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Abstract

We propose an ensemble method for kernel machiiestraining data is randomly split into
a number of mutually exclusive partitions defingdabrow and column parameter. Each
partition forms an input space and is transformgd kernel function into a kernel matix
Subsequently, eadiis used as training data for a base binary clasgiRandom Forest).
This results in a number of predictions equal sribmber of partitions. A weighted average
combines the predictions into one final predictiba.optimize the weights, a genetic
algorithm is used. This approach has the advardhgienultaneously promoting (1) diversity,
(2) accuracy, and (3) computational speed. (1) Bitseis fostered because the individgas
are based on a subset of features and observa®ra;curacy is sought by optimizing the
weights with the genetic algorithm, and (3) compatel speed is obtained because the
computation of eacK can be parallelized. Using five times two-foldsswalidation we
benchmark the classification performance of KeRealtory against Random Forest and
Kernel-Induced Random Forest (KIRF). We find thatiel Factory has significantly better
performance than Kernel-Induced Random Forest. Wnenight kernel is specified Kernel
Factory is also significantly better than Randomelt In addition, an open-source R-
software package of the algorithm (kernelFactasygvailable from CRAN.

Keywords: Kernel Factory, Ensemble Learning, Clasgtion, Machine learning, Genetic
Algorithm, Random Forest

1 Introduction

In the last decade, kernel- based methods havertgecery popular for classification,
regression and pattern recognition (Ustiin, Melgs@&uydens 2006). It has been shown that
classifiers can be improved by mapping input spéaeto feature spacé{ (Jéakel, Scholkopf
& Wichmann 2007). However, this mapping can incega® number of dimensions
substantially to the point that analysis becomesblpmatic. Kernel methods are attractive in
that they can create the aforementioned mappingeanger the dimensionality explosion
problem by increasing the number of dimensions énbarly with the size of the original
data (Shawe-Taylor & Cristianini 2004).

Although the dimensionality of the data scales dimigarly with the original data when
kernel methods are applied, data can grow vergldtignce, researchers have to resort to
machine learning techniques that can handle a langeer of predictors, such as Random



Forest. In that context, it is only recently tharKel- Induced Random Forest (KIRF) has
been introduced (Fan 2009). The advantage of KN&F support vector machines (SVM) is
that, in contrast to the latter, the former candb@memaining non-linearities iftf.
Nevertheless, data can grow so large that classifieuracy suffers due to the lower
probability of selecting informative features. #irceven grow unwieldy making analysis
infeasible.

In an attempt to alleviate these computationatigfficy and classifier accuracy problems, we
propose an ensemble of kernel machines: KernebBdctn addition, Kernel Factory has the
advantages of increased computational speed aethéfes member diversity.

The remainder of this article is organized as f@foSection 2 reviews Random Forest, the
kernel trick, and KIRF. Section 3 describes theppsed method Kernel Factory in detail. In
Section 4 we present the methodology and resulis @mpirical study in which we
benchmark Kernel Factory against Random Foresk#iRéf. Section 5 provides a discussion
and conclusion of the results. Finally, Sectiorfférs avenues for future research and
limitations.

2 Kernels and Random Forest

In this section we first elaborate on Random Foi®stond, we discuss the attractiveness of
kernels. Third, we discuss the combination of b&#rnel-Induced Random Forests.

2.1 Random Forest

Binary recursive partitioning (BRP) is a methodttt@ws decision trees, also referred to as
classification and regression trees (CART) (Breinfaredman, Olshen & Stone 1984). The
BRP algorithm starts by predicting a criterion aéte by creating a binary partitioning of the
data based on one predictor. The algorithm procesmlssively by, within a parent partition,
creating two child-partitions of the data. Thistparing is based on another predictor or
another split value of the same predictor varidhét was used to create the parent partition
(Merkle & Shaffer 2011). At each partitioning stéipe predictor that produces the purest
division of data is selected and the algorithm stepen, for example, a minimum partition
size, a specific impurity or an amount of partisas reached.

BRP is also used in Random Forest (Breiman 206%)e&d of growing one tree, Random
Forest grows, and averages over, an ensembleesf tE&ach tree is grown using an
independent bootstrap sample for which at eaclitipaihg step of a tree a subset of variables
is randomly selected as splitting candidates (Bagi2001).

Literature shows that Random Forest is one of #s-performing classification techniques
available (Luo, Kramer, Goldgof, Hall, Samson, Rem& Hopkins 2004). Moreover, it is
very robust and consistent and does not dav@&tfeiman 2001). Furthermore, the
algorithm has reasonable computing times (Buckinxaéa den Poel 2005) and the procedure
is easy to implement: only two parameters are tedbénumber of trees and number of
predictors) (Lariviere & Van den Poel 2005; Dudayt& Stork 2001).

2.2 Kernels and the kernel trick

® Random Forest is an ensemble of decision tre¢ls,axforest being a collection of trees. This insgius to
label the new method Kernel “Factory”, with a fagtbeing a collection of machines.



Consider the binary classification problem in tb# pane of Figure 1. A binary recursive
partitioning tree would partition the data in twp Using % >= 3 as split rule in the root node
and % <= 3 in the child node. As such, to obtain a parédassification the variable xeeds
to be selected twice £has no discriminatory power in this case).

By applying feature mag that transforms the input space, (%), by taking all second-
degree unordered monomiasdimension can be found that reduces the treg(see right
pane of Figure 1).

d: R?2— R3

D(X1,X2)=(21,22,23)=(X?1,X%,X1X2) 1)

In feature space, a binary recursive partitioning tree would partititre data by only one split,
as opposed to two splits in input space, usirgz8 as the split rule.
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Figure 1. The feature map transforms the input space,(x,), by taking all second-degree unordered mononialge
feature space (zz, zz) where only one binary split rule is required tain the same result. (Figure adapted from Schblko
& Smola 2002; note that actually=y2 x;x, and not xx, but this will create a similar plot with the sadecision boundary)

Because of this reduction in tree size, the peréorte of Random Forest can be improved. In
Random Forests, out of a the total set of predicaniables, at each node a subset of
candidate variables is selected at random andahdidate that produces the best split is used
to split the node (Breiman 2001). Hence, becaus@tbbability is lower that the variable is
selected twice as a candidate split variable, aeggd to once, the individual trees are bound
to be stronger in feature space, as such decretgrigrest error rate (Breiman 2001).

“While working in feature space has its advantagesedrht has its disadvantages as well.
Although the classification performance is improveanks to elimination of the need to
select the variable in our example more than otege are now more predictors, decreasing
the probability of selection for the candidate (ggtas to be noted that the size of the subset is
dependent on the size of the total set).

Consider the formula (2) (Scholkopf & Smola 2008)ttshows that the dimensionality N in
feature space can easily explode given monomiadegifee d, making analysis prohibitive.

 d+Ny—1\ _ (d+Ny—1)!
Nu= (") = G )

,whereX denotes input space aifl feature space

In our example d=2 and N2 which results in [N =3. For d=2 and +150 dimensionality
N, amounts to 11,325. If in the latter case the degrereases by one (d=3) then N
=573,800.



