

FACULTEIT ECONOMIE
EN BEDRIJFSKUNDE

TWEEKERKENSTRAAT 2
B-9000 GENT

Tel. : 32 - (0)9 – 264.34.61
Fax. : 32 - (0)9 – 264.35.92

WORKING PAPER

To Tune or not to Tune: Rule Evaluation for

Metaheuristic-based Sequential Covering Algorithms

Minnaert Bart *

Martens David†

De Backer Manu‡

Baesens Bart§

January 2012

2012/769

* Affiliated researcher at Dept. Management Information Science and Operations
Management, Faculty of Economics and Business Administration, Ghent University, Belgium.
Department of Business Administration and Public Management, University College Ghent, Belgium.
Faculty of Applied Economics, University of Antwerp, Belgium.
† Faculty of Applied Economics, University of Antwerp, Belgium.
‡ Department of Business Administration and Public Management, University College Ghent, Belgium.
Faculty of Applied Economics, University of Antwerp, Belgium.
Department of Decision Sciences Information Management, K.U.Leuven, Belgium.
§ Department of Decision Sciences Information Management, K.U.Leuven, Belgium.

 D/2012/7012/02

To Tune or not to Tune: Rule Evaluation for

Metaheuristic-based Sequential Covering Algorithms

Bart Minnaert · David Martens · Manu

De Backer · Bart Baesens

Abstract While many papers propose innovative methods for constructing in-
dividual rules in separate-and-conquer rule learning algorithms, comparatively
few study the heuristic rule evaluation functions used in these algorithms to
ensure that the selected rules combine into a good rule set. Underestimating
the impact of this component has led to suboptimal design choices in many
algorithms. The main goal of this paper is to demonstrate the importance of
heuristic rule evaluation functions by improving existing rule induction tech-
niques and to provide guidelines for algorithm designers. We first select optimal
heuristic rule learning functions for several metaheuristic-based algorithms and
empirically compare the resulting heuristics across algorithms. This results in
large and significant improvements of the predictive accuracy for two tech-
niques. We find that despite the absence of a global optimal choice for all
algorithms, good default choices seem to exist for families of algorithms. A
near-optimal selection can thus be found for new algorithms with minor ex-
perimental tuning. A major contribution is made towards balancing a model’s
predictive accuracy with its comprehensibility, as the parametrized heuristics
offer an unmatched flexibility when it comes to setting the trade-off between
accuracy and comprehensibility.

Bart Minnaert (E-mail: Bart.Minnaert@Ugent.be)
Department of Business Administration and Public Management, University College Ghent,
Ghent University, Belgium
Faculty of Applied Economics, University of Antwerp, Belgium

David Martens (E-mail: David.Martens@ua.ac.be)
Faculty of Applied Economics, University of Antwerp, Belgium

Manu De Backer (E-mail: Manu.DeBacker@Hogent.be)
Department of Business Administration and Public Management, University College Ghent,
Ghent University, Belgium
Faculty of Applied Economics, University of Antwerp, Belgium
Department of Decision Sciences Information Management, K.U.Leuven, Belgium

Bart Baesens (E-mail: Bart.Baesens@econ.kuleuven.be)
Department of Decision Sciences Information Management, K.U.Leuven, Belgium

2 Bart Minnaert et al.

Keywords Classification · Rule Induction · Heuristics · Rule Evaluation ·

Sequential Covering

1 Introduction

Rule sets are a popular modeling technique for the classification task. Many
techniques have been developed for the induction of first-order rules from a
set of examples to predict a nominal target variable on unseen data. While
sophisticated non-linear techniques such as support vector machines (SVM)
and artificial neural networks (ANN) offer high performance (Baesens et al,
2003b; Lessmann et al, 2008; Van Gestel et al, 2004), rule sets can provide
other advantages. In some important domains, such as medical and financial
applications, there is a need for validation by domain experts (Baesens et al,
2003a; Pazzani et al, 2001; Verbeke et al, 2011). Models in these domains
thus need to be comprehensible. The non-linear techniques result in black box
models, while rule lists can provide more comprehensibility. Rule induction
algorithms can be applied in these domains or can be combined with non-
linear techniques to build a comprehensible rule set (Andrews et al, 1995;
Martens et al, 2007a).

Several strategies have been used in these rule induction algorithms to
search for good rule sets (Tan et al, 2005). A direct approach would be to op-
timize an entire rule set, as seen in several genetic algorithms (Freitas, 2003).
An indirect approach consists of extracting rule sets from decision trees (Quin-
lan, 1993). However, the central problem we study in this paper occurs in al-
gorithms that use the separate-and-conquer or sequential covering strategy to
build ordered rule sets (Fürnkranz, 1999). In this strategy, individual rules are
iteratively induced and then appended to the rule set. It reduces the bigger
problem of finding the best rule set to the lesser problem of finding the best
rule, which is still a complex task.

A key difficulty arises in the separate-and-conquer strategy because the
goals - e.g. accuracy, comprehensibility - are defined with respect to the re-
sulting rule set, while the search procedure evaluates and induces each rule
individually. The heuristic rule evaluation function can only define the objec-
tives for the search procedure. It thus has to define these objectives in such a
way that the overall goals are maximized. However, exactly how the heuristic
rule evaluation function affects the overall performance of the rule set is not
clear.

Almost all new algorithms that use this separate-and-conquer strategy will
focus on novel solutions to finding the best rule. However, the important prob-
lem of defining what the best rule is, is still unresolved and receives a lot less
attention from researchers (Witten and Frank, 2005). In general, a heuristic
rule evaluation function is used that defines the quality of a rule in a way that
the algorithm will find the best rule set. Several such heuristic rule evalua-
tion functions have been proposed by various authors over the years. This is
usually as part of a new algorithm with some small-scale experimental com-

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 3

parison with one or more alternatives. For example, the PSO/ACO2 algorithm
introduced a heuristic1 that was claimed to perform better than the heuris-
tic implemented in PSO/ACO (Holden and Freitas, 2008). Fürnkranz and
Flach (2005) consolidated most of the earlier research in a theoretical analy-
sis that proves the equivalence of several proposed heuristics. A recent study
by Janssen and Fürnkranz (2010) is the first large-scale experimental bench-
marking study of heuristic rule evaluation functions for separate-and-conquer
rule induction. In the study, several heuristics - including parametric heuris-
tics - are evaluated in the CN2 algorithm (Clark and Niblett, 1989) with the
goal of finding the optimal heuristic for this task. Recently, a different view
was taken by Salama and Abdelbar (2011) in a small scale empirical study
of heuristics on µAntMiner. While Janssen and Fürnkranz (2010) focus on
optimal accuracy, Salama and Abdelbar (2011) reason that comprehensibil-
ity is important as well and investigate the trade-off between both. This is a
valid concern as rule sets are often used when comprehensibility is required.
However, the study only investigates several non-parametrized heuristics on
a single algorithm. Janssen and Fürnkranz (2010) further observed that the
relative performance of heuristics may be algorithm-dependent. This point of
view was further argued by Janssen and Fürnkranz (2009) in a study on the
over-searching phenomenon, which reports that the relative performance of
heuristics depends on the exhaustiveness of the search.

This interplay between the heuristic rule evaluation function and the char-
acteristics of the algorithm still requires further investigation. We examine this
interplay in algorithms that use metaheuristic search to optimize individual
rules. Metaheuristics are high level strategies for iteratively finding high qual-
ity solutions given a search space and an objective function. First we attempt
to improve several metaheuristic-based algorithms by selecting a heuristic rule
evaluation function that is more optimal with respect to the predictive accu-
racy. As the heuristic rule evaluation function is a hyper component that is
part of many algorithms, we further compare the resulting functions in order
to provide guidelines for future research. Lastly, we investigate the usefulness
of parametrized heuristics to select a suitable trade-off between accuracy and
comprehensibility. To the best of our knowledge, this is the first large scale
empirical study of heuristic rule learning functions on multiple algorithms.

The rest of this paper is organized as follows: in Section 2, the background
regarding sequential covering, heuristic rule evaluation functions and the algo-
rithms used in this work is provided; the methodology and our experimental
setup is presented in detail in Section 3; Section 4 contains the empirical results
of the experiments; in Section 5, we discuss the implications of the experimen-
tal results and in Section 6 we summarize the main findings of this work and
present guidelines for incorporating this work into new or existing algorithms.

1 Several terms are encountered in the literature that can refer to heuristic rule evalua-
tion functions. Alternative terminology includes ‘rule learning heuristic’, ‘(rule) evaluation
function’, ‘fitness function’ and ‘(rule) quality measure’. For the sake of brevity, the term
‘heuristic’ is used in this text where applicable.

4 Bart Minnaert et al.

2 Sequential Covering

A popular approach to rule induction is the separate-and-conquer or sequential
covering strategy. This strategy constructs an ordered rule set by iteratively
selecting rules and is used by many well-known algorithms such as RIPPER
(Cohen, 1995) and CN2 (Clark and Niblett, 1989). The key idea behind this
strategy is that a rule set that contains only good rules is likely a good rule set
in turn. Under this assumption, the algorithm reduces the problem of finding
the best rule set to the problem of finding the best rule. As we will explain
in the next paragraphs, a good heuristic rule evaluation function is a key
component of this strategy that ensures the extracted rules form a good rule
set.

Algorithm 1 contains an overview of the required components of a sequen-
tial covering algorithm. Starting with the complete training set, a first rule is
extracted that accurately covers a large part of the training set. The rule is
added to the empty rule list and all covered examples are removed from the
training set. The algorithm then continues to find rules for the uncovered ex-
amples, removing all examples covered in each step, until a stopping criterion
is reached. All remaining examples are then covered by a default rule that
assigns the majority class to all examples. Each algorithm using this strategy
has to implement the procedures FINDBESTRULE and STOPCRITERION.
Other procedures can be added as well, for example RIPPER introduces a
postprocessing step to further optimize the rules, but they are not key to the
sequential covering strategy.

The first component of this algorithm is the stopping criterion. This com-
ponent determines when the rule set is complete and, ideally, cannot be further
improved by adding another rule, except for the default rule. A commonly used
stopping criterion is a lower bound on the number of uncovered examples. In
that case, rule induction is stopped when only a certain number or percentage
of examples is left in the training set. Alternative methods exist, for example
the early stopping criterion in AntMiner+ that tracks the performance of the
rule set on a separate validation set (Martens et al, 2007b).

The second component (FINDBESTRULE) is a procedure to extract a
good rule from a set of examples. Many different methods have been imple-
mented over the years to perform this complex task. In general, this is an
optimization problem of the quality of a rule over the space of all first or-
der rules. An exhaustive search of this space is infeasible for all but trivial
problems, so most algorithms propose a heuristic search procedure. One class
of traditional algorithms explicitly construct a rule by iteratively refining the
rule through specialization or generalization (Fürnkranz, 1999). Another class
of algorithms uses metaheuristic search to find a good rule. This class contains
genetic algorithms (GA), algorithms based on ant colony optimization (ACO),
particle swarm optimization (PSO) or hybrid algorithms.

The metaheuristic-based algorithms need to instantiate the components of
the metaheuristic search to the problem at hand - finding the best rule. Fur-
thermore they require an explicit function that defines the quality of a rule

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 5

Algorithm 1 Sequential Covering
RuleSet = ∅;
repeat

BestRule = FINDBESTRULE(Examples)
RuleSet = Ruleset ∪BestRule

Examples = Examples− Covered(BestRule)
until STOPCRITERION
RuleSet = RuleSet ∪DefaultRule

return RuleSet

to be optimized - the heuristic rule evaluation function. The algorithm thus
selects a rule with high values for the search space defined by the heuristic
rule evaluation function. In contrast, the construction algorithms employ a
search heuristic to further refine a solution in a local search procedure. Some
will employ a heuristic evaluation function to select the best refinement - e.g.
adding a condition - at each step and thus explicitely define a search space
that is traversed using methods such as hill climbing. Other algorithms how-
ever have no explicit function of the quality of a rule and measure the quality
of the refinement relative to the rule being refined using a more general gain
heuristic. These gain heuristics can not be applied in this study as it concerns
metaheuristic-based algorithms. These require a heuristic rule evaluation func-
tion that maps a single rule to a quality or fitness value. We will first give an
overview of heuristic rule evaluation functions. We conclude this section with
a brief description of the five algorithms that we will use in this study.

