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Abstract

The Fisher effect states that inflation expectations should be reflected in nominal interest rates in

a one-for-one manner to compensate for changes in the purchasing power of money. Despite its wide

acceptance in theory, much of the empirical work fails to find favorable evidence. This paper exam-

ines the Fisher effect in a panel of 21 OECD countries over the period 1983-2010. A first generation

panel test finds cointegration between nominal interest rates and inflation. However, a non-stationary

common factor in the error terms of this alleged cointegrating relation is detected using the Panel

Analysis of Non-stationarity in Idiosyncratic and Common Components (PANIC). This implies that

the regression results are spurious. A possible interpretation for the non-stationary common factor

is that it reflects permanent common shifts in the real interest rate induced by e.g. shifts in time

preferences, risk aversion and the steady-state growth rate of technological change. We next control

for an unobserved non-stationary common factor in estimating the Fisher equation using both the

Common Correlated Effects (CCE) and the Continuously Updated (Cup) estimation approach. The

impact of inflation on the nominal interest rate is found to be insignificantly different from 1.

JEL Classification: C23, E31, E43

Keywords: Fisher effect, panel cointegration, cross-sectional dependence, unobserved common fac-

tors

1 Introduction

The Fisher effect states that inflation expectations should be reflected in nominal interest rates in a

one-for-one manner to compensate for changes in the purchasing power of money (Fisher, 1930). This

implies that the ex ante real interest rate, defined as the difference between the nominal interest rate and

expected inflation, is not affected by changes in inflation expectations. While probably not being valid in

∗I thank Koen Inghelbrecht, Lorenzo Pozzi and the participants of the Amsterdam Econometric Seminar (Tinbergen In-
stitute, November 2011), the 5th CSDA International Conference on Computational and Financial Econometrics (University
of London, December 2011) and of the 20th Annual Symposium of the Society for Nonlinear Dynamics and Econometrics
(Istanbul, April 2012) for helpful suggestions and constructive comments. I further acknowledge financial support from the
Interuniversity Attraction Poles Program - Belgian Science Policy, contract no. P5/21.
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the short run, the Fisher effect is expected to hold as a long-run equilibrium concept. Insofar as permanent

changes in expected inflation originate from permanent shocks in the rate of money growth, this is in

accordance with the so-called long-run superneutrality of money. Despite its wide acceptance in theory,

most of the empirical work fails to find convincing evidence in favor of the Fisher effect. As nominal

interest rates and inflation are typically found to be non-stationary, the long-run Fisher effect implies

that these two variables should cointegrate with unit slope coefficient such that the real interest rate is

stationary and therefore not affected by permanent shocks to inflation. A survey of this literature shows

that unit root tests find real interest rates to be non-stationary (see e.g. Rose, 1988; Rapach and Weber,

2004; Lai, 2008) while cointegration analysis either finds no cointegration between nominal interest rates

and inflation (see e.g. MacDonald and Murphy, 1989; Koustas and Serletis, 1999) or when cointegration

is found the estimated slope is significantly less (see e.g. Evans and Lewis, 1995) or significantly greater

than one (see e.g. Crowder and Hoffman, 1996).

A number of theoretical explanations for the empirical failure of the Fisher effect have been put

forward. First, inflation expectations are not observed and are therefore replaced by ex post observed

inflation to calculate ex post real interest rates. Evans and Lewis (1995) argue that the alleged permanent

component in these ex post real interest rates may be due to people incorporating anticipated shifts in

the inflation process into their expectations implying a persistent deviation of observed inflation from

expected inflation over the period these shifts do not materialise. Second, Darby (1975) argues that

the presence of taxes on interest income implies that nominal interest rates have to rise by more than

one-for-one in response to a change in inflation expectations in order to keep the after-tax real interest

rate constant. These tax effects may thus explain why nominal interest rates and inflation cointegrate

with a slope coefficient greater than one. Third, in the seminal papers of Mundell (1963) and Tobin

(1965) higher inflation causes a substitution out of money balances into bonds and real assets, putting

downward pressure on real interest rates. This may explain why nominal interest rates and inflation

cointegrate with a slope coefficient less than one.

A plausible econometric explanation is that the existing empirical evidence on the Fisher effect is

flawed as it is based on a country-by-country analysis often using at most 50 annual observations. Using

such relatively small data sets results in low power of conventional unit root and cointegration tests espe-

cially when there is high persistence under the alternative hypothesis of stationarity. Westerlund (2008)

therefore suggests to test the Fisher effect in a panel of quarterly data covering 20 OECD countries

between 1980 and 2004. Taking into account error cross-sectional dependence when testing for cointe-

gration, he shows that the null hypothesis of no panel cointegration between interest rates and inflation

can be rejected while the hypothesis of a unit slope coefficient on inflation cannot be rejected.

An alternative, but yet unexplored, explanation is that the real factors behind the real interest rate

are not stable over time. Standard neoclassical growth models with household intertemporal utility

maximization imply that the real interest rate is a function of time preference, risk aversion and the

steady-state growth rate of technological change. While time preference and risk aversion are generally

believed to be fairly stable, or at least changing only slowly over extended periods of time, shifts in

steady-state growth, such as the ‘productivity slowdown’ of the early 1970s and the ‘New Economy’
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resurgence of growth in the late 1990s, have been widely documented in the literature (see e.g. Oliner and

Sichel, 2000; Roberts, 2001). Additional determinants of real interest rates suggested in the literature

are demographic changes, changes in the stance of fiscal policy and the evolution of public debt, changes

in the taxation of profits, (de)regulation of financial markets, ... (see e.g. Blanchard and Summers, 1984;

Chadha and Dimsdale, 1999; Ardagna, 2009). Permanent shifts in any of these factors induce a unit

root in the real interest rate and by extension in the residuals of a regression of the nominal interest

rate on inflation. However, this does not automatically invalidate the Fisher hypothesis of a one-for-

one relation between nominal interest rates and inflation. Basically, the sources of the non-stationary

behaviour of real interest rates are omitted non-stationary variables that should be added to a regression

of nominal interest rates on inflation for this to be a cointegrating relation. Note that this argument not

only explains the failure to find cointegration but also the large variety of estimated slope coefficients

over empirical studies that do find cointegration as Everaert (2011) shows that omitting relevant non-

stationary variables yields spurious estimation results with standard cointegration tests indicating these

results to be a cointegration regression in far too many cases.

Ideally, the non-stationary determinants of real interest rates should be included in a regression of

nominal interest rates on inflation. However, there is a large variety of possible determinants which are,

moreover, not directly observable or at least hard to measure. A promising way out of this problem is

to identify these determinants by exploiting the strong cross-section correlation between interest rates

observed over countries. Increasing economic integration leads to a substantial degree of linkage between

real interest rates of different countries and has led a number of authors to construct and analyze a world

real interest rate (Barro and Sala-i Martin, 1990; Koedijk et al., 1994; Lee, 2002) or to relate national

real interest rates to international rather than to domestic events (Blanchard and Summers, 1984).

This paper uses recent advances in panel data econometrics to identify and account for unobserved

common factors in a panel of quarterly data for nominal interest rates and inflation covering 21 OECD

countries between 1983 and 2010. The analysis consists of two steps. In the first step, we investigate

the integration properties of the data using the Panel Analysis of Non-stationarity in Idiosyncratic and

Common Components (PANIC) of Bai and Ng (2004). The most important conclusion from this analysis

is that real interest rates and the error terms of a fixed effects (FE) regression of nominal interest rates on

inflation can both be decomposed in a single non-stationary common factor and a stationary idiosyncratic

component. The latter finding is consistent with Westerlund (2008) who also shows that real interest

rates and Fisher equation regression errors are stationary after filtering out common factors. This leads

him to conclude that nominal interest rates and inflation cointegrate. However, Westerlund does not

analyze the integration properties of the common factors but simply assumes these to be stationary.

Our finding of a non-stationary common factor invalidates his conclusion and implies that regression

results ignoring this common factor are spurious (see Urbain and Westerlund, 2011). In the second step

we therefore estimate the relation between nominal interest rates and inflation taking into account a

common non-stationary component in real interest rates. In particular, we use the common correlated

effects pooled (CCEP) estimation approach proposed by Pesaran (2006) and Kapetanios et al. (2011) and

the continuously-updated (Cup) estimation approach proposed by Bai et al. (2009). The advantage of
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both approaches is that they can consistently estimate the relationship between nominal interest rates and

inflation under very general integration properties of the data without the need to identify and measure

the determinants of real interest rates as long as these determinants are common to all countries. Thus,

rather the treating the cross-section correlation as a nuisance, which requires adjustment of standard unit

root and cointegration tests, we exploit the comovement of interest rates to identify unobserved common

determinants of real interest rates. This allows us to test the Fisher effect in the presence of a non-

stationary world real interest rate. Endogeneity of observed inflation induced by a rational expectations

forecasting error is taken into account using CupBC, a bias-corrected version of the Cup estimator, and

CCEP GMM, a GMM version of the CCEP estimator. We also propose how to test for cointegration

from the error terms of the CCEP and CUP estimators. A small-scale Monte Carlo simulation shows

that these two estimators and cointegration tests perform reasonably well for the modest sample size

T = 112, N = 21 that is available for our empirical analysis. From the estimation results, the hypothesis

of a one-for-one relation between the nominal interest rate and inflation cannot be rejected using either

the CupBC or the CCEP GMM estimator.