Calculating the inner product offers a solutionlibyiting the feature explosion so that the
complexity of a classifier increases only lineasligh the size of the input data. For two
observationg; andy; (i,j=1,2,3,...) defined by two variables(xx,) (Jékel, Scholkopf &
Wichmann 2007):

<(p(xi1’xi2): ‘p(xj1:xj2))

= <(xi21' xizz' \/Exilxiz)r (szlr szzx \/Exﬂsz))

= xi21xj21 + xizzszz + 2X1 X1 X2 X2

= (Xi1xj1 + Xi2%j2)?

(Crin xi2), (1, %:2) 2 (3)

The result in (3) shows that the inner produceatfire space equals the inner product to the
power of d in input space (see Scholkopf & Smol@2far proof). This is attractive because
whereas the computational effort in feature spaates with the number of dimensions (see
formula 2), in input space it scales with the numdfeobservations (Jakel, Scholkopf &
Wichmann 2007). In the case of a monomial featuap,nt is not required to map the
observations andj to feature space to compute the inner produt:sufficient to calculate
the inner product in the input space and taketihéopower of d (Jakel, Scholkopf &
Wichmann 2007).

The combination of an inner product and a featuap endefines a kernel (4), short for kernel
function, ki, x;). The fact that kernels enable us to obtain tieessuperior classification
performance as in feature space, for a much lospatational cost in input space, is called
the kernel trick.

k(x, %) = (@), 2(x) (4)

The example above uses a polynomial kernel. Thgnpatial kernel including tuning
parameters and two other widely used kernels afdalied in Table 1 (Shawe-Taylor &
Cristianini 2004; Park, Liu, Ye, Jeong, & Jeong 20T he choice of the kernel function is
largely dependent upon the data and can genemliietermined by cross-validation (Fan
2009).

Table 1: Some examples of kernels

Linear kernel

k(x,%) = (%, %))

Gaussian kernel
1% — % |I?

K5 5) = exp(-

Polynomial kernel

K(® %) = (Y(Eu ) +1)"°

dr eN, y ER
In the next section we discuss a combination ofdédsrand Random Forest: Kernel-Induced
Random Forest (Fan 2009).



2.3 Kernel-Induced Random Forest

Kernel-Induced Random Forest (KIRF) (Fan 2009)ed#ffrom Random Forest in that,
during the training phase, the former selects daansubgroup of observations and uses their
kernel functions as splitting candidates, whilelttter selects a random subgroup of
variables as splitting candidates (Fan 2009).

During the scoring phase, each splitting obsematjo(i=1,2,3,...,I) can be used with all
observations that need to be scafge¢k=1,2,3,...,m) in a kernel functionk(.) resulting in
what can be conceived of as a novel featy(p&)k(xi, Xx). Forl splitting observations, there
will be | such novel, kernel-induced featureg.)ki=1,2,3,...,| (Fan 2009). These novel,
kernel-induced, features can then be employedtbgay recursive space partitioning tree in
order to get pure divisions of the criterion valéin the terminal node.

Although KIRF has been shown to have excellentggerdnce (Fan 2009), the algorithm has
the disadvantage that although the size of thegkenatrixK scales only linearly with the
number of observations in the original daagan quickly grow too large for Random Forest
and subsequently KIRF. Kernel Factory alleviatés pinoblem by randomly splitting the
training data into a number of mutually exclugpagtitions.

This approach reduces the probability of surpadami¢ations of software packages by
several orders of magnitude (e.g., for R the marinsize of an object is*21 elements (R
Core Team (2012)) and increases computational dpesdveral orders of magnitude
(because kernel matrices can now be computed all@glamore easily).

3 Kernel Factory

The training phase starts by partitioning the datia mutually exclusive row and column
partitions followed by scaling. Each partition faran input space and is transformed by a
kernel function into a kernel matrik (categorical features are not used in the commurtai
theK but are added afterwards). Subsequently, Bashused as training data for a base
binary classifier (Random Forest).

The kernel function (polynomial, linear, or radoalsis) can be (1) user specified, (2)
randomly chosen per partition, or (3) determinedéguentially applying all kernels to the
first partition, assessing predictive performanceadold- out validation set, and selecting the
best performing kernel.

This process results in a number of predictiongktputhe number of partitions. We use a
weighted average to combine the predictions inforal prediction in which the weights
are optimized using a genetic algorithm (GA). Fa fithess score we employ the predictive
performance (area under the receiver operatingactastic curve) on a hold out sample. In
extant literature, several studies have used ad3meight these predictions of the ensemble
members before combination. To the best of our kedge Yao & Liu (1998) were the first
to use a GA in this context (for a neural netwankemble). Later, Zhou, Wu & Tang (2002)
show that using the evolved weights to make umtheal network ensemble yields superior
performance to normal averaging (see also Kimegt& Menczer 2002 for a similar
approach). Finally, Sylvester & Chawla (2005) usefato combine trees. All studies point to
the beneficial effects of GAs in ensemble formationpredictive performance.

In sum, Kernel Factory promotes diversity by theipaning step and fosters accuracy by the
weight optimization step.

Pseudo code for the estimation phase is provid&agure 2.



Training
Input

¢ Number of column partitions (cp)
¢ Number of row partitions (rp)
o Method: polynomial kernel function (pol), linear kernel function (lin), radial basis kernel function (rbf), random
choice (ran={pol, lin, rbf}), burn- in choice of best function (burn={pol, lin, rbf })
o Input space X=(xy,...,X) with class labels (Y={0,1}) where c is the number of features and let r be the number of
objects
Randomize order of rows and columnsxof

Divide x: 80% Ofr into X yaining @Nd 20% of iNt0 X yajigation

Scale bothX y4ining@NdX yaiidation: fOr every feature: ald
training validation y Vange(xc,cmining)

For X yaining Create rp times cp partitions of equal sizgifRy)
For X vaigation Create cp partitions of equal Siz€afgution

For every partition fning

e Apply method:
0 Let
- lin= (ii' 56])
" rbf=exp(— 12 xi_zlelz)
= pol=(x; fj)z
0 If method==lin: select lin
Else if method==pol: select pol

Else if method==rbf: select rbf
Else if method==ran: randomly select one of {pol, lin, rbf}
Else if method==burn:

*  If Pyraining ==1: for every method in {pol, lin, rbf}
. Compute kernel matrix Kiraining ON NUMeric features
*  Augment Kiining With raw features
*  Build classifier C on Kiining
e Compute K,jigation ,POPUlated by elements where, for the kernel function,
observations X; come from pyajigation (With same numeric features as in pyaining ==1)
and ii come from numeric features of piraining ==1
e Augment Kyzjigation With the raw features from pyaigation
° Deploy C: ?prob = C(Kvalidation)
. Compute AUC
= Select one of {pol, lin, rbf} which yielded max AUC
. Compute kernel matrix Kiraining ON NUmeric features
*  Augment Kiining With raw features
*  Build classifier C on Kiining
e Compute Kyigation ,POPUlated by elements where, for the kernel function, observations X; come from pyajigation
(with same numeric features as in current pyaining) and 3(’]- come from numeric features of current pyining
e Augment K, ,jigation With the raw features from pyigation
+ Deploy C: Yprob = C(Kvaridation)




