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Abstract 

In this article, we develop a Bayesian method for quantile regression in the case of dichotomous 

response data. The frequentist approach to this type of regression has proven problematic in both 

optimizing the objective function and making inference on the regression parameters. By 

accepting additional distributional assumptions on the error terms, the Bayesian method proposed 

sets the problem in a parametric framework in which these problems are avoided, i.e. it is 

relatively straightforward to calculate point predictions of the estimators with their corresponding 

credible intervals. To test the applicability of the method, we ran two Monte-Carlo experiments 

and applied it to Horowitz’ (1993) often studied work-trip mode choice dataset. Compared to 

previous estimates for the latter dataset, the method proposed interestingly leads to a different 

economic interpretation. 
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1. Introduction 

 

The classical theory of linear models focuses on the conditional mean function, i.e. the function 

that describes how the mean of y changes with the vector of covariates x. However, the mean may 

not be of prime interest for the researcher or additional information might be required about the 

whole conditional distribution of the response variable. For example, Whittaker et al. (2005) 

show that bank account use requires different predictors for different quantiles of the response 

distribution. Moreover, least squares methods, which focus on the conditional mean function, 

assume that the error has exactly the same distribution whatever values of x are taken. The 

components of the vector of x are expected to affect only the location of the conditional 

distribution of y, not to affect its scale or any other aspect of its distributional shape. In practice, 

however, these assumptions are often hard to maintain. 

 

Quantile regression (Koenker and Basset, 1978; Koenker, 2005) extends the mean regression 

model to conditional quantiles of the response variable. Note that quantile regression comprises 

median regression (or equivalently L1-regression), as the median is the most central quantile 

which separates the higher half of a sample from the lower half. The technique provides a more 

nuanced view of the relationship of the dependent variable and the covariates, since it allows the 

user to examine the relationship between a set of covariates and the different parts of the 

distribution of the response variable. An additional advantage is that parameter estimates of the 

quantile regression approach are not biased by a location-scale shift of the conditional 

distribution of the dependent variable. These two distinct advantages were not only 

acknowledged by theoretical statisticians, but have also encouraged researchers from varying 
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disciplines to apply quantile regression in their research. The applications range from the field of 

ecology (e.g. Brown and Peet, 2003) over cancer research (e.g. Li and Zhu, 2007) to economics 

(e.g. Buchinski, 1994; 1998). See Yu et al. (2003) for a more complete overview of the different 

fields of quantile regression applications.  

 

Furthermore, quantile regression has been extended to model dependent variables other than 

ratio/scale variables. These extensions include, inter alia, models for left-censored data (Powell, 

1986; Yu and Stander, 2006), count data (Machado and Santos Silva, 2005) or proportions 

(Hewson and Yu, 2008).  

 

In the case of a binary response variable, adopting quantile regression is not an obvious choice. 

The dependent variable takes on only two values and hence does not yield continuous quantiles 

that can be modelled via regression. However, several authors have recognized the potential 

benefits of binary quantile regression. Manski (1975; 1985) defined the general semi-parametric 

binary quantile regression estimator. For unclear reasons, subsequent research has focused 

exclusively on the median case (Koenker and Hallock, 2001). Kordas (2006) has recently 

explored the consequences of estimating other quantiles than the median for binary regression 

models and has shown that also in the dichotomous case the approach leads to a much richer view 

of how covariates influence the response variable. 

 

The frequentist approach to binary quantile regression, emerging from Manski’s work, faces 

some major technical drawbacks. First, the method has difficulty optimizing the regression 

parameters. Moreover, building confidence intervals around the estimates has proven problematic. 

In this paper, we adopt a Bayesian approach to binary quantile regression, which is quite different 



 

 5 

from previous approaches in this context. We show, both theoretically and in three applications, 

how our Bayesian approach to binary quantile regression can avoid the difficulties outlined above 

by imposing stronger assumptions on the error terms.  

 

The remainder of the paper is organised as follows: Section 2 extends the ideas of median (L1) 

regression to the quantile regression approach. For better understanding, we consider both the 

frequentist approach and the more recent Bayesian approach based on the asymmetric Laplace 

distribution (ALD). Section 3 treats the frequentist approach to binary quantile regression and 

discusses its limitations in optimizing and inference. Section 3 further shows how the Bayesian 

approach proposed avoids these difficulties by putting the problem in a parametric framework. In 

Section 4, this new strategy is then applied to two Monte-Carlo experiments and to one real-life 

application (i.e. Horowitz’ (1993) often studied work-trip mode choice dataset). Finally, Section 

5 presents the main findings, some limitations of the method and directions for further research. 