2.1 Heuristic rule evaluation functions

In general, heuristic rule evaluation functions map a rule R to a fitness value
h(R) with higher values corresponding to better rules. This fitness function is
usually specified as a function h(p, n, P,N) of several basic metrics: p and n
refer to respectively the number of correctly and incorrectly covered examples,
also referred to as true positives and false positives. P is the total number of
examples of the target class remaining in the training set, while N is the total
number of examples belonging to other classes. Both P and N are often used
to normalize the function and/or to take the class distributions into account.
Other basic metrics are used as well, for example the number of terms in a
rule can be used to introduce a bias towards rules with fewer terms, but the
majority of algorithms only uses the above metrics (Fürnkranz, 1999).

The search procedure searches the rule space for rules with high values
for the fitness function. This use as an evaluation function is most explicit
in algorithms that use metaheuristic search. In more traditional construction
algorithms, the function has a dual purpose. In these algorithms, it is also
used as a search heuristic in a hill climbing or beam search. The function
has to give high fitness values both to good rules and to rules that can be
refined into good rules. This is usually done through specialization of a rule
by adding extra terms. The results of Janssen and Fürnkranz (2009) suggest

6 Bart Minnaert et al.

that heuristics that work well in metaheuristic search do not necessarily work
well when used in a construction algorithm.

The question remains how to describe with these metrics what a good rule
is. Rules are better if they cover more true positives p and/or less false positives
n. However, generalizing a rule so that it covers more true positives often leads
to covering more false positives as well. A good trade-off is needed to satisfy
both conflicting goals. A naive approach consists of applying the objective
of maximized precision, p/(p + n), of the rule set to each rule individually.
The precision is however easily maximized by rules that cover only a single
training example. This approach thus leads to finding rules that cover few
examples. These rules typically do not generalize well and as a result the
precision of the rule set on test data will be low due to overfitting. On the other
hand, the (positive) coverage, p/(P +N), looks exclusively at the number of
correctly covered examples and can easily be maximized by a rule that covers
all examples. Several heuristics make an explicit trade-off between precision
and coverage. On one hand, weighing coverage too heavily results in rules
with low precision on both training and test set. On the other hand, weighing
coverage not heavily enough results in rules with a precision that is high on
the training set, but low on the test set.

The heuristics used in practice are often not uniquely used for this task.
Several tasks require the use of an evaluation function or heuristic that bal-
ances true positives and false positives. This type of measure is used in for
example unordered rule induction (An and Cercone, 2000), association anal-
ysis (Tan et al, 2002), contrast set, emerging pattern, subgroup mining (No-
vak et al, 2009) and even for the evaluation of classifiers (Witten and Frank,
2005). Heuristics are often borrowed from these related tasks. In the case of
separate-and-conquer rule learning, precision should be weighted more heav-
ily than coverage (Janssen and Fürnkranz, 2009). This is probably due to an
asymmetry introduced by separate-and-conquer. When a rule is appended to
the rule set, the examples are permanently covered. The false positives can
thus no longer be corrected by the algorithm.2 However, the false negatives
can still be covered by subsequent rules. Heuristics that perform well in other
domains do not necessarily do so for separate-and-conquer rule learning due to
this asymmetry. In (Janssen and Fürnkranz, 2009) for example, a parameter
value that favors coverage was taken for the Klösgen measure from research on
subgroup discovery (Wrobel, 1997). This parameter setting turned out to have
low performance for separate-and-conquer. Several algorithms do not take this
asymmetry into account, for example AntMiner and AntMiner+ which are in-
cluded in Section 2.2.

Many different heuristics are used in practice. A 1999 review of separate-
and-conquer rule learning (Fürnkranz, 1999) contains an overview of heuristics
used in construction algorithms. A recent survey of swarm intelligence shows
an overview of the heuristics used in this area, which comprises ant colony opti-

2 The RIPPER algorithm is an exception as corrections can still be made in the post-
processing step.

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 7

mization, particle swarm optimization and prey models (Martens et al, 2011).
Eight separate-and-conquer algorithms were found in this domain of which six
contain the same heuristic, being the multiplication of sensitivity and speci-
ficity. This heuristic was originally introduced in AntMiner (Parpinelli et al,
2002) and most likely propagated in this sub domain. A survey of genetic
algorithms by Fernández et al (2010) shows that few algorithms in this class
follow the separate-and-conquer strategy. Those that do propose their own new
heuristic. Fürnkranz and Flach (2005, 2003) perform a theoretical analysis to
demonstrate that several of the heuristics used in practice are equivalent to
each other. They are often special cases of more general parametrized heuris-
tics in which the trade-off can be set through a parameter. This study is
limited to these parametrized heuristics as they allow a finely tuned trade-off
and cover most basic heuristics. For example, Salama and Abdelbar (2011)
employ 10 fixed heuristics of which 6 are equivalent to specific instances of the
parametrized heuristics used in this study, including 3 out of 4 best performing
heuristics. Table 1 contains an overview of this trade-off for the parametrized
heuristics used in this study. We will discuss these heuristics in more detail in
the next paragraphs. Heuristics implemented in algorithms used in this study
are discussed in Section 2.2.

2.1.1 Klösgen measure

fK(ω) = (
p+ n

P +N
)ω · (

p

p+ n
−

P

P +N
) (1)

The Klösgen measure is defined by (1). It multiplicatively trades off full
coverage and precision. An interesting feature is that the precision is cor-
rected for the class distribution. The Klösgen parameter ω controls the weight
assigned to the coverage. For ω = 0, the Klösgen measure equals precision. At
ω = 1, the Klösgen heuristic is equivalent to the weighted relative accuracy,
p/P −n/N . This setting balances the true positive rate and false positive rate.
For higher values of ω, coverage dominates the equation. In the limit ω → ∞,
the Klösgen measure equals full coverage. This measure was first proposed
in (Klösgen, 1992) and is used in subgroup discovery. It was recently intro-
duced for separate-and-conquer rule induction with good results (Janssen and
Fürnkranz, 2009). There it was shown that ω < 1 is the optimal region for
separate-and-conquer rule induction.

Table 1 Precision vs. coverage trade-off for heuristics

Heuristic Precision Balanced Coverage

Klösgen ω = 0 ω = 1 ω → ∞

F-measure β = 0 β = 1 β → ∞

Relative cost c = 0 c = 0.5 c = 1
m-estimate m = 0 m → ∞

8 Bart Minnaert et al.

2.1.2 F-measure

fF (β) =
(β2 + 1) · p

p+n
·

p

P

β2 ·
p

p+n
+ p

P

(2)

= (β2 + 1) ·
p

p+ n+ β2P
(3)

Equation (2) shows the F-measure. It is the weighed harmonic mean of
precision and coverage. For β = 0, the F-measure equals precision. Precision
and recall are weighed equally for β = 1. In the limit β → ∞, the F-measure
becomes recall. It was originally proposed as an evaluation measure in infor-
mation retrieval, where the parameter indicates that the user attaches β times
as much importance to recall as precision (van Rijsbergen, 1979).

Equation (2) can be rewritten as (3), in which the constant factor (β2+1)
can be ignored for rule evaluation. The F-measure can thus be interpreted
as a generalization of the Laplace-corrected precision given by (4), of which
PSO/ACO2 implements a variant. The assumed a-priori coverage of a rule is
β2P . It is also related to the m-estimate, which is described further on.

fLaplace =
p+ 1

p+ n+ 2
(4)

2.1.3 Relative cost measure

fRCM (c) = c ·
p

P
− (1− c) ·

n

N
(5)

The relative cost measure as used by Janssen and Fürnkranz (2010) is
defined by (5). It balances the true positive rate and false positive rate through
a cost parameter c. For c = 0, the relative cost measure exclusively punishes
the false positive rate, which leads to smaller high precision rules. On the
other hand, it purely rewards the true positive rate for c = 1, which leads to
high coverage rules. A balance is found for c = 0.5, for which the relative cost
measure equals the weighted relative accuracy as with the Klösgen measure.

2.1.4 m-estimate

fm(m) =
p+m ·

P
P+N

p+ n+m
(6)

The m-estimate is defined by (6). It is an extension to the well-known
Laplace corrected precision. Where the Laplace correction assumes an a priori
coverage of one correctly and one incorrectly classified example, the m-estimate
assumes an a priori coverage of m examples with a distribution equal to the
class distribution (Cestnik, 1990). For m = 0, an a priori coverage of zero

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 9

leads to precision. Increasing m weighs coverage more heavily. It was shown
by Fürnkranz and Flach (2003) that the m-estimate converges towards the
weighted relative accuracy in the limit m → ∞.

The interpretation of the parameter m as the number of a priori covered
examples implies that the value ofm scales with the size of the dataset. Indeed,
artificially increasing the size of the dataset by duplicating all examples with
a factor α, is equivalent to setting the parameter to m/α. Larger datasets
typically require higher values for m and thus some minor experimentation
was done with variants that might scale well, but surprisingly the proposed
variants had a lower performance. We speculate this did not work because
the number of rules typically increases too with the dataset size, making the
required increase in m non-linear.

2.2 Algorithms

The many separate-and-conquer rule mining algorithms implement a wide va-
riety of ideas for extracting good rules. In this work, we focus on algorithms
that use a metaheuristic search to perform this task. We included two ACO-
based algorithms, one PSO/ACO hybrid algorithm and one genetic algorithm.
We further included the java implementation of the well-known construction
algorithm RIPPER to discuss potential differences for construction algorithms
and metaheuristic-based algorithms with regards to the rule evaluation func-
tion. To summarize, the five algorithms included are AntMiner, AntMiner+,
PSO/ACO2, HIDER and RIPPER. This selection is based on available open
source implementations, reported good performance in literature and includes
at least one leading algorithm per class. Furthermore, closely related algo-
rithms, such as the AntMiner variants, are left out of the selection as they are
likely to produce very similar results.

Before we give a brief summary of these algorithms, we will point out a few
general characteristics of these algorithms that may influence the performance
of the heuristic rule evaluation functions. An overview of these characteristics is
given in Table 2. As already discussed in Section 2.1, heuristics in construction
algorithms also evaluate the ability of partial rules to be refined into good rules
later on. As these good partial rules typically have a higher coverage, this can
influence the heuristic. A second general algorithmic factor is concerned with
how the fitness value is processed. Most algorithms will use this fitness value
to establish an order relation between the rules. However some algorithms

Table 2 Algorithmic components influencing rule evaluation

Algorithm Rule evaluation function Partial rules Exact values Pruning Min cases

AntMiner+ precision + coverage ✓ ✓
AntMiner sensitivity × specificity ✓ ✓ ✓

PSO/ACO2 laplace corrected precision ✓ ✓ ✓
HIDER accuracy + geometric coverage ✓
RIPPER information gain ✓ ✓

10 Bart Minnaert et al.

also process the exact values, most notably the ACO-based algorithms. These
algorithms may find it harder to leverage upon very small differences in fitness
between rules.3 Functions that are too flat may have lower performance in these
algorithms. A third factor is the presence of overfitting-avoidance measures
such as pruning. Pruning typically guides the search towards higher coverage
rules. Another measure used in several algorithms is a lower bound on the
number of true positives covered. These measures can prevent some of the
negative impact due to overfitting of heuristics focussing on precision.

2.2.1 AntMiner

AntMiner is the first application of ant colony optimization for the classifi-
cation task (Parpinelli et al, 2002, 2001).4 It implements the separate-and-
conquer strategy with the standard stopping criterion of appending rules until
the number of remaining examples falls below a certain level, specified by
max uncovered cases. Individual rules are mined through the application of
ACO.

When applying the ACO metaheuristic, first an environment in which the
ants operate needs to be defined in a way that when the ants move, they
incrementally construct a solution to the problem at hand, in this case the
classification problem. The AntMiner environment is defined as a directed
graph, where for each variable there are as many nodes as there are values
for that variable. Bidirectional edges exist between all nodes from different
variables. This choice of environment allows the ants to choose which variable
to add next, but limits the algorithm to nominal variables only.

