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Abstract 
 
We propose an ensemble method for kernel machines. The training data is randomly split into 
a number of mutually exclusive partitions defined by a row and column parameter. Each 
partition forms an input space and is transformed by a kernel function into a kernel matrix K. 
Subsequently, each K is used as training data for a base binary classifier (Random Forest). 
This results in a number of predictions equal to the number of partitions. A weighted average 
combines the predictions into one final prediction. To optimize the weights, a genetic 
algorithm is used. This approach has the advantage of simultaneously promoting (1) diversity, 
(2) accuracy, and (3) computational speed. (1) Diversity is fostered because the individual K’s 
are based on a subset of features and observations, (2) accuracy is sought by optimizing the 
weights with the genetic algorithm, and (3) computational speed is obtained because the 
computation of each K can be parallelized. Using five times two-fold cross validation we 
benchmark the classification performance of Kernel Factory against Random Forest and 
Kernel-Induced Random Forest (KIRF). We find that Kernel Factory has significantly better 
performance than Kernel-Induced Random Forest. When the right kernel is specified Kernel 
Factory is also significantly better than Random Forest. In addition, an open-source R-
software package of the algorithm (kernelFactory) is available from CRAN. 
Keywords: Kernel Factory, Ensemble Learning, Classification, Machine learning, Genetic 
Algorithm, Random Forest 

1 Introduction 
 
In the last decade, kernel- based methods have become very popular for classification, 
regression and pattern recognition (Üstün, Melssen & Buydens 2006). It has been shown that 
classifiers can be improved by mapping input space X into feature space H (Jäkel, Schölkopf 
& Wichmann 2007). However, this mapping can increase the number of dimensions 
substantially to the point that analysis becomes problematic. Kernel methods are attractive in 
that they can create the aforementioned mapping and temper the dimensionality explosion 
problem by increasing the number of dimensions only linearly with the size of the original 
data (Shawe-Taylor & Cristianini 2004). 
Although the dimensionality of the data scales only linearly with the original data when 
kernel methods are applied, data can grow very large. Hence, researchers have to resort to 
machine learning techniques that can handle a large number of predictors, such as Random 
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Forest. In that context, it is only recently that Kernel- Induced Random Forest (KIRF) has 
been introduced (Fan 2009). The advantage of KIRF over support vector machines (SVM) is 
that, in contrast to the latter, the former can handle remaining non-linearities in H. 
Nevertheless, data can grow so large that classifier accuracy suffers due to the lower 
probability of selecting informative features. It can even grow unwieldy making analysis 
infeasible. 
In an attempt to alleviate these computational efficiency and classifier accuracy problems, we 
propose an ensemble of kernel machines: Kernel Factory3. In addition, Kernel Factory has the 
advantages of increased computational speed and ensemble member diversity. 
The remainder of this article is organized as follows. Section 2 reviews Random Forest, the 
kernel trick, and KIRF. Section 3 describes the proposed method Kernel Factory in detail. In 
Section 4 we present the methodology and results of an empirical study in which we 
benchmark Kernel Factory against Random Forest and KIRF. Section 5 provides a discussion 
and conclusion of the results. Finally, Section 6 offers avenues for future research and 
limitations. 

2 Kernels and Random Forest 
 
In this section we first elaborate on Random Forest. Second, we discuss the attractiveness of 
kernels. Third, we discuss the combination of both: Kernel-Induced Random Forests. 

2.1 Random Forest 

 
Binary recursive partitioning (BRP) is a method that grows decision trees, also referred to as 
classification and regression trees (CART) (Breiman, Friedman, Olshen & Stone 1984). The 
BRP algorithm starts by predicting a criterion variable by creating a binary partitioning of the 
data based on one predictor. The algorithm proceeds recursively by, within a parent partition, 
creating two child-partitions of the data. This partioning is based on another predictor or 
another split value of the same predictor variable that was used to create the parent partition 
(Merkle & Shaffer 2011). At each partitioning step, the predictor that produces the purest 
division of data is selected and the algorithm stops when, for example, a minimum partition 
size, a specific impurity or an amount of partitions is reached. 
BRP is also used in Random Forest (Breiman 2001). Instead of growing one tree, Random 
Forest grows, and averages over, an ensemble of trees. Each tree is grown using an 
independent bootstrap sample for which at each partitioning step of a tree a subset of variables 
is randomly selected as splitting candidates (Breiman 2001). 
Literature shows that Random Forest is one of the best-performing classification techniques 
available (Luo, Kramer, Goldgof, Hall, Samson, Remsen & Hopkins 2004). Moreover, it is  
very  robust  and  consistent and does  not  overfit (Breiman 2001). Furthermore, the 
algorithm has reasonable computing times (Buckinx & Van den Poel 2005) and the procedure 
is easy to implement: only two parameters are to be set (number of trees and number of 
predictors) (Larivière & Van den Poel 2005; Duda, Hart & Stork 2001). 

2.2 Kernels and the kernel trick 

 

                                                 
3 Random Forest is an ensemble of decision trees, with a forest being a collection of trees. This inspired us to 
label the new method Kernel “Factory”, with a factory being a collection of machines. 
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Consider the binary classification problem in the left pane of Figure 1. A binary recursive 
partitioning tree would partition the data in two by using x1 >= 3 as split rule in the root node 
and x1 <= 3 in the child node. As such, to obtain a perfect classification the variable x1 needs 
to be selected twice (x2 has no discriminatory power in this case). 
By applying feature map Φ that transforms the input space (x1, x2), by taking all second-
degree unordered monomials, a dimension can be found that reduces the tree size (see right 
pane of Figure 1).  
Φ: ℝ² → ℝ³ 
Φ(x1,x2)=(z1,z2,z3)=(x²1,x²2,x1x2)  (1) 
 
In feature space, a binary recursive partitioning tree would partition the data by only one split, 
as opposed to two splits in input space, using z1 >= 8 as the split rule.  

 
Input space X Feature space H 

 
Figure 1. The feature map Φ transforms the input space (x1, x2), by taking all second-degree unordered monomials, to the 
feature space (z1, z2, z3) where only one binary split rule is required to obtain the same result. (Figure adapted from Schölkopf 
& Smola 2002; note that actually z3= √2 x1x2 and not x1x2 but this will create a similar plot with the same decision boundary) 

Because of this reduction in tree size, the performance of Random Forest can be improved. In 
Random Forests, out of a the total set of predictor variables, at each node a subset of 
candidate variables is selected at random and the candidate that produces the best split is used 
to split the node (Breiman 2001). Hence, because the probability is lower that the variable is 
selected twice as a candidate split variable, as opposed to once, the individual trees are bound 
to be stronger in feature space, as such decreasing the forest error rate (Breiman 2001). 
While working in feature space has its advantages, it clearly has its disadvantages as well. 
Although the classification performance is improved thanks to elimination of the need to 
select the variable in our example more than once, there are now more predictors, decreasing 
the probability of selection for the candidate set (it has to be noted that the size of the subset is 
dependent on the size of the total set). 
Consider the formula (2) (Schölkopf & Smola 2002) that shows that the dimensionality N in 
feature space can easily explode given monomials of degree d, making analysis prohibitive.  

