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Abstract

To build a successful customer churn prediction ehod classification algorithm should be chosert thHills
two requirements: strong classification performaand a high level of model interpretability. In eat literature,
ensemble classifiers have demonstrated superidorpgance in a multitude of applications and dataing
contests. However, due to an increased complexdy tesult in models that are often difficult toeirpret. In this
study, GAMensPlus, an ensemble classifier based @mmeralized additive models (GAMs), in which both
performance and interpretability are reconciledpiesented and evaluated in a context of churnigied
modeling. The recently proposed GAMens, based upagging, the Random Subspace Method and semi-
parametric GAMs as constituent classifiers, is eaéel to include two instruments for model intergbdity:
generalized feature importance scores, and boptstrafidence bands for smoothing splines. In aregrgental
comparison on data sets of six real-life churn jotexh projects, the competitive performance of greposed
algorithm over a set of well-known benchmark alforis is demonstrated in terms of four evaluatioririce
Further, the ability of the technique to delivetuable insight into the drivers of customer chugrillustrated in a
case study on data from a European bank. Firstly, shown how the generalized feature importagoees allow
the analyst to identify the importances of churadictors in function of the criterion that is usedmeasure the
quality of the model predictions. Secondly, thdigbof GAMensPlus to identify nonlinear relationgh between

predictors and churn probabilities is demonstrated.

Keywords: Database marketing, customer churn predictioeemble classification, generalized additive models

(GAMs), GAMens, model interpretability



1. Introduction

Many companies are currently operating in an emvirent of intensified competition, shortening pradlife
cycles and decreasing customer brand loyalty (C&eilhingham, Aksoy, & Hsu, 2007). In an efforttighten the
relationship that exists with a customer, many camigs increasingly turn to the concepts of Customer
Relationship Management (CRM) (Reinartz & Kumar020Winer, 2001) and, more specifically, database
marketing (Blattberg, Kim, & Neslin, 2008). Whileoth concepts aim at enhancing the relationship &etwa
company and its customers, database marketing flgrmphasizes the importance of customer datah sisc
demographical and psycho-graphical information,chase history and survey responses, to allow foremo
effectively targeted marketing actions (Blattbergal., 2008).

An important discipline within database marketirgg dustomer retention management, or the preverdfon
customer churn, defined as the propensity of custeno end the relationship with the company, anslitch to
the competition. Several authors report the clade between customer retention and firm profitapi{Gupta,
Lehmann, & Stuart, 2004; Lariviere & Van den P@&05). Moreover, it is generally accepted that gmging
relationships with existing customers generatesghen return on investment than attracting new amusts
(Mozer, Wolniewicz, Grimes, Johnson, & KaushansR900; Rust & Zahorik, 1993). A well-documented
approach to improve customer retention is the m@aatf customer churn prediction, in which a clésation
model is built to identify those customers that m@st likely to demonstrate churning behavior (Xig,Ngai, &
Ying, 2009).

Technically, customer churn prediction involvesaninclassification, which intends to generalize itblationship
between churning behavior on the one hand, andn#tion describing the customer on the other haradrmodel

that can be used for prediction purposes (Xie).e2809). Consider the following notatioil. is a training data

set with information om customers; T :{(xl, yl),...,(xn,yn)} . Each customer vectoris an element ofX |,
being a set ob predictive featuresX :{Xl,...,XD} andY denotes a binary churn behavior outcome. Training

samples(x;, y;) are a combination of an input vect® and a class membership with y, {01} , where

classl identifies churning behavior. A standard clasatificn model is a functiothat maps a given instangeo
one of both classes i . However, in this study, confidences in class mersiips (i.e., churn probabilities) are
considered rather than exact classifications. €hables companies to produce a ranking of custobassd on

their proneness to churn, and to focus retentimategiies on a certain proportion of ‘riskiest’ @mers. Hence,



the desired output of a classifiér is the conditional class membership probabR{Y =ZI|X). A classifierF

then becomes a functiok : X — F(Y|X) that maps an instanced X [ RP to a confidence estimation that

belongs to class.

Strong classification performance is generally peted as a vital element of a customer churn ptiedienodel.

While Neslin et al. (Neslin, Gupta, Kamakura, LuMason, 2006) indicate that several steps withinrtfodeling
process determine the success of a churn prediptmect, they emphasize that the estimation tephni has a
considerable impact upon the return of investmémeintion actions. Consequently, a large boditefature is

devoted to the evaluation of different modelinght@ques for the prediction of customer churn. Téghes that
have been suggested in literature include staistézhniques (e.g., logistic regression (Smithllisyi& Brooks,

2000), generalized additive models (GAMs) (Coussegenoit, & Van den Poel, 2010), survival anady@fan

den Poel & Lariviére, 2004)) and classifiers oraing from data mining literature (e.g., neurawmks (Mozer,

et al., 2000), support vector machines (Cousse®exian den Poel, 2008a) and decision trees (Smithal.e

2000)).