The paper is organized as follows. Section 2 outlines the standard Fisher equation. Section 3 analyses

the time series properties of the data. Section 4 augments the standard Fisher equation with a non-

stationary factor and discusses how this factor-augmented equation can be estimated. Section 5 analyses

the small sample properties of the proposed estimators using a Monte Carlo simulation and Section 6

presents the estimation results. Section 7 concludes.

2 The standard Fisher equation

Fisher (1930) hypothesized that inflation expectations should be reflected in the nominal interest rate in

a one-for-one manner to compensate for changes in the purchasing power of money. This implies that the

real interest rate should be invariant to changes in expected inflation. Formally, the Fisher hypothesis

can be stated as β = 1 in

iit = reit + βπeit, i = (1, . . . , N) , t = (1, . . . , T ) , (1)

where iit is the nominal interest rate observed in country i at time t, reit is the ex ante real interest rate

and πeit the expected rate of inflation.

The validity of the Fisher effect cannot be directly analyzed using (1) as reit and πeit are unobserved ex

ante variables. The Fisher equation can be written in terms of ex post observed variables after making

two assumptions. First, the ex ante real interest rate is driven by real factors which are typically assumed

to be more or less stable over time such that reit can be written as

reit = αi + νit, (2)

where αi is a country-specific constant and νit is a stationary error term which captures temporary
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fluctuations in reit. Second, assuming rational expectations

πit = πeit + ζit, (3)

where ζit is a mean zero stationary forecast error orthogonal to any information known at time t. Inserting

(2) and (3) in (1) yields

iit = αi + βπit + εit, (4)

where εit is a composite error term, comprised of the forecast error −βζit and the term νit.

Equation (4) forms the basis for testing the Fisher hypothesis. Given that iit and πit are typically

found to be I(1) series, this is nowadays done using unit root testing and cointegration analysis (see

e.g. MacDonald and Murphy, 1989). In fact, this alleged non-stationarity significantly simplifies the job

of testing the Fisher hypothesis. First, when iit and πit are cointegrated, super consistency of the LS

estimator implies that (4) can be estimated ignoring the correlation between πit and εit and any dynamics

in εit. Note that cointegration between iit and πit requires εit to be stationary, but does not depend on

the specific value of β with β = 1 then being denoted as the full Fisher effect and β 6= 1 as the partial

Fisher effect. Popular theoretical explanations for β 6= 1 are (i) taxes on interest income which imply

that the nominal interest rate has to raise by more than one-for-one (β > 1) in response to a change

in inflation expectations to keep the after-tax real interest rate constant and (ii) portfolio shifts out of

money balances into interest bearing assets in response to an increase in inflation expectations which

puts downward pressure on real interest rates (β < 1).

Second, defining the ex post observed real interest rate rit as

rit ≡ iit − πit = αi − (1− β)πit + εit, (5)

the Fisher hypothesis boils down to a simple unit root test on rit. This is a test for the full Fisher effect

as stationarity of rit requires β = 1 when πit is found to be non-stationary.

3 Time series properties of the data

This section analyses the time series properties of the data. We start with country-by-country and first

generation panel unit root and cointegration tests. As strong evidence of cross-sectional dependence is

found, we next use second generation panel tests and decompose all series in a common factor and an

idiosyncratic component and analyze the time series properties of these components separately using

PANIC.

3.1 Data

We use quarterly data taken from the International Financial Statistics database of the International

Monetary Fund. The sample includes 21 OECD countries (see Table 2 for the full list of countries)
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covering the period from 1983Q1 to 2010Q4. The nominal interest rate is either the three months

treasury bill rate, if available, or the three months money market rate. Expected inflation is proxied

by the ex post observed inflation rate calculated as the year-on-year percent change in the consumer

price index (CPI). We use year-on-year percent changes as this attenuates the strong noise in annualized

quarter-on-quarter percent changes (also see Bekaert and Wang, 2010). Year-on-year changes are also the

most prominent way inflation is reported and is also the subject of most professional inflation forecasts

(central bank forecasts, survey forecasts, ...). Studies examining the forecasting power of alternative

methods (see e.g. Stock and Watson, 1999; Ang et al., 2007) typically also focus on a one-year inflation

horizon. One disadvantage of using annual inflation at a quarterly frequency is that we will have to take

into account that the forecast errors ζit follow a MA(3) process due to overlapping observations.

3.2 Country-by-country unit root and cointegration tests

As outlined in Section 2, a first way to test the Fisher effect is to analyze the time series properties of iit,

πit and rit. Table 1 presents country-by-country ADF-GLS unit root tests for a model with a constant

and no trend. This ADF-GLS test is the modified augmented Dickey and Fuller (1979) (ADF) test based

on generalized least squares (GLS) demeaning of the data as suggested by Elliott et al. (1996). Compared

to the standard ADF test, removal of the constant term by means of GLS demeaning yields substantial

power improvements, especially in small samples. More details on the exact implementation of the test

are provided as a note to Table 1. First looking at iit and πit, the unit root hypothesis cannot be rejected

at the 5% level of significance for any of the individual countries. Given this finding, the full Fisher effect

requires rit to be stationary. At the 5% level of signifcance, the null hypothesis of a unit root in rit can

only be rejected for Norway and Portugal. Thus, there is no clear support of the full Fisher.

An alternative way to test the Fisher effect is to infer whether there is a one-for-one cointegration

relation between iit and πit. Table 1 reports OLS coefficient estimates for β in equation (4) along with an

ADF cointegration test (without constant) on the OLS residuals. The results are clearly not in support

of the Fisher effect. Although, the estimated slope coefficients are relatively close to one in a lot of

countries, the null hypothesis of a unit coefficient is clearly rejected in most countries. More importantly,

the ADF cointegration test results show that the null hypothesis of no cointegration cannot be rejected

in 19 out of 21 countries. This implies that the OLS regression results should be considered spurious.

3.3 First generation panel unit root and cointegration tests

As the individual county data span a relatively short period of 28 years, the failure to find evidence in

favor of the Fisher effect may be due to a lack of power to reject the null hypothesis of a unit root in

either rit or ε̂it. Power can be increased substantially by exploiting the panel dimension of the data. In

particular, we use the Maddala and Wu (1999) (MW) panel unit root test which is a combination of the

p-values from the country-specific unit root tests. The advantages of the MW test are that (i) one can

use different lag lengths in the individual ADF regressions (as implied by lag optimization) and (ii) it

can be calculated from p-values of any country-specific type of unit root test.
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The top panel of Table 2 reports results for a MW panel unit root test on iit, πit and rit calculated

from the ADF-GLS p-values reported in Table 1. For iit and πit, the null hypothesis of a unit root is

not rejected while for rit it is rejected well below the 1% level of significance. Thus, the full Fisher effect

seems to be strongly supported by the panel unit root results.

Turning to cointegration between iit and πit, the bottom panel of Table 2 reports fixed effects (FE)

estimates for β in equation (4) and a MW cointegration test calculated from the p-values of an ADF test

on the estimated residuals ε̂FEit . The panel FE results are also supportive for the Fisher effect. First,

the null hypothesis of no cointegration is clearly rejected using the MW panel test. This suggests that

there is a cointegrating relation between iit and πit. Second, the point estimate of the slope coefficient

is 1.09 and is significantly different from one. These results support the partial but not the full Fisher

effect. However, despite being consistent and asymptotically normally distributed (Phillips and Moon,

1999), the FE estimator and especially its t-statistic are biased in small samples (see e.g. Kao and Chiang,