�� �  �������
� � � ��������!

�!������!    (2) 

,where X denotes input space and H  feature space 

In our example d=2 and N
x
=2 which results in N

H
 =3. For d=2 and N

x
=150 dimensionality 

N
H
 amounts to 11,325. If in the latter case the degree increases by one (d=3) then N

H 

=573,800. 
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Calculating the inner product offers a solution by limiting the feature explosion so that the 
complexity of a classifier increases only linearly with the size of the input data. For two 
observations ��i and ��j (i,j=1,2,3,…l) defined by two variables (x1, x2) (Jäkel, Schölkopf & 
Wichmann 2007): 
� ��!�, �!"�,  ��#�, �#"�$ 
� ���!�" , �!"" , √2�!��!"�, ��#�" , �#"" , √2�#��#"�$ 
=  �!�" �#�"  + �!"" �#"" + 2�!��#��!"�#"  
=  (�!��#� +  �!"�#"�² 
=  ���!�, �!"�, ��#�, �#"�$²   (3) 
 
The result in (3) shows that the inner product in feature space equals the inner product to the 
power of d in input space (see Schölkopf & Smola 2002 for proof). This is attractive because 
whereas the computational effort in feature space scales with the number of dimensions (see 
formula 2), in input space it scales with the number of observations (Jäkel, Schölkopf & 
Wichmann 2007). In the case of a monomial feature map, it is not required to map the 
observations i and j to feature space to compute the inner product: it is sufficient to calculate 
the inner product in the input space and take it to the power of d (Jäkel, Schölkopf & 
Wichmann 2007). 
The combination of an inner product and a feature map Φ  defines a kernel (4), short for kernel 
function, k(��i, ��j). The fact that kernels enable us to obtain the same superior classification 
performance as in feature space, for a much lower computational cost in input space, is called 
the kernel trick.  
(��)***�, �+***�� �  � ��)***��,  ��+***��$   (4) 
The example above uses a polynomial kernel. The polynomial kernel including tuning 
parameters and two other widely used kernels are displayed in Table 1 (Shawe-Taylor & 
Cristianini 2004; Park, Liu, Ye, Jeong, & Jeong 2012). The choice of the kernel function is 
largely dependent upon the data and can generally be determined by cross-validation (Fan 
2009). 
Table 1: Some examples of kernels   
Linear kernel  

(��)***�, �+***�� �  〈��! , ��#〉 

 

Gaussian kernel  

(��)***�, �+***�� � exp�− || ��! − ��#  ||²
22" � 

 

Polynomial kernel  

(��)***�, �+***�� � �γ〈��! , ��#〉 + 4��
 

 

d,r ∈ℕ; γ ∈ℝ+ 
In the next section we discuss a combination of kernels and Random Forest: Kernel-Induced 
Random Forest (Fan 2009). 
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2.3 Kernel-Induced Random Forest 

 
Kernel-Induced Random Forest (KIRF) (Fan 2009) differs from Random Forest in that, 
during the training phase, the former selects a random subgroup of observations and uses their 
kernel functions as splitting candidates, while the latter selects a random subgroup of 
variables as splitting candidates (Fan 2009). 
During the scoring phase, each splitting observation ��i  (i=1,2,3,…,l) can be used with all 
observations that need to be scored ��k (k=1,2,3,…,m) in a kernel function k(��i,.) resulting in 
what can be conceived of as a novel feature ki(��k)=k(��i, ��k). For l splitting observations, there 
will be l such novel, kernel-induced features, ki(.), i=1,2,3,…,l (Fan 2009). These novel, 
kernel-induced, features can then be employed by a binary recursive space partitioning tree in 
order to get pure divisions of the criterion variable in the terminal node. 
Although KIRF has been shown to have excellent performance (Fan 2009), the algorithm has 
the disadvantage that although the size of the kernel matrix K scales only linearly with the 
number of observations in the original data, K can quickly grow too large for Random Forest 
and subsequently KIRF. Kernel Factory alleviates this problem by randomly splitting the 
training data into a number of  mutually exclusive partitions.  
This approach reduces the probability of surpassing limitations of software packages by 
several orders of magnitude (e.g., for R the maximum size of an object is 231-1 elements (R 
Core Team (2012)) and increases computational speed by several orders of magnitude 
(because kernel matrices can now be computed in parallel more easily). 

3 Kernel Factory 
 
The training phase starts by partitioning the data into mutually exclusive row and column 
partitions followed by scaling. Each partition forms an input space and is transformed by a 
kernel function into a kernel matrix K (categorical features are not used in the computation of 
the K but are added afterwards). Subsequently, each K is used as training data for a base 
binary classifier (Random Forest).  
The kernel function (polynomial, linear, or radial basis) can be (1) user specified, (2) 
randomly chosen per partition, or (3) determined by sequentially applying all kernels to the 
first partition, assessing predictive performance on a hold- out validation set, and selecting the 
best performing kernel. 
This process results in a number of predictions equal to the number of partitions. We use a 
weighted average to combine the predictions into one final prediction in which the weights 
are optimized using a genetic algorithm (GA). For the fitness score we employ the predictive 
performance (area under the receiver operating characteristic curve) on a hold out sample. In 
extant literature, several studies have used a GA to weight these predictions of the ensemble 
members before combination. To the best of our knowledge Yao & Liu (1998) were the first 
to use a GA in this context (for a neural network ensemble). Later, Zhou, Wu & Tang (2002) 
show that using the evolved weights to make up the neural network ensemble yields superior 
performance to normal averaging (see also Kim, Street, & Menczer 2002 for a similar 
approach). Finally, Sylvester & Chawla (2005) use a GA to combine trees. All studies point to 
the beneficial effects of GAs in ensemble formation on predictive performance.  
In sum, Kernel Factory promotes diversity by the partitioning step and fosters accuracy by the 
weight optimization step. 
 
Pseudo code for the estimation phase is provided in Figure 2. 
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Training 

Input 

• Number of column partitions (cp) 

• Number of row partitions (rp) 

• Method: polynomial kernel function (pol), linear kernel function (lin), radial basis kernel function (rbf), random 

choice (ran={pol, lin, rbf}), burn- in choice of best function (burn={pol, lin, rbf }) 

• Input space x=(x1,…,xc)  with class labels (Y={0,1}) where c is the number of features and let r be the number of 

objects  

Randomize order of rows and columns of x 

Divide x: 80% of r into x training and 20% of r into x validation  

Scale both x training and x validation :  for every feature: 
78

9:;<=�78,>?@ABABC� 

For x training: create rp times cp partitions of equal size (ptraining) 

For x validation: create cp partitions of equal size (pvalidation) 

For every partition ptraining: 

• Apply method: 

o Let  

� lin = 〈��! , ��#〉 

� rbf = exp�− || 7�A� 7�D||²
" � 

� pol = 〈��! , ��#〉² 

o If method==lin: select lin 

Else if method==pol: select pol 

Else if method==rbf: select rbf 

Else if method==ran: randomly select one of {pol, lin, rbf} 

Else if method==burn:  