AntMiner implements the Ant System variant of the ACO metaheuris-
tic (Dorigo et al, 1996). As an ant traverses the environment, it constructs a
rule. This rule is then evaluated and pheromone is deposited on the edges vis-
ited by the ant proportional to the fitness value of the rule. Pheromone is also
evaporated at this time through the normalization of the pheromone matrix.
This allows the ants to ‘forget’ bad paths. When ants traverse the environ-
ment, they are more likely to select edges that have high pheromone levels.
New ants traverse the environment until either the threshold no of ants is
reached or no rules converg consequent ants construct the same rule. Fur-
thermore, AntMiner employs pruning as a hill climbing local search before
updating the pheromone. It also implements a min cases per rule parameter,
which specifies the minimal coverage of a rule. Both measures guide the search
towards higher coverage rules.

fAntMiner =
p

P
·
N − n

N
(7)

3 Negative fitness values are also not allowed in these algorithms. For this reason, all
parametrized heuristics described in the previous section were incremented with a constant
to bring the lowest possible value at precisely zero.

4 AntMiner is available at http://sourceforge.net/projects/guiantminer/

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 11

The heuristic used is the sensitivity multiplied with specificity, given by
(7). This heuristic balances the sensitivity and specificity measures that are
often used to evaluate classifiers in the medical domain (Witten and Frank,
2005). It was originally proposed by Lopes et al (1997) as a fitness function for
a fuzzy logic classifier in which the weights were optimized through a genetic
algorithm. This heuristic was then introduced for heuristic rule evaluation
function in a separate-and-conquer setting in AntMiner. A recent survey of
Swarm intelligence algorithms shows that the use of this heuristic propagated
to all but two algorithms in this domain (Martens et al, 2011). This is not sur-
prising as most ACO-based algorithms are in fact based on AntMiner. Salama
and Abdelbar (2011) noted that several other non-parametrized heuristics have
a higher performance on both predictive accuracy and comprehensibility on
µAntMiner.

2.2.2 AntMiner+

A second ACO-based algorithm is AntMiner+ (Martens et al, 2007b).5 While
similar in name, it differs from AntMiner in several key areas such as the
metaheuristic variant used and the environment used. Aside from the search
procedure, AntMiner+ also introduces an early stopping criterion. For this
criterion, the performance of the rule set is tracked on a separate validation
set to determine when to stop the addition of new rules.

The environment is defined as a directed acyclic graph (DAG), so that the
ants can choose their paths more effectively. Furthermore, to allow for inter-
val rules, the construction graph additionally exploits the difference between
nominal and ordinal variables: each nominal variable has one node group (with
the inclusion of a dummy vertex indicating the variable does not occur in the
rule), but for the ordinal variables however, two node groups are built to allow
for intervals to be chosen by the ants. The first node group corresponds to the
lower bound of the interval and the second node group determines the upper
bound.

AntMiner+ implements the better performing MAX-MIN Ant System (Stützle
and Holger, 2000). no ants ants traverse the environment in each iteration, but
only the best rule is pruned and reinforced through a pheromone update. This
allows for a better exploitation of the best solution found. The range of possi-
ble pheromone trails is limited to an interval [τmin, τmax] so as to avoid early
stagnation of the search. The initial pheromone value of each trail is set at
τmax. This determines a higher exploration at the beginning of the algorithm.

fAntMiner+ =
p

p+ n
+

p

P +N
(8)

AntMiner+ also proposes a new heuristic, which is the sum of the confi-
dence - synonymous for precision - and (positive) coverage given by (8). This
heuristic thus balances precision and coverage directly in an additive way. A

5 AntMiner+ is available at http://www.antminerplus.com

12 Bart Minnaert et al.

potential problem with this approach is associated with classes that occur fre-
quently in the dataset. A rule that assigns all examples to the majority class,
can simultaneously maximize coverage and maintain a relatively high preci-
sion. To avoid this, AntMiner+ excludes rules for the majority class from the
search.

2.2.3 PSO/ACO2

PSO/ACO2 is a hybrid algorithm that combines ant colony optimization with
particle swarm optimization (Holden and Freitas, 2008).6 This combination
is used to build rule-based classification models that can handle both nomi-
nal and continuous variables. While for PSO implementations nominal vari-
ables need to be encoded as binary variables, and ACO implementations re-
quire discretization, PSO/ACO2 directly deals with both types of variables.
This technique extends and refines the PSO/ACO algorithm by the same
authors (Holden and Freitas, 2005). This algorithm also deviates substan-
tially from the standard separate-and-conquer strategy. In fact, separate-and-
conquer is run once for each class individually. All resulting rules are then
ordered by fitness value and pruning is done to remove unnecessary terms and
rules.

The selection of the best rule happens in two phases. First, a hybrid
PSO/ACO search constructs a rule using only the nominal variables. After-
wards the continuous variables are used to improve this rule with a relatively
standard PSO procedure. The hybrid algorithm contains several particles that
each contain their own pheromone matrix. A random seed example is selected
for each particle that is used to define the environment for that particle. Each
particle is thus basically running a separate limited ACO search in which a
particle can only choose whether it adds the terms from its seed example.
However, the particles are arranged in a 2D-grid. They influence each other
through the pheromone update rule, which takes into account the best rule
found in the particle’s neighborhood. The pheromone update is elitist in that
it only reinforces based on the best rules found by the particle and its neigh-
bors. This way, each particle stochastically constructs a rule based on its seed
example and its associated pheromone matrix. If this rule has a higher fitness
value than the best encountered by the particle, this new rule is remembered
by the particle. Each particle then updates its pheromone matrix based on
the best rules encountered by this particle and its neighbors. This is repeated
max iterations times, after which the best rule encountered is selected.

fPSO/ACO2 =
p+ 1

p+ n+ 1
(9)

PSO/ACO2 employs a version of the Laplace corrected precision as given
by (9). Interestingly, the heuristic was changed from the sensitivity×specificity
used in PSO/ACO. This change was instigated by the improved performance

6 PSO/ACO2 is available at http://sourceforge.net/projects/psoaco2/

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 13

compared to the original heuristic. A problem with low coverage rules was
in turn detected as this heuristic focuses heavily on precision. This in turn
lead to the addition of a min cases parameter. Unlike in AntMiner, rules with
a lower coverage than this limit are still allowed, but their fitness value is
severely reduced.

2.2.4 HIDER

HIDER is the most recently known genetic algorithm that takes a separate-
and-conquer approach (Aguilar-Ruiz et al, 2003).7 For this reason it was se-
lected over the SIA (Venturini, 1993) algorithm. New rules are discovered until
the number of remaining examples falls below a fraction of the initial size of
the training set, controlled by the parameter efp.

An evolutionary algorithm searches for the best rule at each iteration. The
population is composed of population size rules. This population is initialized
by rules that cover at least a single randomly selected example. num generations
generations are simulated before the best rule found is returned. The best indi-
vidual is passed on to each generation, along with a set of individuals selected
through the roulette wheel method.8 A second set of individuals is the result
of recombination after which a selection step reduces the population to its
specified size using the roulette wheel method again. The most recent version
of HIDER uses natural encoding, as described in detail by Aguilar-Ruiz et al
(2007).

fHider1 = 2 · (P +N − n) + p+ V (R) (10)

fHider2
= P +N − n+ p+ V (R) (11)

fHider3 = P +N − α · n+ p+ V (R) (12)

HIDER proposes several novel heuristic rule evaluation functions. The orig-
inal paper uses the heuristic in (10) (Aguilar-Ruiz et al, 2003), but this was
changed later to (11) in (Aguilar-Ruiz et al, 2007). However, closer inspection
of the open source implementation shows that a penalty factor α was intro-
duced as in (12). The default value of this pruning factor is α = 1. In this
work we use this setting, which is equal to the heuristic described in (11) as
in (Aguilar-Ruiz et al, 2007). The HIDER heuristic is nearly equivalent to the
accuracy measure, defined as p−n. A non-standard geometric coverage metric
V (r) is calculated as the proportion of the attribute space covered by the rule
r. As V (r) < 1 holds, this metric functions as a tiebreaker for rules with equal
accuracy in favor of rules that cover a larger section of the attribute space.

7 An implementation of HIDER is available as part of the KEEL software project (Alcalá-
Fdez et al, 2009)(Alcalá-Fdez et al, 2011) at http://www.keel.es/

8 The probability of an individual to be selected is proportional to its fitness value. This
method thus uses the exact values returned by the fitness function.

14 Bart Minnaert et al.

2.2.5 RIPPER

RIPPER is a construction algorithm that we include as the representative for
this class because it is both well-known and highly accurate (Cohen, 1995).9

While this research focuses mainly on metaheuristic-based algorithms, a con-
struction algorithm is needed to investigate how differently these algorithms
behave from the construction algorithms. A notable feature of RIPPER is
the post-processing steps performed after the standard separate-and-conquer
strategy. During post-processing, each rule is in turn selected and further op-
timized in the context of the existing rule set. This is repeated k times, with
a default setting k = 2. The rule evaluation performed during this phase is
fundamentally different from that in the initial rule set building phase because
the performance of the rule in the classifier can now be measured. RIPPER
also performs a separate-and-conquer loop for each class in the dataset. This is
done starting from the least prevalent class and ending with the most prevalent
class.

The creation of the best rule consists of two stages: a growing stage and
a pruning stage that each use half of the remaining training data. RIPPER
constructs a rule to predict the least prevalent class in the growing stage.
Starting from the empty rule, it iteratively specializes the constructed rule
by adding a refinement term to this rule. All possible refinement rules are
evaluated to select the optimal one. This is repeated until no refinement is
possible. The resulting rule is usually very specialized and has a high chance
of overfitting. Thus in the second stage, the rule is generalized again through
pruning using the remaining training data. Pruning is done by removing the
last n terms, where n is chosen so that it maximizes the precision on these
new training examples.

fRIPPER = p · (log2
p

p+ n
− log2

p′

p′ + n′
) (13)

RIPPER evaluates each refinement of a rule by calculating the informa-
tion gain. The information gain, defined by (13), was introduced in the FOIL
algorithm (Quinlan, 1990). The statistics (p, n) of the refined rule are com-
pared with those of the original rule, (p′, n′) in this heuristic. The fitness value
assigned to a rule is thus relative to an incomplete rule, which makes it a
gain heuristic. Depending on the path taken, the same rule can receive dif-
ferent fitness values. For this reason, gain heuristics can not be used in the
metaheuristic-based algorithms described earlier.

3 Experimental Setup

The use of a parametric heuristic required a design for correct parameter set-
ting. Tuning the parameter on each problem costs time and consumes data,

9 We use the RIPPER implementation included in the Weka project (Hall et al, 2009) at
http://www.cs.waikato.ac.nz/ml/weka/

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 15

which potentially reduces the performance gain of parameter tuning. Therefore
optimal default values for the parametrized heuristics are computed for each
algorithm individually in the first phase of the experiments as shown in the
high-level overview of the experimental setup in Fig. 1. The tuning of the pa-
rameters is done using a grid search on a tuning bench of datasets as described
in Section 3.2 and is similar to the method used by Janssen and Fürnkranz
(2010) for the CN2 algorithm. The analyses of the trade-off between accuracy
and comprehensibility described in Section 3.5 will use this data. The tuned
heuristics are then evaluated on a validation bench of datasets with the pri-
mary goal of selecting the best heuristic for each algorithm and the secondary
goal of evaluating the performance of each heuristic on each algorithm. In the
last phase of the experiments, a cross-algorithm evaluation of the optimized
heuristics is done to evaluate the performance gain from optimizing a heuristic
for a specific algorithm.

3.1 Datasets

A tuning bench of 27 datasets10 is used for the optimization of the heuristics
and a validation bench of 23 datasets11 is used for the evaluation. We use
the same selection of datasets as in the CN2 study by Janssen and Fürnkranz
(2010). However, several datasets were removed from the validation bench used
in that study as they are not independent from the datasets in the tuning
bench. Almost all datasets are available at the UC Irvine Machine Learning
Repository (UCI) (Hettich and Bay, 1996).12

Because not all algorithms used in this study can handle missing values,
a first preprocessing step creates versions of these datasets with no missing
values. For attributes where the dataset description indicates that the value
being missing is significant in itself, a separate value is added to the attribute.
For other attributes, instances with missing values are removed under the
constraint that at most 30% of the data may be removed in total. If too many
instances would be removed, the attribute is removed instead. This procedure
results in slightly modified datasets without missing values.