2000). The main reason for the latter is that autocorrelation in the error terms invalidates the standard

asymptotic variance of the FE estimator. Therefore, we bootstrap the standard error of the FE estimator

by resampling whole cross-sectional units with replacement as suggested by Kapetanios (2008). The

advantage of this resampling scheme is that it preserves (i) the autocorrelation structure in the data and

the errors, (ii) the endogeneity of πit and (iii) the cross-sectional dependence1. Using the bootstrapped

standard error, the FE estimator is now not significantly different from 1.2

Table 2: Panel unit root and cointegration tests

Sample period: 1983:Q1-2010:Q4, 21 countries

Panel unit root tests

iit πit rit

MW test 37.42 43.92 72.81

p-val 0.67 0.39 0.00

Panel cointegration analysis

Fisher regression MW on ε̂FEit

analytical bootstrap

β̂ se t-stat p-val se t-stat p-val test p-val

FE 1.09 0.02 5.22 0.00 0.08 1.14 0.26 70.81 0.00

Notes: The panel unit root test is the Maddala and Wu (1999) (MW) test defined as −2
∑N

i=1 ln (pi) where
pi is the p-value corresponding to the unit root test of the ith country reported in Table 1. The p-value of
the MW test is obtained from the χ2 distribution with 2N degrees of freedom. The Fisher regression reports
the coefficient estimate for β in equation (4) using FE. The t-stat is calculated under the null hypothesis that
β = 1. The bootstrapped standard error is obtained as the standard deviation of the FE estimator over 5000
bootstrap iterations with bootstrap samples obtained by resampling cross-sections as in Kapetanios (2008).
The MW cointegration test is calculated from the p-values of ADF unit root tests (with no deterministic
terms) on the estimated residuals of the panel FE regression (ε̂FE

it ). The p-values for the country-specific
cointegration tests are obtained by simulating the finite-sample distribution of the ADF cointegration test
(based on 20,000 Monte Carlo iterations) taking into account (i) that ε̂FE

it are residuals from a panel FE
regression and (ii) as in Cook and Manning (2004) that the augmentation of the test equation is optimized
using the MAIC criterion. The 1% and 5% critical values taken from this simulated distribution are -3.29
and -2.69.

1Note that the cross-sectional resampling scheme is not valid in the case of local cross-sectional dependence but is
appropriate in the presence of the below assumed factor structure which introduces global cross-sectional dependence which
is symmetric across all panel units.

2Bootstrapping the pivotal t-statistic for β = 1 yields highly similar results.
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3.4 Cross-sectional dependence and common factors

The panel results in Section 3.3 support the full Fisher effect. However, there are at least two reasons

for why these results may not be trustworthy. First, the MW panel unit root and cointegration tests are

only valid for combining p-values from cross-sectionally independent tests. O’Connell (1998) documents

that the alleged power gain of panel unit root tests developed under cross-sectional independence may in

practice very well be the consequence of nontrivial size distortions induced by cross-sectional dependence,

raising the real size of tests with a nominal size of 5% to as much as 50%. A similar conclusion can be

found in Banerjee et al. (2004, 2005). Second, insofar as the cross-sectional dependence is induced by

non-stationary omitted common factors that are relatively small compared to the stationary component

in the data, unit root tests are biased towards rejection of the null hypothesis of a unit root (Bai and Ng,

2004). In this section we therefore test for cross-sectional dependence and the presence of (non-stationary)

common factors in the data and in the residuals of the FE Fisher regression.

Testing for cross-sectional dependence

Table 3 presents information on the extent of the cross-sectional dependence in the original data, the

residuals of the ADF-GLS regressions and the residuals of the FE Fisher regression. For those series

that are potentially non-stationary, we also report results for the first-differences to avoid spurious non-

zero correlations. We first compute the average cross-correlation coefficient ρ̂ which is the average of

the country-by-country cross-correlation coefficients ρ̂ij (for i 6= j). The original data and the residuals

from both the ADF-GLS regressions and the FE Fisher regression all exhibit considerable positive cross-

sectional correlation. Next, we compute the cross-sectional dependence (CD) test of Pesaran (2004). This

shows that the null hypothesis of no cross-sectional dependence is strongly rejected for all variables and

residuals. The finding of significant cross-sectional dependence implies that the MW panel unit root and

cointegration tests do not have the conventional χ2 distribution and therefore the MW p-values reported

in Table 2 should not be trusted.

Common factor structure

In the recent panel literature, cross-sectional dependence is typically assumed to stem from omitted

common variables or global shocks that affect each country differently and is therefore modelled using a

common factor structure with country-specific factor loadings (see e.g. Bai and Ng, 2004; Coakley et al.,

2006; Pesaran, 2006). More precisely, assume that the data generating process (DGP) of a series Xit is

given by the following prototypical common factor model

Xit = λ′iFt + eit, (6)

where Ft is an r × 1 vector of common factors with country-specific factor loadings λi and eit is an

idiosyncratic error term. Cross-sectional dependence stems from the common component λ′iFt which is

correlated over countries. The series Xit is non-stationary if at least one of the common factors in Ft is

non-stationary, or the idiosyncratic error eit is non-stationary, or both.
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Table 3: Cross-sectional dependence test

Sample period: 1983:Q1-2010:Q4, 21 countries

Levels First-differences

ρ̂ CD p-val ρ̂ CD p-val

Original data

iit 0.79 120.99 0.00 0.23 34.45 0.00

πit 0.54 83.50 0.00 0.29 44.91 0.00

rit 0.58 89.19 0.00 0.14 21.86 0.00

Residuals ADF-GLS regression

iit 0.22 32.20 0.00

πit 0.25 36.65 0.00

rit 0.15 22.63 0.00

Residuals Fisher regression

ε̂FEit 0.53 81.49 0.00 0.15 22.35 0.00

Notes: the average cross-correlation coefficient ρ̂ = (2 /N (N − 1) )
∑N−1

i=1

∑N
j=i+1 ρ̂ij is the

average of the country-by-country cross-correlation coefficients ρ̂ij (for i 6= j). CD is the Pesaran

(2004) test defined as
√

2T /N (N − 1)
∑N−1

i=1

∑N
j=i+1 ρ̂ij , which is asymptotically standard

normal under the null of cross-sectional independence.

Table 4 reports results for estimating the total number of relevant common factors r in the data for iit,

πit and rit and in the residuals of the FE Fisher regression using the panel information criteria suggested

by Bai and Ng (2002). As consistency of these criteria requires stationary data, we take first-differences

of all series (also see Bai and Ng, 2004, p. 1144). The top panel of Table 4 reports the IC1,2,3, PC1,2,3,

AIC3 and BIC3 criteria with the maximum number of factors (rmax) ranging from 2 to 6. Using the

PC1,2,3 and AIC3 criteria, the optimal number of factors is found to increase with rmax for all series.

The results of the IC1,2,3 and BIC3 criteria are more stable over alternative choices of rmax and point

to a single common factor in all series, except when using the IC1 and IC3 criteria on iit for which the

number of common factors increases with rmax and when using the BIC3 criterion on rit and ε̂FEit for

which no factors are found for lower values of rmax. Note that the contradictory results over the various

information criteria are in line with the Monte Carlo simulations in Bai and Ng (2002) which show that

in samples of moderate size, i.e. min{N,T} < 40, the IC criteria tend to underparameterize (especially

for larger values of r) while the PC criteria tend to overparameterize (estimated number of components

is found to increase with rmax), with the problem being even more severe for the AIC and BIC criteria.

Taking this into account, the information criteria suggest that there is at least 1 common factor in iit,

πit and rit and in the residuals of the FE Fisher regression.

Bai (2004) has proposed a set of information criteria that are closely related to those of Bai and Ng

(2002) but that can be applied to the levels of the series to determine the number of non-stationary

factors.3 The results for the IPC1,2,3 criteria are reported in the bottom panel of Table 4, again with

the maximum number of factors rmax ranging from 2 to 6. The results suggest a single non-stationary

common factor in rit and ε̂FEit and at least one non-stationary common factor in iit and πit.

To visualize the importance of the common factors, Figure 1 plots the data for iit, πit and rit and

the FE residuals ε̂FEit together with the first 3 factors estimated using the differencing and recumulating

3Note that consistency of the information criteria in Bai (2004) requires the idiosyncratic component to be stationary.
Evidence that this is indeed the case is presented in Section 3.5 below.
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Table 4: Estimating the number of common factors r

Sample period: 1983:Q1-2010:Q4, 21 countries

rmax = 2 rmax = 3 rmax = 4 rmax = 5 rmax = 6

iit πit rit ε̂FE
it iit πit rit ε̂FE

it iit πit rit ε̂FE
it iit πit rit ε̂FE

it iit πit rit ε̂FE
it

Data in first-differences: estimating the total number of factors

IC1 1 1 1 1 1 1 1 1 4 1 1 1 5 1 1 1 5 1 1 1

IC2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IC3 2 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 6 1 1 1

PC1 2 1 1 1 3 2 1 1 4 3 2 2 5 4 3 3 6 5 5 5

PC2 1 1 1 1 2 1 1 1 4 2 1 1 5 3 3 3 6 4 4 4

PC3 2 2 1 1 3 3 2 2 4 3 3 3 5 5 4 4 6 6 6 6

AIC3 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6

BIC3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1

Data in levels: estimating the number of non-stationary factors

IPC1 1 1 1 1 2 1 1 1 2 2 1 1 2 2 1 1 3 2 1 1

IPC2 1 1 1 1 2 1 1 1 2 2 1 1 2 2 1 1 3 2 1 1

IPC3 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 2 1 1 1

Notes: Prior to computation of the eigenvectors, each first-differenced series is demeaned and standardized to
have unit variance (see Bai and Ng, 2002, p. 203).