 

 

2. From median regression to quantile regression 

 

Consider the standard model where y and x are both continuous variables: 

iii xy εµ += )( .        (1) 

If we assume that Med(ε | x) = 0, then µ(xi) is a conditional median function. Since we assume 

that the relation between y and x is linear, we obtain a linear conditional median (L1) model: 

  β'ii )x|( xyMed i = .       (2) 

In this model, we find the regression coefficients by solving: 
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  ∑
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 .      (3) 

Quantile regression proceeds by extending the median case to all other quantiles of interest. 

Contrary to the commonly used quadratic loss function for mean regression, the quantile 

regression links to a special class of loss functions which has robust properties (Huber, 1981). 

  ∑
=ℜ∈

−=
n

i
iihat xy

1

' )(minarg)( βρτβ τ
β

.     (4) 

In this equation, τ ∈ (0,1) is any quantile of interest, ρτ(z) = z(τ – I(z < 0)) and I(·) denotes  the 

indicator function. The quantile βhat(τ) is called the τth regression quantile. Note that the case 

where τ equals 0.5, which minimizes the sum of absolute residuals, corresponds to median (L1) 

regression. Frequentist approaches to quantile regression then construct confidence intervals for 

βhat(τ) by asymptotic theory or by bootstrapping.   

 

Koenker and Machado (1999) were the first to show that likelihood based inference using 

independently distributed asymmetric Laplace densities is directly related to the minimization 

problem in Equation 4. This finding was picked up by Yu and Moyeed (2001) and was the start 

for the development of a Bayesian approach to quantile regression. It should be noted however, 

that some other Bayesian approaches have emerged mostly for median, rather than full quantile 

regression. Tsionas (2003) proposed an approach based on a scale mixture of normals, which 

itself leads to an ALD. Other methods are based on Dirichlet Process Priors (Kottas and Gelfand, 

2001; Kottas and Krnjajic, 2009) or substitution likelihoods (Dunson and Taylor, 2005). However, 

the above semiparametric methods for quantile regression require complex choices of prior 

distributions and prior (hyper-) parameters. This is avoided in the methodology proposed here. 
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We concur with Hewson and Yu (2008) and Yu and Stander (2007) that this is one of the distinct 

advantages of Bayesian quantile regression based on the ALD. 

 

In contrast to other parameterizations of the ALD (see Kotz et al., 2001), Yu and Zhang (2005) 

propose a three-parameter ALD with a skewness parameter that can be used directly to model the 

quantile of interest: 

  














 −

−=
σ
µρ

σ
τττσµ τ

yyf p exp)-(1),,|( ,   (5) 

where 

  ))0(()( <−= yIyy τρτ .      (6) 

Equation 6 is identical to the loss function in the optimization problem in Equation 4. Thus, 

minimizing Equation 4 is equivalent to maximizing a regression likelihood using ALD errors 

with µ = xi’β (Yu and Moyeed, 2001). Bayesian implementation of quantile regression begins by 

forming a likelihood comprised of independent asymmetric Laplace densities with µ = xi’β, 

specifying the quantile of interest, τ, and placing priors on the model parameters β and σ. 

Inference about model parameters then follows conventional Bayesian procedures which lead to 

exact inference about βhat(τ) as opposed to the frequentist asymptotic inference which has shown 

to be unreliable in this context (Bilias et al., 2000). 

 

    [INSERT FIGURE 1 ABOUT HERE] 

 

Figure 1 shows how the skewness of the ALD changes with altering values for τ. For example 

where τ = 0.1 almost al the mass of the ALD is situated in the right tail. In the case where τ = 0.5 

both tails of the ALD have equal mass and the distribution then equals the more common double 
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exponential distribution. In contrast to the normal distribution with a quadratic term in the 

exponent, the ALD is linear in the exponent. This results in a more peaked mode for the ALD 

together with thicker tails. On the other hand, the normal distribution has heavier shoulders 

compared to the ALD. 

 

 

3. Binary quantile regression 

 

3.1 Standard binary regression 

The most frequently used form of the binary response model is: 

iii uxy += β'* , 
0 if 1 * ≥= ii yy ,       (7) 

otherwise 0=iy . 
 