� If ptraining  ==1: for every method in {pol, lin, rbf} 

• Compute kernel matrix Ktraining on numeric features  

• Augment Ktraining with raw features 

• Build classifier C on Ktraining 

• Compute Kvalidation ,populated by elements where, for the kernel function, 

observations x*�E come from pvalidation (with same numeric features as in ptraining ==1) 

and x*�F come from numeric features of ptraining ==1 

• Augment Kvalidation with the raw features from  pvalidation  

• Deploy C: GHI9JK � C�MNOPEQOREST� 

• Compute AUC  

� Select  one of {pol, lin, rbf} which yielded max AUC 

• Compute kernel matrix Ktraining on numeric features  

• Augment Ktraining with raw features 

• Build classifier C on Ktraining 

• Compute Kvalidation ,populated by elements where, for the kernel function, observations x*�E come from pvalidation 

(with same numeric features as in current ptraining) and x*�F come from numeric features of current ptraining 

• Augment Kvalidation with the raw features from  pvalidation  

• Deploy C: YVWXSY � C�KNOPEQOREST� 
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Optimize classifier weights for weighted averaging of predicted probabilities with genetic algorithm on validation space 

• Choose initial population of sets of weights 

• Repeat 100 times 

o For each set of weights ω=(w1,…wl) compute weighted average for a given object  x*�E  having a set  of 

YVWXSY,E � �YVE,�, … YVE,P� , with l=(1,…rp times cp) the number of classifiers (= number of weights): 

\!�GHI9JK� � ] ^_�GHI9JK,!,_�
_

_`�
 

o Evaluate fitness (AUC) 

o Select best-fit set of weights 

o Apply crossover operator 

o Apply mutation operator 

• Choose set of optimal weights (weights with best fit; highest AUC): ω=(w1,…wl) with l=rp times cp 

 

Figure 2: Pseudo code for the estimation phase of Kernel Factory 

The prediction phase (see Figure 3) starts by constructing the same column partitions and 
applying scaling as in the training set. Next, the features from the training set are used to 
compute the K’s. Finally, the weighted average of all predictions is computed using the 
weights obtained from the genetic algorithm. 
 

Prediction 

Input 
• Input space x new  =(x1,…,xc)  where c is the number of features and let r be the number of objects 

Apply order of rows and columns of x training to xnew
  
 

Scale x new  :  for every feature : 
78

9:;<=�78,>?@ABABC� 

For x new: create cp partitions (pnew) of equal size 
For every classifier C: 

• Compute Knew on numeric features populated by elements where, for the kernel function, observations ��! come 

from pnew  (with same numeric features as in current ptraining) and ��#  come from numeric features of current 

ptraining  

• Augment the kernel matrix with the raw features from  pnew 

• Deploy C: YVWXSY � C�KTab� 

Compute weighted average using optimal weights: for a given object  ��!   having a set  of GHI9JK,! � �GH!,�, … GH!,_�, with 
l=(1,…rp times cp) the number of classifiers (= number of weights) , use optimal ω: 

\!�GHI9JK� � ] ^_�GHI9JK,!,_�
_

_`�
 

µi is the confidence that object ��!  has Y==1 

 

Figure 3: Pseudo code for the prediction phase of Kernel Factory 

4 Empirical Study  

4.1 Data 
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Our experiments use 11 datasets from the UCI repository and 3 synthetic datasets. The first 11 
datasets were selected because we have used them in past research, because the dependent 
variable is binary and because they contain continuous predictor variables (required for 
kernels). Moreover, most of them are used in Breiman’s Random Forest paper (Breiman 
2001). The 3 synthetic datasets are constructed using the R package mlbench (Leisch, & 
Dimitriadou 2010) and are chosen because KIRF improves on Random Forest (Fan, 2009) on 
these datasets. The underlying reason is that, in these specific datasets, the radial basis 
function (RBF) helps Random Forest to classify the Gaussian distribution present in these 
datasets. It is well documented that using kernel functions only has a positive effect on 
predictive performance if the right kernel function is used and even has a harmful effect if the 
wrong kernel function is used. Hence, KIRF should only be used with the right kernel and 
only if this improves on Random Forest. Therefore, it makes little sense to compare Random 
Forest and KIRF blindly (without testing different kernels) on different datasets and make 
generalizations about which algorithm is best (Fan, 2009). Random Forest and KIRF (with 
different kernels) should always be tested together and the best algorithm should be selected. 
Hence to give KIRF an honest chance in the comparison with the other algorithms, we use 
these synthetic datasets because we know they have Gaussian distributions and that a RBF 
kernel will add positively to the predictive performance.  
In general, we expect that Kernel Factory will improve on KIRF because of the internal kernel 
selection procedure (in the case of method=burn or random). In either case, Kernel Factory 
will not require manually testing multiple kernels. 
Table 2 gives a brief summary of the datasets. N is the number of observations, p is the 
number of predictor variables 
Table 2: properties of the datasets used in the empirical study 
Data N p, continuous p, categorical  

Heart (Cleveland) 303 5 8 

Hepatitis  155 6 13 

Ionosphere 351 32 1 

Pima (Diabetes) 768 8 0 

Credit  690 6 9 

Sonar 208 59 0 

Wdbc (Cancer) 569 30 0 

HeartHun (Hungary) 294 5 7 

GermanCredit 1000 7 13 

AustralianCredit 690 6 8 

HorseColic 368 9 13 

Ringnorm 1000 10 0 

Peak 1000 6 0 

Circle 1000 20 0 
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The last three datasets are the synthetic ones. The criterion variable was initially continuous in 
the Peak dataset and is transformed to a binary variable by assigning a 1 if the value is greater 
than the mean and 0 otherwise. 

4.2 Implementations of Algorithms 

 
Random Forest requires two parameters to be set: the number of trees and the number of 
variables to try at each split. We follow Breiman’s recommendation (Breiman 2001) to use a 
large number of trees (1000) and the square root of the total number of variables as the 
number of predictors. 
For KIRF we used the same settings for Random Forest as above. For the Gaussian radial 
basis function we set the Gaussian kernel parameter σ equal to 1 because a decision tree is 
invariant to monotonic transformations of data (Fan 2009). For the polynomial kernel function 
we used a degree of 2, a scale of 1 and an offset of 0. The categorical predictor variables are 
not involved in the computation of kernels but are kept as extra attributes during tree 
construction.  
In using Kernel Factory, two parameters to set are the number of row and column partitions. 
Because the algorithm is designed to overcome practical limitations of computational 
resources, we chose parameter values aimed at accommodating the server we used for our 
experiments. We used int(log4(p+1)) for the number of row partitions and both int(log5(p+1)) 
and 1 for the number of column partitions. From some preliminary testing we found that 
Kernel Factory is more sensitive to column partitioning than to row partitioning, hence the 
difference in the logarithms’ bases. We also wanted to test with one column partition because 
column partitions are rather meant to introduce extra diversity in the ensemble members while 
it are the row partitions have a much bigger impact on the speed of the algorithm due to their 
direct impact on the size of the K’s. Setting the number of column partitions to one and 
comparing it to int(log5(p+1)) allows us to understand the impact of that process. The base 
algorithm was Random Forest, using the same settings as above. The settings for the kernels 
is also identical to the ones we used in KIRF. We employed a population size of 100, 200 
iterations and a mutation chance of 0.01 for the genetic algorithm. 
We have submitted an open-source R-software package of the algorithm (kernelFactory) to 
CRAN (Ballings, & Van den Poel 2012). Packages that are used by Kernel Factory, KIRF and 
Random Forest are kernlab (Karatzoglou, Smola, Hornik, & Zeileis, 2004), randomForest 
(Liaw & Wiener, 2002), genalg (Willighagen 2005), and ROCR (Sing, Sander, Beerenwinkel, 
& Lengauer 2009). 

