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Abstract 

Determining the risk of contagious failures due to credit exposures between organisations is a 

problem that has been the subject of a growing body of literature in recent years. The network 

model has become a commonly used tool, applied to both theoretical and empirical studies of 

financial contagion and systemic risk. The purpose of this paper is twofold. First, we propose a 

definition of the ‘Financial System Network’ which may be used to define the characteristics of 

any specific implementation of a network model in this field. Secondly, we evaluate the network 

models created by other researchers and compare and contrast various aspects of these 

implementations. We conclude by exploring avenues for future research in the area. 

1. Introduction 

This paper seeks to provide a definition of the ‘Financial System Network’ (FSN) which may be 

used to define the characteristics of any specific implementation of a network model of a 

financial system characterised by credit linkages between financial agents. We then evaluate the 

network models created by researchers in the field, comparing and contrasting aspects of these 

implementations.   

All of the network models discussed here share certain fundamental elements. There is a shock 

to the system (or, if not a shock, an immediate requirement to settle all outstanding loans) 

affecting a single financial agent (typically a bank), a group of agents or indeed the whole 
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financial system. The shock forces at least one bank to default on loans from other banks in the 

system, and this may in turn cause other banks to default on their borrowings if the losses they 

experience on their exposure to the defaulting banks exceed their capital.   

The beginnings of the literature in this field can be traced back to research in the area of bank 

runs. In a micro-economic analysis, Diamond and Dybvig (1983) explore the idea that bank runs 

were caused by the self-fulfilling expectations of depositors. This research sparked others to 

investigate the area of informational contagion and begin to consider the extent that the 

patterns of interbank exposures would affect the risk of contagion. Allen and Gale (2000) start 

with a model of contagion similar to that of Diamond and Dybvig but expand it to consider the 

effect on contagion if four 'regions' (which can be considered analogous with banks) are linked 

to each other in different ways. Their finding that the pattern of interconnections does indeed 

have implications for how shocks are propagated resulted in other researchers seeking ways to 

explore these patterns in a manner more applicable to the complex real-world networks of 

interbank exposures. The network model of interbank exposures was the tool that many of 

these researchers adopted, applying techniques from network theory to build models that are 

increasingly complex, yet sufficiently tractable and comprehensible to be useful in exploring the 

nature of real-world banking systems and the implications of these findings.  

Researchers are interested in exploring the phenomenon of financial contagion due to interbank 

lending because of the serious economic hazard that bank failures represent. The near-collapse 

of banking systems across the world in the wake of the credit crunch that began in 2007 

(Brunnermeier, 2009) served both as a reminder of the high levels of interconnectedness and 

interdependence of these systems and a fresh warning of the potential fragility of these systems 

in times of economic adversity. The coordinated actions of central banks and governments have 

prevented the ‘doomsday’ scenario of contagious bank failures, but nonetheless there were 

many banks that had to be nationalized (e.g. Northern Rock, Anglo Irish Bank), sold to stronger 

banks (e.g. Fortis, Bear Stearns, HBOS) or liquidated (e.g. Lehman Brothers). Although the 

economic damage could have been far worse, the cost to the world economy of this financial 

crisis is still enormous, with the IMF estimating that by June 2009, governments had spent $425 

billion on capital injections alone to support the financial sector (IMF, 2009). 

The knowledge that bank failures can be costly for economies and governments is not new, and 

for this reason the authorities seek in the first instance to avoid such failures by regulation and 

in the second instance by rescuing banks that are in danger of collapsing. With regard to 
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regulation, the Basel Accords have been a key factor in the development of regulatory 

frameworks in recent years. The Basel I banking accord (1988) represented an attempt to 

introduce international standards regarding the levels of bank captialisation, focusing principally 

on credit risk. The subsequent Basel II accord (2004) addressed regulatory capital not only in the 

context of credit risk, but also operational risk and market risk (together these represent the 

first ‘pillar’ of Basel II). Pillars two and three dealt with issues of how regulators and 

management supervise and react to the risk assessment, and the levels of disclosure of their 

calculations and methodology that are required by the banks respectively. 

In spite of the work that has been done to improve bank regulation, bank failures still occur. 

When such a failure is anticipated, the authorities have the choice of allowing nature to take its 

course or stepping in to rescue the bank. Even if financial contagion is not a likely consequence 

of allowing a given bank to fail, there are still considerable social costs. Losses to shareholders 

and creditors of the failed institution are the most obvious example - James (1991) cites losses 

of 30% of book value for assets held by failed banks, and shareholders can see the value of their 

holdings wiped out entirely. Seeking to avoid these losses, the temptation for central banks and 

governments is to ‘bail out’ banks that are in danger of collapsing, but this introduces the issue 

of moral hazard. Bank management, acting in the expectation that they will be rescued if they 

get into trouble, may start taking greater risks than they otherwise would. Depositors, confident 

that their deposits are safe because the government will intervene, will not scrutinize or 

monitor the bank to ensure the safety of their money. In addition to the case where financial 

contagion is not an issue, there is the ‘Too Big To Fail’ (TBTF) case, where a bank is deemed to be 

sufficiently large and interconnected that financial contagion is a genuine possibility if it fails, 

and the social costs of such a failure would be very large (Stern & Feldman, 2004) . In such a 

case, the authorities have little choice but to bail out the bank. The trend towards consolidation 

in the banking industry since the 1980s has resulted in a landscape of fewer, larger banks, with 

the consequence that the number of banks that are in the TBTF category is greater than ever. 

The moral hazard problem that this presents means that to avoid expensive bailouts or even 

more expensive failures, better regulation is of critical importance. Better regulation, in turn, 

depends in part on better models of the banking system, such as the network model - the 

subject of this paper.    

The structure of this paper is as follows: in the next section, we propose and discuss a definition 

of the financial system network. Section three looks at how current models can be understood 
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in the context of the proposed definition. Section four looks in greater detail at these models 

and the assumptions that they make, the implementation of the shock to the system, the data 

used, and the results that are derived from these models. Section five considers the limitations 

of existing models and section six suggests some avenues for future research. The final section 

discusses our conclusions. 

2. The Financial System Network 

In this section we will propose a definition for the financial system network which will be used 

to examine existing network models. We will explain the definition, and look at each of its 

elements in greater detail. 

2.1 Definition 

We define a financial system network N = ( Ω, L, SP) as a set of nodes Ω, representing entities 

that participate in the financial system, a set of links L between these nodes representing 

financial relationships, and system parameters SP that determine the characteristics of the 

system. More formally:  

• Ω = {ei}, i = 1,2,…n, is the set of nodes that represent the entities that make up the 

financial system. Each node has both quantitative and qualitative characteristics: 

o EQN : Ω -> Ω.Quant: ei |-> (eqnj), j=1,2,…,a 

� Ω.Quant is a set of a quantitative characteristics: (eqnj), j=1,2,…,a   

o EQL : Ω -> Ω.Qual: ei |-> (eqlj), j=1,2,…,b 

� Ω.Qual is a set of b qualitative characteristics: (eqlj), j=1,2,…,b  

• L ⊆ Ω
2 is a set of directed links between entities (lo), o = 1,2,…,p. Each link has both 

quantitative and qualitative characteristics: 

o LQN : L -> L.Quant: lo|-> (lqnk), k=1,2,…,c 

� L.Quant is a set of c quantitative characteristics: (lqnk), k=1,2,…,c  

o LQL : L -> L.Qual: lo|-> (lqlk), k=1,2,…,d 

� L.Qual is a set of d qualitative characteristics: (lqlk), k=1,2,…,d 
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• SP = (sp1,sp2,…sps-1, sps, sps+1,…,spt), is a set of t system parameters with s static 

parameters and t-s dynamic parameters 

2.2 Explanation of the Definition 

The Financial System Network N = ( Ω, L, SP)  is defined by three concepts - the set of nodes Ω, 

the set of directed links L and the set of system parameters SP.  

2.2.1 The set of nodes Ω 

The first element of this definition is Ω, the set of 

nodes that represent the entities that participate in 

the financial system. The total number of nodes in the 

system is n. Each of these entities may be one of 

many different types of institution – examples of 

types of institution would include banks, insurance companies, industrial companies, and central 

banks. Each of the entities modeled may have quantitative and qualitative characteristics. 

Quantitative data is data that may be measured on ordinal, interval or ratio scales, while 

qualitative data is measured on a nominal scale and can only be classed in categories.  

 

The quantitative characteristics of these entities are 

captured in the definition by the set Ω.quant. The 

function EQN is a map from Ω to Ω.Quant such that 

each element is mapped onto a tuple of <eqn>, where 

a is the total number of quantitative characteristics. 

Quantitative characteristics would include for 

example the balance sheet information of the entity, 

Profit & Loss data and so forth.  This is an example of 

a tuple in a case with four characteristics - Deposits, Net Worth, Total External Assets, Interbank 

Loan Assets: EQN(e1) = (400,150,600,300) 

 

Figure 1: The set of nodes Ω 

 Figure 2: Ω.quant 
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Ω.qual is the set of qualitative characteristics that 

pertain to each entity where b is the total number 

of qualitative characteristics. These are mapped 

from Ω to Ω.Qual by the function EQL so that each 

entity is mapped onto a tuple  of <eql>. Examples of 

qualitative characteristics would include the entity’s 

type, credit rating, default status, geographical 

location. An example of the tuple Ω.Qual with these 

characteristics would be: EQL(e1) = (Insurance 

Company, AAA, Not in default, France) 

2.2.2 The set of links L  

The second element of the definition is L, the set of 

directed links between entities. L is a subset of all 

the possible combinations of the elements of Ω . p 

represents the total number of links in L. These links 

represent the financial relationships which may exist between elements, such as outstanding 

loans or credit lines offered. Each directed link connects two entities in a specific type of 

relationship, with the direction of the link indicative of which of the entities is the borrower or 

the lender in respect of a loan, the extender or the potential recipient of a credit line, and so 

forth. An entity may be linked to itself. Note that between two entities ei and ej several different 

relationships may exist at the same time – for example one or more loans may have been 

granted by e1 to e2, or by e2 to e1, or both, each loan with different characteristics.   

L.quant is the set of quantitative characteristics of 

these links, where LQN is a function that maps each 

link lij to a tuple <lqn> and c is the total number of 

quantitative characteristics. The monetary value of 

a loan or credit line is probably the most important 

example of a quantitative characteristic of a link. 