Where yi is the indicator of the ith individual’s response determined by the underlying latent 

variable *
iy , xi is a 1 x k vector of explanatory variables, β is a k x 1 vector of parameters, ui is a 

random error term and i = 1, …, n. 

 

Let F(u|x) denote the cumulative distribution function of u conditional on the event xi = x.  

  )(1), |1( '
iiii xFxyP ββ −−== .     (8) 

Often it is assumed that F(u|x) is either the cumulative normal or the cumulative logistic 

distribution, independent of x. In the former case, the model described in Equation 7 results in the 

binary probit model. In the latter case, the model becomes the binary logit model. The symmetry 
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of the logistic or normal distribution makes it possible to further simplify the right hand side of 

Equation 8 to )( '
iixF β . 

 

3.2 Binary quantile regression: frequentist approaches 

The first step towards a binary quantile regression model in econometrics was set by Manski’s 

Maximum Score Estimator (Manski, 1975, 1985). This estimator imposes extremely weak 

assumptions on the distribution of the error term. The only condition is that the median of u 

conditional on x is zero (see Equation 7). Thus, the maximum score estimator does not require the 

researcher to know the functional form of the relationship between x and the distribution of u. 

Furthermore, it accommodates for heteroskedasticity of unknown form. Manski (1975) mainly 

focused on the median case, but later he acknowledged extending the estimation to the more 

general quantiles (Manski, 1985). This leads to the following form of the maximum score 

estimator: 

  )sgn()12)(12(maxarg)( '

1

1 βρτβ τ
β

iii

n

i
hat xyyn −−= ∑

=

−

ℜ∈
.  (9) 

for any quantile τ ∈  (0,1). With, )sgn(⋅  is the signum function and again )(⋅τρ  is the loss 

function as in Equation 4 and 6.  

 

Scale normalization is needed because the parameter β is identified only up to a scale. Note that 

)0()0 ( '' >=> ββσ ii xIxI  fo r all σ > 0 .  Two types of scale normalization are frequently used. 

For the first type, the condition ||β|| = 1 could be imposed or, for the second type, one coordinate 

of β could be set to unity (either +1 or -1). In the former case ||β|| denotes the Euclidian norm of 

vector β. The latter case presumes some kind of a priori information on the sign of the fixed 
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element of β. In many situations reasonable guesses about the sign of this coordinate might prove 

difficult to make.  

 

Kim and Pollard (1990) showed that the maximum score estimator has a slow rate of 

convergence and a complicated asymptotic distribution. The complexity of the limiting 

distribution of the maximum score estimator limits its usefulness for statistical inference. This 

complexity follows directly from the absence of an asymptotic first-order condition of the 

objective function in Equation 9.  

 

Delgado et al. (2001) have aimed to solve the problem by using subsampling. They theoretically 

justify subsampling for the maximum score estimator and provide simulation evidence that 

suggests inconsistency of the bootstrap. The latter was eventually proved by Abrevaya and 

Huang (2005). One major drawback of this method is the great computational expense and 

consequently it is only applicable in low dimensional problems with small sample sizes (Delgado 

et al., 2001). An alternative solution to the intractable limiting distribution of the maximum score 

estimator was proposed by Horowitz (1992). By using ideas related to the kernel method in 

nonparametric density estimation, he smoothed Manski’s maximum score function so that it 

becomes continuous and differentiable. This method should lead to an asymptotically normal 

distribution for the smoothed median estimator. Recently, Kordas (2006) has extended this 

method to the quantiles other than the median. A drawback of this smoothed estimator is that it 

requires stronger restrictions on the smoothness of the error distribution than Manski’s original 

estimator (Horowitz, 1992). Furthermore, simulation studies indicate that even for sample sizes 

of n = 1000 the normal approximation is inaccurate and even with bootstrapping it is difficult to 
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estimate standard errors for this estimator (Abrevaya and Huang, 2005). Finally, Koenker (2005) 

points out that the, rather arbitrary, selection of smoothing parameters highly influences wether 

smoothing actually improves inference in applications. Kotlyarova and Zinde-Walsh (2006), 

however, provide a method for selecting the optimal bandwidth that shows good performance on 

large datasets. 

