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Abstract

Recently, variable selection by penalized likelihood has attracted much research interest. In

this paper, we propose adaptive Lasso quantile regression (BALQR) from a Bayesian per-

spective. The method extends the Bayesian Lasso quantile regression by allowing different

penalization parameters for different regression coefficients. Inverse gamma prior distribu-

tions are placed on the penalty parameters. We treat the hyperparameters of the inverse

gamma prior as unknowns and estimate them along with the other parameters. A Gibbs

sampler is developed to simulate the parameters from the posterior distributions. Through

simulation studies and analysis of a prostate cancer data set, we compare the performance of

the BALQR method proposed with six existing Bayesian and non-Bayesian methods. The

simulation studies and the prostate cancer data analysis indicate that the BALQR method

performs well in comparision to the other approaches.

Keywords: Gibbs sampler, Lasso, Quantile regression, Skewed Laplace distribution.

1. Introduction

Variable selection plays an important role in building a multiple regression model. In

particular, the selection process provides a good tool for estimating the parameters, a good
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prediction as well as identification of significant variables (Griffin and Brown, 2010). How-

ever, classical variable selection methods are often highly time consuming and maybe suf-

fer from instability (Breiman, 1996). Bayesian methods for subset selection implemented

using stochastic search variable selection (SSVS) algorithms have become widely used in

linear regression, generalized linear models and other modeling frameworks (Mitchell and

Beauchamp, 1988; George and McCulloch, 1997; Fahrmeir, Kneib and Konrath, 2010). How-

ever, SSVS is computationally very demanding when the number of variables is greater than

10,000 (Griffin and Brown, 2010). Variable selection by penalized likelihood has attracted

much interest recently; see for example, Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001),

LARS (Efron, Hastie, Johnstone and Tibshirani 2004) and adaptive Lasso (Zou, 2006) who

extended the Lasso approach proposed by (Tibshirani, 1996) allowing different penalization

parameters for different regression coefficients. Similarly, from a Bayesian point of view,

Lasso-based models were proposed by Park and Casella (2008), Hans (2009); Bayesian adap-

tive Lasso, iterative adaptive Lasso (Sun, Ibrahim and Zou, 2010); and global-local shrinkage

approach (Polsen and Scott, 2011).

Quantile regression models are rapidly gaining popularity, particularly in econometrics,

social sciences, medicine and public health. A comprehensive account of these recent devel-

opments can be found in Koenker (2005). Like standard mean regression models, dealing

with parameter and model uncertainty as well as the updating of information is of great

importance for quantile regression and its applications.

Koenker (2004) developed an l1-regularization quantile regression method to shrink indi-

vidual effects towards a common value. Additionally, Wang, Li and Jiang (2007) proposed

the LAD-Lasso method which combines the idea of least absolute deviance (LAD) and Lasso

for robust regression shrinkage and selection. Li and Zhu (2008) developed the solution path

of the l1 penalized quantile regression and Wu and Liu (2009) studied penalized quantile

regression with the SCAD and the adaptive-Lasso penalties. Recently, Li, Xi and Lin (2010)
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proposed Bayesian regularization quantile regression approaches including Lasso (BQR.L),

group Lasso and elastic net penalties (BQR.N).

With regards to Lasso regression, Zou (2006) proved that the adaptive Lasso regression

enjoys oracle properties reported in Fan and Li (2001) and Fan and Peng (2004) that Lasso

does not have, i.e., adaptive Lasso chooses the true model of nonzero coefficients with proba-

bility tending to one. Huang et al. (2008) showed that under a partial orthogonality condition

in which the predictors with zero coefficients (unimportant predictors) are weakly correlated

with the predictors with nonzero coefficients (important predictors), adaptive Lasso has the

oracle property even when there are far more predictors than the sample size. However, in

many real world applications, the unimportant predictors are often highly correlated with

some important predictors (Sun, Ibrahim and Zou, 2010). In this paper, we focus on one

such application: prostate cancer data analysis. Prostate specific antigen (PSA) is a protein

produced by cells and has been routinely used as a biomarker for screening prostate cancer.