4.3 Model Performance Evaluation 

 
To evaluate the performance of a model we use accuracy or percentage correctly classified 
(PCC) and, the area under the receiver operating characteristic curve (AUC or AUROC). 
PCC is defined as follows: 

cdd � ef�e�
f��    (5) 

with TP: True Positives, TN: True Negatives, P: Positives (event), N: Negatives (non-event) 
An important disadvantage of PCC is that it is sensitive to the chosen cut-off value of the 
posterior probabilities (Baecke, & Van den Poel 2012; Thorleuchter & Van den Poel 2012) 
that decides when an object is predicted to be of class zero or one. While accuracy is the 
performance of a model at only one cut-off value AUC is the performance of a model across 
all threshold values. Several authors (Provost, Fawcett, Kohavi 1998; Langley 2000; 
Coussement & Van den Poel  2008) argue AUC to be an objective criterion for classifier 
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performance. As such AUC is a more adequate performance measure than PCC (Baecke, & 
Van den Poel 2011). 
More formally, the receiver operating characteristic (ROC) curve is obtained from plotting 
sensitivity and 1-specificity considering all possible cut-off values (Hanley, & McNeil, 1982). 
AUC ranges from .5, if the predictions are not better than random, to 1, if the model predicts 
the event perfectly (Baecke, & Van den Poel 2011). AUC is defined as follows: 

ghd �  i ef
�ef�j��  k jf

�jf�e��
�

l � i ef
f  k jf

�
�

l    (6) 

,with TP: True Positives, FN: False Negatives, FP: False Positives, TN: True Negatives, P: 
Positives (event), N: Negatives (non-event) 
Reported performance metrics are all medians over five times two-fold cross validation 
(5x2cv) (Dietterich 1998; Alpaydin 1999). This procedure of cross validation randomly 
divides the sample  in two equal parts and repeats this process five times. Each part is used 
both as a training and validation part. This results in ten performance metrics per model 
(Dietterich 1998). The same splits are used for all algorithms. We also report the inter quartile 
range as a measure of dispersion.  
In order to determine whether models are significantly different in terms of AUC or PCC, we 
follow Demšar’s recommendation (Demšar 2006) to use the nonparametric Friedman test with 
Nemenyi’s post-hoc test (Nemenyi, 1963) for comparisons of the algorithms. In this context 
we report the average ranks per dataset of the algorithms. Algorithms are ranked, per fold 
separately, with the best algorithm receiving the rank 1, the second receiving the rank of 2, etc. 
It is important to note that this approach incorporates the relatedness of the folds (algorithm 
ranks are computed per fold and then the average rank is computed per dataset) and are not 
treated as independent (as is the case when computing the median). In order words, when 
ranks are computed the order of the folds is preserved and comparisons are made per fold, 
whereas when the median is computed the order of the folds is not preserved because they are 
sorted by predictive performance and the middle one is selected. Hence computing ranks in 
this fashion allows stricter comparison than computing the median. 
We opted for testing on the folds per dataset, as opposed to testing the median across the 
datasets, because the datasets’ predictive performances are not commensurate. Hence, 
controlling for the family-wise error, the probability of at least one false positive in any of the 
comparisons, is debatable because the costs of these false positives differs across datasets 
(also see Webb 2000): the datasets are not a family.  Moreover, there are no tests available for 
multiple datasets that can consider the folds for each dataset (Demšar 2006). More concretely, 
although we will compare KIRF and Kernel Factory on all datasets it makes no sense to 
blindly compare Random Forest with KIRF and Kernel Factory on all datasets. As 
aforementioned, the choice of the kernel depends on the data and can be determined by cross-
validation (Fan 2009). Hence, it is obvious that KIRF nor Kernel Factory will be used if they 
perform considerably worse than Random Forest due to the wrong kernel choice. In sum, 
because we want to make declarations per dataset, and not merely per algorithm, we opted to 
test on the folds. 

4.4 Results 

 
Table 3 and Table 5 show the median PCC and AUC respectively of the 10 cross-validation 
folds. In all tables and the rest of this text, KF stands for Kernel Factory, KIRF stands for 
Kernel-Induced Random Forest, RF stands for Random Forest and cp1 stands for column 
partitions equal to one. If cp1 is not specified along RF it means that int(log5(p+1)) is used to 
determine the number of column partitions. Table 4 and 6 contain the interquartile ranges for 
PCC and AUC respectively. Table 7 (PCC) and Table 9 (AUC) report the average ranks 
(lower is better) and Table 8 (PCC) and Table 10 (AUC) report selected differences of the 
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average rankings. As mentioned in the model performance evaluation section, taking the 
median of the folds does not respect that performances are related per fold, whereas taking the 
Friedman test does (Demšar 2006). This is also the reason why results can sometimes deviate 
to a limited extent. It has to be noted that using the rank as opposed to the median can be 
considered a stricter comparison of predictive performance.  
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Table 3: The median of the 10 folds for PCC 

PCCMedian KFrbf KFrbfcp1 KIRFrbf KFpol KFpolcp1 KIRFpol KFlin KFlincp1 KIRFlin KFran KFrancp1 KFburn KFburncp1 RF 

Heart 0.7591 0.7228 0.6755 0.7285 0.7492 0.6457 0.7318 0.7185 0.6601 0.7252 0.7360 0.7426 0.7393 0.8212 

Hepatitis 0.8129 0.8194 0.8141 0.8064 0.8259 0.8258 0.8129 0.8000 0.8193 0.8193 0.8129 0.7821 0.8129 0.8442 

Ionosphere 0.9003 0.9060 0.9259 0.8807 0.9145 0.9371 0.8889 0.9088 0.9288 0.9059 0.9205 0.8892 0.9062 0.9345 

Pima 0.7174 0.7396 0.7435 0.7135 0.7448 0.7357 0.7109 0.7370 0.7344 0.7292 0.7344 0.7292 0.7383 0.7565 

Credit 0.7913 0.8174 0.7377 0.7957 0.8130 0.7000 0.8217 0.8014 0.7014 0.7870 0.7957 0.8058 0.7971 0.8725 

Sonar 0.7452 0.7500 0.7933 0.7308 0.7548 0.7067 0.7308 0.7500 0.7115 0.7356 0.7404 0.7356 0.7500 0.7981 

wdbc 0.9419 0.9472 0.9439 0.9455 0.9421 0.9437 0.9437 0.9473 0.9419 0.9438 0.9420 0.9561 0.9438 0.9542 