Optimize classifier weights for weighted averagoigredicted probabilities with genetic algorithm walidation space

. Choose initial population of sets of weights
. Repeat 100 times
0  For each set of weights w=(wj,...w|) compute weighted average for a given object X; having a set of

Yorobi = (i1, - Yiy) , with I=(1,...rp times cp) the number of classifiers (= number of weights):

p
l
.ui(?prob) = Z Wl(?prob,i,l)
=1

Evaluate fitness (AUC)
Select best-fit set of weights
Apply crossover operator

0  Apply mutation operator

O O o

®*  Choose set of optimal weights (weights with best fit; highest AUC): w=(w4,...w;) with |=rp times cp

Figure 2: Pseudo code for the estimation phasesofi¢®d Factory

The prediction phase (see Figure 3) starts by oaetgtg the same column partitions and
applying scaling as in the training set. Next, feegtures from the training set are used to
compute th&’s. Finally, the weighted average of all predicBas computed using the
weights obtained from the genetic algorithm.

Prediction

Input
. Input space X pey =(X1,...,xc) where cis the number of features and let r be the number of objects
Apply order of rows and columns of 4iningt0 Xnew

Scalex ey : for every feature= ald
new y range(Xc training)

For x e Create cp partitions (g, of equal size
For every classifie€:

. Compute K,.,, on numeric features populated by elements where, for the kernel function, observations ¥; come
from ppew (With same numeric features as in current pyining) and 551- come from numeric features of current
ptraining

¢ Augment the kernel matrix with the raw features from ppe,

* Deploy C: ?prob = C(Kpew)

Compute weighted average using optimal weights:afagiven object¥; having a set ofyop; = (i1, ... %), with
I=(1,...rp times cp) the number of classifiers (= tnamof weights) , use optimat
1

.ui(?prob) = Z Wl(?prob,i,l)
=1

W is the confidence that objett has Y==1

Figure 3: Pseudo code for the prediction phaseesh& Factory

4 Empirical Study

4.1 Data




Our experiments use 11 datasets from the UCI repgsand 3 synthetic datasets. The first 11
datasets were selected because we have used tipast iresearch, because the dependent
variable is binary and because they contain coatisypredictor variables (required for
kernels). Moreover, most of them are used in BreimRandom Forest paper (Breiman
2001). The 3 synthetic datasets are constructeud tise R package mlbench (Leisch, &
Dimitriadou 2010) and are chosen because KIRF ingg@n Random Forest (Fan, 2009) on
these datasets. The underlying reason is thategetspecific datasets, the radial basis
function (RBF) helps Random Forest to classify@aissian distribution present in these
datasets. It is well documented that using kemnettions only has a positive effect on
predictive performance if the right kernel functigsrused and even has a harmful effect if the
wrong kernel function is used. Hence, KIRF shoultyde used with the right kernel and
only if this improves on Random Forest. Therefdremakes little sense to compare Random
Forest and KIRF blindly (without testing differérgrnels) on different datasets and make
generalizations about which algorithm is best (R&99). Random Forest and KIRF (with
different kernels) should always be tested togedherthe best algorithm should be selected.
Hence to give KIRF an honest chance in the compargth the other algorithms, we use
these synthetic datasets because we know theyGmavsgsian distributions and that a RBF
kernel will add positively to the predictive penfioance.

In general, we expect that Kernel Factory will ilmye on KIRF because of the internal kernel
selection procedure (in the case of method=burmamaom). In either case, Kernel Factory
will not require manually testing multiple kernels.

Table 2 gives a brief summary of the datadétis.the number of observationsis the

number of predictor variables

Table 2: properties of the datasets used in theraralpstudy

Data N p, continuous p, categorical
Heart (Cleveland) 303 5 8
Hepatitis 155 6 13
lonosphere 351 32 1
Pima (Diabetes) 768 8 0
Credit 690 6 9
Sonar 208 59 0
Wdbc (Cancer) 569 30 0
HeartHun (Hungary) 294 5 7
GermanCredit 1000 7 13
AustralianCredit 690 6 8
HorseColic 368 9 13
Ringnorm 1000 10 0
Peak 1000 6 0
Circle 1000 20 0




The last three datasets are the synthetic onescrithaon variable was initially continuous in
the Peak dataset and is transformed to a binargblarby assigning a 1 if the value is greater
than the mean and O otherwise.

4.2 Implementations of Algorithms

Random Forest requires two parameters to be sehuimber of trees and the number of
variables to try at each split. We follow Breimaresommendation (Breiman 2001) to use a
large number of trees (1000) and the square rotbteofotal number of variables as the
number of predictors.

For KIRF we used the same settings for Random Faseabove. For the Gaussian radial
basis function we set the Gaussian kernel pararaetqual to 1 because a decision tree is
invariant to monotonic transformations of data (28A9). For the polynomial kernel function
we used a degree of 2, a scale of 1 and an off€etTde categorical predictor variables are
not involved in the computation of kernels but keept as extra attributes during tree
construction.

In using Kernel Factory, two parameters to setla@enumber of row and column partitions.
Because the algorithm is designed to overcomeipahditnitations of computational
resources, we chose parameter values aimed at aumbating the server we used for our
experiments. We used int(lgg+1)) for the number of row partitions and bott{logs(p+1))
and 1 for the number of column partitions. From s@reliminary testing we found that
Kernel Factory is more sensitive to column pantithg than to row partitioning, hence the
difference in the logarithms’ bases. We also wambetest with one column partition because
column partitions are rather meant to introduceaediversity in the ensemble members while
it are the row partitions have a much bigger immarcthe speed of the algorithm due to their
direct impact on the size of tiés. Setting the number of column partitions to anel
comparing it to int(log(p+1)) allows us to understand the impact of tmatess. The base
algorithm was Random Forest, using the same sstiia@bove. The settings for the kernels
is also identical to the ones we used in KIRF. \Wpleyed a population size of 100, 200
iterations and a mutation chance of 0.01 for theege algorithm.

We have submitted an open-source R-software paakatpe algorithm (kernelFactory) to
CRAN (Ballings, & Van den Poel 2012). Packages #natused by Kernel Factory, KIRF and
Random Forest are kernlab (Karatzoglou, Smola, iHp&Zeileis, 2004), randomForest
(Liaw & Wiener, 2002), genalg (Willighagen 2005neROCR (Sing, Sander, Beerenwinkel,
& Lengauer 2009).

4.3 Model Performance Evaluation

To evaluate the performance of a model we use acgur percentage correctly classified
(PCC) and, the area under the receiver operatiagacteristic curve (AUC or AUROC).