Nowadays, significant effort is made in finding candidate predictors that relate to prostate

cancer. Certain correlation is present between the predictors in the prostate cancer data

set. For example, the correlation coefficient is 0.752 between Gleason score and percentage

Gleason scores 4 or 5, 0.675 between cancer volume and capsular penetration, 0.673 between

seminal vesicle invasion and capsular penetration, and so on. The correlation between the

predictors is an argument to use the adaptive Lasso because the procedure deals with corre-

lated predictors by using adaptive weights for the different predictors. It could be expected

that the conditional mean function is inaccurate in representing the relationship between the

predictors and the level of prostate specific antigen.

Therefore, we propose Bayesian adaptive Lasso quantile regression (BALQR). In partic-

ular, we extend the Bayesian Lasso quantile regression reported in Li, Xi and Lin (2010) by

allowing different penalization parameters for different regression coefficients. Inverse gamma

prior distributions are placed on the penalty parameters. Similar to Yi and Xu (2008) and
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Sun et al. (2010), we treat the hyperparameters of the inverse gamma prior as unknowns

and estimate them along with the other parameters. We present a Gibbs sampler for the

BALQR that is based on a theoretic derivation of the skewed Laplace distribution as a scale

mixture of normal distributions. Using both simulation studies and real data we compare the

performance of the BALQR method with six existing Bayesian and non-Bayesian methods.

These methods encompass Bayesian regularized quantile regression with the Lasso penalty

(BQR.L) and the elastic net penalty (BQR.N). Also, non-Bayesian methods including the

Lasso (lasso), the elastic net (EN), the standard quantile regression (QR) and regularized

quantile regression with Lasso penalty (QR-L) are used. Both our simulation studies and

data analysis show that BALQR performs well and this method may be preferred over most

existing methods it is compared against.

The rest of the paper is organized as follows. In Section 2, we present Bayesian quantile

regression with adaptive Lasso penalty as well as an outline of the Gibbs sampler estimation

procedure. In Section 3, we carry out simulation studies to examine the performance of the

method proposed and in Section 4, we illustrate the performance of our method via analysis

of the prostate cancer data set. We conclude with a brief conclusions in Section 5.

2. Methods

2.1. Quantile Regression

The simple linear quantile regression model is given by,

yi = β0 + x′
iβ + εi, (1)

where {(xi, yi), i = 1, 2, ..., n} is a sample of independent observations, yi is the response

variable, x′
i = (xi1, xi2, ..., xik) represents the k known predictors, β0 is the intercept, β
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is a k × 1 vector of regression coefficients and εi, i = 1, ..., n represent error terms. The

distribution of the error is assumed as unknown, and for 0 < p < 1, it is restricted to have

the pth quantile equal to zero. The pth quantile regression model takes the form

Qyi
(p|xi) = β0 + x′

iβ, (2)

where Qyi
(p|xi) is the inverse cumulative distribution function of yi given xi evaluated at

p. The regression coefficients can be estimated consistently as the solution to the following

minimization problem

min
β

n
∑

i=1

ρp(yi − β0 − x′
iβ), where ρp(u) = u{p − I(u < 0)}. (3)

A possible parametric link between the minimization problem in (3) and maximum like-

lihood theory is given by the skewed Laplace distribution; see Koenker and Machado (1999)

and Yu and Moyeed (2001). The density function of a skewed Laplace distribution is given

by

f(y|µ, σ, p) = σp(1 − p) exp{−σρp(y − µ)}, (4)

where µ is the location parameter and σ is the scale parameter. The minimization problem

given by (3) is equivalent to maximizing the likelihood function of yi by assuming yi’s are

random variables from a skewed Laplace distribution with µ = β0 + x′
iβ and σ = 1. From a

