes stop word filtering (filtering 
of non-informative terms), via part-of-speech tagging (filtering specific syntactic category) up 
to stemming (reducing the number of terms with the same stem). Lemmatizing is not applied 
because existing practical methods are still error prone. The number of terms is reduced 
further by applying Zipf distribution (Zipf, 1949; Zeng et al., 2012).  
 
The preprocessed full text from the retrieved documents consists of texts in different lengths 
from several bytes up to several megabytes that depend on the corresponding websites. The 
text normally is split in several sentences. However, a website could reflect several different 
topics. Then probably the text in one sentence is relevant for the topic described in the 
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hypothesis and text in other sections or sentences is not. Tokenization is applied on the full 
text of each retrieved document and the term unit is used as a sentence. This means the text is 
split in its different sentences and a text similarity measure is used to compare the terms from 
each sentence to the terms from the description of the hypothesis. For this, term vectors in 
vector space model have to be build and Jaccard’s coefficient can be used because it considers 
well the different lengths of term vectors (Thorleuchter & Van den Poel, 2011a). A similarity 
result value above a specific threshold shows that the corresponding sentence is relevant for 
the hypothesis and can be used for further processing. The other sentences are deleted. This 
reduces the lengths of the document and it ensures that the information used for latent 
semantic indexing is relevant.  
 
The documents are written in different languages. However, the processing of latent semantic 
indexing requires that documents are written is the same language. The translation of 
documents to a target language can be done automatically e.g. by use of Google translate 
application programming interface (API). It offers an automated translation of a document 
collection. The quality of the automated translations is low compared to the quality from a 
manual translation of a human expert. However, a manual translation of each document leads 
to high efforts because of the large amount of documents. Further, a high quality translation is 
not necessary because the translated text is transformed to term vectors in the next step. Thus, 
grammar aspects are not of interest and it is sufficient to translate relevant terms one-to-one. 
This can be done with automated approaches in good quality, too. 
 
Term vectors in vector space model are created from the collection of all translated 
documents. For the components of the vectors, weighted frequencies are used. This is because 
literature shows that they outperform raw frequencies (Prinzie, & Van den Poel, 2007; Prinzie, 
& Van den Poel, 2006; Van den Poel, De Schamphelaere, & Wets, 2004). This is because 
weighted frequencies show the impact of a term on the collection of all documents (Sparck 
Jones, 1973). Large weights are assigned to terms that occur frequently in a very small 
number of documents and that do not or seldom occur in most of the documents from the 
collection (Salton & Buckley, 1988). The well-known terms weighting scheme proposed by 
Salton, Allan, & Buckley (1994) is used to calculate the weight wi,j for term i and for a 
document j by  
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In formula 1, the number of documents in the collection is n, the number of components from 
the term vectors is m, and the number of documents that contain term i is dfi. Further, inverse 
document frequency as represented by log(n/dfi) and term frequency (tfi,j) are used (Chen, 
Chiu, & Chang, 2005). The divisor is a length normalization factor that considers different 
lengths of the documents. 
 

3.2 Latent	  semantic	  indexing	  

The created vectors of weighted frequencies are composed to build a term-by-document 
matrix A with rank r (r ≤ min(m,n)). The large number of components from the term vectors 
leads to a large dimensionality of the matrix. Further, many terms only occur in a small 
number of documents and thus, the corresponding term vector component in many documents 
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is set to zero. In total, this leads to term vectors with many zero values in the components and 
also to a term-by-document matrix that also consists of many zero values. This fact is used by 
singular value decomposition to reduce the dimensionality of the matrix because it can be 
expected that the rank of the matrix is lower than its dimensionality. Singular value 
decomposition is a commonly used matrix factorization technique that is applied within LSI. 
A reduced matrix dimensionality leads to a summarizing of terms concerning aspects of 
meaning (Deerwester et al., 1990). Aspects of meaning are calculated based on the co-
occurrences of terms in the documents. This enables to group semantically related terms 
together with high discriminatory power to other groups. The groups of terms represent 
semantic textual patterns (Thorleuchter & Van den Poel, 2012b). Singular value 
decomposition calculates singular values for each group and thus, for each semantic textual 
pattern. The singular values are sorted in descending order in a diagonal (r x r) matrix Σ. 
Singular value decomposition calculates two further matrices, too. The (m x r) matrix U 
shows the impact of terms on the semantic textual patterns and the (n x r) matrix V shows the 
impact of the documents on the semantic textual patterns. The calculation is shown in formula 
2. 
 
A = U Σ Vt           (2) 
 
Matrix U and matrix V are used for calculating the weak signal maximization approach as 
introduced in Sect. 3.3. 
 