approach outlined in Bai and Ng (2004). Because the true factors can only be identified up to scale,

the factors are rotated such that (i) the average of the factor loadings on each factor equals 1 and (ii)

the average of each factor coincides with the panel wide average of the plotted data. First, the graph

for iit in panel (a) of Figure 1 shows that the fist two factors are important, while the third is clearly

unimportant. Looking more closely at the first two factors shows that they are virtually the same apart

from a short period in 1992-1993. This is the period of the EMS crisis during which a lot of European

countries sharply raised their short-term interest rates to defend their currencies. To visualize more

clearly how this is picked up by the common factors, panel (b) plots an alternative representation by

combining the first two factors leaving the full effect λ′iFt unchanged for each country.4 The first factor

seems to be non-stationary, decreasing from about 11% in the early 1980s to just below 2% in the late

2000s. The second factor now shows up as a stationary component capturing the temporary increase in

many European nominal interest rates during the EMS crisis. Second, from the graph for πit in panel

(c) of Figure 1 it is clear that only the first factor is an important global driver of inflation. It exhibits

non-stationary behaviour, starting around 8% in the early 1980s to stabilize around 2% in the late 1990s

and 2000s. This factor captures the disinflation proces all OECD countries went through in the 1980s and

the early 1990s and relative stable inflation around 2% from the mid 1990s onwards. The second and the

third factor are of no overall importance at all. The graphs for rit and ε̂FEit in panels (d) and (e) of Figure

1 are highly similar. Only the first and to a lesser extent also the second factor seem important. In line

with the results for iit the EMS crisis shows up as a clear spike. However, the EMS crisis is a very specific

event, common to only a part of the countries in the sample over a limited period of time. Moreover,

it implied higher nominal interest rates mainly for reasons other than inflation expectations. Therefore,

instead of trying to capture it using the common factor structure, in the remainder we will control for

4We first set F ∗
1t = F1t − λF2t and F ∗

2t = F2t and recalculate the factor loadings as λ∗i1 = λi1 and λ∗i2 = λi2 + λλi1,
with λ set equal to 1.3. Next, F ∗

1t and F ∗
2t and their factor loadings are again rotated such that the average of the factor

loadings on each factor equals 1, the average of the first factor coincides with the panel wide average of the plotted data
and the average of the second factor is zero.
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the EMS crisis using dummy variables5 when estimating the Fisher equation. Using the FE estimator

including the EMS dummies the point estimate of β in (4) is virtually unchanged (estimation results are

reported in Table 9 below), but the residuals ε̂FEdit and the common factors in panel (f) of Figure 1 are

now purged of the EMS crisis. Only the first factor is important now. It seems to be non-stationary,

increasing from around 0% in the early 1980s to over 2% in the mid 1980s and then decreasing slowly to

around -2% at the end of the sample.

Figure 1: Time plots of the data and the FE residuals together with the first 3 estimated factors

(a) iit (b) iit (combining first two factors)

(c) πit (d) rit

(e) ε̂FE
it (f) ε̂FEd

it

Notes: Country-specific data: thin solid gray lines
Factor 1: bold solid line, Factor 2: bold dashed line, Factor 3: bold dotted line

5After careful studying the evolution of short-term interest rates during the EMS crisis, country- and time-specific
intervention dummies were constructed for the following quarters: Belgium 1993Q3-1993Q4; Denmark 1992Q2-1993Q1
and 1993Q3; Finland 1992Q3; France 1993Q1; Greece 1994Q2; Ireland 1992Q3-1993Q1; Italy 1992Q3-1992Q4; Norway
1992Q3-1992Q4; Sweden 1992Q3-1992Q4.
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As a final check, Table 5 reports the cross-sectional correlation in the idiosyncratic part of the data,

i.e. eit in (6), after taking out the contribution of r common factors with r ranging from 0 to 3. In line

with the picture emerging from Figure 1, one factor seems to be sufficient to remove the cross-sectional

dependence from πit. For iit, rit and ε̂FEit , at least two factors seem to be necessary. However, after

including the EMS dummies one factor seems to be sufficient to remove the cross-sectional dependence

from ε̂FEdit .

Table 5: Cross-sectional correlation ρ̂ after taking out r common factors

Sample period: 1983:Q1-2010:Q4, 21 countries

Levels First-differences

iit πit rit ε̂FEit ε̂FEdit iit πit rit ε̂FEit ε̂FEdit

r = 0 0.79 0.54 0.58 0.53 0.52 0.23 0.29 0.14 0.15 0.13

r = 1 0.38 0.00 0.23 0.17 0.05 0.09 −0.01 0.03 0.03 −0.01

r = 2 0.02 −0.01 0.09 0.08 0.04 0.00 −0.02 0.00 −0.00 −0.01

r = 3 −0.01 −0.01 0.08 0.08 0.04 −0.01 −0.03 0.00 0.00 −0.01

Note: see Table 3 for definition of ρ̂.

The tentative conclusion from Tables 4 and 5 and Figure 1 is that, after correcting for the EMS crisis,

the cross-sectional correlation observed in the data and in the residuals of the FE estimator is due to

a single non-stationary common factor in each of these series. In the next section, we more formally

test the time series properties of the data using unit root tests that allow for cross-sectional dependence

induced by unobserved common factors.

3.5 Second generation panel unit root tests

Unit root tests allowing for cross-sectional dependence have been proposed by, most notably, Pesaran

(2007), Moon and Perron (2004) and Bai and Ng (2004). These tests are similar in that they assume an

observed data series to be, in the spirit of the representation in equation (6), the sum of an unobserved

idiosyncratic component and a number of unobserved common factors to which each individual can react

differently. The tests differ in the allowed number and order of integration of the unobserved common

factors and in the way these factors are eliminated.

Pesaran (2007) allows for a single stationary common factor and suggests to eliminate it by augmenting

the standard ADF regression with the cross-sectional averages of the lagged levels and first-differences of

the individual series. This cross-sectionally augmented ADF statistic (denoted CADF), or its rejection

probabilities, can then be used to construct a modified version of the t-bar test proposed by Im et al.

(2003) or of the MW test used above. Moon and Perron (2004) propose test statistics based on pooled

estimates of the first-order autoregressive parameter, akin to the original Levin et al. (2002) test, but

that are calculated from an orthogonal projection of the data on the common factors identified using

principal component analysis. This setting can account for multiple common factors but, as in Pesaran

(2007), these are restricted to be stationary such that any non-stationarity in the observed series must

be due to the presence of a unit root in the idiosyncratic component. The most general approach is the

PANIC of Bai and Ng (2004), which allows for non-stationarity in either the common factors, or in the

13



Table 6: Second generation panel unit root tests (model with constant)

Sample period: 1983:Q1-2010:Q4, 21 countries

Pesaran (2007)(a)

iit πit rit
k CIPS k CIPS k CIPS

3 −3.02 (0.01) 5 −2.94 (0.01) 5 −3.55 (0.01)

Moon and Perron (2004)(b)

iit πit rit
r t∗a t∗b t∗a t∗b t∗a t∗b
1 −11.08 (0.00) −5.56 (0.00) −15.08 (0.00) −6.18 (0.00) −22.42 (0.00) −7.80 (0.00)

2 −16.82 (0.00) −6.86 (0.00) −13.55 (0.00) −5.72 (0.00) −25.22 (0.00) −8.65 (0.00)

Bai and Ng (2004)(c)

iit πit rit
F̂t êit F̂t êit F̂t êit

r ADF-GLS MW ADF-GLS MW ADF-GLS MW

1 0.32 (0.77) 45.89 (0.31) 0.43 (0.81) 66.21 (0.01) −0.84 (0.35) 81.85 (0.00)

m MQc m MQc m MQc
2 1 −1.77 62.21 (0.02) 1 −5.78 47.48 (0.26) 1 −3.18 107.24 (0.00)

2 −38.71∗∗∗ 2 −18.30 2 −30.83∗∗

ε̂FEit ε̂FEdit

F̂t êit F̂t êit
r ADF-GLS MW ADF-GLS MW

1 −0.99 (0.29) 86.61 (0.00) −0.64 (0.44) 96.63 (0.00)

m MQc m MQc
2 1 −4.01 106.02 (0.00) 1 −1.34 105.63 (0.00)

2 −27.13∗∗ 2 −34.84∗∗∗

Notes: (a) CIPS is the mean of the individual CADF statistics with a common lag order k determined as the nearest integer
of the mean of the individual lag lengths of the ADF tests in Table 2. Approximate p-values calculated from Table II(b) in
Pesaran (2007) are reported in parentheses.

(b) t∗a and t∗b are pooled panel unit root test statistics based on de-factored data for different number of common factors
r = 1, 2, 3. The long-run variances required for calculating these statistics are obtained using a Quadratic Spectral kernel
function with Newey-West bandwidth. Corresponding p-values (from the standard normal distribution) are reported in
parentheses.