Bayesian framework, the skewed Laplace distribution link has been exploited by a number of

authors. In particular, Yu and Moyeed (2001) implemented Bayesian inference for quantile

regression, Yu and Stander (2007) developed Bayesian estimation procedure for the Tobit

quantile regression, while Benoit and Van den Poel (2011) propose a methodology for binary

quantile regression. A new Gibbs sampler for Bayesian analysis of quantile regression model
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based on a theoretic derivation of skewed Laplace distribution was introduced by Reed and

Yu (2009), Reed. Dunson and Yu (2009) developed Bayesian methods for variable selection

with a simple and efficient stochastic search variable selection (SSVS) algorithm proposed

for posterior computation and Alhamzawi et al. (2011) introduced methods for conducting

Bayesian quantile analysis of an allometric model that includes random effects. Furthermore,

another attractive property of the skewed Laplace distribution is that it can be represented

as a scale mixture of normal distributions (Tsionas, 2003; Kozumi and Kobayashi (2009);

Rue and Held, 2005; Reed and Yu, 2009):

W =d θz + φξ
√

σ−1z,

where

θ =
1 − 2p

p(1 − p)
and φ2 =

2

p(1 − p)
.

The random variables z and ξ are mutually independent and follow an exponential dis-

tribution with mean (σ−1) and a standard normal distribution, respectively. This mixture

representation allow us to express a quantile regression model as a normal regression model.

In addition, it provides an easy way to construct a Gibbs sampler as well as saving time in

sampling the regression coefficients. Recently, this property appeared in papers by Li, Xi

and Lin (2010), Yue and Rue (2010) and Alhamzawi and Yu (2011) to conduct Bayesian

quantile regression via Gibbs sampler.

2.2. Quantile regression with Lasso penalty

Lasso quantile regression (Li and Zhu, 2008) is a regularization technique for simulta-

neous estimation and variable selection. The Lasso quantile regression (Li and Zhu, 2008)
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estimates are defined as

min
β0,β

n
∑

i=1

ρp(yi − β0 − x′
iβ) + λ‖β‖1, (5)

where λ is a nonnegative regularization parameter. The second term in (5) is the so-called l1

penalty quantile regression that is crucial for the success of the Lasso method. As λ increases

the Lasso continuously shrinks quantile regression coefficients towards zero.

Li, Xi and Lin (2010) employ a Laplace prior p(βj |σ, λ) = σλ/2 exp{−σλ|βj|} on βj , βj ∈

β and assumed that the residuals εi come from the skewed Laplace distribution (4). Specif-

ically, Laplace prior distributions are placed on the k regression coefficients.

In this paper, we extend this idea to Bayesian adaptive Lasso quantile regression (BALQR).

We put different penalization parameters on the different regression coefficients. Thus, we

propose a Laplace prior on βj taking the form

p(βj |σ, λj) =
σ1/2

2λj
exp{−σ1/2|βj|

λj
},

(6)

which can be represented as a scale mixture of normals with an exponential mixing density

(Andrews and Mallows, 1974)

ν

2
exp{−ν|t|} =

∫ ∞

0

1√
2πs

exp{−t2/2s}ν2

2
exp{−ν2s/2}ds, ν > 0. (7)

Let νj = σ1/2/λj. Then, the proposed prior can be written as

p(βj|σ, λj) =
νj

2
exp{−νj |βj |}
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=

∫ ∞

0

1
√

2πsj

exp{−β2
j /2sj}

ν2
j

2
exp{−ν2

j sj/2}dsj.