Such a tuple with the single characteristic ‘link 

weight’ would be:  LQN(l12) = (2500) 

 

Figure 3: Ω.quant 

 

 

Figure 4: The set of links L 

Link WeightLink Weight

Link Weight

Link Weight

 

Figure 5: L.quant 
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L.qual is the set of qualitative characteristics of the 

links, where d is the total number of qualitative 

characteristics and the function LQL maps each link 

to a tuple <lql>.  Examples of the qualitative 

characteristics of links would include the term of a 

loan, the type of collateral involved and so forth. An 

example of such a tuple with the characteristics 

‘type of collateral’ and ‘term of loan’ would be: LQL(l12) = (Bond, 3 months) 

2.2.3 The system parameters SP 

The final part of the definition pertains to the 

system parameters SP.  There are a total of t 

system parameters.  These system parameters 

define the characteristics of entities in the model 

or are used by the algorithm which is applied to 

the model to explore the consequences of credit 

default scenarios. The definition distinguishes 

between two different types of system parameters – dynamic parameters and static 

parameters. There are s static parameters, and the remainder of the parameters, t-s, are 

dynamic parameters. Dynamic parameters are parameters whose initial values will change as 

the algorithm models the effects of a default scenario. Examples of dynamic parameters could 

include the total value of assets in the model, or the percentage of total assets represented by 

the total net worth of the entities.  Static parameters are the second type of system parameter. 

As the name implies, the initial values of these parameters do not change as the algorithm 

changes the state of the model. These will typically be parameters that are exogenous to the 

entities that are modeled – for example the capital adequacy ratio, or the demand function for 

external assets.  A set of system parameters with values for two static parameters – capital 

adequacy ratio and number of asset types - and two dynamic parameters - percentage of total 

assets represented by total net worth and percentage of total assets represented by interbank 

assets – would be: SP = (.08, 5, 8%, 30%) 

2.2.4 The Contagion Algorithm 

 

Figure 6: L.qual 

 

Figure 7: System Parameters, SP 
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A contagion algorithm C defines the consequences of a default of a node or nodes in terms of 

the financial system network. More formally: 

C: (Ω, L, SP) → (Ω
’
, L

’
, SP

’
) 

• C is a function that maps Ω to Ω
’
, L to L

’
 and SP to SP

’
. 

The algorithm C takes as an input the initial state of the network as composed of Ω, L, and SP 

and transforms this into a new state. The default of a node will result in changes to the 

characteristics of some members of Ω and L. For example, the default of a node will result in 

changes to the balance sheet of nodes that have lent to it, which is a characteristic of members 

of Ω. It will affect the value of the loans to the defaulting node, which is a characteristic of 

members of L. It may also have an effect on the dynamic parameters of SP, such as the 

percentage of total assets represented by interbank loans. The static parameters of SP such as 

the capital adequacy ratio will, by definition, not be changed. Hence, the original state of the 

network (Ω, L, SP) is updated to a new state, (Ω’
, L

’
, SP

’
). 

3. The Definition Applied to Existing Models 

We will now explore individually each of the elements of the FSN definition N = (Ω, L, SP) in turn 

as they are realized in each model implementation. We will name each network model after the 

first author named in the paper where the model in question is described.  

We will also discuss as a type a kind of network model that has – with some variations – been 

widely used in empirical studies of the risk of contagious default in national banking systems. 

Due to their fundamental similarity, we will consider these models as a single type which we will 

refer to as the ‘Matrix model’. At the core of these models is the creation of an N x N matrix 

where N is the number of agents participating in the system and each of the elements of the 

matrix, xij, represents the exposure of bank i to bank j.  

� =  

�
�
�
�
�

0 ⋯ x1j ⋯ x1N
⋮ ⋱ ⋮ ⋰ ⋮

xi1 ⋯ 0 ⋯ xiN
⋮ ⋰ ⋮ ⋱ ⋮

xN1 ⋯ xNj ⋯ 0 �
�
�
�
�
 

The sum of each row represents the total exposure (usually loans) of agent i to all other agents 

the system, and the sum of each column represents the total liabilities (usually borrowings) of 
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agent j to all other agents in the system. These models use empirical data sources to build this 

matrix, and typically represent a specific national banking system. 

Upper (2007) provides an authoritative overview of the methodology of these models. Sheldon 

& Maurer (1998),  Furfine (1999), Wells (2002), Upper & Worms (2004), Lelyveld & Liedorp 

(2004), Lublóy (2005), Amundsen & Arnt (2005), Degryse & Nguyen (2007), Krznar (2009) and 

Mistrulli (2010) represent a selection of the studies that rely on this type of model.  

3.1 The Set of Nodes Ω 

Ω is defined in the FSN as a set of nodes that represent the set of entities that participate in the 

financial system. It should be noted that the source and sink nodes described in these models 

can be regarded as a modeling convenience, as it is possible to model losses suffered by agents 

in the system and the asset holdings of those agents using only the quantitative characteristics 

of the agent nodes. 

Eboli (2007) and Nier et al. (2008) specify three distinct types of nodes – source nodes, nodes 

that represent ‘financial intermediaries’, and a sink node. In Eboli’s model, source nodes are 

used to represent the external assets belonging to the agents in the system, the financial 

intermediaries, while the single sink node is used to model losses to the assets of the agents by 

acting as the point where the money exits the system.  The external assets are defined as assets 

that are not issued by agents in the system, which distinguishes them from interbank loan 

assets. Each asset type must be owned by at least one agent in the system – in terms of the 

network model, this means it will appear on the balance sheet of at least one agent. The source 

node in Nier is similar to the source node in Eboli, but Nier has one only asset type, while Eboli 

allows more than one.  

 

Figure 8: Nodes in Eboli, Nier 

  

Figure 9: Nodes in Müller, Matrix 

model, Elsinger, Cifuentes. 

 

Figure 10: Nodes in Eisenberg 
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Canedo and Jaramillo (2009) use a distinctly different type of network to visualize their model. A 

source node represents the initial shock to the system, and it is linked to a set of agent nodes 

representing each of the banks. This is what the authors refer to as the ‘shock phase’ of the 

model. Each of these agent nodes is in turn connected to another set of nodes representing the 

same set of banks, but this time the nodes represent the banks during the ‘contagion phase’ of 

the model. The contagion phase may contain many rounds of defaults, and in each round each 

bank is represented by a single node.  The nodes representing the final contagion stage are in 

turn linked to a sink node, where the losses from the banks that have failed at the conclusion of 

the modeling exercise flow. 

The model described by Eisenberg & Noe (2001) is simpler than those of Nier and Eboli, 

featuring only two types of node. One type represents ‘economic entities’ and one type 

represents a sink. The sink node is optional in the Eisenberg model and is introduced to allow 

the modeling of loss-making companies. Eisenberg’s model requires that each node has a 

positive ‘operating cash-flow’. By allowing a node to have a positive cash-flow but an even 

greater ‘operating cost’ (a liability to this sink node) the authors argue that loss-making 

companies can be successfully modeled with no loss of generality in the model.  

The Matrix model, the model of Müller (2006) and the model of Elsinger, Lehar, & Summer, 

(2006) make no mention of any source or sink nodes, and feature only one type of node which is 

used to represent agents (banks). This is also the case with the Cifuentes, Ferrucci, & Shin (2005) 

and Georg & Poschmann (2010) models; however, agent nodes are the minimum that would be 

required to visualize this or any other network model.    

3.2 Ω.quant 

Ω.quant is the set of quantitative characteristics of the nodes in Ω. Both Eisenberg and the 

Matrix model use a single quantitative characteristic of the set of nodes – net worth. Eisenberg 

calls this ‘cash inflow’ and describes it as a quantity of money that is paid to the node due to its 

business activities, and as mentioned previously it has to have a positive value. This ensures that 

the modeled business has some value that it can pass on to any creditors that it might have in 

the system. If a node’s cash inflow plus the money it recovers from debtors is less than what it 

owes to creditors, then that node is insolvent. This quantitative characteristic is present in every 

model – usually called ‘net worth’ - and can be considered a fundamental requirement of 

network models. In the case of the Matrix model, some implementations use additional 
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quantitative characteristics. A notable example is Degryse and Nguyen (2007), who introduce 

several new characteristics required to describe in greater detail the types of assets held by each 

agent in an extension where they derive an endogenous figure for the LGD of each bankrupt 

bank.   

Elsinger’s model can be considered to consist of two parts. The first part is a network model 

based on Eisenberg, while the second part is a portfolio model that is used to simulate the asset 

portfolio holdings of each bank (excluding interbank loans) at two points in time. At t = 0 the 

portfolio of each bank is observed. These holdings are subjected to simulated market and credit 

risk and a new value is derived for each bank’s portfolio. This new value becomes the ‘net 

worth’ value for the first part of the model, and the model then proceeds in the same way as 

Eisenberg. For the purposes of this paper, we will focus principally on the network model 

element of Elsinger’s model, treating the output of the portfolio model element as a 

quantitative characteristic of each bank. 

Eboli’s network represents additional agent balance sheet information with these quantitative 

characteristics.  The balance sheet information of each agent consists of the value of external 

assets held, the sum of loans granted by that agent to the other agents in the system, the sum 

of loans received from other agents in the system, and the net worth of the agent. 

 

Figure 11: Ω.quant Eisenberg, Elsinger, 

Matrix Model 

 

Figure 12: Ω.quant Eboli 

 

Figure 13: Ω.quant Nier 

 

Nier uses the same set of quantitative characteristics as Eboli, with the addition of customer 

deposits. This creates the possibility of exploring the degree to which the losses caused by a 

default affect the different stakeholders in the bank system – shareholders (net worth), industry 

creditors (interbank loans) and retail creditors (customer deposits). Later we will briefly discuss 

whether the distinction between these two types of creditor is justifiable in practice.  Cifuentes 
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is similar to Nier, but divides external assets into ‘liquid’ and ‘illiquid assets’, and adds ‘cash’. 

These additional characteristics are required by Cifuentes to model market risk. 

 

Figure 14: Ω.quant Müller 

 

Figure 15: Ω.quant Canedo 

 

Müller’s model has nodes with two quantitative characteristics – ‘liquid assets’ and ‘regulatory 

capital’. ‘Regulatory capital’ is equivalent to the ‘net worth’ characteristic in other models. The 

addition of ‘liquid assets’ is required because Müller’s model makes a distinction between 

insolvency and illiquidity. If a bank’s capital exceeds the loss on its claims on other banks, it is 

solvent. However, it may be illiquid if the money coming in from its debtors plus its liquid assets 

are insufficient to repay what it owes to its creditors. This plays an important role in Müller’s 

model as illiquid but solvent banks are allowed draw on available credit lines to avoid defaulting 

on debts. 

Canedo and Jaramillo introduce a new quantitative characteristic, the probability that each node 

will default. This is used to determine the likelihood of different loss scenarios and, in the 

implementation, relies on estimates calculated by the Mexican central bank. The value of loans 

granted is used in conjunction with the net worth figure (or ‘threshold’) to determine which 

banks are overexposed by lending more to other agents than their net worth.  