(c) For r = 1 the unit root test on the single common factor F̂t is a ADF-GLS test for a model with constant. The
corresponding (simulated) p-values are reported in parentheses. For r > 1, theMQc statistic tests the number of independent

non-stationary factors (m) in the vector F̂t. The critical values at the 1%, 5% and 10% level of significance are -20.151,
-13.730 and -11.022 for m = 1 and -31.621, -23.535 and -19.923 for m = 2. *** indicates that the MQc test is significant at
the 1% level, ** at the 5% and * at the 10% level. MW is a MW panel unit root test on the estimated idiosyncratic errors
êit for different number of common factors r = 1, 2, 3. See Table 2 for more details. The corresponding p-values (taken
from the χ2

2N distribution) are reported in parentheses.

idiosyncratic errors or in both. Rather than testing the order of integration of the observed data, these are

first decomposed in unobserved common factors and idiosyncratic errors which are then tested separately.

The key to this is a ‘differencing and recumulating’ procedure that permits consistent estimation of the

unobserved components when it is not known a priori whether they are I(0) or I(1).

Results are reported in Table 6. Both the Pesaran (2007) and the Moon and Perron (2004) test

strongly reject the null hypothesis of a unit root in iit, πit and rit. For the latter test, this finding is

robust over alternative choices for r. In contrast to this, the results of the Bai and Ng (2004) PANIC

imply that each of the three variables is non-stationary, with this non-stationarity being induced by the

common factor(s) leaving the idiosyncratic error terms stationary. First consider iit. The analysis in
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Section 3.4 suggests that 2 common factors are necessary to capture the cross-sectional dependence in

the data. Setting r = 2, the idiosyncratic errors êit are found to be stationary using the MW test. The

MQc statistic shows that the space spanned by the two common factors is non-stationary but there

is only 1 independent non-stationary common factor. This is consistent with the interpretation above

that the second factor captures the EMS crisis. Second, for both πit and rit the analysis in Section

3.4 suggests 1 common factor which is found to be non-stationary using the ADF-GLS test. Setting

r = 1, the idiosyncratic errors êit are found to be stationary using the MW test. The finding of non-

stationary common factors implies that the results from the Pesaran (2007) and the Moon and Perron

(2004) tests are not trustworthy as these can only deal with stationary common factors and, together with

the finding of stationary idiosyncratic errors, that the (panel) unit root tests ignoring the common factor

structure in the data tend to over-reject the null hypothesis of a unit root. Finally, also the residuals

from the FE regressions (with or without EMS dummies) are found to be non-stationary, with a single

non-stationary common factor and stationary idiosyncratic errors. Urbain and Westerlund (2011) show

that the standard result in Phillips and Moon (1999) that panel regressions yield consistent results even

if there is no cointegration does not longer hold when the non-stationary in the error term is induced by

a common factor. This implies that the results from the FE estimators reported in Table 2 should be

considered spurious.

4 The Fisher equation in the presence of an unobserved I(1)

common factor

In this section, we augment the standard Fisher specification (4) by allowing for an I(1) unobserved

common component which we interpret as representing permanent fluctuations in the world real interest

rate. We discuss how this common factor-augmented specification can be estimated and how to test

whether this is a cointegrating relation.

4.1 An I(1) world real interest rate

The main conclusion from the PANIC in Section 3.5 is that there is an I(1) common factor in both the

real interest rate rit and the residuals εit of the Fisher equation (4). This has two important implications

for modelling the Fisher effect.

First, the finding that εit is I(1) implies that iit and πit are not cointegrated, but does not auto-

matically invalidate the Fisher effect. It does signal, though, that equation (4) is miss-specified, i.e. the

assumption that the composite error term εit = νit − βζit is stationary is wrong. As non-stationarity of

the forecast error ζit would be at odds with rational expectations, the observed non-stationarity in εit

is most probably due to νit which represents time variation in the real factors driving the ex ante real

interest rate. Standard neoclassical growth models with household intertemporal utility maximization

imply that the real interest rate is a function of time preference, risk aversion and the steady-state growth

rate of technological change. While time preference and risk aversion are generally believed to be fairly
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stable, or at least changing only slowly over extended periods of time, shifts in steady-state growth, such

as the ‘productivity slowdown’ of the early 1970s and the ‘New Economy’ resurgence of growth in the late

1990s, have been widely documented in the literature (see e.g. Oliner and Sichel, 2000; Roberts, 2001).

Moreover, in the Diamond overlapping-generations model, a permanent increase in government spending

leads to a permanently higher real interest rate. Additional determinants of real interest rates suggested

in the literature are demographic changes, changes in the stance of fiscal policy and the evolution of public

debt, changes in the taxation of profits, (de)regulation of financial markets, ... (see e.g. Blanchard and

Summers, 1984; Chadha and Dimsdale, 1999; Ardagna, 2009). Permanent shifts in any of these factors

induce a unit root in the ex ante real interest rate reit which implies a unit root in the ex post real interest

rate rit and in the residuals εit of the Fisher equation (4). Ideally, the non-stationary determinants of

real interest rates should be included as covariates in the Fisher equation. Unfortunately, there is a large

variety of possible determinants which are, moreover, not directly observable or at least hard to measure.

Second, the finding that only the common factor in εit is I(1) while the idiosyncratic part is I(0)

suggests that the permanent shifts in the real interest rate are common to all countries in the sample.

This is in line with the results in e.g. Gagnon and Unferth (1995), Pain and Thomas (1997) and Lee

(2002) who show that country-specific deviations from an I(1) world real interest rate are stationary.

Note that Blanchard and Summers (1984) already argued that increasing economic integration leads to

a substantial degree of linkage between real interest rates of different countries such that national real

interest rates should be related to international rather than to domestic events. The main advantage

of this I(1) world real interest rate is that it can be identified by exploiting the strong cross-section

correlation observed over countries.

4.2 Common factor-augmented Fisher equation

To allow for an I(1) world real interest rate, the DGP of ex ante real interest rates in equation (2) is

rewritten to

reit = αi + γir
w
t + µit, (7)

where rwt is a single non-stationary common factor with idiosyncratic factor loadings γi and µit a sta-

tionary idiosyncratic component. Inserting (7) and (3) in (1) yields

iit = αi + βπit + εit, (8)

εit = γir
w
t + εit, (9)

with εit = µit − βζit. The Fisher equation in (8) is the basic specification in (4) augmented with a

unobserved non-stationary common factor in the residuals εit modelled in equation (9).

The model in equations (8)-(9) in vector notation is

ii = αi + βπi + γir
w + εi, (10)
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where ii = (ii1, . . . , iiT )
′
, πi = (πi1, . . . , πiT )

′
, rw = (rw1 , . . . , r

w
T )
′
, εi = (εi1, . . . , εiT )

′
.

4.3 Estimation in the presence of unobserved I(1) common factors

4.3.1 Principal Component Estimators

Bai et al. (2009) suggest a ‘continuously-updated’ (Cup) procedure that jointly estimates the slope coeffi-

cient β and the unobserved common factor rw in equation (10). More specifically, the solution (β̂Cup, r̂
w
Cup)

is obtained by iteratively estimating (i) β̂ as the FE estimator for β in equation (10) conditional on r̂w

β̂ =

(
N∑
i=1

π′iMr̂wπi

)−1 N∑
i=1

π′iMr̂w ii, (11)

where Mr̂w = IT− r̂w
(
r̂w

′
r̂w

′
)−1

r̂w
′

and (ii) r̂w as the first r eigenvectors (multiplied by T ) of the matrix

1
NT 2

∑N
i=1

(
ii − β̂πi

)(
ii − β̂πi

)′
conditional on β̂. Bai et al. (2009) show that β̂Cup is T consistent for

β but has an asymptotic bias (for N → ∞) arising from endogeneity of πit and serial correlation in

εit. They therefore suggest a bias-corrected (CupBC) and a fully modified (CupFM) version of the Cup

estimator. The first estimates the asymptotic bias directly while the second modifies the data so that the

limiting distribution does not depend on nuisance parameters. Both are
√
NT consistent for the common

slope coefficient β and are robust to mixed I(1)/I(0) factors and regressors. Moreover, the estimators

enable the use of standard test statistics for inference. This approach requires specifying the number of

common factors r.

4.3.2 Common Correlated Effects Pooled (CCEP) estimator

Pesaran (2006) proposes to eliminate the cross-sectional dependence in εit by projecting out the common

factor rwt using the cross-sectional averages of iit and πit. For a model with a single factor6, inserting (9)

in (8) and taking cross-sectional averages yields

it = α+ βπt + γrwt + εt, (12)

where it = N−1
∑N
i=1 iit and similarly for the other variables. Solving (12) for rwt

rwt =
1

γ

(
it − α− βπt − εt

)
, (13)

and inserting (13) in (8)-(9) yields

iit = αi + βπit +
γi
γ

(
it − α− βπt − εt

)
+ εit,

= α̃i + βπit + c1iit + c2iπt + ε̃it, (14)

with α̃i = αi − (γi /γ )α, c1i = (γi /γ ), c2i = −β (γi /γ ) and ε̃it = εit − (γi /γ ) εt.