HeartHun 0.7551 0.7823 0.7449 0.7619 0.7517 0.7041 0.7721 0.7517 0.7007 0.7483 0.7585 0.7279 0.7687 0.8095 

GermanCredit 0.6900 0.7050 0.6700 0.4910 0.7040 0.6660 0.3050 0.7130 0.6640 0.3050 0.7040 0.3040 0.7050 0.7550 

AustralianCredit 0.7855 0.7986 0.7391 0.7971 0.8000 0.6942 0.8000 0.7913 0.7014 0.7913 0.8087 0.8000 0.7942 0.8638 

HorseColic 0.7147 0.7255 0.7201 0.7147 0.7092 0.7011 0.7255 0.7120 0.6984 0.6902 0.7337 0.7228 0.7201 0.7745 

Ringnorm 0.8850 0.9290 0.9270 0.8720 0.8960 0.9020 0.8780 0.8950 0.9020 0.8840 0.8930 0.8800 0.9290 0.8910 

Peak 0.9100 0.9840 0.9890 0.8930 0.9420 0.9400 0.8860 0.9340 0.9410 0.8920 0.9830 0.8960 0.9870 0.9270 

Circle 0.8330 0.8810 0.8990 0.8330 0.8330 0.8330 0.8330 0.8320 0.8330 0.8330 0.8520 0.8330 0.8760 0.8350 

 
 
Table 4: The interquartile range of the 10 folds for PCC 
PCCIQR KFrbf KFrbfcp1 KIRFrbf KFpol KFpolcp1 KIRFpol KFlin KFlincp1 KIRFlin KFran KFrancp1 KFburn KFburncp1 RF 

Heart 0.0342 0.0498 0.0198 0.0517 0.0362 0.0521 0.0383 0.0809 0.0560 0.0553 0.0607 0.0756 0.0514 0.0243 

Hepatitis 0.0399 0.0536 0.0617 0.0303 0.0611 0.0597 0.0512 0.0718 0.0486 0.0373 0.0304 0.0364 0.0503 0.0662 
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Ionosphere 0.0409 0.0357 0.0243 0.0406 0.0280 0.0255 0.0287 0.0280 0.0313 0.0595 0.0372 0.0455 0.0346 0.0270 

Pima 0.0234 0.0286 0.0208 0.0273 0.0124 0.0286 0.0410 0.0280 0.0312 0.0202 0.0228 0.0267 0.0345 0.0234 

Credit 0.0384 0.0428 0.0341 0.0123 0.0319 0.0609 0.0565 0.0232 0.0536 0.0355 0.0232 0.0507 0.0181 0.0232 

Sonar 0.0529 0.0529 0.0745 0.0601 0.0457 0.0529 0.0409 0.0505 0.0721 0.0361 0.0264 0.0601 0.0745 0.0625 

wdbc 0.0141 0.0204 0.0086 0.0149 0.0183 0.0168 0.0133 0.0132 0.0159 0.0158 0.0262 0.0132 0.0070 0.0096 

HeartHun 0.0833 0.0561 0.0374 0.0833 0.0255 0.0680 0.0816 0.0731 0.0646 0.0476 0.0629 0.0697 0.0374 0.0272 

GermanCredit 0.3995 0.0170 0.0250 0.3965 0.0210 0.0155 0.2890 0.0255 0.0200 0.0160 0.0125 0.0185 0.0220 0.0095 

AustralianCredit 0.0159 0.0536 0.0536 0.0529 0.0138 0.0399 0.0601 0.0341 0.0312 0.0254 0.0500 0.0377 0.0486 0.0109 

HorseColic 0.0204 0.0462 0.0312 0.0312 0.0380 0.0190 0.0177 0.0217 0.0217 0.0557 0.0435 0.0326 0.0353 0.0190 

Ringnorm 0.0140 0.0070 0.0110 0.0130 0.0170 0.0065 0.0125 0.0135 0.0065 0.0115 0.0195 0.0120 0.0055 0.0280 

Peak 0.0155 0.0090 0.0075 0.0150 0.0245 0.0140 0.0205 0.0180 0.0150 0.0190 0.0330 0.0195 0.0105 0.0235 

Circle 0.0150 0.0270 0.0245 0.0150 0.0150 0.0150 0.0150 0.0140 0.0150 0.0150 0.0185 0.0150 0.0150 0.0150 

 
 
 
Table 5: The median of the 10 folds for AUC 

AUCMedian KFrbf KFrbfcp1 KIRFrbf KFpol KFpolcp1 KIRFpol KFlin KFlincp1 KIRFlin KFran KFrancp1 KFburn KFburncp1 RF 

Heart 0.8286 0.8081 0.7341 0.8267 0.8345 0.6805 0.7973 0.8167 0.6800 0.7947 0.8251 0.8407 0.8226 0.8993 

Hepatitis 0.8276 0.8199 0.8188 0.7918 0.7864 0.7915 0.8006 0.8095 0.7978 0.7961 0.8227 0.7927 0.8213 0.8681 

Ionosphere 0.9478 0.9528 0.9701 0.9583 0.9558 0.9746 0.9644 0.9589 0.9747 0.9559 0.9633 0.9583 0.9563 0.9756 

Pima 0.7712 0.8046 0.8047 0.7795 0.8007 0.7978 0.7851 0.7952 0.8004 0.7855 0.7995 0.7919 0.7996 0.8188 

Credit 0.8768 0.8863 0.8003 0.8714 0.8849 0.7639 0.8767 0.8852 0.7656 0.8760 0.8748 0.8709 0.8781 0.9301 
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Sonar 0.8609 0.8617 0.8865 0.8481 0.8519 0.8212 0.8456 0.8490 0.8219 0.8454 0.8514 0.8500 0.8586 0.9156 

wdbc 0.9886 0.9888 0.9874 0.9872 0.9857 0.9844 0.9880 0.9872 0.9850 0.9853 0.9879 0.9864 0.9853 0.9904 

HeartHun 0.8369 0.8276 0.7969 0.8349 0.8202 0.7305 0.8144 0.8285 0.7331 0.8178 0.8215 0.8127 0.8275 0.8894 

GermanCredit 0.6737 0.6564 0.5976 0.6611 0.6701 0.5817 0.6535 0.6570 0.5838 0.6791 0.6610 0.6677 0.6801 0.7881 

AustralianCredit 0.8768 0.8769 0.8074 0.8818 0.8752 0.7591 0.8730 0.8748 0.7568 0.8802 0.8867 0.8863 0.8756 0.9337 

HorseColic 0.7889 0.7613 0.7621 0.7763 0.7562 0.7262 0.7763 0.7606 0.7247 0.7764 0.7800 0.7653 0.7669 0.8353 

Ringnorm 0.9554 0.9794 0.9788 0.9505 0.9617 0.9653 0.9527 0.9627 0.9654 0.9581 0.9610 0.9565 0.9796 0.9555 

Peak 0.9749 0.9995 0.9996 0.9620 0.9927 0.9940 0.9600 0.9927 0.9944 0.9675 0.9991 0.9676 0.9996 0.9868 

Circle 0.8915 0.9864 0.9867 0.6212 0.4286 0.5245 0.6078 0.4245 0.5239 0.7283 0.7352 0.8789 0.9834 0.7748 