Then, we have

p(βj|σ, λ2
j) =

∫ ∞

0

1
√

2πsj

exp{−β2
j /2sj}

σ

2λ2
j

exp{−σsj/2λ2
j}dsj (8)

This motivates us to consider the class of inverse gamma priors on λ2
j (not λj) of the form

p(λ2
j |δ, τ) =

τ δ

Γ(δ)
(λ2

j)
−1−δ exp{− τ

λ2
j

}, (9)

where δ > 0 and τ > 0 are two hyperparameters. The posterior density function of λ2
j ,

combining the prior (9) with (8), is inverse gamma with shape parameter 1 + δ and rate

parameter σsj/2 + τ . The amount of shrinkage in the prior (9) depends on the values of the

hyperparameters τ and δ (Yi and Xu, 2008). Because smaller τ and larger δ lead to bigger

penalization, it is important to treat τ and δ as unknown parameters to avoid enforcing

specific values that affect the estimates of the regression coefficients (Yi and Xu, 2008 and

Sun et al., 2010). This procedure is quite different from Bayesian Lasso quantile regression

reported in Li, Xi and Lin (2010). Bayesian adaptive Lasso quantile regression uses a Laplace

prior for βj such that each βj has a Lasso-type of penalization parameter σ1/2/λj , as in the

adaptive Lasso. For the moment, the parameters σ and λ2
j are considered to be known,

however this assumption is relaxed later.

2.3. Bayesian Quantile regression with adaptive Lasso penalty

Bayesian Adaptive Lasso Quantile regression is a Bayesian hierarchical model given by

yi = β0 + x′
iβ + θzi + φξi

√

σ−1zi,
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p(β0) ∝ 1,

p(ξi) =
1√
2π

exp{−ξ2
i

2
},

p(zi|σ) = σ exp{−σzi},

p(βj, sj|σ, λ2
j ) =

1
√

2πsj

exp{−β2
j /2sj}

σ

2λ2
j

exp{−σsj/2λ2
j},

p(λ2
j |δ, τ) =

τ δ

Γ(δ)
(λ2

j )
−1−δ exp{− τ

λ2
j

},

p(σ) = σa−1 exp {−bσ},

p(τ, δ) = τ−1.

(10)

The posterior distribution of all parameters is given by

p(β0, β, z, s, σ, λ1, ..., λk|y,X)

∝ p(y|β0, β, z, σ,X)

n
∏

i=1

p(zi|σ)

×
k

∏

j=1

p(βj, sj|σ, λ2
j )p(λ2

j |τ, δ)p(σ)p(τ, δ),

∝
n

∏

i=1

σ
√

σ−1φ2zi

exp{−σ(yi − β0 − x′
iβ − θzi)

2

2φ2zi
− σzi}

×
k

∏

j=1

1
√

2πsj

exp{−β2
j /2sj}

σ

2λ2
j

exp{−σsj/2λ2
j}

τ δ

Γ(δ)
(λ2

j)
−1−δ exp{− τ

λ2
j

}

×τ−1σa−1 exp{−bσ}, (11)

where y = (y1, ..., yn), X = (x1, ..., xn), z = (z1, ..., zn) and s = (s1, ..., sk). The expression

(11) yields a tractable and efficient Gibbs sampler that works as follows:

1- Fix the value of p so that the pth quantile is modelled.
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2- Simulate β0| · ∼ N(β̄0, s
2
β0

), where β̄0 = (n−1)
∑n

i=1(yi − β0 − x′
iβ − θzi),

and s2
β0

= (σφ2/n2)
∑n

i=1 zi

3- Simulate z−1
i | · ∼ Inverse Gaussian (µ′, λ′), i = 1, . . . , n, where

µ′ =

√

θ2 + 2φ2

(yi − β0 − x′
iβ)2

and λ′ =
σ(θ2 + 2φ2)

φ2
, (12)

in the parameterization of inverse Gaussian density given by

f(x|λ′, µ′) =

√

λ′

2π
x−3/2 exp{−λ′(x − µ′)2

2(µ′)2x
}, x > 0; (13)

see, e.g., Chhikara and Folks (1989).