 

Recently, Skouras (2003) and Florios and Skouras (2008) focussed on the problematic 

optimization of the objective function in Equation 9. Florios and Skouras (2008) give an 

overview of all empirical applications of the maximum score estimator, including Horowitz 

(1993) and conclude that none of the algorithms used guarantee a global optimal solution. They 

propose reformulating the problem as mixed integer programs (MIP) and show the superior 

performance on some real and simulated datasets. Nonetheless, the authors explicitly avoid 

inference for their estimator: “we have not attempted to evaluate statistical significance because 

[…] standard errors for maximum score estimators are difficult to estimate, even with 

bootstrapping (Abrevaya and Huang, 2005)” (Florios and Skouras, 2008, p.88). 

 

The elements above make clear that in the frequentist approach to binary quantile regression, 

both calculating a consistent estimator and making inferences about this estimator is problematic. 

Several solutions are proposed for this problem, but these all have specific drawbacks. In the next 

section, our Bayesian approach to the problem is developed.  

 

3.3 Binary quantile regression: a Bayesian approach 

Consider again the binary response model in Equation 7. The method proposed for binary 

quantile regression makes use of data augmentation (Tanner and Wong, 1987). The idea of data 
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augmentation has shown to be effective in the Bayesian approach to many regression methods for 

binary or multinomial dependent variables (e.g. Albert and Chib, 1993; Groenewald and 

Mokgatlhe, 2004; Holmes and Held, 2006) and we hold that this is also the case for the current 

approach to binary quantile regression. Therefore, n latent variables **
1 ,..., nyy are introduced into 

the problem. These latent variables are asymmetric Laplace distributed as described in Equation 5.  

*y ~ ALD(µ = β'ix , σ = 1, τ).       (10) 

The parameter σ is set to unity for identification reasons, similar to the reasons outlined in 

Section 3.2. The parameter τ should be specified at the quantile of interest. For example, τ = 0.5 

in the case of binary median regression. Further, define yi = 1 if *
iy > 0 and iy = 0 if *

iy < 0. Then,  

  )(1), |1( '
* ββ iyii xFxyP −−== ,     (11) 

where )(* ⋅yF  is the cumulative distribution function of the asymmetric Laplace variable *y . 

The joint posterior density of the unobservables β and *y given the data y = (y1, y2,…, yn) and the 

quantile of interest, τ,  is then given by: 

  ∝), |,( * τβπ yy  )(βπ ∏
=

=>
n

i
ii yIyI

1

* )1()0({  

     ),1,;( )}0()0( '**
* τβiiyii xyFyIyI =≤+ . (12) 

where π(β) is the prior on the regression coefficients and I(·) is the indicator function. This joint 

posterior distribution does not fit any known class of distributions. Therefore, it is not possible to 

sample from this posterior directly. However, thanks to the development of Markov Chain Monte 

Carlo (MCMC) algorithms, computing this kind of posterior becomes fairly straightforward. 

Splitting up the complicated posterior in the posterior distribution of β conditional on *y , and in 

the posterior distribution of *y  conditional on β, often facilitates sampling from the joint 
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posterior. In the current case, one of the two fully conditional distributions is of a known form. 

This suggests a Metropolis-Hastings within Gibbs algorithm as an appropriate sampling scheme 

for the current setting. 

 

From Equation 12, we find that the fully conditional distribution of *y is given by: 

 ),1,( ~),,|( '* τβτβπ ixALDyy  truncated at the left by 0, if iy = 1,  

 ),1,( ~),,|( '* τβτβπ ixALDyy  truncated at the right by 0, if iy = 0. (13) 

This is a distribution of a known form and consequently, direct sampling is possible. Sampling 

from the three-parameter ALD is straightforward as the ALD occurs as a simple linear 

combination of two independent exponential variates (Yu and Zhang, 2005). If ξ and η are 

independent and identical standard exponential distributions, then 
)1( pp −

−
ηξ ~ ALD(0,1,p). 

Analogous with the normal distribution, any ALD can be derived from the standard ALD. That is, 

if X ~ ALD(0,1,p), then Y ~ µ + σX ~ ALD(µ,σ,p). 

 

Next, from Equation 12 we can derive that the posterior density of β given *y , τ and data is given 

by: 

  ∏
=

∝
n

1i

'** ),1,;()(),, |( * τββπτβπ iiy xyFyy .    (14) 

This fully conditional posterior density is in fact the posterior density for the regression 

parameter in the Bayesian quantile regression as discussed in Section 2. In contrast to the fully 

conditional posterior density for the latent data, this posterior is of an unknown form. A standard 

conjugate prior distribution is not available for the quantile regression formulation (Yu and 
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Moyeed, 2001), so MCMC methods may be used for extracting this posterior distribution, e.g. 