Georg’s model requires more quantitative characteristics than any other model examined here 

in its basic form; due to its complexity, characteristics not seen in other papers such as ‘loans 

from central bank’, ‘investment maturity’, ‘investment value’ are added. 

3.3 Ω.qual 

Ω.qual is the set of qualitative characteristics of the nodes in Ω. There are fewer qualitative than 

quantitative characteristics in the models examined here. Nier, Eboli, Eisenberg, Elsinger, and 
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Cifuentes and the Matrix model each feature ‘default status’ and ‘node type’ as qualitative 

characteristics of nodes.  

 

Figure 16: Ω.qual Nier, Eboli, Eisenberg, 

Elsinger, Cifuentes, Matrix model. 

 

Figure 17: Ω.qual Canedo 

 

Figure 18: Ω.qual Müller 

 

Canedo adds ‘overexposure status’ as a qualitative characteristic. As mentioned previously, this 

reflects whether or not a given bank has lent more than its net worth, or ‘threshold’ amount, 

making it vulnerable to insolvency. If it is not overexposed, it can be ignored as a candidate for 

defaulting when the contagion algorithm is run. 

The Matrix model in its simplest version requires only ‘default status’ and ‘node type’ 

characteristics, but others may be added as required, depending on the goals of the model. An 

interesting example is the model developed by Mistrulli, which allows banks belonging to the 

same parent group share capital. A bank that becomes insolvent can receive a capital injection 

from other banks owned by the same parent group, preventing its default. In order to identify 

which group each bank belongs to, the model requires the introduction of an ‘affiliation’ 

characteristic for each node. 

Müller has a wider set of qualitative characteristics. The role of the default status in the other 

models is taken by ‘solvency status’ in Müller’s model – this reflects whether the bank is solvent 

or insolvent. The conditions for insolvency in Müller are similar to those for default in the other 

models, but in Müller it is used to make clear the distinction between insolvency and illiquidity. 

Illiquidity is another of the qualitative characteristics in Müller’s model, so that it is possible to 

model a situation where a bank or banks are solvent but illiquid. In such a case, a bank may call 

on its available credit lines from other banks to obtain money to meet its obligations. The fourth 

qualitative characteristic in Müller’s model denotes whether a bank has used its credit lines yet 

or not, and is referred to here as ‘Credit Lines Used?’ 
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3.4 The Set of Links L 

L is defined in the FSN as a set of directed links between the nodes. No node is allowed to be 

linked to itself in any of these models. However, such links are not forbidden under our 

definition and they may serve a role in future models. 

 

Figure 19: Links in Müller, 

Elsinger, Matrix model. 

 

Figure 20: Links in Eisenberg 

 

Figure 21: Links in Eboli, Nier, Canedo 

 

The existence of various types of link is a function of the types of node present in a model. 

Hence, Müller and Elsinger, models with only agent nodes (banks) have only agent-to-agent 

links (LA). Eisenberg’s model introduces a sink, which enables the existence of agent-to-sink 

links (LSK). Eboli, Nier and Canedo add source nodes, allowing the creation of source-to-agent 

links (LS). Note that source-to-sink links do not exist in any of the models presented here.  

Müller’s links between agents represent either loans or credit lines. In the case of all the other 

models examined, LA represents only interbank loans. Matrix models feature only links between 

agents. Eisenberg’s model may contain, in addition to LA, a set of links between agents and a 

sink node (LSK). As discussed earlier, the sink is an optional feature of Eisenberg’s model which 

may be introduced to facilitate the modeling of loss-making companies. If loss-making 

companies are not modeled, a sink node is unnecessary.  

Eboli and Nier use directed links to represent the possession of different asset types by the 

agents (LS), the loans that each agent grants to other agents (LA), and the flow of losses to the 

sink node (LS). Although there is no explicit requirement in Nier’s model for external assets to be 

modeled as ‘source nodes’ as in the case of Eboli, we do so here to make clear that Nier is 

largely based on Eboli’s model. Canedo also features three types of links – those from the source 

to the agent, those between the agents, and those from the agents to the sink. Unlike Eboli 
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however, the links from the source to the agents represent the likelihood that the agents will 

default due to the initial shock. 

3.5 L.quant 

L.quant is the set of quantitative characteristics of 

the links in L. The only quantitative characteristic of 

the links in the models presented here is their 

weight. In all models, link weights are used to 

indicate the value of loans in LA. Nier and Eboli also 

use these weights to determine the value of 

external assets held by the economic agents, and Nier, Eboli, Eisenberg use link weights to 

represent how much value is exiting the system by means of sink nodes.  

Canedo uses the weights of links to express two different things; the value of loans and losses 

exiting the system, and as a measure of probability. When the link is between the agent nodes 

representing the final contagion stage and the sink node, the links represent the losses from the 

failed banks flowing out of the system. When the link exists between the source node and the 

agent nodes, it expresses the probability of default for each agent node and will have a value 

between zero and one.  

3.6 L.qual 

L.qual is the set of qualitative characteristics of the 

links in L. The models we examine here have a single 

qualitative characteristic – the ‘type’ of each link. 

Depending on which types of nodes it is linking, a link 

may represent ownership of an asset type by and 

agent, a loan between two agents, or a loss exiting 

the system via the sink. 

In Müller’s model, there is an important distinction between two different types of link between 

agents. A link between two banks may be a loan or a credit line – essentially a potential loan 

that has not been drawn down yet. In the execution of the model, we will know whether a given 

credit line has been used by checking the ‘Credit Lines Used Status’ characteristic of the bank 

that credit line has been extended to, as Müller’s model requires that a bank draws down all of 

 

Figure 22: L.quant for all models 

 

Figure 23: L.qual for all models 
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its credit in one go in the event that it becomes illiquid at which point this characteristic of the 

node will be updated. 

3.7 System Parameters (SP) 

The system parameters of a model are those characteristics that cannot be ascribed to the 

individual nodes in Ω or the links in L, such as the number of banks in the model.  Often these 

will be ratios of aggregate values in the model. For example, in the case of Nier, the system 

parameters are the net worth as a percentage of total assets, the percentage of total assets 

represented by interbank loans, the asset elasticity of demand, the number of banks, the 

probability of any two banks being connected, and the total value of external assets. 

 

Figure 24: SP for Eboli 

 

Figure 25: SP for Nier 

 

Figure 25: SP for Eisenberg 

 

Any possible realization of Nier’s model can be described by these five parameters. In the 

extension of the model where asset price effects are modeled, an additional parameter is 

required to determine the price elasticity of demand for the assets sold by defaulting banks. The 

similarity between Eboli’s and Nier’s models is clear when the sets of System Parameters are 

compared. Eboli’s model requires a single additional parameter, the number of asset types that 

exist, as Eboli allows one or more, while Nier allows only one. Conversely, Nier requires an Asset 

Elasticity of Demand parameter for modeling the affects of insolvent banks selling assets. 

Cifuentes model requires a set of parameters similar to Nier, but with the addition of a capital 

adequacy ratio, and a liquidity ratio to determine the ratio of each banks liquid and illiquid 

assets. 

Eisenberg’s model has fewer parameters as this model does not feature the complication of 

external assets that we see in the other models. However, similar basic parameters are required 

to establish the relationship between the amount of money that the agents hold (‘operating 
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cashflow’ – i.e. net worth) and the money that they owe on a system level, and the degree of 

interconnectedness of the network. 

Elsinger, Müller and Canedo’s models do not require parameters as they are populated with 

empirical data. The number of banks, the ratios of different asset types, the probabilities of 

banks being connected and so forth are derived from an empirical datasets. However, in these 

empirical models, such parameters can be ‘read’ from the model as an output rather than 

supplied as an input. In isolation, such parameters may not be very informative but comparisons 

between different national banking systems may contain some interesting information and are 

perhaps an avenue for future research.  

Similarly, the Matrix models are populated with empirical data. However, unlike the models 

described above, the typical Matrix model does not derive an endogenous LGD and therefore 

the LGD used in each ‘run’ of the model is a system parameter that is predetermined by the 

researcher in question. Other system parameters may exist in addition to LGD; for example 

Lublóy extends the Matrix model to explore the consequences of applying Hungarian prudential 

regulatory standards. In this extension, a bank is considered to have failed if its capital adequacy 

ratio falls below 4%, requiring the introduction of ‘capital adequacy ratio’ as a new system 

parameter. 

As with the quantitative characteristics of the nodes, Georg requires the introduction of many 

new system parameters not seen in other models. Georg indicates that there are 18 parameters, 

including such innovations as the interbank interest rate, the probability that an investment loan 

will be repaid, and the banks’ risk aversion parameter. The risk aversion parameter of an 

individual bank, under our definition, is a quantitative characteristic of that node, but Georg 

specifies a random number for each bank between a given range, and this range falls under our 

definition of a system parameter. 

3.8 The Contagion Algorithm C 

Upper (2007) explores the use of counterfactual models of financial contagion, where models of 

actual banking systems are created and tested to explore the likelihood and consequences of 

financial contagion. The models that Upper examines are all network models of financial system 

networks under the definition outlined in this paper; consequently, the insights found in that 

study are also of great usefulness in this more general study.  
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Upper characterizes the basic algorithm used in these counterfactual models as a sequential 

algorithm composed of three steps. The same three steps form the basis of the algorithms used 

in the network models we are concerned with here. Here Upper’s characterization has been 

slightly modified for the purposes of examining the algorithms found in these network models: 

1. The initial failure: A bank Ωi (or banks) fails by assumption. 

2. Propagation: A bank Ωj will fail if its exposure (loans) to bank Ωi multiplied by a percentage 

‘loss given default’ (LGD) exceeds its capital. A second round of contagion may occur if a bank Ωk 

whose exposure to banks Ωi and Ωj, multiplied by the LGD, exceeds its capital. This step may be 

iterated. 

3.  Stopping condition: A stopping condition will be met. 

This generic description is useful in understanding the basics of the algorithms used here, but 

each model varies in the implementation of each step, and in some cases the first step is 

omitted completely. To explore the algorithms used in the models under consideration here, we 

will consider each step in turn and discuss where a model expands on or deviates from that 

step. 

A key distinction to note between the models discussed here is the derivation of the LGD figure 

used. The Matrix model typically uses an exogenous LGD that is determined as a system 

parameter, as does Canedo’s model. Every loan exposure to a failed bank will suffer the same 

loss in a given ‘run’ of the model. Given that the LGD figure is an estimate, researchers will 

usually run the model using a range of LGDs. The other models examined here use an 

endogenously derived LGD, which means that banks will lose different amounts of their 

exposures to insolvent banks depending on the degree of insolvency involved – a bank may 

become slightly insolvent, and pay back most of the money that has been lent to it; or it may 

become extremely insolvent, paying back little or nothing of what has been lent. The 

implications of how the LGD is derived will be discussed in more detail later. 