4- Simulate βj| · ∼ normal distribution N(β̄j , σ̂
2
j ), where

σ̂2
j = (σφ−2

n
∑

i=1

x2
ijz

−1
i + s−1

j )−1, and β̄j = σ̂2
j σφ−2

n
∑

i=1

xijz
−1
i (yi − β0 −

∑

l 6=j

xilβl − θzi)

5- Simulate sj| · ∼Inverse Gaussian (µ′, λ′), i = 1, . . . , k, where

µ′ =

√

β2
j λ

2
j

σ
and λ′ = β2

j , (14)

6- Simulate σ| · ∼ Gamma (a1, a2), where

a1 = 3n/2 + k + a, and a2 = {
n

∑

i=1

(
(yi − β0 − x′

iβ − θzi)
2

2φ2zi

+ zi) +
k

∑

j=1

sj

2λ2
j

+ b}.
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7- Simulate λ2
j | · ∼ Inverse Gamma (1 + δ, σsj/2 + τ).

8- Simulate τ | · ∼ Gamma (kδ, Σk
j=1λ

−2
j ).

9- Simulate δ| ·: The conditional posterior distribution of δ is

p(δ| ·) ∝ (Γ(δ))−kτkδ
k

∏

j=1

λ−2δ
j . (15)

Although the full conditional posterior distribution of δ does not have a closed form, it

is log-concave. The adaptive rejection sampling algorithm (Gilks, 1992) is used to sample

from this distribution.

3. Simulation studies

In this section, we compare our method with several Bayesian and non-Bayesian methods.

The Bayesian methods include Bayesian regularized quantile regression with Lasso penalty

(BQR.L) and elastic net penalty (BQR.N) (Li, Xi and Lin, 2010). The non-Bayesian methods

include Lasso (lasso), elastic net (EN), quantile regression with Lasso penalty (QR-L) and

standard quantile regression (QR).

3.1. i.i.d. random errors

The simulation setup is similar to the simulation studies 1, 2 and 3 in Li, Xi and Lin

(2010) with different parameter values for the error distributions. In addition, we further

test the methodology with two alternative error distributions. Specifically, we simulate 20

training observations, 20 validation observations and 200 testing observations from the model

y = x′
iβ + εi where the true value for the β’s are set as follows:
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Simulation 1: β = (3, 1.5, 0, 0, 2, 0, 0, 0)′,

Simulation 2: β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)′,

Simulation 3: β = (5, 0, 0, 0, 0, 0, 0, 0)′,

Simulation 4: β = (5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′.

Simulation studies 1, 2, and 3 correspond to the sparse, dense and very sparse cases

respectively. We have set up Simulation 4 as a sparse recovery problem in which k = 18

with most coefficients set to zero except βj = 5, j = 1, 2, 3. We fit the model using the

generated data set and choose the penalty parameter in lasso (λ), EN (λ1 and λ2) and QR-L

(λ) via an independent validation set. Note that the standard quantile regression (QR) is

not a regularization method and the estimate of the penalty parameter is automatically in

BALQR, BQR.L and BQR.EN. These methods do not need a validation set. Therefore, we

estimate the β by using the validation sets as an additional data set. The rows of X follow

a multivariate normal distribution N(0, Σ) with (Σ)ij = 0.5|i−j|. In each simulation study,

we consider the following six error distributions so that the pth quantile is 0:

1: The distribution of the error is a normal distribution: N(µ, 1).

2: The distribution of the error is a mixture of two normal distributions: 0.1N(µ, 1) +

0.9N(µ, 9).

3: The distribution of the error is a Laplace distribution: Laplace(µ, 1).

4: The distribution of the error is a mixture of two Laplace distributions: 0.1Laplace(µ, 1)+

0.9Laplace(µ, 3).

5: The distribution of the error is a t distribution with three degrees of freedom, t(3).

6: The distribution of the error is χ2 distribution with three degrees of freedom, χ2
(3).