Metropolis-Hastings. This allows for the use of virtually any prior distribution on the regression 

parameters and even an improper uniform prior, π(β) ~ U(-∞,+∞), will result in a proper posterior 

distribution, as proven in Yu and Moyeed (2001). Note that the posterior in Equation 14 is 

determined by assuming ALD distributed errors. This illustrates how the assumption of ALD 

errors influences estimation and inference of the model parameters. However, the applications in 

Section 4 indicate that the proposed method seems quite robust against departures from this 

assumption. 

 

The Metropolis-Hastings within Gibbs sampler is now straightforward to implement. Given the 

data, the prior and the quantile of interest, the joint posterior distribution in Equation 12 can then 

be sampled from by sequentially drawing values from the distributions given in Equation 13 and 

14. For every step, one should condition on the most recently drawn value of the conditioning 

arguments. Any value can be taken as a starting value, but good choices of starting values can 

strongly reduce the burn-in period of the algorithm proposed. For example, in the case where τ = 

0.5, a good starting value could be the maximum likelihood estimate of the model under a probit 

or logit link. When a sufficiently large set of values is drawn from the joint posterior distribution, 

it becomes straightforward to compute point predictions for the model parameters, credible 

intervals or any other quantity of interest. This is a major advantage compared to the classical 

approaches to binary quantile regression where optimization and inference are awkward. 
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4. Applications 

 

We apply our Bayesian approach to binary quantile regression to two Monte Carlo simulations 

and one real life example. In these examples, vague normal priors for β (with mean = 0 and 

standard deviation = 10) are chosen to minimize their influence on the posterior distributions. 

However, any prior distribution or parameter setting could be selected without eroding the 

methodology proposed here. Simulating realizations from the posterior distribution is done by the 

Metropolis-Hastings within Gibbs algorithm described in Section 3.3. For the Metropolis step, 

the update is performed using a random-walk Metropolis-Hastings algorithm with a Gaussian 

proposal density centred at the current state of the chain. The scale parameter of the proposal 

density was chosen so that an acceptance rate between 30% and 40% was achieved. Convergence 

of the MCMC chains was checked using the time-series plots of the draws of the different 

marginal distributions. All programs were written and executed in the free statistical package R. 

 

4.1 Monte Carlo experiment 1 

 The purpose of this example is to illustrate how the proposed methodology is able to capture 

effects for discrete choice applications where heterogeneity of covariates is an issue. This 

situation occurs frequently and binary quantile regression is then a very appealing empirical 

strategy (Buchinski, 1998; Koenker and Hallock, 2001; Yu, Lu and Stander, 2003; Yu and 

Stander, 2007). Therefore, we generated n = 200 observations from the following heteroscedastic 

regression model: 

  iii xy ε+= 5.1* ,  with )20N( ~ ii x, ε ,  
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      and )100 U(~ , xi .   (15) 

Figure 2 shows a graphical representation of the data together with some quantile regression lines 

for a number of quantiles of interest. These fits were obtained by using the Bayesian approach to 

quantile regression proposed by Yu and Moyeed (2001). Since the error variance of *y  is 

positively correlated with x, slope coefficients differ across quantiles.  

 

    INSERT FIGURE 2 ABOUT HERE 

 

Figure 2 shows that the OLS estimate and the median regression estimate are quite similar. The 

regression lines are almost plotted on top of each other. Based on the mean and median fit, we 

might conclude that higher values on x will result in a higher value for y. However, the regression 

lines for quantiles other than the median give a more detailed insight into the effects. For the 

lower quantiles, the effect of the covariate exerts a negative effect on the dependent variable, 

while for the middle to higher quantiles the effect is positive. The effect becomes more 

pronounced for more extreme quantiles.  

 

The binary regression model can be presented as the model in Equation 15, but with an extreme 

form of censoring of the dependent variable, *y , from both above and from below. By defining 

iy = 0, if 0* ≤iy  and iy  = 1, if 0* >iy , we now have simulated data from the binary response 

model as in Equation 7. The proposed method for binary quantile regression was applied to this 

data. 

 

INSERT FIGURE 3 ABOUT HERE  
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Figure 3 shows the progress of the Metropolis-Hastings within Gibbs estimation of the regression 

slope for the different quantiles of interest. From the figure we can see that the chain mixes quite 

well. The influence of the initial values wears off fast and afterwards the chain concentrates and 

stabilizes on regions in the parameter space with higher probability. 