In case the algorithm can only process discrete attributes, continuous vari-
ables have to be discretized. This is done using the Weka-implementation of
Fayyad & Irani’s MDL method (Fayyad and Irani, 1992) as suggested in a
benchmarking study on discretization by Liu et al (2002b). Algorithms that
can handle both continuous and discrete attributes will sometimes process

10 anneal, audiology, breast-cancer, cleveland-heart-disease, contact-lenses, credit, glass2,
glass, hepatitis, horse-colic, hypothyroid, iris, krkp, labor, lymphography, monk1, monk2,
monk3, mushroom, sick-euthyroid, soybean, tic-tac-toe, titanic, vote-1, vote, vowel, wine
11 auto-mpg, autos, balance-scale, balloons, breast-w, breast-w-d, bridges2, credit-g, dia-
betes, echocardiogram, flag, hayes-roth, heart-h, heart-statlog, ionosphere, machine, prima-
rytumor, promoters, segment, solar-flare, sonar, vehicle, zoo
12 The UCI datasets are available at http://archive.ics.uci.edu/ml/. The Titanic
dataset is available as part of the Delve project of the University of Toronto at
http://www.cs.toronto.edu/d̃elve/.

16 Bart Minnaert et al.

…

A
l
g
o
r
i
t
h
m
1

A
l
g
o
r
i
t
h
m
2

A
l
g
o
r
i
t
h
m
N

Tuning

bench

…

A
l
g
o
r
i
t

A
l
g
o
r
i
t

A
l
g
o
r
i
t

Tuning:

grid search

Validation
…t

h
m
1

t
h
m
2

t
h
m
N

Validation

bench

…

A
l
g
o
r
i
t
h
m
1

A
l
g
o
r
i
t
h
m
2

A
l
g
o
r
i
t
h
m
N

Validation

bench

Across

algorithm

comparison

Fig. 1 The three stages of the experimental setup. Firstly, optimal default values for the
parametrized heuristics are obtained using a tuning bench of datasets. Next the performance
of these optimized heuristics is evaluated on an independent validation bench of datasets.
Finally, we further test and compare these optimal heuristic values across all included algo-
rithms on the same validation bench.

both types in different ways. Discretization is not used for these algorithms in
order to capture all aspects of the algorithm.

The scale of the experiments is very large13 as a result of the tuning of mul-
tiple parameters and the inclusion of multiple datasets. Because the execution
time does not scale linearly in the number of attributes for most algorithms,
feature selection is used. Feature selection is used in practice as it positively
impacts the accuracy of the model (Witten and Frank, 2005). Martens et al
(2007b) argue that for AntMiner+ and similar algorithms, datasets of 1000
instances should contain at most 20 attributes to obtain both reasonable accu-
racy and execution time. Using feature selection thus corresponds more closely
to practical data mining situations. We opted for the Weka implementation of
the reliefF attribute filter (Kira and Rendell, 1992; Kononenko, 1994) based on
the results of a benchmarking study by Hall and Holmes (2003) and some pre-
liminary experiments. As most of our datasets contain under 1000 instances,
we use the Weka default and restrict the maximal number of input attributes
to 10 for the more time-consuming algorithms. An overview of the preprocess-
ing steps used for each algorithm is presented in Table 3.

13 A number of 2 562 300 individual runs were executed in total.

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 17

Table 3 Preprocessing of the datasets for each algorithm

Algorithm Discretization Attribute selection

AntMiner+ ✓ ✓

AntMiner ✓ ✓

PSO/ACO2 ✓

HIDER ✓

RIPPER

3.2 Search prodecure

Determining the optimal default parameter values is performed with a search
procedure that optimizes a given objective function. For each selected param-
eter value, a ten times ten-fold cross-validation is run on each of the 27 tuning
datasets. Janssen and Fürnkranz (2010) used a much faster single ten-fold
cross-validation procedure. This change is necessary to counter the random-
ness introduced by the stochastic algorithms in this study. Furthermore, this
approach has a small positive effect even for deterministic algorithms as the
random shuffling of the data can produce very good/bad results by chance.
This yields several possible measures per dataset, aggregated over the indi-
vidual runs. We optimize for accuracy in the tuning phase. Measures to judge
the comprehensibility of the rule set, such as the number of rules and average
rule size, are balanced with accuracy as described in Section 3.5. The accuracy
results for the 27 datasets then need to be aggregated into a single measure.
This is done by taking the macro-average accuracy - the unweighted average
- over the 27 datasets.

This objective function is maximized with a grid search procedure. Janssen
and Fürnkranz (2010) assumed that the macro-average accuracy follows an
inverse U-shape. Our assumptions is that this holds for the accuracy of indi-
vidual datasets. The macro-average accuracy is however an aggregate of these
individual inverse U-shapes and may have a more complex shape. The re-
sults in Section 4.1 indicate that this assumption holds for the aggregates of
our datasets. The grid search works iteratively to find optimal heuristic pa-
rameters, as done for hyperparameters in SVMs in (Suykens et al, 2002) for
example. In the first iteration, a given interval [lower, upper] is scanned with
a step size step. It then drills down in the region around the best result, best.
The range for the second iteration is set to [best − step, best + step] and the
step size is decreased by a factor 5: step = step/5. This results in 8 new pa-
rameter values tested in the entire range between the two neighbors of the
best found yet. This allows us to properly scan the entire interval, even if the
curve is skewed - as is the case for the ACO-based algorithms and the relative
cost measure. This is repeated until no further increase in macro-average ac-
curacy is noted or after 5 iterations. This second stopping criterion is however
never reached in our experiments, in part because the noise in the stochastic
algorithms eventually surpasses smaller increases. For the Klösgen measure,

18 Bart Minnaert et al.

F-measure and relative cost measure, we search the range [0; 1]. For the m-
estimate the range [0; 10] is searched, although a wider range is used for the
RIPPER algorithm after initial results showed that the optimal value was not
in the range.

3.3 Comparing heuristics on multiple datasets

The resulting optimized heuristics are compared on the validation datasets to
determine the best heuristic(s) for each algorithm. Because a new variant of
the algorithm is created for each heuristic, this is a comparison of multiple al-
gorithms on multiple datasets. Demšar (2006) makes a compelling case against
t-tests with win/loss/tie characteristics and puts forward the non-parametric
Friedman test as a more correct alternative. The Friedman test is based on
the average ranks of the heuristics. All heuristics used perform equally well
under the null-hypothesis and thus the average ranks should be equal. If the
Friedman test indicates that the rankings are not equal, then it rejects the
null-hypothesis. In this case at least two heuristics do not perform equally
well.

Further post-hoc tests are needed to perform individual comparisons when
the null-hypothesis is rejected. These tests focus on controlling the family-
wise error introduced by performing multiple comparisons. In our case, we
only compare each heuristic with the best-performing one, which results in 4
one-vs-one statistical tests. If the individual tests have a 5% chance of falsely
rejecting the null-hypothesis, then the chance that at least one of these tests
falsely rejects the null-hypothesis is about 18.5%. The p-values of the indi-
vidual comparisons are adjusted for this family-wise error with the post-hoc
Hommel test as implemented by Garćıa and Herrera (2008).14

3.4 Comparing parameter values across algorithms

Thirdly we perform a cross-algorithm comparison of the optimal default val-
ues, found using the procedure outlined in Section 3.2. To answer the ques-
tion whether tuning is necessary for each algorithm individually, we propose
a comparison between the tuning scenario and the non-tuning scenario. For
each algorithm and parametrized heuristic, we perform further experiments
on the validation datasets with the optimized values retrieved for the other
algorithms. These represent different instances of the scenario in which a pa-
rameter value is taken directly from an existing algorithm, which is often the
case as seen in the ACO-domain. We compare the results to those for the
optimized heuristic value with the non-parametric Wilcoxon signed rank test.
A large number of individual tests are performed which makes correcting for

14 The statistical tool used to perform the Friedman test and advanced post-hoc procedures
can be found at http://sci2s.ugr.es/keel/multipleTest.zip

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 19

the family-wise error without losing statistical power difficult. Because of this,
the focus is on the general pattern and not on the individual comparisons.

3.5 Comprehensibility vs. accuracy trade-off

The previous sections describe methods to determine parameter settings that
are optimal for predictive accuracy. However rule models are often used be-
cause the comprehensibility of the model is important to the user as well, as
observed by Baesens et al (2003a); Pazzani et al (2001); Verbeke et al (2011). In
those cases, a model that sacrificies some accuracy for additional comprehen-
sibility may be more suitable. This necessitates a trade-off between predictive
accuracy and comprehensibility. This trade-off can be made by selecting a spe-
cific heuristic rule evaluation function. The parametrized heuristics discussed
in this paper are especially suited to this task as the trade-off can be selected
very precisely, which is not possible with most widely used heuristics.

This trade-off is investigated by plotting a predictive accuracy measure
against a comprehensibility measure for the tuning set results. For the ac-
curacy measure, the macro-average accuracy is used. The comprehensibility
is represented by the macro-average number of rules. Ranking measures are
not used for two reasons. Firstly, performing this trade-off in practice requires
an understanding of the size of the performance gap between competing set-
tings. The ranking measures do not represent the size of the differences, while
(macro-)averages do capture this. Secondly, the ranking results are influenced
by the distribution of selected parameter values. Several competing measures
can be used for comprehensibility and we have considered #R, the number
of rules, #T/R the average rule length and #T the total number of terms
in the rule set. We will only show the macro-average number of rules as this
is the most widely recognised measure and the other measures show similar
behavior.

4 Results

This section presents the experimental results of the heuristic rule evaluation
functions applied to the selected algorithms. For each algorithm and for each
heuristic, an optimal parameter value was selected on a tuning bench. The
results of this tuning procedure are shown in Section 4.1. The resulting pa-
rameter values are then tested on a validation bench in Section 4.2 in order
to determine the best performing heuristic(s) per algorithm. Next, Section 4.3
contains an empirical comparison of the optimal parameter values across the
different algorithms to determine the need for parameter tuning in other al-
gorithms. Lastly, in Section 4.4 we analyse the trade-off between predictive
accuracy and comprehensibility.

2
0

B
a
rt

M
in
n
a
ert

et
a
l.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
70

72

74

76

78

80

82

84

86

88

90

Parameter ω

M
a
c
r
o
-a

v
e
r
a
g
e

a
c
c
u
r
a
c
y

(
%

)

(a) Klösgen measure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
70

72

74

76

78

80

82

84

86

88

90

Parameter β

M
a
c
r
o
-a

v
e
r
a
g
e

a
c
c
u
r
a
c
y

(
%

)

AntMiner+
AntMiner
PSO/ACO2
HIDER
RIPPER

(b) F-measure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
55

60

65

70

75

80

85

90

Parameter c

M
a
c
r
o
-a

v
e
r
a
g
e

a
c
c
u
r
a
c
y

(
%

)

(c) Relative cost measure

0 1 2 3 4 5 6 7 8 9

74

76

78

80

82

84

86

88

90

Parameter m

M
a
c
r
o
-a

v
e
r
a
g
e

a
c
c
u
r
a
c
y

(
%

)

(d) m-estimate

0 5 10 15 20 25 30 35
75

80

85

90

Parameter m

M
a
c
r
o
-a

v
e
r
a
g
e

a
c
c
u
r
a
c
y

(
%

)

(e) m-estimate (RIPPER)

Fig. 2 Macro-average accuracy on the tuning bench for the different heuristics. The dash-dotted black line shows the results for AntMiner+. A solid
red line is used for AntMiner. PSO/ACO2 and HIDER are represented by the blue and green (lower) dashed lines respectively. Ripper is shown in a
dotted black line.

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 21

4.1 Parameter tuning

Optimal parameter values for each heuristic and each algorithm are obtained
by the tuning procedure described earlier in Section 3. An overview of this
tuning procedure is presented in Fig. 2. This figure shows the performance
curves in terms of macro-average accuracy for each algorithm and each heuris-
tic. Due to the random nature of the experimental measures and some degree
of overfitting of these measures to the tuning bench, these curves only give an
indication of the actual performance on new datasets. The true generalization
behavior is given by the performance on the validation datasets in Section 4.2.
The optimal parameter values are detailed in Table 4. The optimal parameter
values for the ACO-based algorithms AntMiner, AntMiner+ and PSO/ACO2
are relatively close to each other and their performance curves are similar.
On the other hand, HIDER and RIPPER seem to favor more coverage and
thus larger parameter values. This (dis)similarity will be investigated further
in Section 4.3.

As shown in Fig. 2a, the performance of the Klösgen measure increases
starting from ω = 0 until an algorithm-specific maximum is reached. For the
algorithms included, these maxima are in the range [0.3; 0.58]. For higher val-
ues of ω, the performance decreases again. The results show that an optimal
balance focuses more heavily on precision. Furthermore, Table 4 shows the
ACO-based algorithms contained in this study benefit from even greater em-
phasis on precision than the other algorithms (lower ω).