PCC is defined as follows:
TP+TN

PCC = (5)
P+N

with TP: True Positives, TN: True Negatives, P:ithass (event), N: Negatives (non-event)
An important disadvantage of PCC is that it is gessto the chosen cut-off value of the
posterior probabilities (Baecke, & Van den Poel200horleuchter & Van den Poel 2012)
that decides when an object is predicted to béasszero or one. While accuracy is the
performance of a model at only one cut-off value\ld the performance of a model across
all threshold values. Several authors (Provost,dettwKohavi 1998; Langley 2000;
Coussement & Van den Poel 2008) argue AUC to bebgattive criterion for classifier
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performance. As such AUC is a more adequate pedocenmeasure than PCC (Baecke, &
Van den Poel 2011).

More formally, the receiver operating characteti§ROC) curve is obtained from plotting
sensitivity and 1-specificity considering all pddsicut-off values (Hanley, & McNeil, 1982).
AUC ranges from .5, if the predictions are not éethan random, to 1, if the model predicts
the event perfectly (Baecke, & Van den Poel 20AUC is defined as follows:

1 Tp 1TP
AUC = fO (TP+FN) (FP+TN) fO P d_ (6)

,with TP: True Positives, FN: False Negatives, Fﬂse Posmves, TN: True Negatives, P:
Positives (event), N: Negatives (non-event)

Reported performance metrics are all medians avettimes two-fold cross validation

(5x2cv) (Dietterich 1998; Alpaydin 1999). This pealure of cross validation randomly
divides the sample in two equal parts and repgbatgprocess five times. Each part is used
both as a training and validation part. This resultten performance metrics per model
(Dietterich 1998). The same splits are used foalglbrithms. We also report the inter quartile
range as a measure of dispersion.

In order to determine whether models are signifigatifferent in terms of AUC or PCC, we
follow DemsSar’s recommendation (DemsSar 2006) tothbeenonparametric Friedman test with
Nemenyi’s post-hoc test (Nemenyi, 1963) for comgmars of the algorithms. In this context
we report the average ranks per dataset of theitlges. Algorithms are ranked, per fold
separately, with the best algorithm receiving tekrl, the second receiving the rank of 2, etc.
It is important to note that this approach incogtes the relatedness of the folds (algorithm
ranks are computed per fold and then the averadeisacomputed per dataset) and are not
treated as independent (as is the case when corgpghé@ median). In order words, when
ranks are computed the order of the folds is pveseand comparisons are made per fold,
whereas when the median is computed the orderedbtts is not preserved because they are
sorted by predictive performance and the middleisselected. Hence computing ranks in
this fashion allows stricter comparison than cormuuthe median.

We opted for testing on the folds per datasetpp®ged to testing the median across the
datasets, because the datasets’ predictive penf@esare not commensurate. Hence,
controlling for the family-wise error, the probatylof at least one false positive in any of the
comparisons, is debatable because the costs @&f thise positives differs across datasets
(also see Webb 2000): the datasets are not a faiibyeover, there are no tests available for
multiple datasets that can consider the folds d@hedataset (Demsar 2006). More concretely,
although we will compare KIRF and Kernel Factoryadindatasets it makes no sense to
blindly compare Random Forest with KIRF and Kerfrattory on all datasets. As
aforementioned, the choice of the kernel dependb®data and can be determined by cross-
validation (Fan 2009). Hence, it is obvious thaRKInor Kernel Factory will be used if they
perform considerably worse than Random Forest atiget wrong kernel choice. In sum,
because we want to make declarations per datasetc merely per algorithm, we opted to
test on the folds.

4.4 Results

Table 3 and Table 5 show the median PCC and AUgeotisely of the 10 cross-validation
folds. In all tables and the rest of this text, #t&nds for Kernel Factory, KIRF stands for
Kernel-Induced Random Forest, RF stands for Rangmmst and cpl stands for column
partitions equal to one. If cpl is not specifiedng RF it means that int(le@+1)) is used to
determine the number of column partitions. Tabénd 6 contain the interquartile ranges for
PCC and AUC respectively. Table 7 (PCC) and Tal{lgl®C) report the average ranks
(lower is better) and Table 8 (PCC) and Table 10CAreport selected differences of the

11



average rankings. As mentioned in the model peidoca evaluation section, taking the
median of the folds does not respect that perfoomsiare related per fold, whereas taking the
Friedman test does (Demsar 2006). This is alsoethgon why results can sometimes deviate
to a limited extent. It has to be noted that usirgrank as opposed to the median can be
considered a stricter comparison of predictive grenince.
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Table 3: The median of the 10 folds for PCC

PCCMedian KFrbf KFrbfcpl| KIRFrbff KFpol KFpolcpl KHpol | KFlin KFlincpl | KIRFlin | KFran KFrancpl| KFburn| HRburncpl | RF

Heart 0.7591 0.7228 0.6755 0.7284 0.7492 0.6457 318.7 | 0.7185 0.6601 0.7252 0.7360 0.7426 0.7393 @.821
Hepatitis 0.8129 0.8194 0.8141 0.8064 0.8259 0.82580.8129 0.8000 0.8193 0.8193 0.8129 0.7821 0.8129| .844Q
lonosphere 0.9003 0.9060 0.9259 0.880y 0.914% .93} 0.8889 0.9088 0.9288 0.9059 0.9205 0.8892 0.9062| 0.9345
Pima 0.7174 0.7396 0.7435 0.7134 0.7448 0.7387  00.71 0.7370 0.7344 0.7292 0.7344 0.7292 0.7383 0.7565
Credit 0.7913 0.8174 0.7377 0.7957 0.8130 0.7000 8210. 0.8014 0.7014 0.7870 0.7957 0.8058 0.7971 26.87
Sonar 0.7452 0.7500 0.7933 0.7304 0.7548 0.7067 308.7 | 0.7500 0.7115 0.7356 0.7404 0.7356 0.7500 Q.798
wdbc 0.9419 0.9472 0.9439 0.9455 0.9421 0.9437  30.94 0.9473 0.9419 0.9438 0.9420 0.9561 0.9438 0.9542
HeartHun 0.7551 0.7823 0.7449 0.7619 0.7517 0.70410.7721 0.7517 0.7007 0.7483 0.7585 0.7279 0.7687 8096.
GermanCredit 0.6900 0.7050 0.6700 0.491p 0.704( 660.6 | 0.3050 0.7130 0.6640 0.3050 0.7040 0.3040 0.705 | 0.7550
AustralianCredit | 0.7855 0.7986 0.7391 0.7971 0.800Q 0.6942 0.8000 0.7913 0.7014 0.7911 0.8087 0.8000 .794@ 0.8638
HorseColic 0.7147 0.7255 0.7201 0.7147 0.7092 @701 0.7255 0.7120 0.6984 0.6902 0.7337 0.7228 0.7201| 0.7745
Ringnorm 0.8850 0.9290 0.9270 0.872( 0.8960 0.90200.8780 0.8950 0.9020 0.8840 0.8930 0.8800 0.9290 8910.
Peak 0.9100 0.9840 0.9890 0.893( 0.9420 0.9400 60.88 0.9340 0.9410 0.8920 0.9830 0.8960 0.9870 0.92[70
Circle 0.8330 0.8810 0.8990 0.8330 0.8330 0.8330 833D 0.8320 0.8330 0.8330 0.8520 0.833p 0.8760 50.83
Table 4: The interquartile range of the 10 foldsR€C