6Multiple factors can be treated in the same way (see Phillips and Sul, 2007), and yield the same (unrestricted) model
as the one presented in (14), but are not presented here for notational convenience.
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The CCEP estimator proposed by Pesaran (2006) is the FE estimator applied to the augmented

regression in (14), ignoring the non-linear coefficient restrictions, given by

β̂CCEP =

(
N∑
i=1

π′iMHπi

)−1 N∑
i=1

π′iMH ii, (15)

where MH = IT −H (H ′H)
−1
H ′ with H =

(
i, π
)
, i =

(
i1, . . . , iT

)′
and π = (π1, . . . , πT )

′
.

As the assumption that εit is cross-sectionally independent implies that plim
N→∞

εt = 0, the error made

when approximating rwt by it and πt in (13) becomes negligibly small for N →∞ such that ε̃it
p−→ εit in

(14). This is the basic result in Pesaran (2006) that the inclusion of cross-sectional averages asymptotically

eliminates the error cross-sectional dependence induced by the unobserved common factors such that the

CCEP estimator is
√
N consistent regardless of whether T is fixed or T → ∞. These results hold for

any fixed number of unobserved factors r, which implies that there is no need to estimate or specify

r. Kapetanios et al. (2011) further shows that these results continue to hold regardless of whether the

common factors are stationary or non-stationary.

An important restriction is that consistency of the CCEP estimator requires that the idiosyncratic

errors εit are distributed independently of the explanatory variable πit. To see why, note that the CCEP

estimator in equation (15) is equivalent to the least squares estimator for β after projecting out the

individual effects and the cross-sectional means from the model in equation (14)

ĭit = βπ̆it + ε̆it, (16)

where ĭi =
(
ĭi1, . . . , ĭiT

)′
= MH ii and π̆i = (π̆i1, . . . , π̆iT )

′
= MHπi are the residuals from country-by-

country regressions of iit and πit on a constant, it and πt. Pesaran (2006) and Kapetanios et al. (2011)

show that this orthogonalisation on the cross-sectional averages it and πt removes all common factor(s)

from both iit and πit. As such, ĭit and π̆it are estimates of the idiosyncratic part in iit and πit respectively.

As these idiosyncratic parts are found to be stationary by the PANIC in Section 3.5, which is also the

working assumption in Kapetanios et al. (2011), equation (16) is a regression model including stationary

variables. This implies that, in contrast to the Cup estimator, the CCEP estimator is not super consistent

such that endogeneity cannot be ignored asymptotically.

As the forecast error ζit implies that πit and εit are correlated, equation (16) is estimated using GMM.

Valid moment conditions are

E (π̆i,t−lε̆it) = 0 for each t = l + 1, . . . , T and l ≥ q + 1, (17)

with q being the order of the MA process in ζit. Equation (17) defines a relatively large set of moment

conditions. Using more instruments from deeper lags of π̆it improves the efficiency of the GMM estimator.

However, it also reduces the sample size as observations for which lagged observations are unavailable

are dropped. To avoid this trade-off between instrument lag depth and sample depth, we construct

instruments by zeroing out missing observations of lags as in Holtz-Eakin et al. (1988). Furthermore,
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in order to avoid problems related to using too many instruments, we truncate the set of available

instruments at the first L available lags. This results in the following reduced set of moment conditions

E (π̆i,t−lε̆it) = 0 for each q + 1 ≤ l ≤ L+ q, (18)

The CCEP-GMM estimator for β is obtained by minimizing the empirical moments
∑
i

∑
t π̆i,t−lε̆it using

a Newey-West type optimal weighting matrix.

4.4 Common factor-augmented panel cointegration

Cointegration in panels with unobserved non-stationary common factors has been considered by Gen-

genbach et al. (2006) and Banerjee and Carrion-i Silvestre (2006). Both studies would define panel

cointegration in our case as a situation where the interest rate iit and the inflation rate πit cointegrate

with vector (1,−β). Equations (8)-(9) show that this concept of panel cointegration requires both the

common factor rwt and the idiosyncratic error term εit to be I(0). Especially the former is highly restric-

tive as it requires that any non-stationary common factors in iit and πit should cointegrate leaving the

common factor in the error term εit stationary. However, when our interest is in estimation and inference

on β, the estimation procedures of Kapetanios et al. (2011) and Bai et al. (2009) outlined above only

require εit = (iit − βπit − γirwt ) to be I(0). Intuitively, rwt is a vector of I(1) variables that should be

included in the model for this to be cointegrating regression. We label this common factor-augmented

panel cointegration.

The most obvious approach to test whether iit, πit and rwt are cointegrated or not would be to first

estimate the model in (8)-(9), using either the CCEP or the Cup estimation approach, and then test

for the null hypothesis of no cointegration using e.g. a MW panel cointegration test on the estimated

idiosyncratic error terms ε̂it. This direct approach is problematic for two reasons, though. First, the

country-specific orthogonalisation, either on r̂wt in (11) or on the cross-sectional averages it and πt in

(15), implies that the distribution of a country-by-country cointegration test on ε̂it depends on the number

of I(1) factors in rwt . This is problematic as the CCEP estimator does not require specifying the number

of factors while the Cup estimator does only require a decision on the number of factors but not on the

number of I(1) factors. Second, the fact that the orthogonalisation is on the same variable(s) in each

country implies that the country-by-country cointegration tests are not independent and therefore the

MW panel cointegration test does not have the standard χ2 distribution.

A natural alternative approach is to use ε̂it =
(
iit − β̂πit

)
instead of ε̂it and apply a principal compo-

nent analysis as in Bai and Ng (2004) to split ε̂it in a number of common factors and an idiosyncratic error

term and then test whether the idiosyncratic error is stationary or not. The advantage of this approach

is that, as shown by Bai and Ng (2004), the test whether the idiosyncratic errors are stationary does

not depend on the presence or absence of common stochastic trends and/or their integration properties

and thus can be tested using standard panel unit root tests. It only requires specifying the number of

common factors.
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5 Monte Carlo simulation

In this section, we conduct a small-scaled Monte Carlo experiment to assess (i) the finite sample properties

in terms of estimation and inference of the CCEP and Cup estimators outlined in Section 4.3 and (ii) the

size and power of the cointegration tests on ε̂it and ε̂it outlined in Section 4.4. Under the hypothesis that

the full Fisher effect holds (β = 1), the data-generating process is chosen such that the properties of the

simulated data match with those of the observed data for iit and πit as much as possible. Although we

are mainly interested in the setting T = 112 and N = 21, we also present results for a range of alternative

dimensions of T to illustrate the more general finite sample properties of the estimators.7

5.1 Design

Data are generated based on the following design

iit = reit + βπeit,

πit = πeit + ζit,

reit = αi + γir
w
t + µit, αi ∼ i.i.d.N(α, σ2

α), γi ∼ i.i.d.N(1, σ2
γ)

πeit = τi + λiπ
w
t + ηit, τi ∼ i.i.d.N(τ, σ2

τ ), λi ∼ i.i.d.N(1, σ2
λ)

In line with the results of the PANIC in Section 3.5, the common factors rwt and πwt are generated as

random walks

rwt = rwt−1 + ψit, ψit ∼ i.i.d.N(0, σ2
ψ),

πwt = πwt−1 + ξit, ξit ∼ i.i.d.N(0, σ2
ξ ),

while the idiosyncratic components µit and ηit are generated as AR(1) processes

µit = θµi,t−1 + χit, χit ∼ i.i.d.N(0, σ2
χ)

ηit = φηi,t−1 + ωit, ωit ∼ i.i.d.N(0, σ2
ω).

In order to obtain realistic parameter values, we calibrate the DGP outlined above to our observed

sample of OECD data. As πeit and reit are not observed we start by making the strong assumption of

perfect foresight, i.e. ζit = 0, such that πeit equals ex post observed inflation πit and reit equals the ex

post observed real interest rate rit. The observed data for both πit and rit are then split up into a fixed

effect, a common component and an idiosyncratic component using the PANIC of Bai and Ng (2004)8.

Parameter values are estimated from the various estimated components. This is the experiment 1:

• Experiment 1: σζ = 0, β = 1, α = 3.03, σα = 1.05, τ = 3.44, στ = 1.93, σγ = 1.09, σλ = 0.36,

σψ = 0.41, σξ = 0.37, φ = 0.77, σω = 1.21, θ = 0.67 and σχ = 1.54.