3.3 Weak	  signal	  maximization	  approach	  for	  latent	  semantic	  indexing	  

 
Literature shows how to reduce the dimensionality of the matrix from r to k with singular 
value decomposition (Chen, Chu, & Chen, 2010). The data is split in a test and training set both 
containing a specific percentage of positive examples (Thorleuchter, Herberz, & Van den Poel, 
2012). The training set is used to build a LSI-subspace (Zhong & Li, 2010) and the test set is 
projected into this subspace to calculate the predictive performance. The performance on each 
rank-k model is measured using the area under the receiver operating characteristics curve, 
logistic regression, and n-fold cross validation  (DeLong, DeLong, & Clarke-Pearson, 1988; 
Hanley & McNeil, 1982; Halpern et al., 1996; Migueis, Van den Poel, Camanho, & Cunha, 
2012; Van Erkel & Pattynama, 1998). As a result, an optimal value of k based on 
computational complexity and on predictive performance is selected.  
 
 
Existing approaches from literature cannot be used to identify an optimized number of 
semantic textual patterns representing weak signals from the internet. This is because weak 
signals occur low frequently as shown in Sect. 2.2. Thus, the percentage of positive examples 
in a randomly selected training and test set is very low and to obtain significant results, the 
training and test set have to be very large. The sets contain unseen documents retrieved by an 
internet search. For training and testing, these documents have to be evaluated concerning the 
occurrence of weak signals by human experts manually. This causes an unmanageable high 
manual effort. 
 
Our proposed weak signal maximization approach identifies the value of k where the number 
of weak signals represented by low frequently occurred semantic textual patterns with a 
strong relationship to the given hypothesis is maximized. Singular value decomposition 
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calculates k semantic textual patterns from the collection of all retrieved internet documents. 
It is characteristic for this processing that a small number of k leads to a small number of 
semantic textual patterns that are impacted by a large number of documents. These patterns 
occur frequently in the collection of all documents and thus, they are not weak signals. Thus, 
using singular value decomposition with a very small number of k does not lead to the 
identification of any weak signals. 
 
A very large number of k leads to a small number of patterns impacted by a large number of 
documents and to a very large number of patterns impacted by a very small number of 
documents. As shown in Sect. 2.2., weak signals should occur at least more than once or 
twice otherwise they probably occur by chance. To identify a weak signal, the number of 
documents with impact on the pattern should be above a specific threshold. Thus, a very large 
number of k also leads to the identification of none weak signals in total.   
 
Weak signals are not only defined by the number of impacted documents however, they 
should be related to the given hypothesis, too. Thus, relevant terms in a semantic textual 
pattern as defined by a term impact on the pattern above a specific threshold are compared to 
relevant terms from the given hypothesis by using text similarity measures. A similarity value 
above a specific threshold shows that a low frequent semantic textual pattern is also related to 
the given hypothesis and thus, it can be defined as weak signal.  
 
Patterns that are impacted by a large number of documents also are impacted by the large 
number of terms from the different documents. Thus, comparing these terms to the terms from 
the given hypothesis normally leads to a low similarity value. Furthermore, patterns that are 
impacted by a very small number of documents e.g. one or two are only impacted by a very 
small number of terms. Here, a low similarity value is also obtained by comparing them to 
terms from the given hypothesis.  
 
Thus, a maximal number of weak signals can be identified if k is not too small and not too 
large. Several rank-k models are created and the number of weak signals is calculated for each 
model. Comparing is done by use of a similarity measure e.g. Jaccard’s coefficient that 
considers well different lengths of input vectors because the term vectors created from the 
hypothesis normally is from different size than the term vectors created from the semantic 
textual patterns. 
   

4 Case Study 
The case study applies the proposed methodology to support R&D planners of a company that 
offers medical oxygen to hospitals. This is normally done in two different ways: off- and on-
site production. Off-site production means that the medical oxygen is produced by oxygen 
generators in the company, stored in high pressure gas cylinders, and transported to the 
hospitals. On-site production means that the company sells oxygen generators to hospitals and 
the oxygen is produced in the hospitals. The production of medical oxygen is based on two 
different methods that separate air in his components. The cryogenic air separation uses a low 
temperature rectification principle based on the fact that gases have different temperatures for 
changing aggregation states. Applying this method can produce a large quantity of oxygen 
with high oxygen purity of more than 99% that also can be used to obtain liquid oxygen. The 
non-cryogenic air separation uses the pressure swing adsorption (PSA) principle. It produces 
oxygen with a purity of about 93%. The R&D department of the company is responsible for 
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the technical improvement of the oxygen generators (for both methods and for both, on- and 
off-site production). 
 
Medical oxygen for hospitals in Europe has to meet the requirements of the European 
Pharmacopoeia where the oxygen purity is an important point. In the past, a hospital 
management had to buy oxygen at a purity of at least 99% in Europe and in many non-
European states. This excludes the use of pressure swing adsorption principle for on-site 
oxygen production. Since mid-2011, the European Pharmacopoeia has changed the 
requirements for European states. After transposing this to national law, it allows an oxygen 
purity of 93% for hospitals if the used oxygen generators are certificated according to ISO 
13485:2003.   
 