PCCIQR KFrbf KFrbfcpl| KIRFrbf| KFpol KFpolcpl KIRFpo| KFlin KFlincpl | KIRFlin | KFran KFrancpl| KFburn KFocpl | RF

Heart 0.0342 0.0498 0.0198 0.0517 0.0362 0.0521 383.0 | 0.0809 0.0560 0.0553 0.0607 0.0756 0.0514 G8.024
Hepatitis 0.0399 0.0536 0.0617 0.0304 0.0611 0.05970.0512 0.0718 0.0486 0.0373 0.0304 0.036¢4 0.0503| .066Q
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0.0409

lonosphere 0.0357 0.0243 0.040p 0.028( 6.025 0.0287 0.0280 0.0313 0.0595 0.0372 0.0455 0.0346| 0.0270
Pima 0.0234 0.0286 0.0208 0.0273 0.0124 0.0286  10.04 0.0280 0.0312 0.0202 0.0228 0.0267 0.0345 0.0234
Credit 0.0384 0.0428 0.0341 0.0123 0.0319 0.0609 056& 0.0232 0.0536 0.0355 0.0232 0.050y 0.0181 3Q.02
Sonar 0.0529 0.0529 0.0745 0.0601 0.0457 0.0529 400.0| 0.0505 0.0721 0.0361 0.0264 0.0601 0.0745 6.0622
wdbc 0.0141 0.0204 0.0086 0.0149 0.0183 0.0168  33.01] 0.0132 0.0159 0.0158 0.0262 0.0132 0.0070 0.00P6
HeartHun 0.0833 0.0561 0.0374 0.0833 0.0255 0.06800.0816 0.0731 0.0646 0.0476 0.0629 0.0697 0.0374 027Q.
GermanCredit 0.3995 0.0170 0.0250 0.396p 0.021( 156.0 | 0.2890 0.0255 0.0200 0.0160 0.0125 0.0185 0.022 | 0.0095
AustralianCredit | 0.0159 0.0536 0.0536 0.0529 0.0138 0.0399 0.0601 0.0341 0.0312 0.0254 0.0500 0.0377 .0486 0.0109
HorseColic 0.0204 0.0462 0.0312 0.0312 0.0380 @019 0.0177 0.0217 0.0217 0.0557 0.0435 0.0326 0.0353| 0.0190
Ringnorm 0.0140 0.0070 0.0110 0.013( 0.0170 0.00650.0125 0.0135 0.0065 0.0115 0.0195 0.0120 0.0055 0280.
Peak 0.0155 0.0090 0.0075 0.015( 0.0245 0.0140 08.02 0.0180 0.0150 0.0190 0.0330 0.019% 0.0105 0.02B5
Circle 0.0150 0.0270 0.0245 0.0150 0.0150 0.0150 015m 0.0140 0.0150 0.0150 0.0185 0.0150 0.0150 50.01
Table 5: The median of the 10 folds for AUC

AUCMedian KFrbf KFrbfcpl| KIRFrbf| KFpol KFpolcpl KIRpol | KFlin KFlincpl | KIRFlin | KFran KFrancpl| KFburn| HRburncpl | RF

Heart 0.8286 0.8081 0.7341 0.8267 0.8345 0.6805 973.7 | 0.8167 0.6800 0.7947 0.8251 0.840y 0.8226 G6.899
Hepatitis 0.8276 0.8199 0.8188 0.7914 0.7864 0.79150.8006 0.8095 0.7978 0.7961 0.8227 0.7927 0.8213| .868Q
lonosphere 0.9478 0.9528 0.9701 0.9583 0.9558 6.974 0.9644 0.9589 0.9747 0.9559 0.9633 0.9583 0.9563| 0.9756
Pima 0.7712 0.8046 0.8047 0.7795 0.8007 0.7978 50.78 0.7952 0.8004 0.7855 0.7995 0.7919 0.7996 0.8188
Credit 0.8768 0.8863 0.8003 0.8714 0.8849 0.7639 874T. 0.8852 0.7656 0.8760 0.8748 0.870p 0.8781 00.93
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Sonar 0.8609 0.8617 0.8865 0.8481 0.8519 0.8212 456.8| 0.8490 0.8219 0.8454 0.8514 0.8500 0.8586 6.915
wdbc 0.9886 0.9888 0.9874 0.9872 0.9857 0.9844  80.98 0.9872 0.9850 0.9853 0.9879 0.9864 0.9853 0.99p4
HeartHun 0.8369 0.8276 0.7969 0.8349 0.8202 0.73090.8144 0.8285 0.7331 0.8178 0.8215 0.8127 0.8275 889a.
GermanCredit 0.6737 0.6564 0.5976 0.661fL 0.6701 81@.5 | 0.6535 0.6570 0.5838 0.6791 0.6610 0.6677 0.680 | 0.7881
AustralianCredit | 0.8768 0.8769 0.8074 0.8813 0.8752 0.7591 0.8730 0.8748 0.7568 0.8802 0.8867 0.8863 .8756 0.9337
HorseColic 0.7889 0.7613 0.7621 0.7763 0.7562 @726 0.7763 0.7606 0.7247 0.7764 0.7800 0.7653 0.7669| 0.8353
Ringnorm 0.9554 0.9794 0.9788 0.9504 0.9617 0.96530.9527 0.9627 0.9654 0.9581 0.9610 0.956p 0.9796 9556.
Peak 0.9749 0.9995 0.9996 0.962( 0.9927 0.9940 00.96 0.9927 0.9944 0.9675 0.9991 0.9676 0.9996 0.9868
Circle 0.8915 0.9864 0.9867 0.6212 0.4286 0.5245 60718 0.4245 0.5239 0.7283 0.7352 0.8789 0.9834 48.77
Table 6: The interquartile range of the 10 foldsA@C

AUCIQR KFrbf KFrbfcpl | KIRFrbf | KFpol KFpolcpl] KIRFdo | KFlin KFlincpl | KIRFlin | KFran KFrancpl| KFburn KFbocpl| RF