Fig. 2b shows the performance curves of the F-measure. As with the Klösgen
measure, the parameter β of the F-measure sets a trade-off between precision
and coverage. The optimal parameter values for the algorithms included lie
in the range [0.048, 0.5]. Thus the included algorithms benefit from emphasiz-
ing precision over coverage. The optimal parameter values for the ACO-based
algorithms focus more on precision than those of HIDER and RIPPER. The
optimum for the PSO/ACO2 algorithm is very close to β = 0 and focuses
almost exclusively on precision.

The performance curves for the Relative cost measure are presented in
Fig. 2c. A clear distinction can be made between the performance curves of
the ACO-based algorithms and those of HIDER and RIPPER. In case of the
former, the optimal values are in the range [0.02, 0.06] and their performance
curves decline steadily for larger values of c. These algorithms thus focus almost
exclusively on the false positive rate. For the latter, a more balanced setting
shows optimal performance at c = 0.528 and c = 0.3728 for HIDER and
RIPPER respectively. Furthermore, these algorithms show bad performance
for parameter values that focus more on the false positive rate.

The performance curves for the m-estimate are shown in Fig. 2d and
Fig. 2e. This heuristic is an extension of the Laplace-corrected precision. For
m = 0, the m-estimate equals precision and for m = 2 it closely resem-
bles the Laplace-corrected precision. Higher values of m put more emphasis
on coverage until the relative weighted accuracy is reached in the limit for
m → ∞ (Fürnkranz and Flach, 2005). The performance curves for AntMiner,

22 Bart Minnaert et al.

AntMiner+, PSO/ACO2 and HIDER in Fig. 2d are relatively flat in the range
[1, 10], with poor performance at m = 0 for most algorithms. The performance
curve for RIPPER on the other hand shows a steady increase in this range
and becomes flatter around the optimum at m = 17.186 before decreasing
again. Because the performance curves for the m-estimate are relatively flat,
the randomness introduced by the stochastic algorithms can have a large ef-
fect on the tuning procedure. The optimal values shown in Table 4 can thus
exhibit a high degree of overfitting. Furthermore, the performance at m = 2 is
relatively high for some algorithms and indicates that the Laplace-corrected
precision could be a good choice for these algorithms.

In all graphs of Fig. 2, the performance curves for all algorithms except
AntMiner show a poor performance for parameter values equal to zero, fol-
lowed by a large increase for the next measurement. For a parameter value of
zero, all heuristics equal either precision or the false positive rate. In this case,
the heuristics ignore the number of examples covered and attempt to cover no
false positives. For parameter values set to any δ > 0 the heuristics will also
take into account the number of examples covered. In the limit δ → 0, δ > 0,
the values returned by the heuristic rule evaluation functions will tend to pre-
cision (false positive rate). However, a bias towards rules with higher coverage
will remain and act as a tiebreaker when several rules are found with the exact
same precision (false positive rate). For example, the F-measure with β = 0
will not distinguish between multiple rules with the same precision. The selec-
tion of the rule then depends on the implementation details of the algorithm -
most likely it will be either the first or the last rule found. A small positive β in
turn will result in the F-measure selecting the rule with the highest coverage.
This coverage bias steers the algorithm away from rules that cover only a few
examples. These rules are most likely overfitting and thus the coverage bias
decreases overfitting and increases performance.

The coverage bias has a small or no effect for AntMiner as observed by
the absence of steep performance drops at zero in all graphs of Fig. 2. This
is likely due to the MinCases parameter used by AntMiner. The MinCases
parameter specifies the minimum number of examples covered by a rule which
results in only rules with a sizeable coverage being evaluated. The effects of a
coverage bias are less noticeable for these larger rules as ties are less common.
The MinCases parameter reduces overfitting by eliminating very small rules
and thus performs a function similar to that of a coverage bias. PSO/ACO2
only implements a soft constraint through the MinCases parameter and as
such the coverage bias still has an effect as smaller rules are evaluated.

Table 4 Optimal parameter values for each algorithm and heuristic

Algorithm Klösgen F-measure Relative cost m-estimate

AntMiner+ 0.44 0.28 0.028 7
AntMiner 0.3 0.192 0.02 4

PSO/ACO2 0.34 0.048 0.06 4.6
HIDER 0.58 0.5 0.528 8
RIPPER 0.576 0.448 0.3728 17.186

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 23

4.2 Results on the validation bench

In this section we evaluate the optimized heuristics on a validation bench of
23 UCI datasets. For each algorithm, we select the best-performing heuris-
tic(s) out of the four optimized heuristics and the default heuristic. Each
(algorithm,heuristic)-pair is evaluated on all 23 validation datasets using a
ten times ten-fold cross-validation procedure. For each algorithm, the heuris-
tics are then compared with a non-parametric Friedman rank test with post-
hoc Hommel tests. In the next paragraphs, we first discuss these results per
algorithm. The empirical results are presented in tables 5, 6, 7, 8 and 9. The
best result per dataset in these tables is underlined and is compared to other
results with a paired t-test. Results in bold/normal are not sigificantly differ-
ent at the 5%/1% level while results in italic are sigificantly different at the
1% level.

Table 5 contains the results on all datasets for AntMiner+. The Klösgen
measure appears to be the best performing heuristic on AntMiner+, both in
terms of rank and macro-average accuracy. The m-estimate performs second-
best and is close to the Klösgen measure. The F-measure does not perform
significantly different, yet the difference in macro-average accuracy is 1.1%.
The relative cost measure shows the worst performance for AntMiner+. The
Klösgen measure performs best, significantly improving the default heuristic
with a 2.66% increase in macro-average accuracy (p-value 0.013). Using this
measure, an improvement is obtained for 17.5 of the 23 datasets.

Table 6 shows the results on all datasets for AntMiner. Based on the rank
test, the m-estimate shows the best performance in AntMiner. However, both
the Klösgen measure and the F-measure report a slightly higher macro-average
accuracy and the relative cost measure only performs slightly worse. As none
of these differences are significant, these heuristics perform equally well for
AntMiner. The m-estimate performs best, significantly improving the default
heuristic with a 3.19% increase in macro-average accuracy (p-value 0.001).
Using this measure, an improvement is obtained for 19 of the 23 datasets.

Table 7 presents the results on all datasets for PSO/ACO2. The Friedman
test finds no significant differences in performance between the heuristics. All
reported differences are too small to be meaningful. The Klösgen measure
performs best in terms of macro-average accuracy with a 0.18% increase in
macro-average accuracy (p-value 0.93), though the default Laplace heuristic
performs best in terms of rank. As observed by the statistical tests, the observed
differences are not significant. Using the Klösgen measure, an improvement is
obtained for 11.5 of the 23 datasets.

Table 8 shows the results on all datasets for HIDER. The best performing
heuristic for HIDER is the F-measure, both in terms of rank and in terms
of macro-average accuracy. The F-measure significantly outperforms all other
optimized heuristics. The 0.65% difference in macro-average accuracy with
the default heuristic is however not significant at the 10% level with a p-
value of 0.16. The F-measure performs best, improving the default heuristic

24 Bart Minnaert et al.

Table 5 Experimental accuracy results for AntMiner+

Dataset Klösgen m-estimate F-measure AntMiner+ Relative cost

auto-mpg 70.88 70.64 69.60 66.95 66.36

autos 80.27 80.61 80.07 82.41 78.97
bal 79.44 79.75 80.63 78.46 80.70

balloon 100.00 100.00 100.00 100.00 100.00

bcw 95.46 95.58 95.52 95.40 95.32

bridges2 52.25 51.50 49.25 51.75 50.13
echocardiogram 70.64 71.92 70.34 69.25 70.45