3.8.1 Initial Failure 

Eboli and Nier model this step by reducing the value of assets held by a particular bank or banks 

to a level where they become insolvent and have to be liquidated. Nier specifically models only 

failures of an individual bank, whereas Eboli models scenarios where either a single bank or 

several banks default due to the initial shock.   
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The Matrix models typically begin by simulating the failure of each bank in turn by assumption, 

with no mechanism required to cause this initial failure (e.g. Wells, Upper & Worms, Van 

Lelyveld & Liedorp, Degryse & Nguyen). They may also simulate particular scenarios; for 

example, by starting the simulation with the assumed failure of the largest debtor in the system 

(Amundsen & Arnt), or the failure of more than one bank at once (Lublóy). 

Müller, Eisenberg and Elsinger deviate significantly from this first algorithmic step in that there 

is no failure of a bank ‘by assumption’. Rather, all of the nodes attempt to repay their liabilities 

immediately, and failures will occur only if there is some node or nodes that do not have enough 

money coming in to provide the amount of money required to satisfy their liabilities. In the case 

of Elsinger, this attempt to settle the system occurs after each bank’s portfolio holdings have 

been revalued by the portfolio model. It may be argued therefore that these models begin 

without this ‘initial failure’ first step. 

Canedo takes a different approach. Rather than modeling a single default event, Canedo seeks 

to derive a probability distribution of losses for the banking system by calculating not only the 

losses that arise given the default of a bank or a combination of banks, but also the probability  

for the scale of losses.  At the initial failure stage, every possible combination of banks in the 

system fails by assumption. 

Cifuentes assumes a single bank is liquidated with a given LGD. 

3.8.2 Propagation 

Eboli’s algorithm features an ‘activation function’ that determines the share of each node’s net 

worth that has been lost due to the initial shock. This function takes the form: 

 βi(λi) = min(λi/vi, 1)         (1) 

where βi is the share of net worth lost by node i, λi is the loss experienced by node i, and vi is the 

net worth of node i. If the loss a node receives exceeds that node’s net worth, then the node 

defaults and βi is set to 1. The LGD for the initial failure is calculated with what Eboli calls the 

‘insolvency function’: 

bi(λi) = max(0, λi – vi/li)         (2) 
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Here, bi is the fraction of node i’s liabilities that cannot be recovered by liquidating i and li 

represents the interbank liabilities of i. If a node’s net worth vi is greater than the loss, the value 

of bi is zero. If the loss λi is greater than net worth, then we get a positive value for bi. 

The first propagation step is to calculate each bank’s total losses by adding their losses from 

other banks (which will be zero for the first bank to fail) and their losses due to the fall in the 

prices of assets that they hold. Having calculated this for each bank, each bank is checked with 

the activation function to determine whether it is still solvent or not, and with the insolvency 

function to determine how much of its creditors’ money has been lost if it is in default.  

Defaulting banks are added to a new set, and this set is checked for cycles. If there is a cycle, 

there are two further checks. If the flow of losses that reaches a cycle is the largest possible 

(equal to the total amount of external assets held by the members of the cycle) and there are no 

debts owed to members outside the cycle, then it is possible to set bi to ‘1’ for all the members 

of this cycle. This simplifies the calculations there is no need to calculate a loss rate for any of 

these nodes if there are no losses to be passed out of the cycle to other nodes. 

 Nier’s propagation is similar to Eboli’s. Each bank in turn is checked to determine if λi > vi. If it is, 

then the node i defaults. Given this default, if (λi - vi) < li where li represents i’s interbank 

liabilities, the losses are borne by bank i’s interbank creditors. If however (λi - vi) > li then the 

losses spill over into the customer deposits held by i, di. Nier’s algorithm is simplified in that the 

values of all loans in the model are the same, so all of a defaulting bank’s creditors will receive 

the same loss.  Therefore the loss that j, a creditor bank of bank i, will receive is easily calculated 

as: sj [(λi - vi) / k] where k = the number of creditor banks of i. This is only the case if  (λi - vi) < li 

because if (λi - vi) > li then the loss to creditors is total. If the loss that bank j receives is greater 

than its net worth vj, then that bank also defaults and the algorithm will check each bank again, 

passing this loss onto the creditors of j. 

Eisenberg’s algorithm, called by the authors the ‘fictitious default algorithm’, is probably the 

simplest of the group under discussion here. First a matrix is created that expresses each node’s 

nominal liability to other nodes in the system. Then a ‘relative liabilities matrix’ Π is created 

where each of a node’s loans is expressed in terms of the fraction of that node’s total liabilities 

that loan represents. This matrix will be used to calculate what proportion of a loan to a 

defaulting node a creditor will receive when the system is being settled – for example, if bank i 

and bank j each loan $100 to bank k, each of these loans represent half of bank k’s total 
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liabilities. If bank k defaults and is liquidated with a total value of $150, bank i and bank j will 

each receive half of this $150 in settlement of their loans. 

In settling the system, the algorithm determines what each node must pay to meet its 

obligations to settle liabilities to other nodes – a value which we will call p.  Assuming that all 

nodes pay the full amount of p, the algorithm checks if any nodes default using the formula:  

∑
=

−+∏
n
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iij
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ij pvp
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      (3)

 

Here, ΠT is the transpose of the relative liability matrix, so the term on the left reflects the 

payments received by node i from its debtor nodes plus its cashflow (analogous to net worth), 

whereas the –pi on the right are the payments that node i owes to its creditors. If this equation 

evaluates to less than zero, the node is in default.  

In the event that a node defaults, the algorithm then attempts to settle the system assuming 

only the defaults that were detected in the first round occur, with the payments from those 

defaulted nodes to their creditors reduced to the maximum that they are able to pay. These 

reduced payments are then distributed proportionately based on the relative liability matrix to 

the node’s creditors. If these reduced payments cause any of these creditors to default in the 

second settlement round, a third round of settlements is carried out taking into account the 

reduced payments from these new defaults, and so forth. Elsinger’s network model works in the 

same way as Eisenberg; the key difference, as stated previously, is that the vi for each bank is 

updated by the portfolio model before the system is settled, allowing the simulation of market 

and credit risk. 

Müller’s algorithm is also an extension of Eisenberg’s. Müller’s algorithm makes a distinction 

between insolvency and illiquidity, but she bases this algorithm on the fictitious default 

algorithm described above where each iteration of the algorithm assumes that only the banks 

that became insolvent or illiquid in the previous round do not make full payments of their debts.  

To model insolvency and illiquidity, Müller’s algorithm introduces two tests for each bank. The 

bank is tested for solvency by checking whether the loss on its interbank assets exceeds its 

capital. Secondly, the bank is tested for liquidity by checking whether it can completely repay its 

liabilities, using the following formula: 
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Once again, the summation term refers to the payments received from debtors, with ∏T 

representing the transpose of a relative liabilities matrix. The amount of liquid assets available 

to the bank i is represented by ki, and li represents the interbank liabilities of the bank. 

Therefore, fi is a value that represents the total amount that the bank i is capable of paying to its 

creditors. The similarity between this formula and Eisenberg’s formula above is clear, but there 

is an important distinction in that Eisenberg’s formula adds the value for cashflow (net worth) to 

the incoming payments from other nodes, whereas Müller adds the value for liquid assets, 

which is quite distinct from net worth in her model. 

In order to model the existence of credit lines, Müller adds a further formula to calculate a value 

for each bank’s liquid assets, k. In brief, this formula adds to the bank’s existing liquid assets the 

newly raised credit that a bank receives from those banks it has credit lines with and subtracts 

the credit that it has offered to other banks where those banks have taken up the credit. The 

algorithm takes the full amount of credit offered even if only a part of the credit line is required 

to restore the bank to liquidity. As with Eisenberg’s model, the algorithm begins by assuming 

that every payment is made in full. If a default or defaults occur under this assumption, the 

algorithm runs for a second iteration, reducing the payments of those banks that are insolvent 

or are solvent but illiquid to the maximum that they can pay, but assuming that all other 

payments are made in full. Banks that are solvent but illiquid have the chance to seek more 

liquidity from those banks that they hold credit lines with, and if their creditors are able to 

supply them with this liquidity their payments to their interbank creditors will be increased. If 

there are further defaults in the second round, the algorithm will attempt to settle the system 

again assuming that only the banks that defaulted or became illiquid in the first two rounds 

make reduced payments, and so on. 

The propagation stage of the typical Matrix model is quite simple by comparison to some of the 

other models examined here, principally because the LGD figure is not calculated within the 

model, but is instead supplied as a system parameter.  Adapting Upper’s summary of the typical 

propagation stage, any bank j will fail if its exposure to a bank i, xji, multiplied by the supplied 

LGD, exceeds its capital vj. A second round of contagion may occur if there is a bank k for whom 

LGD(xki + xkj) > vk, and so forth for third and subsequent possible contagion rounds. 
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Canedo’s propagation is straightforward; banks that have an exposure to a failed bank that 

exceeds their net worth (or ‘threshold’ value) will fail. In the event of such a failure, the entire 

value of any loans to this set of newly failed bank is considered lost. Any banks whose loans to 

this set of banks exceed their net worth will fail in turn.  The innovation in Canedo’s model is 

that every possible combination of failures is modeled. By starting with a given probability that 

any particular bank will default (using data from the central bank) and treating every initial 

failure as independent, the model produces a loss distribution that outlines both the likelihood 

and scale of contagious failures and losses to the whole system.  

Cifuentes’ propagation is complicated by the fact that there are two channels of contagion at 

work; a bank can become insolvent due to losses sustained on interbank loans when a 

counterparty defaults, or it can become insolvent due to the falling price of illiquid asset 

holdings. Cifuentes’ model features a market for illiquid assets, where the sale of the assets of 

insolvent banks can drive down the price of the illiquid assets held by its peers. Banks that do 

not meet the capital adequacy ratio are also forced to sell assets in this market until they can do 

so. If they sell all of their liquid and illiquid assets (excluding interbank loans) but still do not 

meet the capital adequacy ratio then they are technically insolvent and are liquidated. Thus an 

organization may be solvent in the sense that it has positive net worth, but be technically 

insolvent as it falls below the capital adequacy ratio determined by regulatory authorities. The 

level of net worth required to meet this capital adequacy ratio is given by: 

�* ∑ �ij
�
���            (5) 

where r* is the capital adequacy ratio and xij represent loans from bank i to bank j.  