In recent literature on churn prediction, speaitiest has been devoted to ensemble classificdtemmens &
Croux, 2006). An ensemble classifier, or multiplassifier system (MCS), combindd classifiers into one

aggregated moddE :{Fl, Fy,Fs,.o.Fy } and produces predictions as combinations of theutsiof its ensemble

members using a certain fusion rule. Ensemble ifilxsshave been shown to demonstrate superioopagnce
over uncombined models in several domains, suclimage classification (Giacinto & Roli, 2001), cance
classification (Dettling, 2004), gene selectiongBlUriate & de Andres, 2006), face recognition {XTan, Chen,
Zhou, & Zhang, 2005) and credit scoring (Paleoldglisseeff, & Antonini, 2010). It is generally a@ted that
ensemble classifiers are effective only if the ¢tibmsnt ensemble members exhibit strong classiioat
performance and if they are diverse, i.e. if thera level of disagreement on some proportion effedictions to
be made (Giacinto & Roli, 2001). Moreover, a trdflexists between both elements, indicated as toeracy-
diversity dilemma (Chandra, Chen, & Yao, 2006).

Several ensemble classifier algorithms have beepgsed, each aiming at an injection of diversitiween the
ensemble members while maintaining member and bwaasification performance. A possible classifion of
ensemble methods involves member classifier algorichoice, and member training organization. Is #iudy,
non-hybrid ensemble classifiers (i.e., all ensenthiambers belong to the same algorithm family) vagallel
member training are considered. One of the eaiesémble methods within this category, proposeBreyman

(Breiman, 1996), is Bagging, an acronym for Boeistraggregation. In Bagging, each member classifier



F;1 =1...,M in the ensembleE is trained on a bootstrap sample of the trainiatadi.e., a random sample

taken with replacement and with a size that is etpahat of the training data set. Aggregate preans are
obtained by means of majority voting, where thalfficlassification is equal to the most frequentigdicted class
among the ensemble members (Kuncheva, 2004). Baggipecially enhances performance if its baseifitxss
are unstable (i.e., small variations in trainingad@sult in a significantly different classifiedecreasing variance.
Two well-known related methods are the Random SatespgMethod and Random Forests. In the Random
Subspace Method (RSM; (Ho, 1998)), also known dsbite Bagging (Bryll, Gutierrez-Osuna, & Quek,03),

R features are randomly sampled (without replaceniestad of instances for the training of ensemimnbers.
Successfully applied ensemble classifiers in custoahurn prediction include Bagging (Lemmens & Grou
2006), Stochastic Gradient Boosting (Burez & Van &®el, 2009), Random Forests (Lariviere & Van Beel,
2005), Rotation Forests (De Bock & Van den Poel,13@&nd AdaCost (Glady, Baesens, & Croux, 2009).

In several domains, such as medical diagnosticsC(Klan, Yu, Heng, & Lee, 2003) or credit scoriidaftens,
Baesens, Van Gestel, & Vanthienen, 2007; SetioreesBns, & Mues, 2009), model comprehensibility is
extremely important. Also in database marketingrditure is model interpretability advocated by saivauthors

as an additional requirement for successful chuediption models (Qi, et al., 2009; Shaw, Subram@amiTan, &
Welge, 2001). Interpretable, intuitive models epabiarketing decision makers to gain insight intstemer
behavior and identify factors with an impact upaistomer loyalty and churning behavior (Masand, &ditani,

& Li, 1999). Techniques that have been suggestedetiver interpretable models include logistic eggion
(Buckinx & Van den Poel, 2005; Kim & Yoon, 2004)edision trees (Kim & Yoon, 2004) and, more recently
generalized additive models (Coussement, et allQR0Unfortunately, as Neslin et al. (Neslin, et &006)
suggest, explanation and prediction are two distfnoctions of churn prediction models that candhatbe
reconciled. Moreover, classification performancé¢himi this category of models has been found tonfferior to
more strongly performing techniques, such as enkeoissifiers.

In this paper, an ensemble classifier is preseited reconciles interpretability with strong cldissition
performance. Based on a recently proposed ensestadsifier (De Bock, Coussement, & Van den Poel,0)
based on Bagging and RSM, and implementing gezerhliadditive models (GAMs) as base classifiers,
GAMensPlus is presented. This technique extends éabkd ensemble classifiers with two instrumengs th
allow model interpretation: (i) generalized featumportance scores, and (ii) bootstrap smoothintinsp

confidence intervals.



The remainder of this paper is structured as fdlo®ection 2. reviews generalized additive models$ the
GAMens classifier. Section 3. then presents GAMarsRSection 4. is devoted to an experimental caisgia of
classification performance of GAMensPlus to a d@&acof benchmark techniques. This section contains
subsections on the experimental setup, evaluatitaria, and experimental results. In Section Bteripretability
of GAMensPlus is assessed in a specific churn ptiedi context. Finally, conclusions are made amdations for

future research are suggested.