 

INSERT TABLE 1 ABOUT HERE  

 

Comparing the quantile regression lines in Figure 2 with the results of the Bayesian binary 

quantile regressions in Table 1, we find that the method proposed was able to recover the general 

effects that are present when the underlying latent variable is known. The results of the median 

model and the conventional logistic regression model are very similar. Looking at the beta 

parameters for these two models, we can conclude that the variable x exerts a positive effect on 

the dependent variable, y. For the other quantiles, as in Figure 2, the regression parameters 

suggest that the effect is negative for the lowest quantiles and is positive for middle and high 

quantiles. This example shows that, although only binary outcomes were observed and the errors 

were not exact ALD, the binary quantile regression approach proposed is able to expose the main 

effects of the covariate with the unobserved continuous latent variable.  

 

4.2 Monte Carlo experiment 2 

In this experiment, an extensive comparison of the proposed methods with the two main 

frequentist approaches ones is conducted. In their analysis of the Tobit quantile regression model, 

Yu and Stander (2007) used a model, which also appeared in Buchinsky and Hahn (1998), to 
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compare their Bayesian estimator to existing fequentist estimators. The present experiment uses a 

very similar model, adjusted to the binary dependent variable situation: 

  iiii xxy ε+++−= 21
* 15.01  .      (16) 

where the regressors were each drawn from a standard normal distribution and the error term has 

multiplicative heteroskedasticity obtained by taking )( ~ ii xξνε  with (0,1) ~ Nξ and 

)0.025(1)( 2
22

2
11 iiiii xxxxx ++++=ν . Again, we define iy = 0, if 0* ≤iy  and iy  = 1, if 0* >iy to 

obtain the binary response model as in Equation 7. 

A total of 1,000 Monte Carlo repetitions were conducted. For every repetition, we generated three 

datasets containing 200, 400 and 600 observations and three different approaches to binary 

quantile regression were fitted to the data (with τ = 0.5): binary regression quantiles along with 

subsampling standard errors (Manski, 1985; Manski and Thompson, 1986), smoothed binary 

regression quantiles with asymptotic standard errors (Horowitz, 1992; Kordas, 2006) and finally 

the current Bayesian approach to binary quantile regression using the asymmetric Laplace density. 

 

INSERT TABLE 2 ABOUT HERE 

 

Table 2 summaries the biases, root mean square errors (RMSE) and 95% credible intervals for β0 

and β1. The value of β2 was set to unity to achieve scale normalization and is consequently not 

included in the table of parameters. As expected, results for all three methods show decreasing 

biases, RMSE and credible intervals for increasing sample sizes. The more data becomes 

available, the more the point estimate tends to the true value of the parameter and the more 

uncertainty about the estimate decreases. However, the figures clearly show considerably lower 

biases, lower mean square errors and more precise credible intervals for the method proposed 
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compared to the other two methods, even without having exact ALD distributed errors. Note that 

the differences between the two frequentist methods on the one hand and the Bayesian method 

proposed on the other hand, decrease when more data becomes available. This finding 

corroborates the finding that BRQ’s and sBRQ’s require large amounts of data for reliable 

inference (Abrevaya and Huang, 2005; Kottas and Krnjajic, 2009). This indicates that when only 

a small amount of data is available, the Bayesian method proposed might be the better approach 

to binary quantile regression. 

 

4.3 Real data: Work-trip mode-choice 

Finally, the Bayesian procedure for the computation of the quantile regression estimates was 

tested on the widely studied transport-choice dataset described in Horowitz (1993) (also 

appearing in: McDonald, 1996; Gozalo and Linton, 2000; Horowitz, 2004 and Florios and 

Skouras, 2008). This dataset contains 842 observations randomly sampled from the Washington 

D.C. area transportation study. The data were obtained from home interviews and each record 

includes information for a single work trip: mode of transportation (DEPENDENT = 1, car), 

number of cars owned by the traveller’s household (CARS), transit out-of-vehicle travel minus 

automobile out-of-vehicle travel time in minutes (DOVTT), transit in-vehicle travel time minus 

automobile in-vehicle travel time in minutes (DIVTT) and transit fare minus automobile travel 

cost in 1968 cents (DCOST). All continuous variables were standardized to have mean zero and 

unit standard deviation for both better comparison of the size of the effects and numerical 

stability of the method proposed. As in Horowitz (1993), the parameter DCOST is set to unity. 