Cifuentes propagation algorithm starts by determining which banks do not meet the capital 

adequacy ratio or are insolvent, and then calculates the amount of the illiquid asset that is to be 

sold in the market as a consequence. A demand function is then used to calculate a new price 

for the illiquid asset and the algorithm checks each bank to determine if it is solvent given the 

new price of its illiquid asset holdings. If any bank is found to be insolvent or does not meet the 

capital adequacy ratio then the algorithm starts another iteration. 

Georg’s propagation algorithm is quite lengthy and complex, as this model introduces important 

new elements that allow the modeling of both central bank interactions and the impact of the 

real economy on the banking system. A detailed examination of this propagation algorithm is 

beyond the scope of this paper, but we will make some observations about its key points. Firstly, 
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there are three ways that banks may become insolvent in this model; large deposit withdrawals, 

losses on investments, and the failure of bank loan counterparties. By modeling deposit holdings 

and investment returns stochastically, this model allows the real economy to cause the 

weakening or failure of individual banks. A second important point to note is that there is a time 

dimension in this model, as each iteration of the algorithm represents a new time period when 

investment returns and deposit holdings are updated, and the banks modify their portfolio for 

the coming year.  Finally, a key innovation sees the introduction of a central bank which acts as 

lender of last resort to banks which cannot obtain liquidity from its bank peers, if the bank has 

sufficient assets to secure the central bank loan against.  

3.8.3  Stopping condition 

In Eboli’s model, the total loss to banks in the system is caused by a drop in the value of assets 

held by those banks. At the end of each iteration of the propagation algorithm, the final check 

that is carried out is a comparison between the flow of losses to the sink and the value of the 

initial shock to the external assets of all the banks. When the total amount of losses that have 

been sent to the sink node is equal to the size of the initial shock to the system, all losses are 

accounted for and the algorithm will terminate. Nier’s stopping condition is simpler, in that the 

algorithm keeps iterating until there is a round free of new defaults, at which point it stops.  

The Matrix model algorithm and Eisenberg’s algorithm, like Nier’s, stop when there is a round 

with no new defaults. Eisenberg makes the point that when using the ‘fictitious default’ 

algorithm, because there must be a default every round or the algorithm will stop, the 

maximum number of rounds is the same as the number of banks – an observation that we can 

extend to any algorithm that uses a stopping condition of this type. Müller makes no mention of 

a stopping condition in her algorithm but it is probable that is the same as the condition used by 

Eisenberg. Cifuentes’ algorithm terminates when there are no new insolvencies, and no bank 

that does not meet the capital adequacy ratio. 

Canedo observes that given a set of initial failures, the consequent ‘contagion path’ of bank 

failures is entirely deterministic. Only overexposed banks can fail, so the contagion process will 

stop when all such overexposed banks are in default, or when a round of defaults occurs where 

there is no default that pushes an overexposed bank into insolvency. 

Georg’s model runs a number of ‘update steps’ (i.e. iterations of the algorithm) specified as a 

system parameter and stops when this number of update steps has been completed. 
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4. Model Details and Results.  

In this section we will examine the key assumptions that these models make, the 

implementation of the shock that starts the contagion process, the types of data used in each 

model, and the results that each model implementation produces.   

4.1 Assumptions 

In order to model a financial network based on loan exposures, certain assumptions must be 

made about the behaviour of the financial agents and the world they operate in. The 

assumptions implicit in each model vary, but some key assumptions are detailed in Table 1. 

Krznar (2009) details nine common assumptions which are adapted here and supplemented 

with several other fundamental assumptions. We will briefly explain what each of these 

assumptions refers to and look at some of the notable exceptions among the models examined 

here. 

Table 1: Modelling assumptions 

 Assumption Notable Exceptions 

1 Debt has priority over equity None 

2 Liabilities are limited None 

3 Proportional repayments to creditors in default Canedo  

4 Moral hazard is not modeled None 

5 Contagion is isolated from macroeconmic shocks Elsinger 

6 No deposit flight due to defaults None 

7 Portfolios and asset prices remain constant Elsinger, Cifuentes, Nier, 

Georg 

8 No seniority of creditors in default Nier 

9 Collateralisation of claims not modeled None 

10 Bank failures are unexpected None 

11 Central bank does not rescue failing banks None 

12 Interbank claims not backed by government guarantees Upper 
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13 Failing banks cannot be recapitalised Mistrulli 

 

Some of these assumptions are based on basic real-world laws, for example the first two; the 

first assumption states that debt has priority over equity so that an agent that cannot repay all 

of its debts will be liquidated, and the second assumption is that limited liability is in operation 

so an agent will only repay what it can, limited to whatever equity and assets it holds. 

Assumption three is simply that if an agent defaults, each creditor will be paid back in 

proportion to how much it lent the failed agent. For example, if a certain bank is owed a tenth of 

the failed bank’s liabilities, then that bank will receive a tenth of the value that is realised when 

the failed bank is liquidated. An exception to this assumption is Canedo’s model, where 

creditors lose 100% of whatever they lent to a failed bank. This may be considered a realistic 

representation of the short term scenario that this model focuses on, but in reality banks will 

expect to recover a large part of their exposure to an insolvent bank in the medium and long 

terms, so this assumption will lead to a considerable exaggeration of the probability of 

contagion. 

The fourth assumption concerns moral hazard; nodes always repay everything they owe or as 

much as they can. This assumption greatly simplifies the modelling process. If models have to 

take account of moral hazard, not only would the behaviour of the management of the agents 

have to be modelled, but many new assumptions would be required about their behaviour.  

Typically the models start from a position where a single bank or a combination of banks fail for 

idiosyncratic reasons, rather than due to macroeconomic factors. Thus there is an assumption 

that banks are isolated from macroeconomic shocks. However, Elsinger uses historical data on 

the fluctuating values of banks’ asset portfolios to examine the role that market risk plays in 

systemic risk. This data spans a 13 year period with exposures aggregated into 26 categories, 

and introduces to the model the possibility that macroeconomic factors will influence the extent 

of contagion. It is worth pointing out that when building such a model, there is an implicit 

assumption that the future will resemble the past; if this is not the case, then the model does 

not give a true reflection of the risks facing the system in question. Thus, the way this model 

estimates the likelihood of contagious defaults and systemic risk in Austria may exclude the 

possibility of ‘Black Swan Events’ (Taleb, 2007) which may have a severe impact on systemic risk. 
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Deposit flight is a factor that can play an important role in a contagious default scenario, so it is 

unfortunate that in all of the models seen here it is assumed not to take place. The closest we 

see is in Georg’s model where each bank’s deposits are modelled as stochastic from each time 

period to the next. This means that it is possible that a bank in Georg’s model may get into 

trouble due to deposit flight, but there is no behaviour driving the movement of the deposits 

from one bank to another, or indeed the movement of deposits out of all banks simultaneously.  

The next assumption on the list is that portfolio and asset prices remain constant. This 

assumption is prevalent in the earlier models in the field, and in particular the Network Models, 

where market and liquidity risk is omitted completely, but subsequent models from Nier, 

Cifuentes, Elsinger and Georg have seen a relaxation of this assumption. Nier and Cifuentes 

model a simple market for assets where defaulting banks (Nier, Cifuentes) or banks not meeting 

a capital adequacy ratio (Cifuentes) sell a single asset type, forcing down the value of the asset 

held by other banks. Elsinger, as mentioned above, models portfolio holdings with fluctuating 

values based on empirical data, and Georg models stochastic returns for ‘risky investments’. 

It is generally assumed that no seniority in repaying creditors is recognised in the event of a 

default, but Nier instead models a situation where depositors are paid back in full by the 

liquidation of a failed bank, with whatever is left distributed proportionately between its bank 

creditors. This approach is will result in Nier’s model overstating the extent of contagion in some 

instances as the losses passed on to creditors of failed banks will be far greater than would be 

the case if all creditors were treated identically. 

The ninth assumption is that there is no collateralisation of claims. Such collateralisation would 

reduce the cost to the creditor if a counterparty defaults, reducing the risk of contagion. None 

of the models discussed here explicitly features collateralisation, but Degryse carries out an 

analysis in an extension whereby the debts between a defaulting bank and its counterparties are 

netted against each other, and finds that this may substantially reduce contagion risk.   

The next assumption is that bank failures are unexpected. The importance of this assumption is 

that, if a bank is known to be in trouble, other banks may react by limiting their exposure to this 

bank. This would have the dual effect of reducing the impact of its failure on its counterparties, 

but it may also cause a bank that is in slight or temporary difficulty (or a healthy bank that is 

rumoured to be in difficulty) to quickly fail as its access to credit dries up. 
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The eleventh assumption is that central banks do not rescue failing banks. This is, in a sense, a 

prerequisite for allowing most of these models to function as many of them start with the 

assumed failure of a single bank. A more relevant case in the light of the recent credit crisis 

would be to examine the cost to a central bank and the likelihood of success in attempting to 

rescue several banks or indeed a whole banking system that has been negatively affected by 

correlated asset exposures. Georg features a central bank that acts as a lender of last resort for 

banks that cannot borrow enough from existing counterparties to fund their planned asset 

portfolio, but the central bank in this model does not attempt to rescue banks that are 

insolvent. Degryse also examines the effect of merging banks that are at risk of default – an 

action that could conceivably be forced by regulatory authorities – and finds that in some cases 

such mergers would prevent contagion taking place.  

Another typical assumption is that interbank claims are not backed by government guarantees. 

This means that exposures to a defaulting bank will always suffer some degree of loss, 

depending on the LGD applied. Upper departs from other models here however; to more 

accurately model certain government guarantees that exist in the German market, Upper 

assumes that some categories of bank will never fail, and another category will not fail in the 

first contagion round. Incorporating these safety nets, it is found that contagion is still possible 

but is much more limited in its scope.  

The final assumption in Table 1 is that failing banks cannot be recapitalised. In practice, a failing 

bank may be recapitalised by raising new money from investors, or by receiving a capital 

injection from government or other sources. Such recapitalisations can restore a bank to 

solvency and allow it to absorb further losses, and will obviously help prevent contagion. The 

only model examined here that features such a mechanism is that of Mistrulli, who allows banks 

belonging to the same banking group share their capital. If a member of the group becomes 

insolvent, it can receive a capital injection from other banks in the same group. Mistrulli finds 

that there is not a clear reduction in the risk of contagion if such bailouts are allowed because 

the improvement may be expected by bailing out these defaulting banks is countered by the 

addition of a new channel of contagion within banking groups.  
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4.2 Shock 

Table 2: Shock implementation 

 Recipient Mechanism 

Eboli Both system and single bank External asset losses 

Nier Single bank External asset losses 

Eisenberg System* System settlement 

Müller System* System settlement 

Canedo System All combinations of banks are assumed to fail with 100% LGD 

Matrix Single bank or group of banks Bank or banks fail by assumption 

Elsinger System* System settlement 

Cifuentes Single bank Single bank fails by assumption with given LGD 

Georg Single banks Banks may fail due to stochastic deposit holdings and 

investment loan returns. Additionally, a single bank may fail by 

assumption at a specific point in the simulation. 