2. Related literature

2.1. Generalized additive models

The ensemble classifier proposed in this studyaset upon generalized additive models (GAMs) (DekBet
al., 2010a). Generalized additive models have lseenessfully applied in several domains as a flexichnique
for nonparametric regression (Berg, 2007; Coussér&e¥an den Poel, 2008b; Lado, Cadarso-Suarez, Roca
Pardinas, & Tahoces, 2006). GAMs extend the framkw® generalized linear models (GLMs; (McCullagh &
Nelder, 1989)) which comprises a broad range omatric regression models, characterized by (Bsponse
variable belonging to any distribution within thepenential family (the random component), (ii) xefil function
that represents any functional relationship betwiencombined linear effect of the predictors amel éxpected
value of the outcome (the link function) and (i) the assumption of a combined linear effect efakplanatory
features (the systematic component) (Lado, et2806). In the context of customer churn prediciiovolving
binary classification, a GLM would take the form a@flogistic regression, in which the response Wi is
described by a binomial distribution, and the lagibnk function is applied:

logit(P(Y =1X)) = .og{%} =3 B, )

In generalized additive models, proposed by Hasii Tibshirani (Hastie & Tibshirani, 1986), thelignce of an
explanatory feature is no longer subject to angdmor other parametric specification, but instéadsing an

p
arbitrary nonparametric function. GAMs replace thmear combination Zﬁkxk by the additive
k=1

p

formz f. (X)), where each partial functiori, is a unspecified smooth function. In order to acwdate a
k=1

binary response variable and the inclusion of aaiegl variables, the GAM specification that is smered in this

study is a logistic, semi-parametric additive model



. P(Y =1 X Pe Py
logit(P(Y :]IX)) = Iog{#ﬂ]&)} = Zsj (X;)+ Z,kak 2)
= =1 k=1

where featureé(j v =1...,p, are continuous variablesX, =1...,p, are dummy-coded components of
categorical variables and the smooth functi®péX;), S, (X5),...S, (X, ) are smoothing splines that estimate

the nonparametric trend for the dependence ofdgié bn X;, XZ,..XpC. We kindly refer the reader to (Hastie

& Tibshirani, 1990) for more details on GAMs andaathing splines.

2.2. GAM-based ensemble classification

In (De Bock, et al., 2010a), ensemble classificatiased on generalized additive models is preseGaiens is
an algorithm based on Bagging, the Random Subspéethod (RSM), and adopts GAMs as constituent
classifiers. The technique is based upon a logig@ni-parametric additive model specification as(2).
Ensemble predictions are obtained using mean catibim takes the average of the posterior class beeship

probabilities output by the individual ensemble rbens:
1< 1<
EX=—rY F09=—-> R(Y=1x (3)
I=1 1=1

A limited number of parameters is required to bected for GAMens. First, thtM parameter designates the
number of desired GAM base classifiers to be inetlth the ensemble classifier. Second, the desivetber of
variables to be selected as random feature subsmoequiredR parameter). Finally, specification of the number

of degrees of freedom to be used in the smoothpligesestimation is required¢ parameter).

3. GAMensPlus

Based on GAMensGAMensPlusis presented as a modeling technique for custochern prediction that
combines strong classification performance with eloidterpretability. The pseudo code of GAMensPisis
presented in Figure 1. and Figure 2. GAMensPlusbioes the training and prediction phases of GAMggure
1.) with an explanation phase (Figure 2.), in whigb heuristics are introduced to allow model iptetation and
enable marketing decision makers to better undeisthe influence and relative importance of desiwep
features: generalized feature importance scores,baotstrap confidence intervals for smoothing regsli Both

concepts are explained in this section.



[INSERT FIGURE 1. HERE ]

[INSERT FIGURE 2. HERE]

3.1. Generalized feature importance scores

As a first interpretability heuristic in GAMensPJugeneralized feature importance scores are intedlu
Generalized feature importance scores are basadthpaconcept of variable importance measurestesdiuced
by Breiman as a by-product of Random Forests (Bagin2001). While different types of variable im@ornte
measures have been proposed, here permutationaagcimportances are considered, which are repdrted
(Strobl, Boulesteix, Zeileis, & Hothorn, 2007) a®shadvanced and reliable importance measure biaila
Random Forests.

Permutation accuracy importance scores are cagtllaging out-of-bag data. As every member Egg=1,...,.M
within a Random Forest is trained using a bootss@pple, approximately one-third of the trainingtémces are
not selected to build that respective tree. Thesences are called the out-of-bag (oob) instafweseeF;. and
can be used to reliably estimate variable impogan®ermutation accuracy importance scores fourext, are
then obtained by calculating, for every member #gehe average difference in accuracy for tFeebefore and
after permuting the values of variablg in the out-of bag data, and averaging the resudr @ll treesF;.,
i=1,...,M.

In customer churn prediction, the performance ofaasifier is evaluated differently according te gpecifics of
the business setting and marketing objectivestehtmn-increasing efforts. Depending on the siamtdifferent
performance metrics are relevant for the evaluatiba churn prediction model, such as accuracy, AJdft.
Consequently, the relative importance of predictigatures should be measured differently accordinghe

evaluation criterion that is being optimized. Henaeneralized feature importance scorp.(X,)are
introduced that measure the importance of featdtgthe average decrease in performance evaluatiogriorit

PC.

In (Strobl, et al., 2007), variable importance mgas in Random Forests are found to be biaseduat&ins that
involve data with different scales of measuremamd the number of categories of categorical varablevo
responsible factors are identified: biased variadgéection at node splits in CART decision trees] affects
induced by bootstrap sampling with replacement. géeeralized feature importance scores in GAMerssBia

not affected by these deficiencies for two reaséirsily, GAMensPlus implements GAMs as base cliessithat



do not involve (biased) feature selection. Secandkperiments in (Strobl, et al., 2007) demonstthtd the
inclusion of categorical features only introducéashif they include more than two categories, whiile GAM

specification for GAMensPlus only allows continuausl binary features.