This is not necessary for the Bayesian method where scale normalization is normally achieved by 

setting the variance of the error distribution equal to one, but it makes it easier to compare the 

results of the current study to those obtained in previous research. 
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INSERT TABLE 2 ABOUT HERE 

 

Table 2 gives the estimates for the different parameters in the model for τ = 0.5 (i.e. the median 

case). Also the computed estimates from Horowitz (1993) and Florios and Skouras (2008) are 

provided. Following the resulting estimates from Horowitz (1993), we could conclude that 

DCOST and CARS are the most important determinants of work-trip mode choice. Moreover, 

DCOST is by far the most important variable since its parameter is twenty times larger than the 

second largest parameter.  

 

In contrast, using mixed integer programming (MIP) for optimizing the objective function in 

Equation 9, Florios and Skouras (2008) came up with very different results (see Table 2). It is 

remarkable that using a totally different methodology, the parameter estimates of the current 

Bayesian methodology are almost identical to the exact estimates obtained by the MIP method. 

Both MIP and the Bayesian estimates indicate that CARS is by far the most important variable. 

Note that if CARS is one or larger, the other variables must take on extremely negative values for 

the model to predict that no car is used for the work-trip. According to Florios and Skouras 

(2008), this finding suggests that the estimates for the other variables should be treated as zero. 

And indeed, they showed that keeping only CARS as covariate leads to a model predicting travel 

by car for car owners and travel by transit for non-car owners. This simple model, with only 

CARS as predictor, reduces the score by only 11 hits out of a total of 842. However, since Florios 

and Skouras (2008) do not provide standard errors for the estimates, concluding that a number of 

parameters in the model should be zero is somewhat guesswork. The Bayesian approach avoids 

this kind of speculations because the methodology provides exact and full inferences conditional 
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on the data observed. Table 2 also contains the Bayesian credible intervals for the different 

parameters and they show that only the interval for DIVTT includes zero. This means we can be 

quite confident that the other variables do exert a positive effect on the work-trip transportation 

choice, unlike Florios and Skouras (2008) assumption. Also note that the estimates produced by 

the MIP method all fall in the 95% credible intervals provided by the Bayesian approach. 

 

To obtain a more complete picture of the effects, a series of binary quantile regression models 

over the grid τ = {0.05,0.10,…,0.95} is estimated. Figure 4 gives a graphical summary of this 

analysis. The point estimates plotted and the credible intervals are, respectively, the expectation, 

Q.025 percentile and Q.975

 

 percentile obtained from the marginal posterior distribution of the 

different parameters. The solid line with filled dots represents the point estimates of the 

regression coefficients for the different quantiles. The shaded area depicting a 95% pointwise 

credible band is obtained from the marginal posterior distribution of the different parameters. 

INSERT FIGURE 4 ABOUT HERE 

 

For the interpretation of this kind of plots, it is recommended to imagine the underlying, 

unobserved continuous variable. In this application this is the willingness to take the car to go to 

work. From Figure 4, we can see that the effects of most variables become stronger for the higher 

conditional quantiles of the unobserved willingness to take the car distribution. This means that 

these variables exert heterogeneous effects across various quantiles of the latent variable. This is 

clearly the case for the variable CARS and, yet to a lesser extent, for the variable DOVTT. This 

means that commuters with a high preference to take the car to go to work are more affected by 

the number of cars they own than others. The same is true for the out of vehicle transportation 
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time. This suggests that improving the density of the public transportation net will affect 

commuters with a high preference for taking the car much more than commuters who are rather 

positive toward public transportation. The difference in cost between taking public transport and 

using a car (DCOST) clearly has a positive effect on the willingness to take the car. This 

contrasts with the suggestion of Florios and Skouras (2008) that this parameter should be treated 

as zero. From the mean point estimates it could be concluded that commuters who prefer cars are 

more price sensitive, but the relatively large credible intervals prompt caution for this kind of 

interpretation. The effect of the variable DIVTT turns out to be not significantly different from 

zero for the total quantile process.  

 

 

5. Discussion 

 

This paper proposes a Bayesian methodology for modeling binary regression quantiles. The 

general body of literature on binary regression quantiles consists of elaborations of Manski’s 

maximum score estimator. As shown in this study, the main portion of this literature focuses on 

the difficult optimization of the maximum score estimator and the problems in constructing 

appropriate confidence intervals for the estimator. These difficulties may account why so few 

applications are found in the field.  