*Strictly speaking, there is no conventional ‘shock’ in Eisenberg, Elsinger or Müller, but the instant settlement used to 

test for contagious default affects the whole system from the outset. 

Each model type in this group seeks to explore the phenomenon of contagious default in a 

financial network. Typically, a shock will be applied to the system and the consequences of the 

shock are explored, but the nature of this shock is not the same in every case.  

Eboli presents two different scenarios – an ‘exogenous common shock’ and an ‘idiosyncratic 

shock’. In the case of the former, the shock is generated by reducing the value of the external 

assets held by the all banks in the network. If the fall in the value of a bank’s assets is greater 

than its net worth, then that bank is insolvent. Losses that are not absorbed by the bank’s net 

worth are passed on to its creditors. Clearly, this scenario is useful in modelling situations where 

all banks in the system are affected by a common exposure to a certain asset class (for example, 

sub-prime loans). The second scenario, ‘idiosyncratic shock’ is intended to model a situation 

where a single bank is affected, for example in the case of fraud by an employee. The shock 
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mechanism is identical to that in the previous case, but in this scenario only the assets belonging 

to the shocked bank are affected. 

Like Eboli, Nier models the shock as a fall in the value of external assets. However, how Nier 

implements this is slightly different. Firstly, Nier does not model the exogenous common shock 

scenario at all. Rather, for a given instance of a banking network, each bank is shocked in turn 

and the consequences for the other banks are observed. In other words, an idiosyncratic shock 

is applied to each bank. Nier argues that ‘idiosyncratic shocks are a cleaner starting point for 

studying knock-on defaults due to interbank exposures and liquidity effects’, but also concedes 

that in their model an aggregate shock large enough to bring down any bank will result in every 

bank in the system failing due to contagion, which may point to a weakness in the simulation.  

In another departure from the method employed by Eboli, the shock does not simply affect the 

net worth and interbank assets of the bank. Rather, the shock that is not absorbed by the bank’s 

net worth is first absorbed by its interbank liabilities, and any loss exceeding these is finally 

absorbed by customer deposits. This may result in this model exaggerating the degree of 

contagion that a given shock may cause, as in reality customer deposits do not have any priority 

over interbank loans in the event of a default, but Nier allows interbank loans to bear the full 

burden of the loss, with the customer deposits only being affected once interbank loans are 

totally wiped out. 

Eisenberg, Elsinger and Müller differ from Eboli and Nier in that there is no actual shock to the 

system at all. Rather, they employ a ‘fictitious default algorithm’ whereby every node (these 

nodes are ‘financial nodes’ in Eisenberg, and are banks in Müller) in the system attempts to call 

in all of its outstanding interbank assets and pay off all of its interbank liabilities as if the market 

is being wound down. Whereas asset losses are inflicted on otherwise solvent nodes in Nier and 

Eboli, pushing them into default, the only nodes that will default in Eisenberg and Müller are 

those which are fundamentally illiquid or insolvent in the state of nature. This is not the case 

with Elsinger however, as a node which is fundamentally solvent initially may see its portfolio of 

assets lose enough value between t = 0 and t = 1  to force it into insolvency.  

Canedo takes a different approach to that of the other models. The shock is the failure of a bank 

or a combination of banks by assumption, with a total loss of any exposure to the set of failed 

banks. However, as this model is intended to produce a probability distribution for losses to the 

system, every possible combination of failures is modelled, and a probability attached to each 
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loss scenario. Therefore Canedo models every possible ‘shock’ that may occur within the limits 

of the model. 

As with Canedo, a Matrix model typically implements the shock by modelling scenarios where a 

bank or group of banks fail by assumption. Cifuentes similarly assumes that a single bank fails by 

assumption. Georg allows individual banks to fail by modelling stochastic customer deposit 

holdings which may fall suddenly (simulating a run on the bank) and stochastic investment loan 

returns (simulating losses on the asset side). In addition, this model allows specific banks to fail 

by assumption at predetermined points during a simulation run.   

4.3 Data 

Of the models considered here, Müller, Elsinger, Canedo and the Matrix models use empirical 

data from a real-world banking system. The remaining models use data that is generated to 

examine the general principles of financial contagion by means of the respective models. A 

comparison can be made of the ‘data points’ that are required for each model. The following 

table illustrates the data points each model uses. 

Table 3: Data points used 

Paper Interbank Loans Net Worth External Assets Customer Deposits Liquid Assets Credit Lines 

Eboli X X X    

Nier X X X X   

Eisenberg X X     

Müller X X   X X 

Canedo X X     

Matrix* X X     

Elsinger** X X     

Cifuentes X X  X 

X 

(plus illiquid assets)  

Georg X X X X X  

 *This indicates the minimum data required for a Matrix model. **This does not include the data required for the portfolio model. 

A distinction is made in the table between ‘external assets’ and ‘liquid assets’. It could be argued 

that a liquid asset may also be an external asset. However, the distinction made here is between 
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those papers which have generic data for ‘external assets’ and those which make a distinction 

between liquid and illiquid assets.  In the case of Müller, the use of liquid asset data is important 

as these are the only assets available in the short term for banks to sell to raise liquidity. Matrix 

models may feature a breakdown of different asset classes to allow an accurate estimate for 

Tier 1 capital (e.g. Amundsen and Arnt).  

Every model has data for interbank loans and net worth. These data types are the fundamental 

building blocks of a network model of financial contagion. In the case of Eisenberg, this data is 

called ‘cash flow’ in the model, but it performs the same role and may be considered indentical 

to ‘net worth’ in the other papers. If lending plus cash flow minus borrowings is less than zero, 

then a node in Eisenberg defaults. Similarly, Müller uses ‘regulatory capital’ to fulfil this ‘net 

worth’ role in the model. Note that Elsinger’s ‘net worth’ figure is derived from a model that 

simulates market and credit risk; this portfolio model requires many other types of data, 

excluded here to focus on the network model. The Matrix models often use ‘Tier 1 capital’ as 

the net worth figure. 

The number of data types employed in each model is correlated to the model’s complexity. 

Eisenberg uses the fewest possible types of data – just interbank loan and ‘net worth’ data. Eboli 

introduces the concept of a shock to the financial system, and to model this shock adds the 

external assets data to the model. The shock to the system is thus modelled as a drop in the 

value of external assets held by one or more of the banks. Nier, in turn, builds on Eboli by 

introducing customer deposits as a sink for losses inflicted on the system by a shock and 

requires the addition of data about customer deposits. Cifuentes, adding a market for illiquid 

assets, requires the introduction of distinct liquid and illiquid asset types. 

Müller builds on Eisenberg in two different dimensions – firstly by extending the model to 

include credit lines, and secondly by populating the model with empirical data. Credit line data is 

added to the model, in addition to ‘liquid asset’ data. Liquid asset data is required to allow 

Müller to make the distinction between banks that are insolvent and those that are illiquid, an 

important distinction as illiquid banks may solve their liquidity problems by calling on their 

credit lines to access the liquidity they need to pay their creditors. 

Discussing the data used in these models allows us to make a further distinction between the 

model types.  Müller, Canedo, Elsinger and the Matrix models use empirical data. Of the models 

that do not, only Nier discusses how the data used is generated. Eboli and Eisenberg do not 
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disclose how their models were populated with data. Nier outlines in detail the step-by-step 

process used to populate the model, but in summary the data is generated by varying five key 

parameters that can be used to create any possible instantiation of Nier’s model (as mentioned 

previously when discussing System Parameters).  

Müller’s empirical data originates from the Swiss National Bank and relates to 300 Swiss and 

international banks that participate in the Swiss banking system. The data on interbank loans is 

not complete – Müller indicates that 83% of interbank assets and only 58% of interbank 

liabilities can be assigned to particular counterparties. Furthermore, Müller indicates that the 

credit line data is estimated, as the size of the credit line is not specified by contract so that the 

bank that receives the credit does not know exactly how much credit the other bank is willing to 

extend. However, she states that these estimates are ‘fairly good’ (Müller, pp41). 

Like Müller, Canedo’s data is obtained from a central bank, in this case the Banco de México. 

The Mexican banking system is not as complex as the Swiss system, and the model uses data 

from only 25 domestic banks (compared to the 300 of Müller, some of which are international).  

The propagation mechanism in Canedo is quite simple – there are no asset price effects or 

external asset holdings, so the number of data points required in this model is quite small. 

However, there are two data points not seen in the other models. Each bank has a probability of 

default, estimated by the central bank, which is used in determining the probability distribution 

of losses. Also each bank has an exogenous ‘loss given default’ – defined here as the amount of 

money lost to the banking system in the event that that bank becomes insolvent. 

Matrix models also typically derive their data from the central bank of the country the study 

focuses on. However, one of the key issues in creating a useable matrix of interbank liabilities is 

obtaining complete data. Frequently, researchers who build Matrix models do not have access 

to complete data, and are forced to create estimates of the missing data based on the data that 

they do have.  Two methods are often employed to deal with this problem of incomplete data: 

entropy maximisation (see for example Mistrulli, Sheldon and Maurer), and cross-entropy 

minimisation (see Wells).  

One source of information on banks’ borrowings are their balance sheets, where their total 

lendings and borrowings from other banks in the matrix can be found. These totals correspond 

to the row and column totals in the matrix. Using these totals, entropy maximisation works by 

filling the missing elements in the matrix assuming that each bank distributes its lending as 
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evenly as possible between all the other banks within the limits imposed by the column and row 

totals that are known. This method can be used in the absence of any specific lending data 

where the amount lent between two banks is known, but any information that is available can 

be incorporated, increasing the accuracy of the estimates. An important consequence of 

applying this method is that it is likely to distort the true pattern of lending in the system by 

linking banks that in reality have no mutual exposures. By reducing the concentration of 

interbank lending, this assumption will have a direct impact on how contagion spreads. 

Cross-entropy minimisation aims to increase the accuracy of the estimates of unknown matrix 

elements by making use of other data sources that may contain clues as to how each bank’s 

loans are distributed.  In essence, this technique involves creating a second matrix of known 

elements whose values are assumed to provide an indication of the lending patterns hidden 

amongst the unknown elements of the matrix. For example, central banks will frequently 

require banks to inform them of particularly large exposures and who the counterparties are for 

these large exposures. Working under the assumption that this large exposure data mirrors the 

patterns of interbank lending, a matrix of this large exposure data is created and the unknown 

values in the interbank loan matrix are estimated to resemble as closely as possible the data in 

the second matrix. 