 
 
Table 6: The interquartile range of the 10 folds for AUC 
AUCIQR KFrbf KFrbfcp1 KIRFrbf KFpol KFpolcp1 KIRFpol KFlin KFlincp1 KIRFlin KFran KFrancp1 KFburn KFburncp1 RF 

Heart 0.0379 0.0639 0.0231 0.0365 0.0334 0.0734 0.0547 0.0737 0.0587 0.0614 0.0999 0.0944 0.0556 0.0187 

Hepatitis 0.0532 0.0407 0.0897 0.0474 0.0762 0.1133 0.0860 0.0396 0.1210 0.1004 0.0908 0.1045 0.0521 0.0664 

Ionosphere 0.0156 0.0261 0.0207 0.0236 0.0196 0.0191 0.0174 0.0213 0.0201 0.0095 0.0198 0.0058 0.0160 0.0113 

Pima 0.0342 0.0358 0.0225 0.0524 0.0178 0.0207 0.0264 0.0340 0.0238 0.0191 0.0171 0.0195 0.0382 0.0155 

Credit 0.0331 0.0385 0.0435 0.0437 0.0227 0.0616 0.0328 0.0272 0.0550 0.0462 0.0224 0.0376 0.0268 0.0221 

Sonar 0.0442 0.0351 0.0314 0.0242 0.0578 0.0317 0.0231 0.0348 0.0300 0.0297 0.0255 0.0238 0.0413 0.0320 

wdbc 0.0065 0.0073 0.0108 0.0031 0.0091 0.0070 0.0055 0.0060 0.0073 0.0053 0.0065 0.0085 0.0076 0.0052 

HeartHun 0.0328 0.0257 0.0612 0.0318 0.0330 0.0753 0.0905 0.0633 0.0753 0.0700 0.0348 0.0600 0.0326 0.0362 

GermanCredit 0.0466 0.0348 0.0302 0.0548 0.0189 0.0253 0.0471 0.0094 0.0256 0.0365 0.0249 0.0441 0.0398 0.0104 
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AustralianCredit 0.0346 0.0492 0.0367 0.0266 0.0093 0.0483 0.0291 0.0284 0.0464 0.0188 0.0377 0.0287 0.0318 0.0177 

HorseColic 0.0325 0.0303 0.0313 0.0408 0.0381 0.0465 0.0189 0.0471 0.0483 0.0661 0.0610 0.0438 0.0401 0.0208 

Ringnorm 0.0093 0.0029 0.0016 0.0093 0.0064 0.0047 0.0066 0.0045 0.0054 0.0049 0.0113 0.0032 0.0025 0.0064 

Peak 0.0038 0.0005 0.0004 0.0077 0.0030 0.0026 0.0070 0.0029 0.0025 0.0041 0.0033 0.0068 0.0006 0.0060 

Circle 0.0298 0.0080 0.0039 0.0986 0.0553 0.0576 0.0627 0.1275 0.0611 0.0844 0.5141 0.0403 0.0085 0.0499 

 
 
 
Table 7: Average rankings of the folds (per dataset) for PCC 
Average rankings 

(PCC) KFrbf KFrbfcp1 KIRFrbf KFpol KFpolcp1 KIRFpol KFlin KFlincp1 KIRFlin KFran KFrancp1 KFburn KFburncp1 RF 

Friedman chi² 

(13), p < 

Heart 5.00 6.75 11.75 6.25 5.70 13.55 8.30 6.55 12.55 6.45 7.65 6.55 6.65 1.30 77.98, .001 

Hepatitis 7.85 8.15 8.15 8.70 5.35 5.95 9.00 7.70 5.95 8.85 7.85 10.35 8.85 2.30 32.16, .001 

Ionosphere 9.25 7.60 5.15 10.50 7.60 3.40 10.40 8.35 4.00 9.00 6.25 11.75 9.00 2.75 59.66, .001 

Pima 11.05 5.55 6.25 11.10 5.70 5.65 10.05 7.15 6.90 9.20 6.40 9.40 7.25 3.35 40.25, .001 

Credit 7.50 5.70 11.60 7.30 4.75 13.45 6.00 5.95 13.15 8.00 7.45 6.10 7.05 1.00 82.84, .001 

Sonar 8.25 6.20 3.70 7.70 7.65 11.85 9.50 6.65 10.20 7.80 8.35 8.20 6.90 2.05 46.19, .001 

wdbc 8.70 6.55 6.70 6.15 9.15 8.50 6.85 6.85 8.05 8.55 10.35 5.30 8.90 4.40 20.72, .005 

HeartHun 7.15 6.15 8.20 8.00 7.25 11.70 8.10 6.50 11.70 7.80 6.60 8.10 5.35 2.40 41.33, .001 

GermanCredit 8.75 5.40 9.05 9.05 4.50 9.75 10.80 4.50 10.05 11.65 4.70 11.00 4.80 1.00 80.07, .001 

AustralianCredit 7.40 6.80 11.45 5.80 6.20 13.50 6.05 7.30 13.45 6.80 5.80 7.30 6.05 1.10 80.71, .001 

HorseColic 8.20 7.05 6.35 7.75 8.15 10.20 7.10 7.25 10.85 9.60 5.65 8.10 7.50 1.25 39.58, .001 
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Ringnorm 9.70 2.00 2.15 11.90 7.25 5.60 11.55 7.65 6.25 10.45 7.20 11.25 2.05 10.00 93.88, .001 

Peak 10.35 2.55 1.60 12.35 6.90 6.30 13.00 6.60 6.30 12.30 4.25 11.65 2.35 8.50 117.19, .001 

Circle 9.20 2.75 1.25 9.65 9.65 9.65 9.65 10.05 9.65 9.15 6.20 9.15 2.55 6.45 100.72,  .001 

 
Table 8: Selected differences of the average rankings of the folds (per dataset) for PCC 
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Heart -1.75 5 6.75 0.55 7.85 7.3 1.75 6 4.25 -1.2 -0.1 -0.1 1 -10.45 -5.45 

Hepatitis -0.3 0 0.3 3.35 0.6 -2.75 1.3 -1.75 -3.05 1 1.5 -1.5 -1 -5.85 -5.85 

Ionosphere 1.65 -2.45 -4.1 2.9 -4.2 -7.1 2.05 -4.35 -6.4 2.75 2.75 -2.75 -2.75 -2.4 -4.85 

Pima 5.5 0.7 -4.8 5.4 -0.05 -5.45 2.9 -0.25 -3.15 2.8 2.15 -0.2 -0.85 -2.9 -2.2 

Credit 1.8 5.9 4.1 2.55 8.7 6.15 0.05 7.2 7.15 0.55 -0.95 1.9 0.4 -10.6 -4.7 

Sonar 2.05 -2.5 -4.55 0.05 4.2 4.15 2.85 3.55 0.7 -0.55 1.3 -0.4 1.45 -1.65 -4.15 

wdbc 2.15 0.15 -2 -3 -0.65 2.35 0 1.2 1.2 -1.8 -3.6 3.25 1.45 -2.3 -2.15 

HeartHun 1 2.05 1.05 0.75 4.45 3.7 1.6 5.2 3.6 1.2 2.75 -0.3 1.25 -5.8 -3.75 

GermanCredit 3.35 3.65 0.3 4.55 5.25 0.7 6.3 5.55 -0.75 6.95 6.2 0.65 -0.1 -8.05 -4.4 