flag 64.18 63.59 63.35 60.51 61.30

ger 72.16 71.05 71.53 70.80 70.50

hayes-roth 85.88 84.69 81.69 80.00 81.38

heart-stat 78.59 78.33 77.74 78.48 77.15
heart-h 76.27 76.40 76.44 76.25 76.25

ionosphere 88.83 88.09 88.98 88.94 88.92

machine 38.50 40.08 38.74 39.52 35.59

pima 72.85 69.70 72.38 68.62 69.48

primary-tumor 34.96 35.59 23.37 25.22 20.74

promoters 87.67 85.87 87.16 87.66 84.94
segment 86.29 87.79 85.77 85.69 72.94

solar-flare 72.77 70.14 69.94 52.95 49.54

sonar 70.44 71.32 71.78 71.40 71.83

vehicle 64.13 61.81 62.88 51.16 51.43

wdbc 93.31 92.83 93.13 93.34 92.86

zoo 95.32 93.63 95.23 94.94 95.45

Table 6 Experimental accuracy results for AntMiner

Dataset m-estimate F-measure Klösgen Relative cost Sens×spec

auto-mpg 75.57 75.93 74.91 73.42 75.17

autos 74.41 74.38 74.75 74.48 66.25

bal 82.96 79.30 78.78 79.50 68.52

balloon 81.50 82.00 85.00 83.50 78.50

bcw 95.45 95.18 95.10 95.32 91.51

bridges2 59.25 58.63 58.88 58.88 59.38

echocardiogram 76.26 76.63 76.23 75.90 76.55

flag 63.90 62.01 63.58 60.88 60.31

ger 70.55 72.60 71.91 69.26 70.41

hayes-roth 77.06 80.94 81.88 80.75 67.94

heart-stat 78.85 79.22 79.07 78.19 77.15

heart-h 78.04 77.23 77.95 77.73 77.70

ionosphere 89.96 90.69 88.95 90.76 87.86

machine 38.77 37.04 38.39 36.85 37.41

pima 76.09 75.83 76.31 76.09 75.14
primary-tumor 36.04 36.48 36.00 35.67 34.78

promoters 85.56 86.25 85.25 84.83 79.69

segment 89.46 89.08 87.24 88.94 80.26

solar-flare 72.48 72.82 71.26 71.99 74.25

sonar 76.09 77.05 78.07 76.58 75.06

vehicle 66.06 66.35 65.99 66.25 57.60

wdbc 94.50 94.41 93.96 94.46 93.39

zoo 90.21 90.35 91.14 91.44 90.86

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 25

Table 7 Experimental accuracy results for PSO/ACO2

Dataset Laplace Klösgen F-measure m-estimate Relative cost

auto-mpg 80.26 78.27 79.08 78.61 79.62

autos 82.33 81.57 81.78 81.03 82.72

bal 79.41 77.41 80.03 79.35 80.13

balloon 100.00 100.00 100.00 100.00 100.00

bcw 94.83 94.48 94.92 94.47 94.07

bridges2 60.75 63.63 63.00 60.88 62.63

echocardiogram 76.86 76.52 75.28 76.63 73.77

flag 60.83 63.09 61.38 64.46 62.50
ger 72.66 71.63 72.10 72.29 71.36

hayes-roth 66.50 67.63 65.94 65.25 66.81

heart-stat 80.56 80.78 80.22 79.93 79.59

heart-h 78.28 79.11 78.46 77.88 75.88

ionosphere 91.82 92.42 91.77 92.13 91.68
machine 19.54 19.40 19.25 19.64 19.11

pima 73.22 74.52 72.98 73.12 72.16

primary-tumor 36.63 36.52 37.15 36.71 36.30

promoters 83.96 84.93 84.26 82.39 82.95

segment 96.39 95.38 96.35 96.39 95.75

solar-flare 73.73 74.40 73.59 73.87 72.92

sonar 75.95 77.60 76.96 77.15 75.78

vehicle 69.61 69.17 69.19 68.73 69.83

wdbc 95.01 95.33 94.92 94.59 95.68

zoo 90.81 90.38 90.41 90.60 90.90

Table 8 Experimental accuracy results for HIDER

Dataset F-measure HIDER m-estimate Relative cost Klösgen

auto-mpg 74.02 73.10 72.79 71.26 72.62

autos 76.21 73.95 74.76 68.27 75.33

bal 71.62 68.47 69.00 70.90 68.98

balloon 100.00 100.00 100.00 100.00 100.00

bcw 93.40 95.32 91.98 92.03 90.46

bridges2 60.63 59.38 59.50 52.75 59.25

echocardiogram 67.34 70.50 62.51 67.03 60.16

flag 53.60 54.00 52.74 48.62 52.47

ger 70.89 71.20 70.10 69.79 64.34

hayes-roth 80.28 75.28 77.47 75.52 77.28

heart-stat 74.58 74.80 72.32 73.99 71.21

heart-h 72.15 72.61 66.13 71.91 68.19

ionosphere 78.49 77.04 69.97 75.55 64.16

machine 36.67 35.93 33.82 36.77 35.71

pima 71.16 70.92 65.84 69.97 68.01

primary-tumor 33.82 30.56 34.90 34.23 35.52

promoters 79.77 76.16 75.00 78.64 67.61

segment 89.67 87.36 91.05 81.62 87.66

solar-flare 73.16 72.83 71.45 64.39 70.92

sonar 55.11 58.54 50.72 52.11 44.29

vehicle 65.28 64.43 63.84 59.55 64.61
wdbc 89.65 89.83 89.40 89.24 86.75

zoo 89.06 89.33 87.58 90.19 89.18

26 Bart Minnaert et al.

Table 9 Experimental accuracy results for RIPPER

Dataset Information gain Klösgen m-estimate F-measure Relative cost

auto-mpg 78.67 76.25 77.04 76.51 74.18

autos 76.16 76.10 75.16 71.19 72.83

bal 72.64 71.22 72.03 71.90 69.10

balloon 100.00 100.00 100.00 100.00 100.00

bcw 93.94 94.89 94.35 95.46 93.16

bridges2 58.38 59.88 60.00 59.50 60.63

echocardiogram 77.76 77.85 77.57 76.07 77.38

flag 61.24 60.62 60.10 63.20 59.48

ger 71.54 72.41 71.96 71.98 71.18

hayes-roth 83.13 80.19 81.38 75.44 79.06

heart-stat 75.59 75.07 74.48 75.19 75.15

heart-h 76.44 76.25 78.43 78.16 75.21

ionosphere 89.15 89.57 90.37 91.48 90.57

machine 30.38 30.00 29.95 30.43 29.57

pima 74.74 74.67 73.50 74.31 74.23

primary-tumor 35.00 34.63 34.26 33.52 33.37

promoters 82.64 82.92 83.21 82.17 84.62

segment 95.23 94.97 94.03 93.78 94.34

solar-flare 69.88 70.99 69.78 71.10 69.98

sonar 73.85 74.76 74.86 71.59 74.66

vehicle 68.42 68.35 68.72 68.16 67.38

wdbc 94.24 93.67 94.22 95.08 93.74

zoo 89.60 88.32 89.21 87.62 87.72

with a 0.65% increase in macro-average accuracy (p-value 0.16). Using the
F-measure, an improvement is obtained for 13.5 of the 23 datasets.

Table 9 contains the results on all datasets for RIPPER. The standard
information gain heuristic of RIPPER performs best, both in terms of rank
and in terms of macro-average accuracy. The Klösgen measure, m-estimate and
F-measure show a slightly lower macro-average accuracy and do not perform
significantly worse. The relative cost measure on the other hand performs
significantly worse. The default information gain metric performs best in terms
of rank and macro-average accuracy, with a 0.18% and 0.22% increase over
the m-estimate and Klösgen measure respectively (both p-value 0.35). Using the
Klösgen measure, an improvement is obtained only for 8.5 of the 23 datasets.

The largest improvement in performance was obtained for AntMiner that
uses the sensitivity × specificity heuristic as a default. Holden and Freitas
(2008) report selecting the Laplace heuristic for PSO/ACO2 because of low
performance with sensitivity × specificity. We compare the sensitivity ×

specificity heuristic with the default and best performing heuristic for the
ACO-based algorithms. Each of these algorithms is evaluated on the validation
bench. Results are compared with a Wilcoxon signed-rank test at the 5% level.
Table 10 presents the results of this comparison. Significant differences are
shown in bold and underlined. Sensitivity×specificity is always significantly
outperformed and the differences in macro-average accuracy are even larger for
AntMiner+ and PSO/ACO2. These results show the general poor performance
of the sensitivity × specificity heuristic in ACO-based algorithms.

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 27

Table 10 Performance of sensitivity×specificity

Algorithm Sensitivity×specificity Default Best

AntMiner+ 65.94 72.60 75.26

AntMiner 71.99 71.99 75.18

PSO/ACO2 69.62 75.65 75.65

The overall results are presented in Table 11, which contains the four
parametrized heuristics with optimal values and the original heuristic for each
algorithm listed as ‘Default’. In this table, the top-performing heuristic is un-
derlined. All heuristics are compared to this heuristic and the p-values are
adjusted to correct the family-wise error. Results in bold/normal font are not
significantly different from the best results at the 10%/1% level. All other re-
sults, noted in italic font, are significantly different from the best at the 1%
level. These results show three candidate heuristics for implementation in new
algorithms: F-measure, Klösgen measure and m-estimate. We do not recom-
mend using m-estimate due to possible complications with parameter setting
as discussed in Section 2. The F-measure performs better than the Klösgen
measure in HIDER and is never significantly worse than the best heuristic.
The Klösgen measure on the other hand might perform slightly better on the
ACO-based algorithms. Based on the results on the validation bench, both
heuristics are a good choice.

4.3 Comparing parameter values

In this section, we empirically compare the optimal parameter values as found
in Table 4. For each heuristic and for each algorithm, the performance is
measured when using the optimal values for the four other algorithms. This
represents a scenario in which no tuning was done for an algorithm, but rather
an existing value was imported from another algorithm. These results are
then compared with those using optimal settings for the algorithm in order to
determine the impact of performing tuning on the algorithm itself as opposed
to importing values from related algorithms.

Tables 12, 13, 14 and 15 show the results of this comparison for the F-
measure, Klösgen measure, m-estimate and relative cost measure respectively.
In these tables, each row represents a single algorithm and each column a single
parameter value, with the cell showing the measurement for the combination of
both. Both rows and columns are ordered by ascending parameter values. The

Table 11 Comparing heuristics on the validation bench for the optimal parameter values

Default F-measure Klösgen m-estimate Relative cost
Algorithm Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank

AntMiner+ 72.60 3.46 74.15 2.83 75.26 2.13 74.82 2.65 71.40 3.93
AntMiner 71.99 4.17 75.23 2.52 75.24 2.76 75.18 2.39 74.85 3.15

PSO/ACO2 75.65 2.61 75.61 3.04 75.83 2.65 75.48 3.17 75.31 3.52

HIDER 71.37 2.43 72.02 1.78 68.47 3.87 69.69 3.43 69.32 3.48
RIPPER 75.16 2.39 74.51 3.09 74.94 2.83 74.98 2.87 74.24 3.83

28 Bart Minnaert et al.

cells contain MA−MAopt, the difference in macro-average accuracy between
the specified parameter value and the optimal parameter value. The diagonal
is crossed out as in this case both parameter values are equal. For each cell,
we statistically compare the results with the non-parametric Wilcoxon signed
rank test. Differences significant at the 10% level are highlighted in boldface.

Table 12 shows that the performance of PSO/ACO2 and AntMiner drops
for the higher parameter values found for RIPPER and HIDER. An equal
drop in performance is seen for HIDER at lower parameter values. The macro-
average accuracy for RIPPER drops 2.3% for β = 0.048, but with a p-value
of 0.13 this is not significant. The lower macro-average accuracy is however
consistent with the results on the tuning bench as illustrated by Fig. 2b. In-
spection of the results learns that several datasets are sensitive to lower pa-
rameter values which results in a large difference in macro-average accuracy.15

The Wilcoxon test is less sensitive to these outliers and focuses more on the
other datasets. Using RIPPER with this parameter setting works well for many
problems, but with the risk of large performance decreases for a few. Consis-
tent with the tuning bench results, the gap in parameter values from β = 0.048
to β = 0.192 between PSO/ACO2 and AntMiner does not further distinguish
the ACO-based algorithms.

As for the F-measure, the results for the Klösgen measure in Table 13
again show a significant decrease in performance at lower parameter values
for HIDER. The performance of RIPPER is unaffected by ω in the range
[0.3; 0.58]. The parameter values are interchangeable for the ACO-based al-
gorithms. The results for AntMiner are somewhat inconclusive as for nearly
similar parameter values 0.576 and 0.58, both a significant (p=0.055) and
non-significant (p=0.39) performance drop are found. Fig. 2a shows a small
performance drop for AntMiner at these values, corroborating that the differ-
ence is not an outlier.

15 The datasets autos, flag, sonar and vehicle show differences exceeding 10%.

Table 12 Comparing optimal settings for the F-measure across algorithms

0.048 0.192 0.28 0.448 0.5

PSO/ACO2 0.03 -0.03 -0.87 -1.56

AntMiner -0.23 -0.09 -1.13 -0.82
AntMiner+ -0.14 0.30 0.31 0.35
RIPPER -2.30 -0.58 0.25 0.17
HIDER -1.80 -0.95 -0.83 -0.23

Table 13 Comparing optimal settings for the Klösgen measure across algorithms

0.3 0.34 0.44 0.576 0.58

AntMiner -0.33 0.07 -0.56 -0.33
PSO/ACO2 -0.10 -0.10 -0.35 -0.36
AntMiner+ -0.50 -0.44 -0.74 -0.54
RIPPER 0.18 0.19 0.07 0.07
HIDER -1.52 -1.27 -0.77 -0.08

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 29

Table 14 Comparing optimal settings for the m-estimate across algorithms

4 4.6 7 8 17.186

AntMiner -0.13 -0.47 -0.31 -0.19
PSO/ACO2 0.03 0.18 0.05 -0.23
AntMiner+ 0.09 -0.08 0.15 -0.40
HIDER -0.18 -0.01 0.06 0.44

RIPPER -0.10 -0.11 -0.2 0.08

Table 15 Comparing optimal settings for the relative cost measure across algorithms

0.02 0.028 0.06 0.3728 0.528

AntMiner -0.20 -0.22 -0.93 -2.58

AntMiner+ 0.31 -1.22 -6.22 -10.5

PSO/ACO2 0.08 0.04 -3.33 -5.99

RIPPER -14.27 -13.24 -10.97 -2.11

HIDER -7.49 -6.95 -6.50 2.47

Table 14 presents the results for the m-estimate. Both the macro-average
accuracy and the Wilcoxon tests show that the found parameter values are
largely interchangeable across all algorithms in this study. This is consistent
with the flat performance on the tuning bench in Fig. 2d. It should be noted
that the performance of RIPPER drops around m = 5 on the tuning bench in
Fig. 2e, so the results for m = 4 are probably borderline. The only significant
difference is observed for HIDER at higher parameter values with a relatively
small 0.44 increase (p=0.077).

Unlike those for the m-estimate, the results for the relative cost measure
in Table 15 are significant. Consistent with the results on the tuning bench in
Fig. 2c, a clear distinction can be made between the ACO-based algorithms,
and HIDER and RIPPER, respectively. The former favor very low parameter
values that focus almost exclusively on the false negative rate while the latter
prefer larger, more balanced parameter settings. The parameter difference be-
tween RIPPER and HIDER is significant as well. The ACO-based algorithms
favor parameter values in the small range [0.02; 0.06]. A notable result is the
difference in performance for AntMiner+ for c = 0.06, which is significant ac-
cording to the Wilcoxon test (p=0.031). The difference in parameter values is
however seemingly too small to justify this result. Furthermore, this perfor-
mance drop is absent in the tuning bench results. This further supports our
claim that this result is likely an outlier.

Overall, we observe that the ACO-based algorithms PSO/ACO2, AntMiner
and AntMiner+ favor parameter values that focus more on confidence, while
RIPPER and HIDER put more emphasis on coverage. The results in this
section show that using values optimized for the former into the latter or vice
versa, leads to a significant reduction in performance. Furthermore, we find
no such difference in performance when interchanging parameters between the
ACO-based algorithms.