Based on this legislation amendment, the R&D planners have stated a hypothesis: The use of 
PSA for medical oxygen on-site production (93% purity) in Europe will increase in future. 
This increase will be equally distributed in European states. New companies especially from 
the domain of machinery and plant engineering will become suppliers by offering PSA 
oxygen generators for hospitals in future. 
 
The aim of the case study is to identify weak signals that are in accordance or that are not in 
accordance to the hypothesis. 

4.1 Web	  Mining	  and	  Text	  Mining	  

 
Based on the given hypothesis, ten search queries are created in English language. Examples 
are ‘Medical +oxygen +high +purity’, ‘Oxygen +pressure +swing +adsorption +PSA’, and 
‘Ultra +high +purity +oxygen +on +site +generation’. They describe the area of high purity 
medical oxygen and they enable the identification of all internet documents dealing with this 
topic. The search queries are translated in different languages: German (GE), French (FR), 
Polish (PO), Czech (CZ), and Romanian (RO) to cover different regions in Europe.  
 
The queries are executed automatically using Google API in mid-2012 one year after the 
European Pharmacopoeia has changed the percentage because the process of transposing this 
to national law is time consuming. The hyperlinks of all query results are stored separately 
into the different languages. For each retrieved website, a crawler is used to extract the textual 
information and to store it in a document. As a result, 14.792 plain text documents are created 
automatically with a size of 213 megabytes in total. Text mining methods are applied as 
mentioned in Sect. 3.1. This identifies several non-relevant documents and it reduces 
documents’ sizes of relevant documents. Overall, 8375 documents with a size of 40 
megabytes are obtained. 
  

4.2 LSI	  with	  weak	  signal	  maximization	  

Based on the data collected in Sect. 4.1, LSI is applied together with the proposed weak signal 
maximization approach. The thresholds of the approach are determined manually in a two-
step process by human experts. Starting values are determined in a first step and the results 
from several rank-k models are evaluated in the second step. Based on this evaluation, some 
parameter values are adapted (first step) and several rank-k models based on the adapted 
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values are created and evaluated again (second step). This two-step process repeats until the 
parameter values are optimized.  
 
As a result, the threshold for the impact of a document on a textual pattern as depicted in 
matrix V from -1 to 1 is determined to 0.4. The percentage of documents with impact greater 
than or equal to this threshold on a textual pattern to the number of documents in total is also 
determined to identify weak and strong signals: A value of 0% to 2% is representative for 
very low frequently occurred semantic textual pattern that might be occurred by change and 
can be discarded. Weak signals are identified from 2% on to 6% and strong signals are 
identified from 6% on to 10%. More than 10% means that the content of a semantic textual 
pattern can be found on more than on every tenth website. This information is normally well-
known and thus, not relevant for forecasting.  
 
Matrix U shows the impact of a term on a semantic textual pattern from -1 to 1. The threshold 
for identifying relevant terms is determined to 0.4. Thus, a term vector for each semantic 
textual pattern is built on terms with an impact greater than or equal to 0.4. The term vectors 
are compared to the term vector from the hypothesis where the threshold for the result value is 
determined to 0.3 to identify patterns that are related to the hypothesis.  
 

4.3 Results	  

An optimal value of k is identified with k=16. Thus, 16 semantic textual patterns are 
identified.  
Three patterns can be identified that are impacted by more than 10% of all documents. Eight 
patterns are identified where the percentage of the impacted documents is between 0% and 
2%. Further, two strong signals and three weak signals have been identified. Comparing them 
to the hypothesis shows that the strong signals are not related to the hypothesis. This is 
because they deal about cryogenic air separation techniques and the transportation of high 
pressure gas cylinders.  
 
Two of the three weak signals are related to the hypothesis. The first weak signal with 4.2% 
impacted documents describes various aspects of PSA based oxygen generators producing 93% 
purity. This is in accordance to the first sentence of the hypothesis. 
 
The second weak signal based on a small number of impacted documents (2.3%) and it shows 
a new technological development that enables PSA based oxygen generators to produce 
medical oxygen with 99% purity in a multi-stage process. The increase of purity can be 
realized with low additional costs. Oxygen generators based on this technique can be used in 
Europe as well as in many non-European states and they are independent of future legislation 
amendments. This weak signal is not in accordance to the first sentence of the hypothesis 
because in future, it might be that 99% purity PSA generators are increasingly used for on-site 
medical oxygen production. 
 