3.2. Bootstrap smoothing spline confidence interval

As second instrument for model interpretation, btvap confidence intervals for smoothing splinesiatroduced
in GAMensPlus. The Bagging component of GAMensHhispducing the use of bootstrap samples of tha da
training data for ensemble members, simultanecaisbyvs for the construction of bootstrap confidentervals
that summarize the nonparametric trends capturédniihe ensemble member GAMs. These allow modelsus
not only to identify the relationship that exisetween a predictive feature and the probabilitgttorn, but also to
evaluate the precision of the identified relatidpsh particular regions within the range of valudsa feature.
Several bootstrap confidence intervals for smoattsplines have been defined (Wang & Wahba, 1996)his
study, bootstrap percentile intervals (Efron, 1982¢ considered. However, more advanced approaeises,

suggested in (Wang & Wahba, 1995), could also bglémented. To identify the 95% bootstrap confidence
interval of the smoothing splines for featutg , at each valuexy ; of X, the empirical distribution 0By (xd i )

the random variable of bootstrapped smoothing eplimas to be identified. A bootstrap confidencerirl is then
constructed by points at the .8nd 97.8 percentile of this empirical distribution. Repeatihis process for each

unique value of X, then results in the 95% confidence band of thepacametric regression line (Efron &

Tibshirani, 1993). A similar approach is appliedtztain bootstrap confidence intervals for regassioefficients

of the dummy features.

4. Experimental comparison

This section is devoted to a comparison of classion performance of GAMensPlus versus a seleatibn
benchmark algorithms in the context of customerrichprediction modeling. Subsequent subsectionsudssc

evaluation criteria, experimental setup and results

4 .1. Evaluation criteria

To evaluate the classification performance of GABRIos and the selection benchmark classifiers, four

evaluation criteria are considered: (i) accuracg &) AUC, which are both often used to assess emtipare



generic classification quality, and (iii) top-dexilift and (iv) lift index reflect which are partitarly suited to
evaluate models for customer targeting.

Accuracy, or the percentage of correctly classifiextances, is the first evaluation criterion. VEhivell-accepted
to evaluate classifier models, and intuitive, aacyris considered an inappropriate metric for chuodeling, for
a number of reasons: (i) it does not take into aotpredicted class membership probabilities bsteiad assumes
a threshold to obtain classifications from probiéib8, and (ii) it is unreliable in a situation ofass imbalance
(Lemmens & Croux, 2006).

The second evaluation criterion is Area Under tleedier Operating Characteristics curve (AUC or AR
which is often used in churn prediction literat(@ussement & Van den Poel, 2008b; Lemmens & Cr2086).
Several authors like Provost et al. (2000) or LapgP000) advocate AUC as an objective performamiterion,
well-suited for the comparison of classifier perfiance. Unlike accuracy, it evaluates the ability alassifier to
distinguish between the two classes based on tbdighed class membership probabilities, and isefoee
suitable for imbalanced classification problemshsas customer churn prediction.

Lift focuses on the segment of customers with thgghést risk to the company, i.e. customers with higghest
probability to churn. Two alternative variationslidf are considered: top-decile lift and lift incleSuppose that a
company is interested in the top 10% of most likefyirners, based on predicted churn probabilifiée top
decile lift then equals the ratio of the proportiof churners in the top decile of ordered postedburn

probabilities, 77,5, , to the churn rate in the total customer popuhat® (Lemmens & Croux, 2006):

Top- decile lift = ”1—;’ 4)

A fourth and final evaluation metric is lift indefCrone, Lessmann, & Stahlbock, 2006; Ling & Li, 8%9

Supposesis a ranked list of customers based on their cpuobability. Lift index is then calculated as

(LOCS, + 09T, + 08[S, +...+ 015, 5)
10
S
2

where§ is the number of churning customers in tthedecile ofS. The lift index takes a value between 0.5 and 1,

Lift index=

10
where a value of 0.5 indicates random identifigatid customers as churners, and a valug with S, = ZSl
i=1

if the churn rate is smaller than 10%.

10



4.2. Data

Experiments are conducted on data sets from siklifeachurn prediction projects originating fronarbe
European companies. Table 1. summarizes chardiierd the data sets. For reasons of confidethtiadompany

names are not disclosed.

[INSERT TABLE 1. HERE ]

These data sets have a number of common featurss.they all (with the exception of the first daget) exhibit
rather large dimensionalities, both in terms of bemof instances and the number of descriptivaufeat Second,
they are characterized by considerable class imbaJamost notably the data sets originating frofpaak, a
European telecommunications operator and a maérogdrments company. Predictive features among thiat
sets capture information on customer demographisfyrical transactional data and financial infotima. In all

of these data sets, churn is defined as the absdratdeast one product purchase or renewal wighiertain time
period. The data sets Bank and Telecom correspmdcontractual setting where partial churn is mess i.e.
defection in at least one product category. The Bljgplies, Supermarket chain | and II, and maikorgarments
data sets correspond to non-contractual settingsemotal churn is measured in a certain time plerio

To deal with class imbalance, which is known tadtisclassifier performance for classification aigfams that
are not particularly designed to deal with thistpeon, undersampling is applied, as suggested byss\&004)
and applied to customer churn prediction by Buned ¥an den Poel (2009). Undersampling involves oamg

removing instances from the majority class fromttlaéing data until both classes are balanced.