30 Bart Minnaert et al.

4.4 Accuracy vs. comprehensibility trade-off

The comprehensibility vs. predictive accuracy trade-off is a multi-criteria de-
cision making problem. We are interested in the nondominated settings, for
which improving one criterion is not possible without sacrificing the other crite-
rion (Steuer, 1986). We determine the Pareto front of nondominated solutions
for the four metaheuristic-based algorithms based on Fig. 3. Each point in
these graphs shows the macro-average accuracy and the macro-average num-
ber of rules on the tuning set for one setting. Not all settings are shown as
the ranges for the axes are selected to show the region that is of interest and
thus differs per algorithm. For each algorithm, the performance of the origi-
nal algorithms is represented by the horizontal and vertical line. These lines
divide the graphs in four quadrants located northwest (NW), northeast (NE),
southwest (SW) and southeast (SE) relative to the original algorithm. The
SE quadrant is the most interesting as it contains the cases in which the new
setting dominates the original setting. For these settings, both the predictive
accuracy and the comprehensibility are better than for the original. Likewise,
the settings in the NW quadrant are dominated by the original setting and
should not be considered. The settings in the SW and NE quadrant perform
better on one measure and worse on the other. Thus a choice between both
involves a trade-off. The nondominated settings are located in the SW, SE
and NE quadrants and represent an entire array of settings that range from
high comprehensibility and low accuracy to low comprehensibility and high
accuracy. The use of parametrized heuristics allows us to reach intermediary
points between any two settings and as such these points are representatives
of a Pareto curve.

Fig. 3a shows the trade-off for AntMiner+. As already observed in sec-
tion 4.2, the parametrized heuristics improve the predictive performance of
the algorithm. The most promising solutions are the Klösgen measure with
ω ∈ [0.44, 0.6] and m-estimate with m ∈ [7, 35]. For larger parameter set-
tings, even more comprehensibility is found, but at a higher accuracy cost.
For smaller parameter values, both the accuracy and the comprehensibility
deteriorate due to overfitting. Thus both the predictive accuracy and the com-
prehensibility are improved for AntMiner+.

Fig. 3b shows the trade-off for AntMiner. The improvement in predictive
accuracy is again observed - consistent with the results in section 4.2. This
time, the most promising solutions are the m-estimate with m ∈ [4, 10] and
the F-measure with β ∈ [0.192, 0.9]. Higher parameter values can be used for
further comprehensibility. For the m-estimate in particular, not the entire use-
full range is sampled by the tuning experiments. We observe that the original
heuristic focuses heavily on comprehensibility. However this trade-off is sub-
optimal as it is dominated by the F-measure in the range β ∈ [0.6, 0.8]. For
β = 0.6 a 1.75% higher accuracy can be obtained for roughly the same com-
prehensibility. Alternatively β = 0.8 offers a gain in comprehensibility of 1.13
rules with a 0.81% higher accuracy. Again, both the predictive accuracy and
the comprehensibility are improved for AntMiner.

R
u
le

E
v
a
lu
a
tio

n
fo
r
M
eta

h
eu

ristic-b
a
sed

S
eq

u
en

tia
l
C
o
v
erin

g
A
lg
o
rith

m
s

3
1

0.8 0.805 0.81 0.815 0.82 0.825 0.83 0.835 0.84 0.845 0.85
3

4

5

6

7

8

9

10

11

Accuracy

#
R
u
le

s

Klösgen
F-measure
m-estimate
RCM

(a) AntMiner+

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87
5

10

15

20

Accuracy

#
R
u
le

s

Klösgen
F-measure
m-estimate
RCM

(b) AntMiner

0.84 0.845 0.85 0.855 0.86 0.865 0.87
5

6

7

8

9

10

11

12

13

14

Accuracy

#
R
u
le

s
Klösgen
F-measure
m-estimate
RCM

(c) PSO/ACO2

0.75 0.76 0.77 0.78 0.79 0.8 0.81
8

9

10

11

12

13

14

Accuracy

#
R
u
le

s

Klösgen
F-measure
m-estimate
RCM

(d) HIDER

Fig. 3 Macro-average accuracy vs. macro-average number of rules trade-off for the metaheuristic-based algorithms. The performance of the original
algorithm is represented by the horizontal and vertical line.

32 Bart Minnaert et al.

Fig. 3c shows the trade-off for PSO/ACO2. While several settings are sit-
uated in the SE quadrant, the observed accuracy differences are very small,
consistent with the results in section 4.2. In terms of accuracy, no real im-
provement can be found. A first cluster of promising solutions is formed by
the m-estimate settings. This cluster dominates a cluster of F-measure solu-
tions and the original heuristic due to a comprehenisibility gain of 1-2 rules.
A second promising cluster is formed by the solutions of the Klösgen measure
as a comprehensibility gain of 4-5 rules is found for a small 0.1% accuracy
loss. For higher parameter settings that focus less on accuracy, the Klösgen
measure provides the most promising settings. As the original Laplace heuris-
tic has a high focus on accuracy, we find that we can greatly improve the
comprehensibility of PSO/ACO2 at no or a small accuracy cost.

Fig. 3d shows the trade-off for HIDER. As seen in section 4.2, only the
F-measure performs reasonable in this algorithm. We find that the original
heuristic already focuses more on comprehensibility. The most promising so-
lutions are in the range β ∈ [0.5, 0.9] for which a higher accuracy is found.
On the validation set, we observed a borderline non-significant improvement
with p-value 0.16. However, we observe that on the tuning set, a similar large
enough improvement is observed for all points in the range β ∈ [0.1, 0.9]. This
suggests that the performance difference may be a real difference and the non-
significant result was due to the lower power of the test. The number of rules
#R of F-measure with β = 0.9 shows a small improvement of the original
heuristic, but the average rule length #T/R is 0.71 terms shorter for the orig-
inal heuristic. As such the comprehensibility of the original heuristic is not
improved upon. For higher parameter settings, even more comprehensibility
is likely to be found. The parametrized heuristics do not improve the compre-
hensibility for HIDER, but higher accuracy settings can be reached at some
comprehensibility cost.

5 Discussion

5.1 Impact on existing sequential covering algorithms

Our results have some interesting implications for current sequential covering
algorithms. Most notably, the importance of a good heuristic rule evaluation
function is demonstrated, which is largely left unconsidered in existing re-
search. More specifically, we argue against the (further) use of the sensitivity
times specificity heuristic, indicate that the Laplace metric performs well for
specific algorithms only, and propose fine-tuning of parametrized heuristics.

Most ACO-based algorithms use the multiplication of sensitivity and speci-
ficity as proposed in the first ACO-based rule induction technique, AntMiner.
Our results show this heuristic is not very suitable for accurate modelling and
can be significantly improved for the AntMiner and AntMiner+ techniques.
When accuracy is of lesser importance, other settings are still superior in terms
of both comprehensibility and accuracy. This is consistent with the results of

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 33

an experiment with several non-parametrized heuristics on ACO-based algo-
rithms (Salama and Abdelbar, 2011). Similar improvements are likely to be
observed for other techniques using the same heuristic, such as AntMiner2 (Liu
et al, 2002a), AntMiner3 (Liu et al, 2003), cAntMiner (Otero et al, 2009) and
PSO-Sousa (Sousa et al, 2004). This heuristic should no longer be used in any
(new) ACO-based rule induction technique.

The Laplace metric performs well, as can be seen from the PSO/ACO2
results. However, the tuning bench results for the F-measure suggest this per-
formance does not generalise to other algorithms. For smaller values of β, both
heuristics are nearly equivalent. We observe that both HIDER and RIPPER
only perform well for higher values of this parameter. This is supported by
the low performance of the Laplace metric on the CN2 algorithm reported
by Janssen and Fürnkranz (2010). Furthermore we find that the m-estimate
and the Klösgen measure offer a relatively large increase in comprehensibil-
ity at no or a minor accuracy cost. As the Laplace metric is closely related
to both the F-measure and m-estimate for very low parameter settings, it is
geared towards the extraction of many smaller rules, which negatively impacts
the comprehensibility. For this reason, we propose a less extreme parameter
setting for PSO/ACO2.

Our results on the validation datasets show that for each algorithm no
single heuristic performs best on all datasets. When computational time and
power is available, tuning across heuristics and parameter values is therefore
surely a very valid methodological preprocessing step. As such, we suggest to
include an option for the user to tune the heuristic rule evaluation function.
In some cases, we can approximate these optimal tuning results with a generic
heuristic and value, as discussed next.

5.2 Suggested generic rule evaluation heuristic and value

Although no best heuristic rule evaluation function can be provided for all al-
gorithms, within a category of ACO-based algorithms this is possible. For the
ACO-based algorithms, we observe that the Klösgen measure, F-measure and
m-estimate with adequate parameter setting provide the best macro-average
accuracy results on the validation datasets, with no significant differences be-
tween them. We prefer the Klösgen measure for several reasons. For the ACO-
based algorithms, the Klösgen measure has the highest average rank - being the
best of three on AntMiner+ and PSO/ACO2 - and shows general high macro-
average accuracy for all tested algorithms in this class, including AntMiner.
Furthermore, the m-estimate and F-measure might generate problems with
parameter setting for larger datasets. The optimal Klösgen parameter values
for AntMiner, PSO/ACO2 and AntMiner+ do not yield significantly differ-
ent results and any of these values could be chosen. Based on the shape of
the macro-average accuracy over the range of values, we decide to choose the
median value of the three tuned values, which is 0.34. In conclusion, for the

34 Bart Minnaert et al.

ACO-based algorithms, we propose to use the Klösgen measure with parame-
ter value ω equal to 0.34 when predictive accuracy is the primary concern.

Our results show that genetic algorithms and construction algorithms both
require heuristics that assign more weight to coverage. HIDER also seems to
be more sensitive to both the choice of heuristic and the parameter value,
which can be explained by the absence of pruning. We suggest the F-measure
with parameter value β set to 0.5 for the genetic algorithms. However this is
based only on the results for the HIDER algorithm. As this may not generalize
to other genetic algorithms, it is advisable to perform parameter tuning in the
suggested region.

The construction algorithms are a very diverse class, so no general heuris-
tic can be suggested based on the results for RIPPER alone - if at all. The
results of Janssen and Fürnkranz (2010) on several CN2 implementations in-
dicate good performance for the m-estimate and Klösgen measure. We suggest
parameter values for ω and β in the ranges [0.4323; 0.576] and [0.448; 0.5] re-
spectively. However, the results for RIPPER show generally high performance
for the information gain. This gain heuristic successfully leverages upon the
extra information provided by the previous rule to achieve high performance.
We advise to test gain heuristics whenever they are applicable in an algorithm.

5.3 Accuracy vs. comprehensibility

The predictive accuracy is in many cases not the only concern of the user as
good model comprehensibility is often desired. As such we discuss the merits
of parametrized heuristics in finding a good balance. Firstly our selection of
parametrized heuristics enables us to improve the balanced solutions in terms
of accuracy and/or comprehensibility on the the algorithms involved. Our re-
sults clearly show that for AntMiner+ and AntMiner, we both improve the
accuracy and comprehensibility with these heuristics. While the accuracy of
PSO/ACO2 is only matched and not improved, we offer a much higher com-
prehensibility. Likewise, we find solutions with higher accuracy for HIDER,
though at a comprehensiblity cost. Secondly, these parametrized heuristics of-
fer an unmatched flexibility when it comes to setting the trade-off between
accuracy and comprehensibility. As in (Salama and Abdelbar, 2011), we can
identify those heuristics that are on the Pareto front. Of the four heuristics on
the Pareto front in their experiment, three are equivalent to specific parameter
settings that are dominated in our experiments. The parametrized heuristics
additionally offer a continuous trade-off where other heuristics only offer a
choice between a limited set of fixed trade-offs.

Whether it is up to the algorithm designer or the end user to decide on
this trade-off is still an open question. From a usability perspective, it is ad-
visable to at least provide a good default setting that satisfies the designer’s
view on this trade-off. In addition, we advocate to allow an expert user to
optimize this parameter for a given task. This offers the previously discussed
performance benefits of tuning on individual datasets and also allows the user

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 35

to select his own optimal balance of accuracy and comprehensibility, using the
parameter of the heuristic as a slider setting. Finally, our results show that
the balance between accuracy and comprehensibility has a severe impact on an
algorithm’s performance with respect to these metrics. Where fixed heuristics
limit an algorithm to tasks that require a specific mix of comprehensibility
and accuracy, parametrized heuristics allow each algorithm to be used in a
wider range of tasks. All in all, the heuristic parameter thus performs a role
similar to C4.5’s pruning confidence factor and adds a greater flexibility to
rule learning algorithms if it can be user defined. Whether it is the end user
or the algorithm designer, our data16 allow someone to quickly select either a
specific setting or a region of interest.