Table 1: Number of documents with impact on the first and second weak signal in different 
languages compared to number of documents in total 
 
Weak 
signal 

 EN CZ FR GE PL RO ∑ 

1 Number of 182 9 66 68 3 24 352 
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documents 
 Percentage 52% 2% 19% 19% 1% 7% 100% 
2 Number of 

documents 
Percentage 

118 
 
61% 

3 
 
2% 

47 
 
24% 

13 
 
7% 

1 
 
0% 

11 
 
6% 

193 
 
100% 

 Number of 
documents in 
total 

3449 514 1133 1583 582 1114 8375 

 Percentage 41% 6% 14% 19% 7% 13% 100% 
 
The number of documents with impact on the first and second weak signal is sorted by 
language (see Table 1) e.g. 182 documents in English language (EN)) have an impact on the 
first weak signal. Further 52% of all documents with impact on the first weak signal are 
English language documents. They are compared to the distribution of all 8375 documents e.g. 
41% of all documents are English language documents. 
 
Table 1 shows that more English and French websites are related to the first weak signal than 
it would be expected (increase from 41% to 52% and from 14% to 19%). In contrast to this, 
Romanian websites do not mention the weak signal as often as it would be expected (decrease 
from 13% to 7%). Table 1 also shows that on Czech and Polish websites the 93% purity PSA 
medical oxygen on-site production is seldom mentioned related to the number of Czech and 
Polish websites in total. Further, it shows that information about on-site medical oxygen 
generators with 99% purity often can be found on English and French websites. This is not in 
accordance to the second sentence of the hypothesis because the topic is not equally 
distributed in European states. 
 
The URLs of the documents with impact on the first weak signal are also evaluated 
concerning companies’ websites. As a result, the following list of companies is identified: 
‘Linde, Air Liquide, Praxair, Messergroup, Pangas, Westfalen-ag, Basigas, DA-
Energietechnik, Iga-gas, Airco-Druckluft, Cryotec, aircom24, Airtexx, IGS, Oxymat, Oxyplus, 
Oxair’. This list contains established medical oxygen suppliers as well as companies in the 
domain of machinery and plant engineering. This is in accordance to the third sentence of the 
hypothesis. 
 

4.4 Evaluation	  

In the case study, the proposed approach identifies two weak signals each represented by a 
semantic textual pattern. The identification is based on the assignment of retrieved internet 
documents to the two corresponding semantic textual patterns by LSI / WSM. The 
performance of this assignment is evaluated based on precision and recall. For each of the two 
semantic textual patterns, the number of documents that are correctly assigned to the pattern 
is the true positive (TP). The number of documents incorrectly assigned to the pattern is the 
false positive (FP) and the number of documents that are incorrectly not assigned to the 
pattern (missing documents) is the false negative (FN). Precision is defined as TP / (TP + FP) 
and recall is defined as TP / (TP + FN). The evaluation is processed for documents in English 
and German language because the number of these documents is sufficient for a statistical 
evaluation.  
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Table 2: Precision and recall for the assignment of English and German documents to the 
semantic textual patterns standing behind the first and second weak signal 
 
Language Number of 

Documents 
First / Second 
Weak signal 

TP FP FN Precision Recall 

EN 3449 First 153 29 69 84% 69% 
EN 3449 Second 96 22 33 81% 74% 
GE 1583 First 48 20 26 71% 65% 
GE 1583 Second 9 4 3 69% 75% 
 
Table 2 shows that the average value is 76% for precision at 70% recall. This outperforms the 
average value of the frequent baseline (3% precision at 70% recall). Further, the precision and 
recall values for German documents are smaller than that of English documents. An 
explanation for this is that the German documents are translated to the English language 
automatically. This reduces quality of the translated documents and thus, this also reduces the 
corresponding precision and recall values.  
 
 

5 Conclusion 
 
This work proposes a new methodology that enables the automated identification of weak 
signals for strategic forecasting. Weak signals are extracted from an organization’s 
environment as represented by internet information. Based on a given hypothesis about the 
future, related websites are identified and textual information is extracted. LSI with a new 
weak signal maximization approach is applied on this textual information to identify weak 
signals. The identified weak signals describe trends and future developments and it is 
analyzed whether they are in accordance to the given hypothesis or not. The websites standing 
behind an identified weak signal can be analyzed concerning language aspects to identify the 
spacial distribution of this weak signal. Further the website address also can be used to 
identify relevant organizations or companies related to the weak signal. This enables strategic 
planners to identify new trends, the spatial distribution of these trends, and the corresponding 
players (e.g. competitive organizations) ahead of time. 
 
Future work should focus on the optimization of the parameters by applying a parameter 
selection procedure. This enables an improved weak signal maximization approach. Further, 
the development of weak signals over time can be investigated by this methodology. For this, 
web mining has to retrieve the data at different points of time. Then, one probably could see 
that new weak signals occur, that existing weak signals disappear, or that existing weak 
signals become strong signals. 
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