7The results are highly robust over alternative dimensions of N . These results are available on request.
8γi and λi are normalized to have mean 1 and rwt and πw

t to have mean 0

20



Next, we consider two cases with non-zero forecasting errors. From rational expectations, the forecast

error ζit is assumed be white noise

ζit ∼ i.i.d.N
(
0, σ2

ζ

)
. (19)

Experiment 2 sets σζ = 0.75 which implies that 95% of the quarterly forecasting errors lies between

−1.5 and +1.5 %points while for experiment 3 which sets σζ = 1.25 this is between −2.5 and +2.5

%points. These experiments are in line with the results in Mankiw et al. (2004) who find that the RMSE

of forecasting inflation from survey data on inflation expectations from several sources ranges from 1.07%

up to 1.29% over the period 1982Q3-2002Q1. Note that simply adding ζit to πeit from experiment 1 would

increase the variance of the simaulted πit. In order to ensure comparability of the simulation results over

the experiments, σ2
ω is therefore lowered such that the variance of the idiosyncratic component in πit, i.e.

ηit + ζit, is constant when varying σ2
ζ . As a result, also σ2

χ is adjusted to ensure that the variance of the

idiosyncratic component in iit, i.e. µit + βηit, remains constant over the experiments. Parameter values

that differ compared to experiment 1 are given by

• Experiment 2: σζ = 0.75, σω = 1.11, σχ = 1.64.

• Experiment 3: σζ = 1.25, σω = 0.91, σχ = 1.80.

We conduct two versions of experiments 2 and 3. In the first version, denoted 2a and 3a, ζit is generated

as a white noise process as specified in (19). The second version, denoted 2b and 3b, takes into account

that in our dataset we measure inflation as the year-on-year percent change in the consumer price index

which implies that the white noise forecast error builds into an MA(3) process. Therefore, ζit is assumed

to be generated as

ζit =
σζ√

4

3∑
j=0

ei,t−j , (20)

where eit ∼ i.i.d.N(0, 1). Note that the unconditional variance of ζit is σ2
ζ for both the white noise process

in (19) and the MA(3) process in (20).

For each experiment we compute the FE, CCEP, CCEP GMM, Cup and CupBC estimator. The

CCEP GMM estimator uses the first L = 8 available lags with q being adjusted according to the MA

structure in ζit. Reported are two-step GMM results with optimal weighting matrix constructed from

a Newey-West type of estimator with lag truncation set to 3. The CupBC estimator is calculated from

a long-run covariance matrix estimated using the Bartlett kernel with bandwidth set to 5. For each

estimator we report the mean bias (bias) of β̂, the standard deviation (sd) of the Monte Carlo distribution

of β̂, the root mean squared error (rmse), the mean of the estimated standard error (se) and the size

(size) of a t-test for the null hypothesis that β = 1. The analytical standard errors (sea) are robust to

heteroscedasticity and serial correlation in the error terms. As these robust standard errors only have

asymptotic validity, we also report bootstrap standard errors (seb). Bootstrap samples are obtained
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by resampling cross-sections as a whole as suggested by Kapetanios (2008)9. The bootstrap standard

errors are calculated as the standard deviation of the bootstrap distribution of β̂. Each experiment was

replicated 5000 times with bootstrap standard errors calculated from 1000 bootstrap replications.

Note that in all of the above experiments the setting θ = 0.67 implies that there is cointegration

between iit, πit and rwt . As next to the power we also want to analyze the size of the cointegration tests

discussed in Section 4.4, we will first simulate data for an experiment where µit is non-stationary such

that there is no cointegration between iit, πit and rwt . Experiment 0 therefore differs from experiment 1

in the following parameter value:

• Experiment 0: θ = 1.00.

We preform 3 different cointegration tests: (i) a naive MW unit root test on ε̂it which is non-stationary

in all experiments, (ii) a MW cointegration test on the defactored residuals ε̂it (using either the CCEP

or the Cup approach) and (iii) a PANIC which first decomposing ε̂it in a single common factor F̂t and an

idiosyncratic component êit and next performing an ADF-GLS unit root test on F̂t and a MW unit root

test on êit. For each of these tests, p-values are calculated from simulated finite-sample distributions (for

details, see the notes to Tables 1, 2 and 6).

5.2 Simulation results

The simulation results for a sample size of N = 21 and T = 112 are summarized in Table 7. Table 8

reports additional results on the bias of the various estimators when varying T from 50 to 500.

First look at the cointegration tests in Table 7. In Experiment 0 εit and εit are non-stationary as the

common factor rwt and the idiosyncratic error µit are both I(1). However, the MW test on the composite

error term ε̂it and on the defactored error term ε̂it are strongly oversized. This implies that these tests

should not be trusted as the null of no cointegration is wrongly rejected in far too many cases. In contrast,

the PANIC has the correct size both for a unit root test on F̂t and on êit. In Experiments 1-3 there is

cointegration between iit, πit and rwt . The MW test on the composite error term ε̂it rejects the null of no

cointegration between iit and πit in almost all cases though. This shows that the I(1) common factor rwt

is not detected by a standard panel unit root test ignoring the factor structure. As such, the finding in

Table 2 that there is cointegration between iit and πit should not be trusted. The PANIC has good size

for the unit root test on the non-stationary factor F̂t while having power close to 1 for the unit root test

on the stationary idiosyncratic errors êit in all cases. This shows that a PANIC on the composite error

term ε̂it is an appropriate approach to test for common factor-augmented panel cointegration.

Looking at the estimation results, first note that the FE estimator is spurious in all experiments which

results in an unacceptably high size using either the analytic or the bootstrap inference. This is in line with

Urbain and Westerlund (2011) who show that neglecting I(1) common factors in the residuals of a panel

regression implies spurious results. Second, the CCEP( GMM) and Cup(BC) estimators yield unbiased

estimates for β in experiments 0 and 1. Although the analytical standard errors underestimate the true

standard deviation of β̂ resulting in oversized inference, the bootstrap inference is more or less correctly

9Note that block bootstrapping is not valid for non-stationary data.
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Table 7: Monte Carlo simulation results: estimation and inference for N = 21 and T = 112