4.3. Experimental setup

To evaluate the predictive performance of GAMensPan experimental comparison is made with a select
benchmark algorithms. Classification performanceGéfMensPlus is compared to five benchmark algorghm
three ensemble classifiers (Bagging, Random Suks@athod (RSM) and Random Forests) and two uncosabin
classifiers (logistic regression and generalizeditage models). As outlined earlier, classificatiparformance is
evaluated in terms of four performance metricsusaacy, AUC, top-decile lift and lift index.

GAMensPlus is implemented in R (R Development Cbeam, 2009) based upon the GAMens package (De
Bock, Coussement, & Van den Poel, 2010b). Baggimtj Random Forest results are obtained using thkagda

(Alfaro, Gamez, & Garcia, 2006) and randomForesalL & Wiener, 2002) packages in R. All remaining

11



algorithms are programmed in R. Ensemble sizesAiflénsPlus, Bagging, RSM and Random Forest areoset t
100 constituent members per ensemble. All enserlassifiers except GAMensPlus are combinations of
unpruned CART base classifiers.

Algorithm parameters settings are based on defaulecommended values. First, the size of randosmtufe
subsets in Random Forests are set equal to theestpat of the number of features in the respeadtia set, as
suggested in (2001). This setting is also usedR®¥, and for GAMensPlus, as recommended in (De Bethl.,
2010a). Second, thBF parameter in GAMensPlus, denoting the number gfeks of freedom for smoothing
spline estimation is fixed to four, as suggeste{Da Bock, et al., 2010a) based on examples pravieHastie
and Tibshirani (Hastie & Tibshirani, 1990). Expeeintal results are all based following five timeotold cross-
validation (5 x 2cv). This involves five replicatis of a twofold cross-validation. In each replioatiinstances in
the data set are randomly assigned to two parésjoél size. Moreover, stratified random samplinggplied in
order to maintain the original class distributio@e part is once used as training data for a ifilrsand the
performance is calculated for the other part, gctia a test set. This process is then repeatetthéng the roles

of the two data set parts. The same splits are feseall classifier algorithms. Note that the urglmnpling of the
training data sets is applied after the divisionthe data for the cross-validation. In order td fes significant
differences among classifiers’ performances, thiiobd results are analyzed as suggested by Dei2386),
using a nonparametric Friedman test followed bynislprocedure (Holm, 1979) to make post-hoc paiewis

comparisons between GAMensPlus and the benchmgokitaims.

4.4. Experimental results

This section presents the results of the experiaiesdmparison of GAMensPlus to a selection of bemetk

algorithms, for data sets from six real-life custwrochurn prediction projects. Tables 2., 3., 4. &nckport result
averages and standard deviations of results inst&fhaccuracy, AUC, top-decile lift and lift inde&spectively
based on runs from a five times twofold cross-\aiih (5x2cv). The best and second best resultsigtar set are

indicated in bold and italic fonts, respectively.

[INSERT TABLE 2. HERE]
[INSERT TABLE 3. HERE]
[INSERT TABLE 4. HERE]

[INSERT TABLE 5. HERE]

12



[INSERT TABLE 6. HERE]

Table 6. provides a summary of the results of thedfman tests for the four evaluation metrics amditis post-
hoc tests for comparisons between GAMensPlus amjiBg, RSM, and Random Forest as ensemble classifie
benchmarks and GAM and logistic regression as ubdawed, interpretable classifier benchmark algorghm
Entries in Table 6 denote average rankings of éspective algorithms over all 6 considered dataseisevery
performance metric, the lowest average rank, recelyy the best performing algorithm, is indicatedbbld.
Ranks that differ significantly at significance &s of 90% and 95% percent are indicated by ortgvorasterisk

symbols, respectively.

Overall, these average rankings and post-hoc ¢estfirm the highly competitive performance of GAM&HuUs. In

detail, the following observations can be derivienhf these results.

First, it is clear that building an ensemble of GalM an effective strategy to increase the predigierformance
of an uncombined generalized additive model. GANRds significantly outperforms GAM for all four

performance evaluation metrics.

Second, a comparison of GAMensPlus to other, wstliidished, ensemble classifiers reveals that GARRIS is
superior for the most relevant performance metr@@AMensPlus consistently outperforms Bagging andRS
The strongest competition is delivered by Randomests. This confirms findings in previous experitsethat
revealed the strong predictive performance of Ramndeorests in the context of customer churn preaficti
(Coussement & Van den Poel, 2008b; Lariviere & \d@m Poel, 2005). GAMensPlus significantly outperfer

Random Forests in terms of AUC, top-decile lift diftdindex at the 90% significance level.