6 Conclusion

Over the last decades, many sequential covering algorithms have been pro-
posed. Only few researchers have recognized the importance of a proper rule
evaluation function and its implications for the overall performance. Although
no silver bullet heuristic exists that shows optimal accuracy and comprehen-
sibility for all algorithms, we find heuristics that improve upon the accuracy
and/or comprehensibility for the metaheuristic-based algorithms. A key result
is that the algorithms that use ant colony optimization are similar enough
with respect to rule evaluation to share a good default heuristic for this class.
This finding alleviates the problem of selecting a heuristic for a new algorithm
as we can identify a good starting heuristic.

The multiplication of sensitivity and specificity, often used in ACO-based
algorithms, is shown to be unsuitable for this task. For this category of rule
induction techniques, we propose to use the Klösgen measure with parame-
ter value 0.34, which significantly improves existing ACO-based algorithms
AntMiner and AntMiner+. For genetic algorithms, we advise the F-measure
with parameter value 0.5 (and additional tuning in this region), which shows
a (non-significant) 0.65% difference for HIDER.

A significant contribution is made to the problem of setting a trade-off
between comprehensibility and accuracy. Parametrized heuristics offer a pre-
viously unseen flexibility to the algorithm designer or end user to select this
trade-off and as a result Pareto dominate many fixed heuristics. The data
from our experiments allows a quick trade-off between both metrics for the al-
gorithms involved. For new algorithms using parametrized heuristics, similar
experiments are invaluable to the usability.

A modular approach for the development of sequential covering algorithms
beyond the rule heuristic is surely also recommended (Martens et al, 2011;
Montes de Oca et al, 2009). The creation of novel algorithms would benefit
from an extensive experimental design which studies the importance and inter-
play of the metaheuristic variant, objective function to optimize (rule heuristic

16 The data of these experiments is available online at http://www.antminerplus.com

36 Bart Minnaert et al.

in this case), parameter settings and data characteristics. Finally, open source
implementations would facilitate an efficient and easy incorporation of novel
building block instantiations.

We hope to have demonstrated that empirical analysis for novel sequential
covering algorithms should go beyond the traditional hyper-parameter tuning.
By following the set forth guidelines and experimental setup for tuning the rule
heuristic (potentially for each dataset separately) the generalization results can
be dramatically improved. To conclude, the accuracy and comprehensibility
gains observed in our large scale empirical study provide a strong affirmitive
answer to our initial question ’To tune or not to tune’.

Acknowledgment

This work was carried out using the Stevin Supercomputer Infrastructure at
Ghent University. We would like to thank the Flemish Research Council for
the financial support (FWO Odysseus grant B.0915.09). We are also grateful
to the creators of the open source implementations used in this work.

References

Aguilar-Ruiz J, Riquelme JC, Toro M (2003) Evolutionary learning of hierar-
chical decision rules. IEEE Trans Syst Man Cybern Part B Cybern 33:324–
331

Aguilar-Ruiz JS, Giráldez R, Santos JCR (2007) Natural encoding for evolu-
tionary supervised learning. IEEE Trans Evol Comput 11(4):466–479

Alcalá-Fdez J, Sánchez L, Garćıa S, del Jesus M, Ventura S, Garrell J, Otero
J, Romero C, Bacardit J, Rivas V, Fernández J, Herrera F (2009) Keel: a
software tool to assess evolutionary algorithms for data mining problems.
Soft Comput 13:307–318

Alcalá-Fdez J, Fernandez A, Luengo J, Derrac J, Garćıa S, Sánchez L, Herrera
F (2011) Keel data-mining software tool: Data set repository, integration of
algorithms and experimental analysis framework. J Mult-Valued Logic Soft
Comput 17:255–287

An A, Cercone N (2000) Rule quality measures improve the accuracy of rule
induction: An experimental approach. In: Proc 12th Int Symp Found Intell
Syst, ISMIS’00, pp 119–129

Andrews R, Diederich J, Tickle AB (1995) Survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowl-Based
Syst 8(6):373–389

Baesens B, Setiono R, Mues C, Vanthienen J (2003a) Using neural network
rule extraction and decision tables for credit-risk evaluation. Manag Sci
49(3):312–329

Baesens B, Van Gestel T, Viaene S, Stepanova M, Suykens J, Vanthienen J
(2003b) Benchmarking state-of-the-art classification algorithms for credit
scoring. J Oper Res Soc 54(6):627–635

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 37

Cestnik B (1990) Estimating probabilities: A crucial task in machine learning.
In: 9th Eur Conf Artif Intell, ECAI’90, pp 147–149

Clark P, Niblett T (1989) The CN2 induction algorithm. Mach Learn 3:261–
283

Cohen W (1995) Fast effective rule induction. In: Proc 12th Int Conf Mach
Learn, ICML’95, pp 115–123

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets.
J Mach Learn Res 7:1–30

Dorigo M, Maniezzo V, Colorni A (1996) Ant System: Optimization by a
colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern
26(1):29–41

Fayyad UM, Irani KB (1992) On the handling of continuous-valued attributes
in decision tree generation. Mach Learn 8(1):87–102

Fernández A, Garćıa S, Luengo J, Bernadó-Mansilla E, Herrera F (2010)
Genetics-based machine learning for rule induction: state of the art, tax-
onomy, and comparative study. IEEE Trans Evol Comput 14:913–941

Freitas AA (2003) A survey of evolutionary algorithms for data mining and
knowledge discovery. In: Ghosh A, Tsutsiu S (eds) Advances in evolutionary
computing: theory and applications, Springer-Verlag New York, Inc, New
York, NY, USA, pp 819–845

Fürnkranz J (1999) Separate-and-conquer rule learning. Artif Intell Rev
13(1):3–54

Fürnkranz J, Flach P (2005) ROC ‘n’ rule learning - towards a better under-
standing of covering algorithms. Mach Learn 58(1):39–77

Fürnkranz J, Flach PA (2003) An analysis of rule evaluation metrics. In: Proc
20th Int Conf Mach Learn, ICML’03, pp 202–209

Garćıa S, Herrera F (2008) An extension on statistical comparisons of classi-
fiers over multiple data sets for all pairwise comparisons. J Mach Learn Res
9:2677–2694

Hall M, Holmes G (2003) Benchmarking attribute selection techniques for
discrete class data mining. IEEE Trans Knowl Data Eng 15(6):1437–1447

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009)
The weka data mining software: an update. SIGKDD Explor Newsl 11:10–18

Hettich S, Bay SD (1996) The uci kdd archive [http://kdd.ics.uci.edu]
Holden N, Freitas A (2005) A hybrid particle swarm/ant colony algorithm for
the classification of hierarchical biological data. In: Proc IEEE Swarm Intell
Symp, SIS’05, pp 100–107

Holden N, Freitas AA (2008) A Hybrid PSO/ACO Algorithm for Discovering
Classification Rules in Data Mining. Journal of Artificial Evolution and
Applications 2008:1–12

Janssen F, Fürnkranz J (2009) A re-evaluation of the over-searching phe-
nomenon in inductive rule learning. In: Proc SIAM Int Conf Data Min,
SDM’09, pp 329–340

Janssen F, Fürnkranz J (2010) On the quest for optimal rule learning heuris-
tics. Mach Learn 78(3):343–379

38 Bart Minnaert et al.

Kira K, Rendell L (1992) The feature selection problem: Traditional methods
and a new algorithm. In: Proc 10th Natl Conf Artif Intell, AAAI’92, pp
129–134

Klösgen W (1992) Problems for knowledge discovery in databases and their
treatment in the statistics interpreter EXPLORA. Int J Intell Syst 7(7):649–
673

Kononenko I (1994) Estimating attributes: Analysis and extensions of RE-
LIEF. In: Eur Conf Mach Learn, ECML’94, pp 171–182

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classifica-
tion models for software defect prediction: A proposed framework and novel
findings. IEEE Trans Software Eng 34(4):485–496

Liu B, Abbass HA, McKay B (2002a) Density-based heuristic for rule discovery
with ant-miner. In: Proc 6th Australasia-Japan Joint Workshop Intell Evol
Syst, AJWIS’02, pp 180–184

Liu B, Abbass H, McKay B (2003) Classification rule discovery with ant colony
optimization. In: Proc IEEE/WIC Int Conf Intell Agent Tech, IAT’03, pp
83–88

Liu H, Hussain F, Tan CL, Dash M (2002b) Discretization: An enabling tech-
nique. Data Min Knowl Discov 6:393–423

Lopes HS, Coutinho MS, Lima WC (1997) An evolutionary approach to simu-
late cognitive feedback learning in medical domain. In: Sanchez E, Shibata
T, Zadeh L (eds) Genetic Algorithms and Fuzzy Logic Systems: Soft Com-
puting Perspectives, World Scientific, Singapore, pp 193–207

Martens D, Baesens B, Van Gestel T, Vanthienen J (2007a) Comprehensible
credit scoring models using rule extraction from support vector machines.
Eur J Oper Res 183(3):1466–1476

Martens D, De Backer M, Haesen R, Vanthienen J, Snoeck M, Baesens B
(2007b) Classification with ant colony optimization. IEEE Trans Evol Com-
put 11(5):651–665

Martens D, Baesens B, Fawcett T (2011) Editorial survey: Swarm intelligence
for data mining. Mach Learn 82(1):1–42

Novak PK, Lavrač N, Webb GI (2009) Supervised descriptive rule discovery:
A unifying survey of contrast set, emerging pattern and subgroup mining.
J Mach Learn Res 10:377–403

Montes de Oca M, Stützle T, Birattari M, Dorigo M (2009) Frankenstein’s
PSO: A composite particle swarm optimization algorithm. IEEE Trans Evol
Comput 13(5):1120–1132

Otero FEB, Freitas AA, Johnson CG (2009) Handling continuous attributes
in ant colony classification algorithms. In: Proc IEEE Symp Comput Intell
Data Min, IEEE, CIDM’09, pp 225–231

Parpinelli R, Lopes H, Freitas A (2002) Data mining with an ant colony opti-
mization algorithm. IEEE Trans Evol Comput 6(4):321–332

Parpinelli RS, Lopes HS, Freitas AA (2001) An ant colony based system for
data mining: Applications to medical data. In: Proc Genet Evol Comput
Conf, GECCO’01, pp 791–797

Rule Evaluation for Metaheuristic-based Sequential Covering Algorithms 39

Pazzani M, Mani S, Shankle W (2001) Acceptance by medical experts of
rules generated by machine learning. Methods of Information in Medicine
40(5):380–385

Quinlan J (1993) C4.5 Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA

Quinlan JR (1990) Learning logical definitions from relations. Mach Learn
5:239–266

van Rijsbergen CJ (1979) Information Retrieval. Butterworth-Heinemann,
Newton, MA, USA

Salama K, Abdelbar A (2011) Exploring different rule quality evaluation func-
tions in aco-based classification algorithms. In: IEEE Symp Swarm Intell,
SIS’11, pp 1–8

Sousa T, Silva A, Neves A (2004) Particle swarm based data mining algorithms
for classification tasks. Parallel Comput 30(5-6):767–783

Steuer R (1986) Multiple Criteria Optimization: Theory, Computation and
Application. John Wiley, New York

Stützle T, Holger HH (2000) MAX-MIN ant system. Future Generat Comput
Syst 16:889–914

Suykens JAK, Van Gestel T, Brabanter JD, De Moor B, Vandewalle J (2002)
Least Squares Support Vector Machines. World Scientific, Singapore

Tan PN, Kumar V, Srivastava J (2002) Selecting the right interestingness
measure for association patterns. In: Proc 8th ACM SIGKDD Int Conf
Knowl Discov Data Min, KDD’02, pp 32–41

Tan PN, Steinbach M, Kumar V (2005) Introduction to Data Mining. Addison
Wesley, Boston, MA

Van Gestel T, Suykens J, Baesens B, Viaene S, Vanthienen J, Dedene G, De
Moor B, Vandewalle J (2004) Benchmarking least squares support vector
machine classifiers. Mach Learn 54:5–32

Venturini G (1993) SIA: a supervised inductive algorithm with genetic search
for learning attributes based concepts. In: Proc Eur Conf Mach Learn,
ECML’93, pp 280–296

Verbeke W, Martens D, Mues C, Baesens B (2011) Building comprehensible
customer churn prediction models with advanced rule induction techniques.
Expert Systems with Applications 38(3):2354–2364

Witten IH, Frank E (2005) Data Mining: Practical Machine Learning Tools
and Techniques, 2nd edn. Morgan Kaufmann, San Francisco, CA, USA

Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In:
Proc 1th Eur Symp Princ Data Min Knowl Discov, PKDD’97, pp 78–87