Heart 0.0379 0.0639 0.0231 0.0365 0.0334 0.0734 540.0 | 0.0737 0.0587 0.0614 0.0999 0.0944 0.0556 @.018
Hepatitis 0.0532 0.0407 0.0897 0.0474 0.0762 0.11330.0860 0.0396 0.1210 0.1004 0.0908 0.1045 0.0521] .066@
lonosphere 0.0156 0.0261 0.0207 0.0236 0.0196 0.019 0.0174 0.0213 0.0201 0.0095 0.0198 0.0058 0.0160 0.0113
Pima 0.0342 0.0358 0.0225 0.0524 0.0178 0.020y 6@.02| 0.0340 0.0238 0.0191 0.0171 0.0195 0.0382 0.01b5
Credit 0.0331 0.0385 0.0435 0.0437, 0.0227, 0.0616 0328 0.0272 0.0550 0.0462 0.0224 0.037¢ 0.0268 20.02
Sonar 0.0442 0.0351 0.0314 0.0241 0.0578§ 0.0337 230.0 | 0.0348 0.0300 0.0297 0.0255 0.023¢ 0.0413 0.03p
wdbc 0.0065 0.0073 0.0108 0.003% 0.0091] 0.007pD 56.00{ 0.0060 0.0073 0.0053 0.0065 0.0085 0.0076 0.0052
HeartHun 0.0328 0.0257 0.0612 0.0314 0.0330 0.07530.0905 0.0633 0.0753 0.0700 0.0348 0.0600 0.0326| 036Q.
GermanCredit 0.0466 0.0348 0.0302 0.0548 0.0189 253.0 | 0.0471 0.0094 0.0256 0.0365 0.0249 0.0441 8.039 | 0.0104
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AustralianCredit| 0.0346 0.0492 0.0367 0.0266 0.0093 0.0483 0.0291 0.0284 0.0464 0.0184 0.0377 0.0287 .0318 0.0177
HorseColic 0.0325 0.0303 0.0313 0.0404 0.0381 %046 0.0189 0.0471 0.0483 0.0661 0.0610 0.043B 0.0401f 0.0208
Ringnorm 0.0093 0.0029 0.0016 0.0093 0.0064 0.00470.0066 0.0045 0.0054 0.0049 0.0113 0.0032 0.0025| o0o06a.
Peak 0.0038 0.0005 0.0004 0.0077 0.0030 0.0026  70.00 0.0029 0.0025 0.0041 0.0033 0.0064 0.0006 0.0060
Circle 0.0298 0.0080 0.0039 0.0986 0.0553 0.0576 064 0.1275 0.0611 0.0844 0.5141 0.0403 0.0085 90.04
Table 7: Average rankings of the folds (per dajaeetPCC

Average rankings Friedman chi2
(PCC) KFrbf | KFrbfcpl| KIRFrbff KFpol KFpolcpl KIRFpal KFlin | KFlincpl | KIRFlin | KFran| KFrancpl KFbur KFboepl| RF (13),p <

Heart 5.00 6.75 11.75 6.25 5.70 13.55 8.30 6.55 5512.| 6.45 7.65 6.55 6.65 1.30 77.98, .001
Hepatitis 7.85 8.15 8.15 8.70 5.35 5.95 9.00 7.70 | .955 8.85 7.85 10.35 8.85 2.3( 32.16, .001
lonosphere 9.25 7.60 5.15 10.50 7.60 3.40 10.405 8.3 | 4.00 9.00 6.25 11.75 9.00 2.75 59.66, .001
Pima 11.05| 5.55 6.25 11.10 5.70 5.65 10{05 7.15 06.9| 9.20 6.40 9.40 7.25 3.35 40.25, .001
Credit 7.50 5.70 11.60 7.30 4.75 13.45 6.90 5.95 133 | 8.00 7.45 6.10 7.05 1.0d 82.84, .001
Sonar 8.25 6.20 3.70 7.70 7.65 11.85 9.50 6.65 010.2 7.80 8.35 8.20 6.90 2.05 46.19, .001
wdbc 8.70 | 6.55 6.70 6.15 9.15 8.50 6.85 6.85 8.05 .558| 10.35 5.30 8.90 4.40  20.72,.005
HeartHun 7.15 6.15 8.20 8.00 7.25 11.70 8.10 6.50 | 1.7 7.80 6.60 8.10 5.35 2.4( 41.33, .001
GermanCredit 8.75 5.40 9.05 9.05 4.50 9.75 10.8050 4. 10.05 11.65| 4.70 11.00 4.80 1.00 80.07, .001
AustralianCredit 740 | 6.80 11.45 5.80 6.20 13.50 056.| 7.30 13.45 6.80 5.80 7.30 6.05 1.J0 80.71,.001
HorseColic 8.20 7.05 6.35 7.75 8.15 10.20 7.10 7.25| 10.85 9.60 5.65 8.10 7.50 1.2% 39.58, .001
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Ringnorm 9.70 | 2.00 2.15 1190 7.25 5.60 1155 7.65[ 6.25 10.45] 7.20 1125] 2.05 10.00 93.88,.001
Peak 10.35| 2.55 1.60 12356  6.90 6.30 1300 6.60| 0 6.3] 12.30 | 4.25 1165 | 2.35 850 117.19,.001
Circle 9.20 | 2.75 1.25 9.65| 9.65 9.65 9.66 1005 596 915 | 6.20 9.15 2.55 6.45 100.72, .00
Table 8: Selected differences of the average rgskaf the folds (per dataset) for PCC
4 ) \—| b= ! 2
o) \ \ . . . L \ \ o

g 2 % 5] Bl B BB B 3 le B g . 8t g, /8 €| 8| B
5 § 2 =8 8L =5z 58 2L 2k 2| £ Sk s|E 5B 2|E2E 2| E| %
T £ B c L oL £ I £ L |0 L | o | o T | T E T[T L L L (L L L I & | I
(%2] © o o X X X X X X X X X X X X X X X X X N4 X N4 N4 N4 N4 N4 X X [a'g 4 [ag X
Heart -1.75 5 6.75 0.55 7.85 7.3 1.75 6 4.25 1.2 0.1 -0.1 1 -1045 | -5.45
Hepatitis -0.3 0 0.3 3.35 0.6 -2.75 1.3 -1.75 -3.05 1 15 15 -1 -5.85 -5.85
lonosphere 1.65 -2.45 4.1 2.9 42 |71 2.05 435 | -64 2.75 2.75 -2.75 -2.75 2.4 -4.85
Pima 55 0.7 -4.8 5.4 -0.05 -5.45 2.9 -0.25 315 82 | 215 -0.2 -0.85 2.9 2.2
Credit 1.8 5.9 4.1 255 |87 6.15 0.05 7.2 7.15 0.55 -0.95 1.9 0.4 -10.6 4.7
Sonar 2.05 2.5 -4.55 0.05 4.2 4.15 2.85 3.55 07 055 | 1.3 -0.4 1.45 -1.65 -4.15
wdbc 2.15 0.15 2 -3 -0.65 2.35 0 1.2 1.2 -1.8 3.6 | 3.25 1.45 2.3 -2.15
HeartHun 1 2.05 1.05 0.75 4.45 37 1.6 5.2 36 1.2 | 275 0.3 1.25 5.8 -3.75
GermanCredit 3.35 3.65 0.3 455 5.25 07 |63 5.55 075 |6.95 6.2 0.65 0.1 -8.05 4.4
AustralianCredit 0.6 4.65 4.05 04 |73 77 -1.25 6.15 74 1 1.25 0.5 025 |-1035 |-57
HorseColic 1.15 0.7 -1.85 -0.4 2.05 2.45 -0.15 36 | 3.75 3.95 0.6 15 -1.85 5.1 5.8
Ringnorm 7.7 0.15 -755 4.65 -1.65 |-63 3.9 1.4 5.3 325 |92 0.8 5.15 7.85 8
Peak 78 095 |-875 5.45 -0.6 -6.05 | 64 0.3 6.7 8.05 9.3 0.65 1.9 6.9 5.95
Circle 6.45 -1.5 -7.95 0 0 0 0.4 0.4 0 295 |66 0 3.65 5.2 37
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Table 9: Average rankings of the folds (per dajadeetAUC