Rejection frequency

Estimation Inference H0 : β = 1 cointegration tests

precision analytical bootstrap MW PANIC ε̂it

bias sd rmse sea sizea seb sizeb ε̂it ε̂it F̂t êit

Experiment 0: θ = 1, ζit = 0.00

FE −0.00 0.36 0.36 0.07 0.69 0.21 0.22 0.24 - 0.04 0.06

CCEP −0.00 0.18 0.18 0.06 0.46 0.18 0.04 0.20 0.64 0.04 0.05

CCEP GMM −0.00 0.19 0.19 0.08 0.42 0.20 0.04 0.20 0.65 0.04 0.05

Cup −0.00 0.19 0.19 0.04 0.71 0.16 0.10 0.21 0.27 0.04 0.05

CupBC −0.01 1.70 1.70 0.16 0.42 1.96 0.06 0.25 0.34 0.04 0.08

Experiment 1: θ = 0.67, ζit = 0.00

FE 0.00 0.20 0.20 0.02 0.82 0.06 0.60 0.94 - 0.04 1.00

CCEP 0.00 0.08 0.08 0.04 0.38 0.09 0.06 0.91 1.00 0.03 1.00

CCEP GMM 0.00 0.09 0.09 0.05 0.29 0.09 0.07 0.90 1.00 0.03 1.00

Cup −0.00 0.05 0.05 0.01 0.59 0.05 0.09 0.91 1.00 0.03 1.00

CupBC −0.00 0.07 0.07 0.04 0.30 0.07 0.06 0.91 1.00 0.03 1.00

Experiment 2a: θ = 0.67, ζit is white noise with σζ = 0.75

FE −0.03 0.20 0.20 0.02 0.85 0.05 0.63 0.96 - 0.05 1.00

CCEP −0.26 0.07 0.27 0.03 1.00 0.07 0.93 0.87 1.00 0.04 1.00

CCEP GMM 0.01 0.11 0.11 0.07 0.21 0.11 0.05 0.91 1.00 0.04 1.00

Cup −0.07 0.06 0.09 0.01 0.81 0.05 0.28 0.92 1.00 0.03 1.00

CupBC 0.04 0.07 0.08 0.03 0.46 0.06 0.13 0.92 1.00 0.04 1.00

Experiment 2b: θ = 0.67, ζit is MA(3) with σζ = 0.75

FE −0.03 0.20 0.20 0.02 0.84 0.05 0.62 0.97 - 0.05 1.00

CCEP −0.25 0.08 0.26 0.04 0.99 0.08 0.86 0.89 1.00 0.03 1.00

CCEP GMM 0.05 0.19 0.20 0.17 0.09 0.20 0.05 0.93 1.00 0.04 1.00

Cup −0.07 0.06 0.09 0.02 0.80 0.05 0.26 0.94 1.00 0.03 1.00

CupBC −0.01 0.08 0.08 0.04 0.30 0.07 0.07 0.95 1.00 0.03 1.00

Experiment 3a: θ = 0.67, ζit is white noise with σζ = 1.25

FE −0.08 0.19 0.21 0.02 0.87 0.05 0.71 0.96 - 0.05 0.99

CCEP −0.63 0.06 0.63 0.03 1.00 0.06 1.00 0.67 1.00 0.04 0.97

CCEP GMM 0.02 0.17 0.17 0.14 0.10 0.17 0.06 0.92 1.00 0.04 0.99

Cup −0.21 0.16 0.26 0.02 0.98 0.09 0.61 0.87 1.00 0.03 1.00

CupBC 0.02 0.09 0.10 0.03 0.50 0.08 0.09 0.94 1.00 0.04 1.00

Experiment 3b: θ = 0.67, ζit is MA(3) with σζ = 1.25

FE −0.08 0.19 0.21 0.02 0.87 0.05 0.68 0.98 - 0.06 1.00

CCEP −0.61 0.07 0.62 0.04 1.00 0.07 1.00 0.67 1.00 0.04 0.98

CCEP GMM 0.16 0.42 0.45 0.42 0.02 0.41 0.05 0.89 1.00 0.05 0.99

Cup −0.20 0.15 0.25 0.02 0.98 0.10 0.98 0.91 1.00 0.03 1.00

CupBC −0.08 0.14 0.16 0.04 0.44 0.10 0.13 0.94 1.00 0.03 1.00

Notes: Results based on 5000 Monte Carlo replications. ‘Bias’ is the mean bias, ‘sd’ is the standard deviation of the Monte
Carlo distribution of β̂ and ‘rmse’ is its root mean squared error. The standard error is the mean of either the appropriate
analytical estimate ‘sea’ or the bootstrap estimate ‘seb’ for the standard deviation of β̂. The reported sizes ‘sizea’ and
‘sizeb’ are computed at the 5% nominal level for a double-sided t-test for the null hypothesis that β = 1 using ‘sea’ and
‘seb’ respectively.
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sized. Especially for experiment 0 these are remarkable results as non-stationarity of the idiosyncratic

error µit implies that there is no cointegration between iit, πit and rwt . So taking into account the I(1)

common factor seems to reastablish the result in Phillips and Moon (1999) that in a panel consistent

estimation and valid inference is possible regardless of whether there is cointegration or not (as long the

non-stationary of the error terms is not induced by a common factor). Third, introducing endogeneity in

experiments 2 and 3 results in a downward bias for both the CCEP and the Cup estimator. Especially

for the CCEP estimator this bias is very strong while Table 8 shows that it does not disappear as T grows

larger. This is in line with the argument in Section 4.3.2 that the CCEP estimator is inconsistent in this

case. The bias of the Cup estimator is smaller, although also sizable in experiment 3, but disappears as

T grows larger. The CCEP GMM and CupBC estimators significantly improve on the performance of

the CCEP and Cup estimators. Their bias is relatively small in the cases 2a, 2b and 3a. Only in case

3b the bias is somewhat bigger, especially for the CCEP GMM estimator. Table 8 shows that the bias

disappears as T grows large. Using the bootstrap inference, the size is acceptable for both estimators.

Table 8: Monte Carlo simulation results: bias for N = 21 and T = 50, 100, 250, 500

Experiment 2a Experiment 2b

T 50 100 250 500 50 100 250 500

FE −0.06 −0.04 −0.02 −0.01 −0.05 −0.04 −0.02 −0.01

CCEP −0.32 −0.27 −0.22 −0.21 −0.29 −0.25 −0.22 −0.20

CCEP GMM 0.04 0.01 0.01 0.00 0.12 0.06 0.02 0.01

Cup −0.12 −0.07 −0.04 −0.02 −0.11 −0.07 −0.03 −0.02

CupBC −0.01 0.04 0.05 0.03 −0.07 −0.02 0.01 0.01

Experiment 3a Experiment 3b

T 50 100 250 500 50 100 250 500

FE −0.14 −0.09 −0.04 −0.02 −0.14 −0.09 −0.04 −0.02

CCEP −0.70 −0.64 −0.58 −0.55 −0.66 −0.62 −0.57 −0.55

CCEP GMM 0.02 0.02 0.01 0.01 −0.59 0.17 0.09 0.04

Cup −0.38 −0.23 −0.10 −0.05 −0.34 −0.21 −0.09 −0.05

CupBC −0.18 0.00 0.06 0.04 −0.26 −0.10 0.01 0.01

6 Estimation results

The estimation results for the common factor-augmented Fisher equation are reported in Table 9. All

estimators are obtained by including the EMS dummies as outlined in Section 3.4. Consistent with the

results for the FE estimator reported in Section 3.5, the PANIC shows that there is an I(1) common factor

and an I(0) idiosyncratic component in the estimated composite residuals ε̂it of the CCEP( GMM) and

Cup(BC) regressions. The FE estimator is spurious in this case such that inference should not be trusted.

Note that the non-stationarity of the composite error term is not detected by the MW panel unit root

test on the FE composite residuals ε̂it but, despite the huge size distortions documented by the Monte

Carlo simulation, is picked up when using CCEP( GMM) and Cup(BC) composite residuals. PANIC

points to a non-stationary common factor and a stationary idiosyncratic component for all estimators.
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Table 9: Estimation results

Sample period: 1983:Q1-2010:Q4, 21 countries

Inference H0 : β = 1 p-values cointegration tests

analytical bootstrap MW PANIC ε̂it

β̂ se t-stat p-val se t-stat p-val ε̂it ε̂it F̂t êit
FE 1.10 0.04 2.32 0.02 0.08 1.24 0.21 0.01 - 0.44 0.00

CCEP 0.60 0.04 −10.91 0.00 0.08 −5.35 0.00 0.98 0.00 0.83 0.00

CCEP GMM 1.00 0.10 0.03 0.97 0.10 0.03 0.97 0.13 0.00 0.56 0.00

Cup 0.58 0.02 −24.63 0.00 0.07 −5.60 0.00 0.99 0.00 0.83 0.00

CupBC 0.83 0.04 −4.52 0.00 0.10 −1.64 0.10 0.79 0.00 0.73 0.00

Notes: All estimators are obtained by including the EMS dummies as outlined in Section 3.4. The Cup(BC) estimators are
obtained setting the number of common factors r = 1. The CCEP GMM estimator is obtained by setting q = 3 and L = 8.

Looking at the coefficient estimates from the various estimators, these range from low values of

0.60 and 0.58 for the CCEP and Cup estimators, over 0.83 for the CupBC estimator to 1.00 for the

CCEP GMM10 estimator. This variation is quantitatively very much in line with the simulation results

from experiment 3b in Section 5. This would imply that the CCEP GMM and CupBC are the most

accurate estimators, with the former still being somewhat upward biased and the latter being somewhat

downward biased. The bootstrap inference shows that the hypothesis that β = 1 is not rejected for both

the CCEP GMM estimator and the CupBC estimator. The overall conclusion is that after taking into

account a non-stationary common factor, the full Fisher hypothesis is not rejected by the data.

7 Conclusion

The Fisher effect states that inflation expectations should be reflected in nominal interest rates in a

one-for-one manner to compensate for changes in the purchasing power of money. Despite its wide

acceptance in theory, much of the empirical work fails to find favorable evidence. This paper examines

the Fisher effect in a panel of quarterly data for 21 OECD countries over the period 1983-2010. Using a

FE regression of nominal interest rates and inflation we find a slope coefficient which is not significantly

different from 1 while a MW panel cointegration test finds the error terms to be stationary. These results

support the full Fisher hypothesis. However, a non-stationary common factor in the error terms of this

alleged cointegrating relation is detected using PANIC. This implies that the FE regression results are

spurious. Our simulation results confirm that a non-stationary common factor in the error terms of the

Fisher equation leads to a substantial size bias for the standard MW panel test ignoring cross-sectional

dependence and to deceptive inference for the FE estimator. A possible interpretation for the non-

stationary common factor is that it reflects permanent common shifts in the real interest rate induced

by e.g. shifts in time preferences, risk aversion and the steady-state growth rate of technological change.

We next control for an unobserved non-stationary common factor in estimating the Fisher equation using

both the CCEP and the Cup estimation approach. Endogeneity of observed inflation induced by a rational

expectations forecasting error is taken into account using a bias-corrected version of the Cup estimator

10This result is robust over alternative choices of L.
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and a GMM version of the CCEP estimator. A small-scale Monte Carlo simulation shows that these

two estimators perform reasonably well for the modest sample size T = 112, N = 21 that is available

for our empirical analysis. From the estimation results, the hypothesis of a one-for-one relation between

the nominal interest rate and inflation cannot be rejected using either the CupBC or the CCEP GMM

estimator.
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