Third, the results indicate the good performancéogfstic regression, which obtains the second ééglaverage
rankings for AUC and the two lift measures. Logistegression consistently outperforms the threecloeark
ensemble algorithms; bagging, RSM and Random For€bese observations confirms previous reseanclntys
(Burez & Van den Poel, 2009), stating that logiséigression, despite its simplicity, performs cotitpely when

compared to more advanced techniques, in the diisgipf customer churn prediction modeling.

13



5. Case Study: churn prediction in a European finanial services company

In this section, the interpretability component ®AMensPlus is demonstrated. To this end, a casdy sii
presented related to customer churn predictioimantial services. This analysis is based uponuancprediction
project for a major European bank that was elakdraarly 2005. The objective of the project invdlbe
creation of a customer churn model to predict phdiurn over a 12-month period, i.e. the closih@ ahecking
account by a customer, regardless of possessiothef accounts or loans at the bank. To this drelcompany
provided data that includes customer informatiothatend of March 2005. This data was used to mmeagwrn
behavior over a one-year period, from March 2004 to March 3%, 2005. All customer information that was
available at March %, 2004 was then considered to create a set of qiieglifeatures. See Table 7. for a
summarization of these features. Note that this dat also featured earlier in the experimental paoieon in
Section 4. All features are calculated using thieremce date of March™12004, while the monetary features are

expressed in euro.

[INSERT TABLE 7. HERE]

Two interpretability instruments are demonstratepEneralized feature importance scores, and boptstra
smoothing spline confidence intervals. Keepingaddjorithm settings is in Section 4., a GAMensPluxdei is
trained and the results of the interpretation ptargepresented. First, feature importance scomesa@msidered.
Table 8. provides the ten most importance feata@ording to a ranking of AUC-based feature impuréa

scores, while Table 9. considers feature importacoees based on top-decile lift.

[INSERT TABLE 8. HERE]

[INSERT TABLE 9. HERE]

Table 8. provides insight into the most importargdictive features for churn behavior assuming thatchurn
prediction model is evaluated in AUC. The list icalies the importance of features related to accsevices
usage, such as the balance of the checking acamuttite total number of credit transactions. Mdsthe features
in the list are RFM variables (Cullinan, 1977) features related to recency (R), frequency (F)randetary value
(M) of product purchase or service usage. Thestufes have been identified as strong predictorsustomer

churn prediction modeling in several studies (Kimv&on, 2004; Lemmens & Croux, 2006). Table 9. shdves

14



top ten of features in terms of feature importaswares based on top-decile lift. A comparison betw€ables 8.
and 9. reveals that many features appear in batkings. However, the order is different, and newatdiees
emerge, such as the number of overdraft days.the.number of days with a negative account balaaicée the
average overdraft amount. This indicates that difie features are identified as most important ey feature
importance scores when the performance of the mestehurn prediction model is measured differently.

Figure 3. provides average trends and 95% confeldrands based on bootstrap confidence intervalsa for
selection of features. The figures also includdolgimms that provide an indication of the data derst a
particular region of a feature. Dark-colored bapgresent frequencies for non-churners, while lgibred bars

represent frequencies for churning customers.

[INSERT FIGURE 3. HERE]

Overall, the plot reveals the ability of GAMensPtossummarize the nonparametric smoothing splieeds of its
member GAMs using the confidence bands based otstoap confidence intervals. The average trendesspits
the overall relationship of a feature to the praligtto churn, while the confidence bands indic#te reliability
of the trend at different regions of the featurega Consider the trend of the length of relatigmstf the
customer, i.e. the number of years that a persanbeen customer. The trend reveals an overall ivegat
relationship between the length of relationship grelprobability to churn. However, in the rangedab 5 years
and 15 to 25 years, the relationship is positiveasarage. At these intervals, broader confidentervals are
observed indicating that there is more variatioroaghthe estimated trends, and that the estimaged tis less
reliable at these intervals. The relationship betweecency, or the number of months since thedhange in
balance amount, is quasi-linearly positive. As expé, the confidence bands become wider as tharéettkes
values in regions with less density. This is albgsayved for the trend of age, and the percentadeaof repaid.
The trend of age is quasi-linearly negative: oldestomers are more loyal. The trend of the pergentd loan
repaid follows a U-shape. Finally, a dummy featisreonsidered, indicating whether the customeetsad. This
type of feature is fit in a linear fashion, as sfied in the GAM specification for GAMensPlus. Exgtedly, the

trend of this feature confirms the trend of age: pihobability to churn decreases if the customeetised.

15



6. Conclusion, limitations and future work

Customer churn prediction is an important discipliwithin database marketing, aiming to identify so
customers that have the highest probability to khue., to cease the relationship with the compang move
their business elsewhere. In this study, GAMensRludassification algorithm that combines strotagsification
performance with a high degree of model interpriitapbis presented for customer churn predictidhe former
factor allows marketing decision makers to effegljvidentify churners, while the latter enablesnthi extract
valuable insights from the model and increase wsidading, and thus, acceptance, of the model tiautgtheir
organization.