4.4 Results 

Table 4: Topics addressed by model output 

 Level of 

Capitalisation 

Size of 

Exposures 

Degree of 

Connectivity 

Banking System 

Concentration  

Network 

Structure 

Asset Liquidity 

Effects 

Credit 

Lines 

System 

Specific 

Eboli X X X      

Nier X X X X X X   

Eisenberg         

Müller     X  X X 

Canedo     X   X 

Matrix        X 

Elsinger        X 

Cifuentes X  X   X   

Georg   X      
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Each paper explores different aspects of the contagion problem, but there are overlapping 

findings in certain areas. We will therefore consider the results in terms of these aspects rather 

than paper by paper. 

4.4.1 Level of Capitalisation 

The results indicate that higher levels of capitalisation reduce the degree of contagion.  

Eboli finds that increasing the amount of capital held by banks results in a reduction in the 

degree of contagion, while Nier examines this parameter in far greater detail. He agrees with 

Eboli that increasing levels of bank capitalisation result in decreasing levels of contagious 

defaults, but in their benchmark case the relationship is non-linear.  It emerges that when levels 

of capitalisation fall low enough to result in second round defaults there is then a stabilisation in 

the number of banks that default. This situation holds until net worth falls to about 1%, when a 

third round of defaults is seen to occur. Nier explains that the reason for this stabilisation is that, 

until the percentage of net worth falls below this critical level, there is still sufficient net worth 

in the other banks in the network to absorb the impact of both the failure of the first bank and 

those that fail in the second round.  However, once net worth falls below this level, third and 

subsequent rounds of defaults occur and the number of banks that fail increases dramatically. 

Cifuentes also notes the stabilising effects of higher levels of capitalisation, and observes that if 

banks hold more than the minimum required by the CAR, they may not need to make any 

balance sheet adjustments at all if a counterparty defaults, obviating the risk of asset price 

contagion effects.   

4.4.2 Size of Interbank Exposures 

The results in this area indicate that as the size of the total interbank loan market increases 

relative to other asset types, the risk of contagion increases. 

Eboli finds that as the ratio of interbank exposures to the other assets grows, the amount of 

losses that defaulting banks pass on to their creditors also grows. Thus, a larger interbank loan 

market will result in greater contagion. Nier’s model supports this result, finding that at low 

levels of interbank lending, there is no contagion at all, as most of the losses are absorbed by 

customer deposits and the loans that are defaulted on are small enough to be absorbed by the 
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net worth of the lending banks. However, once a certain threshold is exceeded, second round 

defaults start to occur. Nier notes that a third round of defaults does not occur at “any realistic 

proportion of interbank assets” (pp13) as the net worth of both borrowing and lending banks 

increase as the size of interbank exposures rise, and the increasing levels of net worth serve to 

absorb the losses of the defaulting banks. 

4.4.3 Degree of Connectivity 

The results indicate that the degree of connectivity has a dual effect on the risk of contagion; 

adding connections increases the risk it at low levels of connectivity, but decreases the risk at 

higher levels of connectivity. 

This is the third parameter considered by Nier and Eboli. A loan between two banks has a dual 

effect: it can act as a shock transmitter when it directs losses to a given bank, and it can act as a 

shock absorber when the bank receiving the shock is able to absorb the loss with its net worth. 

Eboli, examining the problem mathematically, concludes that at low levels of connectivity, 

increasing connectivity reduces the risk of contagion as losses are distributed more evenly 

between nodes. Conversely, at high levels of connectivity, increasing connectivity further 

increases the likelihood of cycles and closed paths occurring in the network, which will increase 

the losses directed at certain nodes and thus increase the likelihood of contagious default. 

Finally, as connectivity reaches it maximal level, the beneficial effects of connectivity reassert 

themselves and the likelihood of contagious default decreases. Eboli’s mathematical findings are 

borne out by Nier’s model. Nier observes that the dual effects of increasing connectivity are 

more clearly seen when levels of net worth are low.  

Cifuentes finds that, with the addition of asset price effects, higher degrees of connectivity may 

actually increase the risk of contagion. This is because the default of a counterparty may force a 

bank to dump illiquid assets on the market, driving down the price. If the defaulting bank is 

connected to many counterparties, then many banks may be forced to sell illiquid assets, 

causing a greater price movement (and hence, contagion) than if only a few banks were forced 

to sell. However, Cifuentes finds that this relationship is non-monotonic. If there are sufficient 

connections between the failed bank and its counterparties that the counterparties only have to 

sell their liquid assets, then asset price falls can be avoided and contagion prevented. 

Georg finds that increased network connectivity results in greater stability, and that this trend is 

monotonic. 
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4.4.4 Concentration of Banking System 

Increasing the concentration of the banking system increases the risk of contagion. 

Increased concentration means that there are fewer banks for a system of the same size, as 

measured by total system assets. By comparing the impact of shocks of different sizes on 

systems of 10, 15, 20 and 25 banks, Nier finds that the number of defaults increases in all cases 

as the size of the shock applied increases. The fraction of banks that default also increases as the 

concentration of the system increases. Nier argues that there are two factors that influence this 

result. Firstly, there is a larger shock when a given percentage of a larger bank’s assets are wiped 

out than when the same percentage of a smaller bank’s assets are hit. Secondly, in a more 

concentrated system, loans between banks appear to have an increased tendency to spread 

contagion. 

4.4.5 Asset Liquidity Effects 

Asset liquidity effects always lead to an increase in contagion risk. 

In Nier’s model, the number of failures in a system with asset liquidity effects is never less than 

the number in a system without, all other things being equal. Contagious failures, and the failure 

of every bank in system, become far more likely. Combining asset liquidity effects with varying 

levels of concentration, Nier finds that concentrated bank systems are particularly vulnerable if 

asset prices are quite liquid.  

Cifuentes considers a case where the initial failure in the system occurs with an LGD of zero, 

meaning that all the subsequent losses to the system are caused by asset price effects. They find 

that these asset price effects can be a powerful channel of contagion, and that banks are more 

likely to survive such a scenario if they hold higher levels of liquid assets. 

4.4.6 Network Structure 

Centralised networks seem more susceptible to contagious defaults than decentralised systems, 

while the impact of a shock applied to large bank in a centralised system has a dual effect 

depending on the degree of network connectivity. 

Müller observes that the banking system in Switzerland is not homogenous – there are two large 

banks that act as ‘money centres’ and there are two sub-networks, one of which is highly 

centralised (regional banks) and the other decentralised (cantonal bank).  
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This is an example of a tiered network, where there are many banks with a few interbank loans, 

and a few banks with many interbank loans. Müller compares the effects of a simulated default 

in the regional banks sub-network and the cantonal bank sub-network and finds that the 

potential for contagious default is higher in the centralised regional bank network than in the 

more homogenous cantonal bank system. 

Nier also examines the implications for contagious defaults in a tiered network with a single 

large bank.  If the large bank is shocked, the degree of contagion initially rises with increasing 

connectivity above the level of defaults caused by a shock to a small bank. When the large bank 

is connected to about half of the smaller banks, the number of defaults falls. From a connectivity 

level of about 70% for the large bank, the level of contagious defaults falls well below that of a 

shock to one of the smaller banks. The explanation of this result is simple – at low levels of 

connectivity, the default of a large bank is damaging enough to cause any bank that is exposed 

to it to fail. At a certain tipping point, between 40% and 50% connectivity in Nier’s example, the 

shock of the large bank’s default is spread between enough small banks that the small banks 

have a chance of surviving. As further connections are added, the shock is divided among so 

many small banks that most or all of them are able to survive. 

Canedo makes an interesting observation on how the degree of connectivity affects the 

outcome of their loss probability distribution. Four cases are modelled. A reference case is 

modelled using data that would be considered to represent ‘normal’ conditions in the Mexican 

banking system. Then three stressed scenarios are modelled. In the first, interbank exposures 

are set at the highest level recorded over a two-year period from 2004 to 2006, all other 

parameters being equal to the test case. In the second stressed scenario, the probability of 

default of each bank in the system is set to a level equal to the probabilities that would have 

been estimated for them during a period of financial distress such as that experienced in Mexico 

in 1994. Again, all other parameters are equal to those in the reference case. Finally, a third 

stress scenario combines both the higher exposure levels of scenario one with the higher PDs of 

scenario two. 

The findings of these stress scenarios reveal that the losses experienced by the system in stress 

scenario two are far higher than those in stress scenario one, indicating that changing the PDs of 

the banks in the study has a far greater effect on the probability loss distribution than changing 

the network topography (by increasing the number and level of exposures between banks).  
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4.4.7 Credit Line Availability 

The availability of credit lines reduces the risk of contagion. 

Müller compares two scenarios using empirical data on the Swiss interbank market. She first 

simulates a default without the existence of credit lines, and then carries out the same 

simulation with the credit lines implemented. In the first simulation, she finds that there are five 

rounds of contagion, resulting in 9% of Swiss banks become insolvent and 30% become illiquid. 

In the second simulation, illiquid banks are allowed to draw on their credit lines with solvent, 

liquid banks. In the second simulation, 5% of banks become insolvent and 25% of banks become 

illiquid. In most cases, banks become illiquid due to a combination of credit exposures and credit 

lines that they cannot call on. 

4.4.8 System-Specific Results 

Models that use empirical data will sometimes have findings that may have implications for 

systems other than those that the data was derived from, and we have already considered some 

of these findings when considering the general findings of Müller and Canedo. However, this is 

not always necessarily the case, particularly with regard to Matrix models. 

Matrix models are based on empirical data from individual banking systems, usually with the 

stated intention of assessing the risk of contagious default in these systems. As such, the 

findings of these models tell us far more about the particular system they model than about 

financial networks in general. However, by looking at the results of the Matrix models as a 

group, we can still make some general observations. 

Typically, Matrix models find that the likelihood and extent of contagious failures is quite low. 

Lubloy, Krznar, Furfine and Amundsen & Arnt find that contagion would affect less than ten 

percent of their banking systems as measured by total assets (for Hungary, Croatia, USA, and 

Denmark respectively). These findings stand even when the systems are tested with LGDs 

approaching 100% (in the case of Lubloy, Krznar, Amundsen & Arnt). Krznar finds that no bank in 

the Croatian system has interbank liabilities that exceed their regulatory capital, so contagious 

default due to idiosyncratic failure is not possible at all.  

Upper & Worms find a higher risk of serious contagious default. With a high LGD (75%) they find 

a worst case scenario where 2444 banks of the 3246 in the system (75%) fail due to contagion 

following an initial idiosyncratic default. However, they also run simulations where they attempt 
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to model the ‘safety nets’ in place in the German banking system. They do this by assuming that 

certain classes of banks never fail due to government guarantees and that cooperative banks 

pool their capital so that either none fail or all fail together. This time, they find that, even with 

an LGD of 75%, the worst case scenario sees only about 100 banks (representing approximately 

15% of total banking assets) fail. 