AustralianCredit 0.6 4.65 4.05 -0.4 7.3 7.7 -1.25 6.15 7.4 1 1.25 -0.5 -0.25 -10.35 -5.7 

HorseColic 1.15 -0.7 -1.85 -0.4 2.05 2.45 -0.15 3.6 3.75 3.95 0.6 1.5 -1.85 -5.1 -5.8 

Ringnorm 7.7 0.15 -7.55 4.65 -1.65 -6.3 3.9 -1.4 -5.3 3.25 9.2 -0.8 5.15 7.85 8 

Peak 7.8 -0.95 -8.75 5.45 -0.6 -6.05 6.4 -0.3 -6.7 8.05 9.3 0.65 1.9 6.9 5.95 

Circle 6.45 -1.5 -7.95 0 0 0 -0.4 -0.4 0 2.95 6.6 0 3.65 5.2 3.7 
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Table 9: Average rankings of the folds (per dataset) for AUC 
Average rankings 

(AUC) KFrbf KFrbfcp1 KIRFrbf KFpol KFpolcp1 KIRFpol KFlin KFlincp1 KIRFlin KFran KFrancp1 KFburn KFburncp1 RF 

Friedman 

chi² (13), p < 

Heart 6.10 7.10 12.00 5.40 5.90 13.10 8.30 6.0 13.50 7.40 6.80 6.20 6.2 1.0 83.27, .001 

Hepatitis 4.90 6.80 7.60 8.40 9.70 9.85 7.20 7.9 9.35 7.20 6.70 10.50 6.5 2.4 33.63, .01 

Ionosphere 10.45 10.25 3.40 10.30 9.50 3.20 6.95 8.9 3.00 9.90 7.65 9.20 10.1 2.2 73.99, .001 

Pima 10.50 5.80 7.70 8.80 5.70 7.90 10.40 6.3 8.00 10.30 6.80 9.50 6.0 1.3 45.79, .001 

Credit 6.80 5.60 12.00 8.20 4.40 13.60 5.90 5.4 13.40 7.60 6.70 7.20 7.2 1.0 89.44, .001 

Sonar 6.70 6.20 3.70 7.55 8.75 12.40 8.30 7.5 12.40 9.30 7.70 6.70 6.5 1.3 63.09, .001 

wdbc 7.35 4.30 6.70 7.20 7.75 10.60 7.00 7.8 9.45 10.15 8.70 6.60 7.4 4.0 26.49, 0.05  

HeartHun 5.90 6.00 10.40 5.80 7.20 12.90 8.60 6.9 12.50 6.70 6.80 8.10 6.1 1.1 66.48,  .001 

GermanCredit 5.70 7.80 11.80 7.70 6.20 13.20 6.90 7.1 13.20 5.20 7.00 6.30 5.9 1.0 80.48, .001 

AustralianCredit 6.80 6.50 12.20 6.50 6.80 13.30 7.30 7.6 13.50 6.10 5.30 5.30 6.8 1.0 85.22, .001 

HorseColic 5.50 8.60 7.90 6.90 9.00 11.30 5.85 7.1 12.00 8.30 5.50 7.85 8.2 1.0 53.19, .001 

Ringnorm 9.00 1.80 2.10 11.70 8.20 5.90 11.80 7.8 5.50 9.60 7.60 10.40 2.1 11.5 94.38, .001 

Peak 10.40 2.55 1.75 12.70 7.30 5.80 13.20 6.9 5.70 11.80 3.80 11.90 2.3 8.9 121.52, .001 

Circle 4.90 1.90 1.50 8.80 13.30 11.30 9.20 12.6 11.10 7.50 8.40 5.10 2.7 6.7 112, .001 

 
Table 10: Selected differences of the average rankings of the folds (per dataset) for AUC 
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Heart -1 4.9 5.9 -0.5 7.2 7.7 2.3 7.5 5.2 0.6 0 1.2 0.6 -11 -6.1 

Hepatitis -1.9 0.8 2.7 -1.3 0.15 1.45 -0.7 1.45 2.15 0.5 4 -3.3 0.2 -5.2 -4.4 

Ionosphere 0.2 -6.85 -7.05 0.8 -6.3 -7.1 -1.95 -5.9 -3.95 2.25 -0.9 0.7 -2.45 -1.2 -8.05 

Pima 4.7 1.9 -2.8 3.1 2.2 -0.9 4.1 1.7 -2.4 3.5 3.5 0.8 0.8 -6.4 -4.5 

Credit 1.2 6.4 5.2 3.8 9.2 5.4 0.5 8 7.5 0.9 0 0.4 -0.5 -11 -4.6 

Sonar 0.5 -2.5 -3 -1.2 3.65 4.85 0.8 4.9 4.1 1.6 0.2 2.6 1.2 -2.4 -4.9 

wdbc 3.05 2.4 -0.65 -0.55 2.85 3.4 -0.8 1.65 2.45 1.45 -0.8 3.55 1.3 -2.7 -0.3 

HeartHun -0.1 4.4 4.5 -1.4 5.7 7.1 1.7 5.6 3.9 -0.1 2 -1.4 0.7 -9.3 -4.9 

GermanCredit -2.1 4 6.1 1.5 7 5.5 -0.2 6.1 6.3 -1.8 0.4 -1.1 1.1 -10.8 -6.8 

AustralianCredit 0.3 5.7 5.4 -0.3 6.5 6.8 -0.3 5.9 6.2 0.8 -1.5 0.8 -1.5 -11.2 -5.5 

HorseColic -3.1 -0.7 2.4 -2.1 2.3 4.4 -1.25 4.9 6.15 2.8 -0.35 0.45 -2.7 -6.9 -7.6 

Ringnorm 7.2 0.3 -6.9 3.5 -2.3 -5.8 4 -2.3 -6.3 2 8.3 -0.8 5.5 9.4 9.7 

Peak 7.85 -0.8 -8.65 5.4 -1.5 -6.9 6.3 -1.2 -7.5 8 9.6 -0.1 1.5 7.15 6.35 

Circle 3 -0.4 -3.4 -4.5 -2 2.5 -3.4 -1.5 1.9 -0.9 2.4 2.4 5.7 5.2 4.8 



 

 