For each simulation study and for each p ∈ (0.5, 0.75, 0.95), we run 150 simulations. In

BALQR, the parameters a and b of the Gamma prior for σ are set to be 0.1. Since the true
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model is known, we can compute the median of mean absolute deviations (MMAD), that is,

median (1/200Σ200
i=1(|x′

iβ̂ −x′
iβ

true |)), where the median is taken over the 150 simulations.
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Figure 1: Boxplots summarizing the MMADs and the standard deviations of MMADs (SD) for the seven
methods using the six error distributions in Simulation 1. Overlaid are the normal error (▽), normal mixture
(△), Laplace (�), Laplace mixture (◦), t3 (⋄) and χ2
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A number of observations can be done from Figures 1, 2, 3, and 4. For the MMAD and

the standard deviations criteria, the proposed method (BALQR) generally performs better

than the other six methods for all the distributions under consideration. Most noticeably,
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Figure 4: Boxplots summarizing the MMADs and the standard deviations of MMADs (SD) for the seven
methods using the six error distributions in Simulation 4. Overlaid are the normal error (▽), normal mixture
(△), Laplace (�), Laplace mixture (◦), t3 (⋄) and χ2

3
(•).

when p = 0.75 and p = 0.95 the proposed method was significantly efficient than the other

six methods. Secondly, from Table 1 we see that, in general, the proposed method performs
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Table 1: Posterior means for the simulated data when the error is normal and p=0.95.
Simulation

Study Method β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

1 βtrue 3.000 1.500 0.000 0.000 2.000 0.000 0.000 0.000
BALQR 2.988 1.469 0.002 0.013 1.994 0.001 -0.006 0.011
BQR.L 2.937 1.446 -0.024 0.046 1.964 0.054 -0.019 0.037
BQR.N 2.922 1.472 -0.030 0.049 1.957 0.040 -0.033 0.065
lasso 2.811 1.357 0.000 0.000 1.782 0.000 0.000 0.000
EN 2.796 1.453 0.000 0.000 1.774 0.000 0.000 0.000
QR 2.960 1.462 -0.053 0.038 2.000 0.034 -0.049 0.057

QR-L 2.915 1.392 0.000 0.000 1.810 0.000 -0.001 0.000

2 βtrue 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850
BALQR 0.835 0.852 0.849 0.865 0.858 0.860 0.846 0.863
BQR.L 0.811 0.820 0.774 0.865 0.851 0.877 0.790 0.878
BQR.N 0.800 0.831 0.775 0.872 0.854 0.879 0.783 0.887
lasso 0.805 0.836 0.788 0.834 0.849 0.837 0.747 0.873
EN 0.710 0.814 0.897 0.889 0.915 0.913 0.808 0.731
QR 0.838 0.820 0.786 0.857 0.865 0.853 0.790 0.897

QR-L 0.463 0.753 0.691 0.522 0.765 0.429 0.784 0.555

3 βtrue 5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BALQR 4.971 0.004 -0.024 0.008 0.012 0.007 -0.010 0.056
BQR.L 4.883 0.010 -0.047 0.033 0.035 0.035 -0.031 0.058
BQR.N 4.869 0.020 -0.055 0.045 0.042 0.048 -0.025 0.062
lasso 4.591 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EN 4.614 0.000 0.000 0.000 0.000 0.000 0.000 0.000
QR 4.934 -0.019 -0.053 0.018 0.026 0.054 -0.049 0.067

QR-L 4.936 0.003 -0.020 0.000 0.000 0.000 0.000 0.001

well when comparing the estimates of βj with the true values of βj.
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3.2. Non-i.i.d. random errors

In this part, we consider the case of non-i.i.d. random errors to demonstrate the perfor-

mance of our method. The data was generated from model 2 of Kocherginsky, He and Mu

(2005)

y = 1 + x1 + x2 + x3 + (1 + x3)ε, (16)

where x1 ∼ N(0, 1), x3 ∼ uniform[0, 1], x2 = x1 +x3 + z, where z ∼ N(0, 1) and ε ∼ N(0, 1).