There are also some interesting findings with regard to the initial source of the contagion. 

Degryse & Nguyen find that the failures of foreign banks are likely to cause far more serious 

contagion than the failure of a domestic bank in the Belgian banking system. Conversely, 

Mistrulli finds that the failure of a domestic bank has more serious consequences than the 

failure of a foreign bank in the Italian system.  

5. Limitations of Existing Research 

While each study discussed here has advanced the understanding of financial contagion, there 

are definite limitations to existing research and future advancements in this field will require 

that these limitations are addressed. Here, we will briefly consider some of the more important 

shortcomings that exist at present. 

5.1 Agent Behaviour 

None of the models examined here are capable of modelling any form of behaviour on the part 

of the agents in the models. It could be argued that the manner in which illiquid banks in 

Müller’s model can draw on credit lines is a type of behaviour, but the exposures and credit lines 

that a bank has are determined by the initial set-up of the model – once the model starts, the 

outcome is totally deterministic. In the real world, banks that are exposed to a bank that 

appears to be in danger of defaulting can take steps to reduce their exposure to that bank, but 

none of the existing models allow for this. Note that it is not clear whether modelling this 

behaviour would result in fewer banking failures. While some banks in the system will benefit 

from withdrawing credit to potentially illiquid organisations, others will be the victims of this 

liquidity shortage and may become more likely to default in turn.  

In addition, if customers are modelled as agents, we may be able to more accurately simulate 

bank runs, a potentially important element of financial contagion. Although it may contribute to 

system instability, each agent in the model should act in a self-interested manner. Behaviour 

requires action on the part of the agents, and action requires that the model has a time 
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dimension. Clearly, some mechanism for modelling these types of agent behaviour would add 

valuable depth and realism to existing research.  

5.2 Model Scope 

A second limitation of existing models is that the financial system modelled tends to be rather 

narrowly defined – the participants are banks, with the possibility of modelling insurance 

companies in some models. However, the ‘ecosystem’ that banks exist in is rather more 

complex in the real world, and it is possible that modelling this ecosystem more accurately will 

allow researchers to make better predictions about financial contagion and the consequences of 

bank defaults. For example, different types of banks will have different mixes of assets on their 

balance sheets and will have different lending patterns – the balance sheet of a commercial 

bank will be quite different to that of a mortgage bank.  Furthermore, banks and insurers are 

not the only important agents in the market – the central bank plays a key role in the market, 

for example in providing liquidity to illiquid banks (Freixas, Parigi, & Rochet, 2000), and Georg 

takes an important step forward in terms of model scope by introducing a central bank.  

In addition, the financial regulator will determine the rules that the whole market operates 

under, governments can intervene in the market by nationalising or recapitalising failing banks, 

and large industrial customers or industry sectors can fail with serious consequences to those 

banks that have leant to them.  

5.3 Modelling of Asset Types 

A third limitation of the existing models is that, with the exception of Elsinger, they focus either 

exclusively on interbank loans, or interbank loans and illiquid assets only. Elsinger introduces the 

effects of market and credit risk on the asset portfolios of the banks they model, but the use of 

empirical data for a specific 12 year period means that the model can only explore the type of 

conditions that prevailed during that particular period. 

The models that feature illiquid assets demonstrate that even banks that are not directly 

affected by interbank loan losses can be brought down by falling asset values. However, banks 

or other agents such as insurance companies may also be exposed to the risk of defaults by the 

issuers of bonds or other securities. Indeed, an organisation that has bought bonds from and 

lent to a defaulting organisation will be hit twice by a single default event. Similarly, a company 

may not have lent to a defaulting bank or be exposed to any assets  that this bank dumps on the 
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market, causing price falls, and yet take a large loss as the company defaults on its bonds. 

Clearly, if we seek to learn more than general principles of financial contagion, we may need to 

model more than just interbank exposures and an abstracted asset market. 

5.4 Data Availability 

Finally, a fourth limitation arises out of the second and third – the availability of data. Data 

pertaining to interbank lending may be commercially sensitive and subject to rapid change, so it 

is not surprising that it is not easily obtained. It is not a coincidence that most of the studies 

featured in this paper were projects undertaken for central banks, the only organisations likely 

to have accurate data on interbank loans. If central banks have - or could obtain - sufficiently 

detailed information on banks’ other asset holdings, it may be possible to build more realistic 

models as described above where a wider range of exposures and potential contagion channels 

is considered. However, independent researchers without access to such data may have to 

continue to rely on simulated data. 

6. Future Research 

At present, there is considerable scope for new research in the field of network models of 

financial contagion. In this section we will consider some possible avenues. 

6.1 Future Research Suggested in Existing Literature  

Previous researchers have highlighted several areas for future research. Eisenberg and Noe have 

suggested allowing more than one clearing date in the models to incorporate 'true dynamics'. 

Allowing only a single clearing date severely restricts the opportunity to model any sort of 

behaviour on the part of the agents modeled in the existing systems – at present in network 

models, if contagion occurs it is a completely deterministic process. Allowing second and 

subsequent clearings would enable the banks or other agents in the models to react to the 

events at the first clearing by - for example - cutting their exposures to a failing bank, greatly 

adding to the realism. However, Eisenberg and Noe acknowledge that this would be a complex 

extension, and it is worth noting that nearly a decade later no researcher has published such an 

extended model. Canedo and Jaramillo acknowledge that the assumption of independence in 

the probabilities of default used in their model is quite a strong one and indicate that in future 

research they will seek to address this. 
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6.2 Agent Behaviour 

The limitations of existing research are a good starting point for future research. As stated 

above, there is no mechanism in the existing research to model the reactions of banks to a 

default in the system or modelling any other behaviour by participants in the system. 

Developing an agent-based model that allows such reactions could lead to a greater 

understanding of the likely patterns of contagion that can arise in financial systems. In addition, 

an agent-based model may allow researchers to explore the consequences of modifying the 

behaviour and reactions of the banks in the system to determine whether proposed changes in 

regulation and monitoring would lead to improved stability or, as is frequently occurs when 

interacting with a complex system, harmful negative consequences for system stability (the ‘law 

of unintended consequences’). 

6.3 Model Scope 

The second limitation cited above describes the narrow definition of the financial ‘ecosystem’ 

that existing models encompass. A broader model that includes more real-world elements such 

as those identified previously – governments, regulators, central banks, insurance companies 

and other large non-financial companies and industry sectors – is an obvious direction for future 

research efforts. While some of these elements – insurance companies and large companies – 

could be quite easily added to existing models, modelling the role of central banks, governments 

and regulators may be more complex, perhaps requiring the creation of an agent-based model, 

as discussed previously, to capture the roles that these participants play. Insurance companies 

are similar to banks in that they hold huge amounts of assets (of varying liquidity) but differ in 

that they do not engage in interbank lending, while large non-financial companies can be 

modelled as depositors, borrowers and bond-issuers interacting with the banks. The central 

bank and the government, on the other hand, may need to play a different role in the model, 

reacting to a perceived threat of bank failure or contagion, and these reactions may require that 

they are modelled as agents behaving according to certain rules. 

6.3 Credit Scoring Applications 

Another interesting possibility for future research would be to use network information in the 

field of credit scoring (Thomas, Edelman, & Crook, 2002)  to improve credit rating models.  By 

mining the network information of a counterparty, it may be possible to add valuable 

information to existing credit rating models. For example, when making a lending decision, it 
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may be relevant to consider who the potential counterparty is exposed to, the size of those 

exposures, and the creditworthiness of its counterparties. By determining the likelihood that the 

potential counterparty is itself exposed to credit risk, it may be possible to derive a new 

predictive variable about the credit-worthiness of that counterparty. The use of network 

information has proven to be beneficial in a marketing context (Hill, Provost, & Volinsky, 2006) 

and it may have particular usefulness in the context of the financial services industry where 

small improvements in credit-rating models can make a big difference in financial performance. 

6.4 Stress Testing Applications 

Finally, stress-testing is an area of great interest and importance both to banks and regulatory 

authorities, and this is another possible application of financial network models. The Basel III 

accords allow banks who wish to adopt the Internal Ratings Based approach (IRB) to perform 

stress tests to determine their capital requirements. Banks are required to model the losses that 

their asset portfolios could sustain in certain scenarios such as recessions or other harmful 

economic events (Basel Committee on Banking Supervision, 2009). Regulatory authorities also 

need to know the likely consequences of these stress scenarios on the stability not only of 

individual banks but of the whole financial system. From the perspective of a regulator, an 

accurate and realistic model of the specific financial network that they are responsible for would 

be an invaluable tool for investigating the likely consequences of economic events on the 

system that they are responsible for, and determining the responses that are most likely to lead 

to desired outcomes. 

6.5 The Use of Network Models 

Little is known at present about the extent to which these network models  are used outside the 

academic world. The potential uses of these models and the utility that they could offer credit 

risk professionals, regulators and central banks have been discussed in this paper, but at present 

we are unaware of any research that explores  their use for practical applications and how those 

who could use network models perceive their usefulness.  Addressing this gap in the literature 

may be useful in determining how to prioritise future technical improvements in the models and 

also in learning to what extent the development of network models has or has not influenced 

how those in industry conduct their work. 

7. Conclusion 
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Network models offer the possibility of exploring the ways that the failure of a financial agent or 

agents will affect other financial agents that are part of the same financial system. The ability to 

endogenously model the LGD for each individual default that occurs in a system has 

consequences both for the study of theoretical systems and those based on real-world data. In 

studying theoretical examples, it is possible to closely examine the mechanisms and 

characteristics that promote or inhibit contagious default and draw generalised conclusions. In 

the study of models of real-world systems, it allows a more accurate modelling of the 

idiosyncrasies of particular banks that have a large bearing on the role they play in increasing or 

decreasing the risk of contagious default.  

However, existing models are limited by the absence of a behavioural dimension that would 

allow the modelling of the financial agents’ actions and reactions, and by a rather narrow 

definition of the world that these agents operate in. Models based on empirical data from real-

world systems are rare as it is unusual for any one organisation to have all the loan exposure 

data required, and estimating these exposures undermines the accuracy of an endogenously 

derived LGD, making the model far less useful. 

In this paper we have outlined a proposed definition for a financial system network where 

financial agents are linked to each other by loan exposures. In addition, we have explored 

various existing implementations of such network models and have noted the differences and 

similarities of these models and the advantages and shortcomings of each. We also make some 

observations of possible future research in the field, noting that future research should focus on 

addressing the shortcomings identified here and elsewhere in the literature, while qualitative 

research on the use of network models would also be useful. 
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