 
The performance of two classifiers differs significantly if their average ranks differ (see Table 
8 and 10) by at least the critical difference of 6.2748 (which is the critical difference for a p-
value of 0.05, 14 classifiers and 10 folds) (see Demšar 2006 for the formula). The significant 
differences in Table 8 and Table 10 are put in bold. 
Comparing (1) KFrbf and KFrbfcp1, (2) KFpol and KFpolcp1, (3) KFlin and KFlincp1, (4) 
KFran in KFrancp1, and (5) KFburn and KFburncp1 in both Table 3 and Table 5 we observe 
that increasing the number of column partitions, as such introducing more diversity, does not 
have a consistent effect across the datasets. Even more so, on the datasets that we created with 
a Gaussian distribution (the bottom three datasets in Table 3), setting the number of column 
partitions to 1 has a beneficial effect for the KF’s with a radial basis function (KFrbfcp1, 
KFrancp1, KFburncp1). Most of these benefits are also significant (see column KFrbf-
KFrbfcp1, KFran-KFrancp1, KFburn-KFburncp1 in Table 8 and Table 10). Note that method 
ran will have a probability of one third to select RBF per partition and method burn will 
select the best performing kernel function on the first partition and use that kernel for all 
partitions. In this case, for the last three datasets, it was always the radial basis function that 
has been selected by KFburn(cp1). In Table 3, there are very low PCC’s for KFpol, KFlin, 
KFran, and KFburn for the German Credit dataset. In Table 5 the same can be observed for 
KFpolcp1 and KFlincp1 for the Circle dataset. Moreover Table 4 and Table 6 also show a 
high inter quartile range (IQR) for these algorithms on these datasets. These are strong signs 
of overfitting and is likely to be caused by the high dimensionality of the K’s. 
Comparing (1) KFrbfcp1 and KIRFrbf, (2) KFpolcp1 and KIRFpol, and (3) KFlincp1 and 
KIRFlin shows that KF performs similarly or considerably higher, and rarely considerably 
lower. For example, in Table 3 and 5 on the Credit and Australian Credit datasets KF 
performs around .10 PCC and .10 AUC better than KIRF. This conclusion is confirmed when 
looking at the columns KIRFrbf-KFrbfcp1, KIRFpol-KFpolcp1, KIRFlin-KFlincp1 in Table 8 
and Table 10. In Table 8 (PCC), all 4 significant differences are in favor of KF. In Table 10 
(AUC), out of 9 significant differences, 7 are in favor of KF. 
KF with method ran and burn are both designed to choose the kernel for the user. Hence a 
direct comparison is in order. Interestingly, from Table 3 and Table 5 we see that KFran(cp1) 
and KFburn(cp1) are very competitive. Hence, none of the differences are significant in Table 
8 and 10 (see columns KFran-KFburn and KFrancp1-KFburncp1). 
Finally, a comparison of RF with KF and KIRF fulfills our expectations in that RF is superior 
to the other two when the wrong kernel is selected, or a kernel is selected when none is 
needed. In contrast, when the right kernel is known (or determined in advance by cross-
validation), KIRF and KF do perform considerably better (see columns KFrbfcp1, KIRFrbf. 
KFrancp1, KFburncp1, RF for the last three datasets in Table 3 and 5). On the 3 relevant 
datasets KIRFrbf and KFrbfcp1 perform better than RF (significantly in most cases) (see 
columns RF-KIRFrbf and RF-KFrbfcp1 in Table 8 and 10). 

5 Conclusions 
 
In this study we propose an ensemble method for kernel machines. The training data is 
randomly split into a number of mutually exclusive partitions defined by a row and column 
parameter. Each partition forms an input space and is transformed by a kernel function into a 
kernel matrix K. Subsequently, each K is used as training data for a base binary classifier 
(Random Forest). This results in a number of predictions equal to the number of partitions. A 
weighted average combines the predictions into one final prediction. To optimize the weights, 
a genetic algorithm is used.  
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This approach has the advantage of simultaneously promoting (1) diversity, (2) accuracy, and 
(3) computational speed. (1) Diversity is fostered because the individual K’s are based on a 
subset of features and observations, (2) accuracy is sought by optimizing the weights with the 
genetic algorithm, and (3) computational speed is obtained because the computation of each K 
can be parallelized.  
Using five times two-fold cross validation we benchmark the classification performance of 
Kernel Factory against Random Forest and Kernel-Induced Random Forest (KIRF). Our 
findings are fourfold. 
First, the number of column partitions matters. While partitioning the columns is primarily a 
way of introducing diversity in the ensemble, we found that one partition works better than 
many. We recommend using one partition and creating more in case of numerical problems 
when computing the K’s (which is often the case in datasets with many features). 
Second, Kernel Factory is significantly better than Kernel-Induced Random Forest (KIRF) on 
several datasets (and performs rarely significantly worse than KIRF). Along with the superior 
speed of Kernel Factory on large datasets, we recommend it over KIRF. 
Third, the two methods (random and burn-in) that automatically select the kernel function 
perform equally well and using them is a viable strategy when the right kernel function is 
unknown in advance. 
Fourth and final, when using a kernel is appropriate, and the right kernel is specified, both 
Kernel Factory and Kernel-Induced Random Forest outperform Random Forest significantly. 
The main practical implication of this study is that problems involving large datasets, that 
otherwise would be impossible to analyze using KIRF, can now be analyzed using Kernel 
Factory. Hence, Kernel Factory opens a doorway to increases in classification performance by 
kernel functions. 
We have made available an open-source R-software package of the algorithm (kernelFactory) 
at CRAN (Ballings & Van den Poel 2012). 

6 Future Research and Limitations 
 
We have six avenues for future research, which at the same time can be considered the 
limitations of this study. 
The first avenue is to try other base classifiers. In this study we use Random Forest as a base 
classifier because it is good at handling a large number of predictors, and because we wanted 
to make a direct comparison with KIRF. Other options would be logistic regression with 
variable selection techniques, or Support Vector Machines. Random Mulitnomial Logit  
(Prinzie & Van den Poel 2008) is an example of an ensemble method that might benefit from 
kernels.  
The second direction for future research is to use other kernel functions (e.g., Üstün, Melssen, 
& Buydens 2006). Particularly interesting developments are kernels for categorical data (see 
Li & Racine 2007). As in KIRF, we exclude the categorical variables when computing the 
kernel matrix and add them afterwards. It might prove valuable to use kernel functions that 
can handle categorical data. 
While parameter values of Kernel Factory are inspired by practical reasons (computational 
speed), a third direction is to optimize these parameters. More specifically, there is quite a 
large body of research investigating what the optimal values are for selection, mutation, and 
crossover in genetic algorithms (e.g, DeJong & Spears 1990). It may prove valuable to 
integrate this research and investigate whether it applies to weight optimization for classifier 
ensembles. Moreover, while in this study we determine the number of partitions by taking the 
log of the number of rows and columns, these parameters will probably benefit from 
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optimization too. Although we compare different settings (two values for number of column 
partitions), future research should study this more in depth. 
A fourth avenue is to investigate larger datasets. The true value of Kernel Factory over KIRF 
lies in large data. Hence, future research should take a special interest in data with a high 
number of observations and predictors.  
The fifth direction for future research is ensemble pruning. Currently all ensemble members 
are used and weighted in the prediction phase. In order to make Kernel Factory less memory 
demanding and less computationally expensive members with weight close to zero could be 
excluded from the scoring phase. Zhou, Wu & Tang (2002) demonstrate that this principle 
works quite well. 
The sixth and final direction is to further explore the mechanism of Kernel Factory with a 
bias-variance decomposition of the classification error (e.g., Zhou, Wu & Tang 2002). This 
will provide insight to which factors Kernel Factory owes its strengths. 
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