This data generating process is often used in the context of variable selection (e.g. Wu and

Liu, 2009; Li, Xi and Lin, 2010). In this example, we generated five additional mutually

independent standard normal noise variables, x4, ..., x8. The results are summarized in Table

2 and are based on 150 repetitions, each with sample size n = 100.

Table 2: MMSEs, MMADs and test errors for the simulation with heterogeneous random errors.

p Method MMSE (SD) MMAD (SD) Test Error (SD)

0.50 BALQR 0.0243 (0.0031) 0.2472 (0.0074) 0.5931 (0.0029)
BQR.L 0.0307 (0.0033) 0.2764 (0.0086) 0.6152 (0.0040)
BQR.N 0.0288 (0.0021) 0.2778 (0.0105) 0.6162 (0.0040)
lasso 0.1423 (0.0057) 1.2185 (0.0359) 0.7898 (0.0129)
EN 0.2066 (0.0202) 1.4075 (0.0570) 0.8476 (0.0193)
QR 0.0301 (0.0042) 0.2984 (0.0053) 0.6151 (0.0041)

QR-L 0.1208 (0.0103) 0.2902 (0.0058) 0.6122 (0.0031)

0.75 BALQR 0.0213 (0.0021) 0.2984 (0.0016) 0.4233 (0.0017)
BQR.L 0.0319 (0.0035) 0.3111 (0.0097) 0.4929 (0.0023)
BQR.N 0.0289 (0.0023) 0.3018 (0.0086) 0.4927 (0.0019)
lasso 0.2271 (0.0012) 1.4854 (0.0158) 0.7520 (0.0120)
EN 0.2268 (0.0006) 1.5257 (0.0012) 0.7696 (0.0063)
QR 0.0298 (0.0020) 0.3165 (0.0073) 0.4967 (0.0019)

QR-L 0.1395 (0.0037) 0.3186 (0.0078) 0.4929 (0.0030)

0.95 BALQR 0.0570 (0.0013) 0.4041 (0.0035) 0.1521 (0.0008)
BQR.L 0.0780 (0.0094) 0.4640 (0.0143) 0.1664 (0.0018)
BQR.N 0.0686 (0.0084) 0.4703 (0.0144) 0.1668 (0.0014)
lasso 0.2361 (0.0015) 1.6075 (0.0109) 0.3277 (0.0073)
EN 0.2304 (0.0008) 1.5890 (0.0066) 0.3167 (0.0041)
QR 0.0860 (0.0060) 0.5135 (0.0173) 0.1706 (0.0020)

QR-L 0.1371 (0.0063) 0.4390 (0.0209) 0.1657 (0.0013)
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Table 2 lists the median of mean squared errors (MMSE), MMAD and test errors. It

can be seen that the performance of our method is quite good compared to the other six

methods. Most noticeably, when p = 0.95, our method behaves significantly better than the

other methods. In addition, we can see that the Bayesian Lasso performs better than its

non-Bayesian counterparts. This indicates that the model in (4) is merely a working model ,

in which the skewed Laplace distribution assumptions imposed on yi are essentially artificial

(Ying and Yin, 2010).

4. Prostate cancer data analysis

In this section, we analyze a real dataset to demonstrate the performance of the method

proposed. For our real data example we use the data on prostate cancer reported by Stamey

et al. (1989) and analyzed by Tibshirani (1996) and Yuan and Lin (2005), among others.

This data set consists of the medical records of 97 male patients who were about to receive

a radical prostatectomy and is available in the “bayesQR” R-package (Benoit et al., 2011).

The response variable is the level of prostate antigen (lpsa) and there are eight predictors.

These predictors are log cancer volume (lcavol), log prostate weight (lweight), age, log of the

amount of benign prostatic hyperplasia (lbph), seminal vesicle invasion (svi), log of capsular

penetration (lcp), Gleason score (gleason) and percentage of Gleason scores 4 or 5 (pgg45).