GAMensPlus extends GAMens, an ensemble classdiebihary classification using generalized additmedels
(GAMSs) as constituent classifiers and combining telassical ensemble strategies, Bagging and theld¥an
Subspace Method (RSM). While earlier work demonastrahe strong performance of GAMens on a seleaifon
data sets from varying domains, it is in this stwdysidered and evaluated for customer churn piedicThe
extension involves the addition of an interpretatiphase that incorporates two instruments for model
interpretability: (i) generalized feature importanscores, and (ii) bootstrap confidence intervatssinoothing
splines.

Generalized feature importance scores are insgisedhe variable importance measures in Random Eores
However, they are not necessarily calculated adribomions of features to accuracy, but insteaduireqthe
analyst to specify the actual performance metrat th used to measure the performance of the chwadiction
model. Hence, features are properly evaluated dowpto their contribution to the measured quatityhe churn
prediction model.

The Bagging component in GAMensPlus allows the tangson of bootstrap smoothing spline confidence
intervals that summarize the nonparametric tremagigured within the ensemble member GAMs. When tatled
over the entire range of a feature, confidence bamdl average trends can be constructed that altevpretation
of the overall relationship between the feature gedchurn probability, and the reliability of testimated trend
at different regions of the feature range.

The evaluation of GAMensPlus involves two parts: eraluation of classification performance includiag
comparison to other algorithms, and a demonstratfdhe interpretability mechanisms in a case stilgt, in an
experimental comparison of classification performeover data sets from six real-life churn predittprojects,

GAMensPlus is compared to three ensemble classifRagging, RSM and Random Forests) and two indalid
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classifiers (logistic regression, and GAM). Moregvperformance is compared using four evaluatiaterga:
accuracy, AUC, top-decile lift and lift index. Thesults indicate that GAMensPlus obtains strongsifecation
performance that is performing at least as gooith@denchmark algorithms. On average, GAMensPluznked
second in terms of accuracy, and first considefibig, top-decile lift and lift index results.

Further, the interpretability instruments of GAMPhss have been demonstrated in a case study, ingothurn
prediction at a European financial services company

Certain limitations and directions for future resdmato this study can be identified. Firstly, thedy does not take
into account more advanced bootstrap confidenceniats for smoothing splines. Future research cdatd
example consider alternative techniques, as prapasd compared in [46]. Secondly, the current stimlgs not
compare the interpretability techniques to oth@htéques, such as logistic regression, decisioastrer rule

extraction techniques for ensemble methods.
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Minority class

Data set Instances Number of features percentage
Supermarket chain Il 32,371 46 25.15
DIY supplies 3,827 15 28.14
Bank 20,456 137 5.99
Supermarket chain Il 8,453 36 47.38
Telecom 35,550 529 2.76
Mail-order garments 43,305 244 1.76

Table 1.: Data set description

Dataset Algorithm
GAMensPlus Bagging Random Forest RSM r:g(])rgelssgi(c:m GAM
Supermarket chain | 0:7449 (0.0096) 0.7199 (0.0173) 0.7375 (0.0112) 0.7397 (0.0327)4@% (0.0194) 0.7476 (0.0055)
DIY supplies 0.6657 (0.0070) 0.6760 (0.0360) 0.6497 (0.0085)0.6735 (0.0415) 0.6324 (0.0268) 0.6647 (0.0088)
Bank 0.7291 (0.0153) 0.7507 (0.0272) 0.7422 (0.0145)0.7993 (0.0186) 0.7118 (0.0493) 0.6490 (0.0826)
Supermarket chain Il 0.6890 (0.0084) 0.6888 (0.0221) 0.6708 (0.0098).6904 (0.0176) 0.6772 (0.0212) 0.6566 (0.0423)
Telecom 0.6409 (0.0321) 0.6113 (0.0154) 0.6168 (0.0154).6907 (0.0116) 0.6244 (0.0260) 0.5975 (0.0160)

Mail-order garments 0.8182 (0.0092) 0.7527 (0.0429) 0.7662 (0.0122).7960 (0.0398) 0.7805 (0.0075) 0.7646 (0.0067)

Table 2.: Experimental results: accuracy (averageand standard deviations)

Dataset Algorithm
GAMensPlus Bagging Random Forest RSM r:g())rgelssgi(c:m GAM
Supermarket chain | 0.8135 (0.0101) 0.7724 (0.0284) 0.8055 (0.0109) 0.7883 (0.00990&P (0.0127) 0.8174 (0.0124)
DIY supplies 0.7580 (0.0108) 0.7483 (0.0228) 0.7174 (0.0066) 0.7348 (0.0103)567 (0.0118) 0.7532 (0.0090)
Bank 0.7819 (0.0149) 0.7823 (0.0137) 0.8093 (0.0138) 0.7807 (0.0140) 0.7525 (0.0396) 0.6929 (0.0657)
Supermarket chain Il 0.7486 (0.0181) 0.7437 (0.0294) 0.7270 (0.0069) 0.7418 (0.0146) 0.7350 (0.0254j045 (0.0266)
Telecom 0.6349 (0.0144) 0.6168 (0.0210) 0.6273 (0.0166) 0.6130 (0.0213k3@ (0.0122) 0.6238 (0.0104)

Mail-order garments 0.8474 (0.0043) 0.8152 (0.0095) 0.8386 (0.0062) 0.8345 (0.006831 (0.0073) 0.7986 (0.0309)

Table 3.: Experimental results: AUC (averages andtandard deviations)
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Dataset Algorithm

