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Abstract

Various applications require multilevel settings (e.g., for estimating fixed and random

effects). However, due to the curse of dimensionality, the literature on non-parametric

efficiency analysis did not yet explore the estimation of performance drivers in highly

multilevel settings. As such, it lacks models which are particularly designed for multilevel

estimations. This paper suggests a semi-parametric two-stage framework in which, in a

first stage, non-parametric α efficiency estimators are determined. As such, we do not

require any a priori information on the production possibility set. In a second stage, a

semiparametric Generalized Additive Mixed Model (GAMM) examines the sign and sig-

nificance of both discrete and continuous background characteristics. The proper working

of the procedure is illustrated by simulated data. Finally, the model is applied on real

life data. In particular, using the proposed robust two-stage approach, we examine a

claim by the Dutch Ministry of Education in that three out of the twelve Dutch provinces

would provide lower quality education. When properly controlled for abilities, background

variables, peer group and ability track effects, we do not observe differences among the

provinces in educational attainments.
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1 Introduction

Insights on the drivers of efficiency is crucial to improve the performance of observations.

Indeed, the ‘raw’ efficiency estimates provide mostly case-specific information, while the pre-

diction and explanation of the ‘raw’ efficiency scores allows for a generalization of the results.

The semi-parametric Stochastic Frontier Analysis framework (SFA; Meeusen and Van Den

Broeck, 1977) can easily deal with determining the sign and significance level of efficiency

drivers, even in a multilevel framework. The latter is convenient as various applications are

characterized by complex hierarchical data structures. For example in education, the largest

part of the empirical data have a multilevel structure (pupils are nested within classes, classes

within schools, schools within regions and school types, etc.). It is necessary to include this

highly multilevel data structure into the empirical analysis to obtain unbiased estimates (Rau-

denbush and Bryk, 1986). However, in most cases the researcher does not have any a priori

information on the underlying production technology (Yatchew, 1998). As such, the model is

often wrongly specified, which results in biased estimations (Hjalmarsson et al., 1996).

On the contrary, nonparametric frontier techniques as Free Disposal Hull (FDH; Deprins et

al., 1984) and Data Envelopment Analysis (DEA; Charnes et al., 1978) do not assume any a

priori specification on the production function. However, the traditional DEA models lack

statistical inference (e.g., computing standard errors) and procedures to smoothly include the

exogenous environment. In addition, the DEA literature is silent about how to estimate and

explain efficiency in a clustered, hierarchical design. Recently, statistical inference has been

introduced (Simar and Zelenyuk, 2007), and attempts have been undertaken to incorporate

and explain the exogenous environment. We briefly discuss two procedures.

A first popular procedure to examine the drivers of performance consists of a two-stage model

in which the DEA efficiency estimates of the first stage are regressed on potential performance

drivers. However, Simar and Wilson (2007) rigorously argued some issues in applying the

two-stage model with DEA and FDH estimators in the first stage. These issues (discussed in

Section 3) make the traditional two-stage models intricate. Nevertheless, Banker and Natara-

jan (2008) and McDonald (2009) discuss that two-stage approaches may be valid if the inputs

are not (too much) correlated with the environmental variables. To do so, McDonald (2009)

suggests the use of a quasi-maximum likelihood approach à la Papke and Wooldridge (1996).

A second popular procedure is the conditional efficiency approach, as introduced by Cazals

et al. (2002) and Daraio and Simar (2005). It can smoothly include the exogenous char-

acteristics without imposing a separability condition (i.e., the exogenous characteristics do

not influence the inputs and outputs). Thanks to bootstrap based routines, the conditional

efficiency model can additionally determine the significance level of the exogenous variables
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(De Witte and Kortelainen, 2008). However, the procedure is not designed for a highly mul-

tilevel framework as it is not possible to include random effects and the inclusion of fixed

effects implies that the multivariate bandwidth selection becomes dramatically time consum-

ing with many discrete variables (Badin et al., 2010; De Witte and Kortelainen, 2008). In

addition, including fixed effects implies the inclusion of dummy variables for the group vari-

ables. In result, no other group variable can be included in the analysis (otherwise perfect

multicollinearity).

The lack of an appropriate technique which allows the empirical researcher to examine non-

parametrically the drivers of performance in a highly multilevel setting, is a major constraint.

The assumption that the set of observations are realizations of identically, independently

distributed random variables is hard for the large majority of applications. Disregarding

the clustered, hierarchical design of the data generating process can lead to biased inference

(Wood, 2006; Raudenbush and Bryk, 2002). Circumventing this issue by assuming parametric

specifications on the production frontier, or by reducing the number of levels is often not an

option as, respectively, the researcher has totally no information on the specification of the

frontier and a reduction of the levels intricates the analysis. For example, in the performance

assessment of students one wants to allow for random class and/or school effects. Reducing

the number of schools or specifying an assumed production function for student attainments

does not make sense. We could make a similar observation for other settings (e.g., in a perfor-

mance comparison of regional entities (e.g., countries or municipalities) one wants to account

for random regional disparities).

As such, this paper contributes to the literature in two perspectives. Firstly, by combin-

ing established frameworks from the nonparametric and semi-parametric literature and by

carefully exploiting insights of these models, we propose ‘a Robust two-stage model’. The

traditional two-stage models estimate a deterministic frontier model in the first phase, and

a semi-parametric bootstrap in a second phase. The suggested robust two-stage model uses

robust α-efficiency estimates (Daraio and Simar (2007a) and Aragon et al. (2006); see Sec-

tion 2) in the first phase, and regresses the outcomes on the set of exogenous variables by a

Generalized Additive Mixed Model (GAMM) in the second stage. This raises three thoughts.