 

By assuming the asymmetric Laplace density for the underlying latent variable in combination 

with the data augmentation method, the Bayesian machinery makes it possible to model binary 

regression quantiles in a straightforward way. Parameter point estimates and credible intervals 

can easily be extracted from the posterior densities computed. The benefits and possibilities of 



 

 23 

the proposed approach to binary regression quantiles have been outlined in practice in two 

simulation studies and one real-life application.  

 

Recently, Kottas and Krnjajic (2009) discussed limitations of quantile regression estimators for 

continuous dependent variables based on the ALD. They explore generalizations of the 

asymmetric Laplace density for quantile regression using a Dirichlet process mixture model. 

Monte Carlo experiments showed that their Bayesian semiparametric method is more robust than 

quantile regression estimation based on the ALD. A similar criticism can be addressed to the 

current methodology. Relaxing the assumption of ALD distributed errors by using a Dirichlet 

process as a prior could be an interesting path for further research. By doing so, the shape of the 

error density could adapt to the data and thus provide better fit compared to parametric error 

distributions and reduces the risk of model misspecification. Such an estimator would also 

resemble the Maximum Score Estimator more and would make comparisons between such an 

estimator and the MS estimator less awkward.  However, Richardson (1999) noted that popular 

forms of priors are those which have parameters that can be set straightforwardly and which lead 

to posteriors with a relatively immediate form. In this respect, Bayesian quantile regression based 

on the ALD is preferable to Bayesian semiparametric quantile regression (Hewson and Yu, 2008; 

Yu and Stander, 2007). 

 

In conclusion, we showed that the Bayesian ALD-based method for binary quantile regression is 

a viable strategy when the researcher is explicitly interested in modeling conditional quantiles, 

when heteroskedasticity is an issue or when only small sample sizes are available. As with 

quantile regression for a continuous dependent variable, we believe applications in a broad range 
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of research domains, not limited to econometrics, can benefit from the method proposed in this 

study. 
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Figure 1:  Standard Asymmetric Laplace Density (ALD) 
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Figure 2:  Quantile Regression 
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Figure 3:  Time-series plots for the binary quantile regression parameter estimates. 
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Tau Beta 95% Credible Interval 
0.05 -0.8391 -1.1527 -0.5553 
0.25 0.0084 -0.0445 0.0616 
0.50 0.2456 0.1621 0.3395 
0.75 0.8103 0.6338 1.0021 
0.95 5.4273 4.5450 6.2357 
Model Beta 95% Confidence Interval 
logit 0.1789 0.1223 0.2404 
Table 1:  Binary regression: quantile regression estimates and logit estimates 
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N  β0  β1 
BRQ sBRQ Bayes(ALD) BRQ   sBRQ Bayes(ALD) 

200 Bias -1.32  -1.46  -1.09   0.17  0.19  0.09  
RMSE 1.81  1.88  1.22  0.83  0.83  0.31  
2.5% -3.98  -3.24  -2.96  -0.07  0.19  0.21  
97.5% -1.45  -1.69  -1.58  1.87  1.19  1.09  

 
400 Bias -1.18  -1.28  -0.98   0.10  0.09  0.04  

RMSE 1.45  1.46  1.01  0.54  0.46  0.16  
2.5% -3.79  -2.91  -2.46  0.01  0.17  0.29  
97.5% -1.53  -1.66  -1.65  1.62  1.01  0.84  

 
600 Bias -1.12  -1.17  -0.95   0.08  0.05  0.03  

RMSE 1.34  1.28  0.97  0.45  0.34  0.12  
2.5% -3.45  -2.68  -2.31  0.08  0.19  0.33  
97.5% -1.57  -1.67  -1.69  1.42  0.90  0.76  

Table 2:  Bias, root mean square errors (RMSE) and 95% credible intervals for the 
parameters β0 and β1 (with τ = 0.5).  
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  INTERCEPT CARS DOVTT DIVTT DCOST Method 
Horowitz (1993) -0.276 0.052 0.011 0.005 1 MSCORE 
Florios and Skouras (2008) 5.122 3.916 0.962 0.401 1 MIP 
Current study 4.825 3.375 1.018 0.282 1 Bayes(ALD) 
95% credible interval (lower) 3.331 2.287 0.328 -0.230 -  Bayes(ALD) 
95% credible interval (upper) 7.621 5.378 2.183 0.847 -  Bayes(ALD) 
Table 3:  Estimates for the work-trip mode choice model (standardized) 
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Figure 4: Quantile process 
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