GAMensPlus Bagging Random Forest RSM r(l_;rgt;elssgi(c:)n GAM
Supermarket chain | 2.7313 (0.092) 2.1200 (0.3372) 2.6824 (0.1287) 2.2918 (0.1717J2&2 (0.4268) 2.7812 (0.4570)
DIY supplies 2.2278 (0.0835) 1.9896 (0.1526) 1.9319 (0.1036) 1.9207 (0.1601314B (0.1380) 2.1813 (0.0994)
Bank 4.0209 (0.2104) 3.6890 (0.2984)4.2024 (0.1935) 3.8917 (0.2068) 3.2442 (0.6238) 2.2876 (0.8665)
Supermarket chain Il 1.8261 (0.1341) 1.8310 (0.3412) 1.7476 (0.154) 1.7329 (0.2442) 1.8261 (0.13447181 (0.5412)
Telecom 2.2110 (0.1829) 1.9984 (0.1828) 2.1497 (0.2329) 2.0945 (0.17272)090 (0.0967) 2.1742 (0.1240)

Mail-order garments 5.1380 (0.1816) 4.5796 (0.3359) 5.0070 (0.2003) 4.8521 (0.3303)7G8 (0.1318) 4.5611 (0.6048)

Table 4.: Experimental results: top-decile lift (awrages and standard deviations)

Dataset Algorithm
GAMensPlus Bagging Random Forest RSM r(i,_;gss;ii(c:)n GAM
Supermarket chain | 0.7823 (0.0097) 0.7496 (0.0243) 0.7710 (0.0098) 0.7557 (0.0209j78® (0.0294 0.7851 (0.0532)
DIY supplies 0.7338 (0.0081) 0.7296 (0.0165) 0.7009 (0.0050) 0.7078 (0.01B0J329 (0.0084) 0.7299 (0.0067)
Bank 0.8097 (0.0139) 0.8073 (0.0155)0.8264 (0.0139) 0.7985 (0.0158) 0.7840 (0.0363) 0.7186 (0.0745)
Supermarket chain Il 0.6777 (0.0101) 0.6687 (0.0195) 0.6621 (0.1657.6781 (0.0199) 0.6716 (0.0097) 0.6549 (0.0090)
Telecom 0.6778 (0.0145) 0.6528 (0.0267) 0.6623 (0.0149) 0.6452 (0.028H742 (0.0124) 0.6680 (0.0102)

Mail-order garments 0.8827 (0.0044) 0.8433 (0.0106)0.8700 (0.0076) 0.8624 (0.0096) 0.8672 (0.0079) 0.8404 (0.0253)

Table 5.: Experimental results: lift index (averags and standard deviations)

Algorithm Awerage rank
Accuracy AUC  Top-decile lif Lift index

GAMensPlus 2.33 1.50 1.58 1.50
Bagging 3.83 4.00** 4.33** 4.50**
Random Forest 4.33** 3.5* 3.33* 3.67*
RSM 1.83 4.33** 4.67** 417
Logistic regression 4.00* 3.33 2.92 3.0*
GAM 4.67** 4.33** 417 4.17*

* p<0.10; ** p<0.05

Table 6.: Average algorithm rankings and post-hocadst results (Holm’s procedure)
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Category Feature

Demographical customer information Gender
Age
Language
Marital status
Occupation
General customer information Number of accounts, per account type

Number of debet payment cards
Number of credit cards
Number of debit cards
Overall length of relationship (LOR)
Number of bank accounts
Number of checking accounts
Features related to bank account usagRecency based on change in balance amount
Recency based on last transaction
Length of relationship (LOR)
Current account balance (in €)
Total number of credit transactions
Total number of debit transactions
Total credit movement
Total debet movement
Number of days with credit interest owed
Number of days with debit interest due
Number of overdraft days (balance < 0 €)
Average overdraft amount
Features related to other products Number of loans
Percentage of loan repaid
Total loan amount
Remaining loan amount
Number of mortgage loans
Percentage of mortgage loan paid
Total morgage loan amount
Remaining mortgage loan amount

Table 7.: Selection of features in th®ank dataset

Feature
Rank Feature importance score

1 Checking account balance 0.1276
2 Average amount of credit transactions 0.1177
3 Number of debit transactions 0.1106
4 Recency based on last transaction 0.0963
5 Recency based on change in balance amount 0.0910
6 Total accounts balance 0.0853
7 Total number of credit transactions 0.0721
8 Number of bank accounts 0.0674
9 Number of checking accounts 0.0611
10 Total credit movement 0.0599

Table 8.: Ten most important features with featuremportance scores based on AUC
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Feature

Rank Feature importance score
1 Recency based on change in balance amount 0.3488
2 Number of overdraft days (balance < 0 €) 0.3258
3 Number of days that overdraft interest is due 0.2754
4 Recency based on change in balance amount 0.2613
5 Number of bank accounts 0.2530
6 Number of checking accounts 0.2241
7 Average overdraft amount 0.2188
8 Average amount of debit transactions 0.2146
9 Number of debit transactions 0.2086
10 Checking account balance 0.1815

Table 9.: Ten most important features with featuremportance scores based on top-decile lift
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