We estimate a quantile regression model between the response lpsa and the 8 predictors

without intercept. Similar to Section (3), we analyze three different quantiles, p = 0.50, 0.75

and 0.95. The shrinkage parameters in lasso (λ), EN (λ1 and λ2) and QR-L (λ) are tuned

by 5-fold cross-validation.

Table 3 summarizes the results of 5-fold cross-validation technique for all methods. The

results show that the BQR.N outperforms the other methods when p = 0.50. However, the

performance of the method proposed in this study is very close to the performance of the

BQR.N method. Moreover, for the quantiles p = 0.75 and p = 0.95, the method proposed
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performs better than the other six methods. Also, the results show that the Bayesian lasso

method has a poor performance when p = 0.50 and p = 0.95 due to the high pairwise

correlations between some of variables. Thus, the proposed method attempts to remedy the

shortcomings of Bayesian Lasso by using adaptive weights for different predictors.

Figure 5 depicts the posterior estimates for the prostate cancer data set using different

methods for p = 0.95. To increase the readibility of the plot, we add a slight horizontal

shift to the estimators. We can see that our method gives very similar posterior mean

estimates compared to the other Bayesian methods. However, more importantly, it can

be observed that the credible intervals for our approach are narrower than the alternative

Bayesian methods. Although the BALQR credible intervals are narrower, it is observed that

the estimates of the other Bayesian methods still lie inside the BALQR credible intervals.

Hence, the analysis show strong support for the use of the proposed method to inference for

quantile regression.

Table 3: Cross validation results for the prostate cancer data analysis. Standard errors are in parentheses.
Test error

Method p = 0.50 p = 0.75 p = 0.95

BALQR 0.26754 (0.05448) 0.26722 (0.04798) 0.26743 (0.04857)
BQR.L 0.29061 (0.05952) 0.26979 (0.05803) 0.28289 (0.07249)
BQR.N 0.26416 (0.05214) 0.28537 (0.07039) 0.27455 (0.05701)
lasso 0.27990 (0.05902) 0.27719 (0.06380) 0.27719 (0.06380)
EN 0.27938 (0.05897) 0.27876 (0.06002) 0.27876 (0.06002)
QR 0.27618 (0.05218) 0.27618 (0.05218) 0.27618 (0.05218)

QR-L 0.30146 (0.06471) 0.28493 (0.07208) 0.29032 (0.07216)
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Figure 5: Posterior estimates for the prostate cancer data set using different methods with p = 0.95. The
figure also shows 95% credible intervals for the Bayesian methods.

5. Conclusion

In this paper, we propose Bayesian adaptive Lasso quantile regression for variable selec-

tion and estimation. This method extends Bayesian quantile regression with Lasso penalty

by allowing different penalization parameters for different regression coefficients. Indepen-

dent inverse gamma priors are put on the penalty parameters. A novel aspect of the Bayesian

adaptive Lasso quantile regression is to treat the hyperparameters of the inverse gamma pri-

ors as unknowns and let the data estimate them along with other parameters. This procedure

allows us to control the amount of shrinkage in the inverse gamma priors. We developed
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Bayesian hierarchical models for Bayesian adaptive Lasso quantile regression as well as intro-

duced a Gibbs sampler for Bayesian adaptive Lasso quantile regression. This Gibbs sampler

is based on a theoretic derivation of the skewed Laplace distribution as a scale mixture of

normal distributions. The simulation studies and data analyses both show that the Bayesian

adaptive Lasso quantile regression performs well and may be preferred over current existing

Bayesian and non-Bayesian methods. The R-package “bayesQR” (Benoit et al., 2011) con-

tains R function that implements the methodology proposed in this study. We hope that by

making the code of our method available, we will lower the barrier for other researcher to

use the Bayesian adaptive Lasso for quantile regression in their studies.
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