Average rankingg Friedman
(AUC) KFrbf | KFrbfcpl | KIRFrbf| KFpol| KFpolcpl| KIRFpo| KFlin | KFlincpl | KIRFlin | KFran | KFrancpl| KFburrj KFboepl | RF | chi2 (13),p <
Heart 6.10 | 7.10 12.00 5.40| 5.90 13.10 830 6.0 Q3§ 7.40 | 6.80 6.20 6.2 1.0] 83.27,.00]]
Hepatitis 490 | 6.80 7.60 8.40| 9.70 9.85 720 79 359. | 7.20 | 6.70 1050 | 65 2.4] 3363,.01
lonosphere 10.45 10.25 3.40 10.30 9.50 3.20 6.959 8. | 3.00 9.90 | 7.65 9.20 10.1 2.2 73.99,.001
Pima 1050 | 5.80 7.70 8.80| 5.70 7.90 1040 63 8.00 10.30 | 6.80 9.50 6.0 1.3 45.79, .001]
Credit 6.80 | 5.60 12.00 8.20| 4.40 13.60 590 54 403.| 760 | 6.70 7.20 7.2 1.0| 89.44, .001]
Sonar 6.70 | 6.20 3.70 755 875 12.40 830 7.5 12.400.30 | 7.70 6.70 6.5 1.3| 63.09,.001
wdbc 7.35 | 4.30 6.70 720 7.75 10.60 700 7.8 9.45 0.15. | 8.70 6.60 7.4 40| 26.49,0.05
HeartHun 590 | 6.00 10.40 5.80] 7.20 12.90 860 6.9 | 250 | 6.70 | 6.80 8.10 6.1 1.1] 66.48, .00L
GermanCredit 570 | 7.80 11.80 770  6.20 13.24 690.1 7 | 1320 | 520 | 7.00 6.30 5.9 1.0  80.48,.001
AustralianCredit | 6.80 | 6.50 12.20 6.50| 6.80 13.30 307.] 7.6 1350 | 6.10 | 5.30 5.30 6.8 1.0  85.22,.001
HorseColic 550 | 8.60 7.90 6.90 9.00 11.30 585 7.1 | 1200 | 830 | 550 7.85 8.2 1.0/  53.19, .00]
Ringnorm 9.00 | 1.80 2.10 11.70  8.20 5.90 1180 7.8 | 505 | 9.60 | 7.60 1040 | 21 115 94.38,.001
Peak 10.40| 2.55 1.75 12.7p  7.30 5.80 1320 6.9 5.70 11.80 | 3.80 11.90 | 23 8.9 121.52,.001
Circle 490 | 1.90 1.50 8.80| 13.30 11.30 920 126 | .1a1 | 750 | 8.40 5.10 2.7 6.7| 112,.001
Table 10: Selected differences of the average ngskof the folds (per dataset) for AUC

g8 3 o |oa . a . o= |L . . o 2 N o
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s 3 z 2 /B 8L 5L 58 3L 3L 3|5 £ £ L g s &3 3| 3| 3|, L | =B
$ 5 5 8l L g K ¥k R YT EREEREER EEEREEE R LR SRS
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Heart -1 4.9 5.9 -0.5 7.2 7.7 2.3 7.5 5.2 0.6 0 1.2 0.6 -11 -6.1
Hepatitis -1.9 0.8 2.7 -1.3 0.15 1.45 -0.7 1.45 52.1 | 0.5 4 -3.3 0.2 -5.2 -4.4
lonosphere 0.2 -6.85 -7.05 0.8 -6.3 -7.1 -1.95 -5.9 -3.95 2.25 -0.9 0.7 -2.45 | -1.2 -8.05
Pima 4.7 1.9 -2.8 3.1 2.2 -0.9 4.1 1.7 -2.4 3.5 35|08 0.8 -6.4 -4.5
Credit 1.2 6.4 5.2 3.8 9.2 54 0.5 8 7.5 0.9 0 0.4 -0.5 -11 -4.6
Sonar 0.5 -2.5 -3 -1.2 3.65 4.85 0.8 4.9 4.1 1.6 2 0. 2.6 1.2 -2.4 -4.9
wdbc 3.05 2.4 -0.65 -0.55 2.85 3.4 -0.8 1.65 245| 451 -0.8 3.55 13 -2.7 -0.3
HeartHun -0.1 4.4 4.5 -1.4 5.7 71 1.7 5.6 3.9 -0.1 2 -1.4 0.7 -9.3 -4.9
GermanCredit 2.1 4 6.1 15 7 55 -0.2 6.1 6.3 -1.8 0.4 -1.1 11 -10.8 -6.8
AustralianCredit 0.3 5.7 54 -0.3 6.5 6.8 -0.3 5.9 6.2 0.8 -1.5 0.8 -1.5 -11.2 -5.5
HorseColic -3.1 -0.7 2.4 2.1 2.3 4.4 -1.25 4.9 56.1 | 2.8 -0.35 0.45 -2.7 -6.9 -7.6
Ringnorm 7.2 0.3 -6.9 3.5 -2.3 -5.8 4 -2.3 -6.3 2 8.3 -0.8 55 9.4 9.7
Peak 7.85 -0.8 -8.65 54 -1.5 -6.9 6.3 -1.2 -7.5 8 9.6 -0.1 15 7.15 6.35
Circle 3 -0.4 -3.4 -4.5 -2 2.5 -3.4 -1.5 1.9 -0.9 42 2.4 5.7 5.2 4.8

19




The performance of two classifiers differs sigrafitly if their average ranks differ (see Table
8 and 10) by at least the critical difference &8 (which is the critical difference for a p-
value of 0.05, 14 classifiers and 10 folds) (seenBar 2006 for the formula). The significant
differences in Table 8 and Table 10 are put in bold

Comparing (1) KFrbf and KFrbfcpl, (2) KFpol and Kitgpl, (3) KFlin and KFlincpl, (4)
KFran in KFrancpl, and (5) KFburn and KFburncpbath Table 3 and Table 5 we observe
that increasing the number of column partitionssush introducing more diversity, does not
have a consistent effect across the datasets.Beenso, on the datasets that we created with
a Gaussian distribution (the bottom three dataselsble 3), setting the number of column
partitions to 1 has a beneficial effect for the &R®iith a radial basis function (KFrbfcpl,
KFrancpl, KFburncpl). Most of these benefits ase algnificant (see column KFrbf-
KFrbfcpl, KFran-KFrancpl, KFburn-KFburncpl in TaBland Table 10). Note that method
ran will have a probability of one third to select RBEr partition and methdaurn will

select the best performing kernel function on thst partition and use that kernel for all
partitions. In this case, for the last three ddssewas always the radial basis function that
has been selected by KFburn(cpl). In Table 3, tamreery low PCC’s for KFpol, KFlin,
KFran, and KFburn for the German Credit dataset.dble 5 the same can be observed for
KFpolcpl and KFlincpl for the Circle dataset. MareoTable 4 and Table 6 also show a
high inter quartile range (IQR) for these algorithan these datasets. These are strong signs
of overfitting and is likely to be caused by thgthdimensionality of th&'’s.

Comparing (1) KFrbfcpl and KIRFrbf, (2) KFpolcpldakiRFpol, and (3) KFlincpl and
KIRFIlin shows that KF performs similarly or considbly higher, and rarely considerably
lower. For example, in Table 3 and 5 on the Craxd Australian Credit datasets KF
performs around .10 PCC and .10 AUC better thanRKTRhis conclusion is confirmed when
looking at the columns KIRFrbf-KFrbfcpl, KIRFpol-KBlcpl, KIRFlin-KFlincpl in Table 8
and Table 10. In Table 8 (PCC), all 4 significaiftedences are in favor of KF. In Table 10
(AUC), out of 9 significant differences, 7 are avbr of KF.

KF with methodran andburn are both designed to choose the kernel for the Hi&sce a
direct comparison is in order. Interestingly, fromble 3 and Table 5 we see that KFran(cpl)
and KFburn(cpl) are very competitive. Hence, ndrte@differences are significant in Table
8 and 10 (see columns KFran-KFburn and KFrancpleikidpl).

Finally, a comparison of RF with KF and KIRF fuldilour expectations in that RF is superior
to the other two when the wrong kernel is seleabe@d, kernel is selected when none is
needed. In contrast, when the right kernel is knGavrdetermined in advance by cross-
validation), KIRF and KF do perform considerablytbe (see columns KFrbfcpl, KIRFrbf.
KFrancpl, KFburncpl, RF for the last three dataset@ble 3 and 5). On the 3 relevant
datasets KIRFrbf and KFrbfcpl perform better th&n(&gnificantly in most cases) (see
columns RF-KIRFrbf and RF-KFrbfcpl in Table 8 arfy).1

5 Conclusions

In this study we propose an ensemble method forekenachines. The training data is
randomly split into a number of mutually excluspatitions defined by a row and column
parameter. Each partition forms an input spacestrdnsformed by a kernel function into a
kernel matrixk. Subsequently, eadfis used as training data for a base binary classifi
(Random Forest). This results in a number of ptexis equal to the number of partitions. A
weighted average combines the predictions intofioia prediction. To optimize the weights,
a genetic algorithm is used.
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This approach has the advantage of simultaneousiyiqgting (1) diversity, (2) accuracy, and
(3) computational speed. (1) Diversity is fostebedause the individu&l's are based on a
subset of features and observations, (2) accusasgught by optimizing the weights with the
genetic algorithm, and (3) computational speedtsioed because the computation of éach
can be parallelized.

Using five times two-fold cross validation we benrk the classification performance of
Kernel Factory against Random Forest and Kernakdad Random Forest (KIRF). Our
findings are fourfold.

First, the number of column partitions matters. Wpartitioning the columns is primarily a
way of introducing diversity in the ensemble, warid that one partition works better than
many. We recommend using one partition and creatioge in case of numerical problems
when computing th&’s (which is often the case in datasets with maagures).

Second, Kernel Factory is significantly better tikarnel-Induced Random Forest (KIRF) on
several datasets (and performs rarely significamtyse than KIRF). Along with the superior
speed of Kernel Factory on large datasets, we rewond it over KIRF.

Third, the two methods (random and burn-in) thabeuatically select the kernel function
perform equally well and using them is a viablat&ggy when the right kernel function is
unknown in advance.

Fourth and final, when using a kernel is appropriahd the right kernel is specified, both
Kernel Factory and Kernel-Induced Random Foregterftirm Random Forest significantly.
The main practical implication of this study istipaoblems involving large datasets, that
otherwise would be impossible to analyze using KI&th now be analyzed using Kernel
Factory. Hence, Kernel Factory opens a doorwagdceases in classification performance by
kernel functions.

We have made available an open-source R-softwaieaga of the algorithm (kernelFactory)
at CRAN (Ballings & Van den Poel 2012).

6 Future Research and Limitations

We have six avenues for future research, whicheasame time can be considered the
limitations of this study.

The first avenue is to try other base classifigrshis study we use Random Forest as a base
classifier because it is good at handling a largalver of predictors, and because we wanted
to make a direct comparison with KIRF. Other opgiovould be logistic regression with
variable selection techniques, or Support Vectochtzes. Random Mulitnomial Logit
(Prinzie & Van den Poel 2008) is an example of mseenble method that might benefit from
kernels.

The second direction for future research is toatker kernel functions (e.g., Ustiin, Melssen,
& Buydens 2006). Particularly interesting developitseare kernels for categorical data (see
Li & Racine 2007). As in KIRF, we exclude the caiggal variables when computing the
kernel matrix and add them afterwards. It mightvyerealuable to use kernel functions that
can handle categorical data.

While parameter values of Kernel Factory are iregplyy practical reasons (computational
speed), a third direction is to optimize these peters. More specifically, there is quite a
large body of research investigating what the ogkivalues are for selection, mutation, and
crossover in genetic algorithms (e.g, DeJong & &p#890). It may prove valuable to
integrate this research and investigate whetragypties to weight optimization for classifier
ensembles. Moreover, while in this study we deteenthe number of partitions by taking the
log of the number of rows and columns, these patensi&vill probably benefit from
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optimization too. Although we compare differenttsgs (two values for number of column
partitions), future research should study this momepth.

A fourth avenue is to investigate larger datasete. true value of Kernel Factory over KIRF
lies in large data. Hence, future research shakid & special interest in data with a high
number of observations and predictors.

The fifth direction for future research is ensenyirlening. Currently all ensemble members
are used and weighted in the prediction phaserderdo make Kernel Factory less memory
demanding and less computationally expensive mesnhign weight close to zero could be
excluded from the scoring phase. Zhou, Wu & Tar@2) demonstrate that this principle
works quite well.

The sixth and final direction is to further explahe mechanism of Kernel Factory with a
bias-variance decomposition of the classificatioorge.g., Zhou, Wu & Tang 2002). This
will provide insight to which factors Kernel Facgaswes its strengths.
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