Firstly, by using the robust α estimator in the first phase we carefully avoid the Simar and

Wilson (2007) critique, which focused on the use of the deterministic DEA estimators in the

first phase (see section 2 and 3 for a detailed discussion). Secondly, because of the semipara-

metric nature of the GAMM procedure, no parametric assumptions on the functional form of

the second stage regression are imposed. Only a mild (and testable) additivity assumption
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is needed. Thirdly, the GAMM procedure is required in the second phase as it is extremely

flexible. Moreover, it can easily include random group effects, which in turn can be intro-

duced to estimate a multilevel (= mixed) regression. As an additional advantage, the GAMM

model allows for Quasi approaches which can be used to allow for over- or underdispersion

in the error structure (i.e., the variability of the data is higher (lower) than expected from

the statistical model). The validity of the proposed robust two-stage model is illustrated on

a simulated data set in Section 4.

The second contribution arises from the application. In particular, we examine the claim of

the Dutch Ministry of Education and Culture in that the school quality is lower in the Dutch

provinces of Groningen, Friesland and Drenthe in comparison to the remaining 9 provinces.

Whereas the Ministry considered school quality mainly as providing ‘care’ for the student,

we estimate school quality as the ability to obtain educational attainments. We apply the

robust two-stage model on a large sample of Dutch secondary school students. In doing so,

we control for student abilities, student background characteristics, peer effects, and random

school and class effects. Our results indicate the existence of strong peer effects, large effects

of social segregation and the lack of provincial differences among student attainments.

The remainder of this paper is structured as follows. Section 2 discusses some concepts

in estimating efficiency. Insights in these concepts are necessary to understand the issues of

the traditional two-stage model. Therefore, Section 2 makes a clear distinction between the

traditional frontier models and the novel robust estimation techniques. Section 3 explores

with the traditional two-stage model and the conditional efficiency approach two popular

techniques to examine the drivers of efficiency. As both techniques are not constructed for

highly multilevel settings an alternative technique is proposed in Section 4, which develops the

robust two-stage model. While Section 5 illustrates the appropriate working of the proposed

framework, Section 6 examines the claim of the Dutch Ministry in that some provinces are

providing lower educational quality. Finally, Section 7 concludes the paper.

2 A first stage: Estimating efficiency

2.1 The nonparametric (deterministic) frontier approach

This section explores some concepts and recent models in the nonparametric efficiency liter-

ature. Although the outline is limited to the output-oriented case, the extension to input-

orientation is straightforward. Assume that producers use a heterogeneous non-negative input

vector x ∈ <
p
+ to produce a heterogeneous output vector y ∈ <

q
+. The production set Ψ of
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feasible input-output combinations can be defined as:

Ψ =

{
(x, y) ∈ <

p+q
+ | x can produce y

}
. (1)

In estimating Ψ, two different strands has been developed. We discuss briefly (1) the tradi-

tional full frontier estimators and (2) the robust frontier estimators.

Firstly, the traditional ’Data Envelopment Analysis’ (DEA; Charnes et al., 1978) literature1

estimates the production set while including all observed input-output combinations. As such,

it estimates the efficiency of observations relatively to a full frontier. Farell (1957) and Debreu

(1951) were the first to acknowledge that the output-efficiency score (i.e., maximization of

outputs y given the observed inputs x) of an observation (x, y) can be obtained as:

λ(x, y) = sup{λ|(x, λy) ∈ ψ}. (2)

A value λ(x, y) = 1 indicates full technical efficiency (i.e., there are no observations which are

able to produce more outputs for the given input set). A λ(x, y) > 1 indicates inefficiency,

i.e., it is possible to have a radial increase of λ(x, y) in all the outputs in order to reach the

efficient frontier. For a given level of input and a given output mix, the efficient level of

output is given by:

y ∂ (x, y) = λ(x, y)y. (3)

Under the assumption of free disposability2, probability theory can be used to interpret the

efficiency scores. In particular, efficiency can be viewed as the proportional augmentation of

output that unit (x, y) ∈ ψ needs to obtain in order to have a zero percent probability to

be dominated, given the inputs x. Following Cazals et al. (2002), this can be algebraically

expressed as:

λ(x, y) = sup{λ|SY |X(λy|x) > 0}, with SY |X = Prob(Y ≥ y|X ≤ x). (4)

By replacing in (4) the survival function SY |X by its empirical version ŜY |X , Free Disposal

Hull (FDH) inefficiency estimates λ̂FDH(x, y), as introduced in Deprins et al. (1984), are

obtained. If additionally to FDH a convexity assumption is imposed, one obtains the Data

Envelopment Analysis (DEA) inefficiency estimates λ̂DEA(x, y).

Secondly, a more novel procedure to estimate the production set was introduced by Cazals

et al. (2002). As the traditional FDH and DEA estimators are sensitive to outlying obser-

vations, this ‘partial frontier approach’ does no longer compute the efficiency scores relative

1As is common practice, we refer to ’the DEA literature’ to point to the broad set of frontier estimation

techniques.
2i.e., if (x, y) ∈ ψ, then any (x′, y′) such that x′ ≥ x and y′ ≤ y is also in ψ.
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to all observations in the production set. In particular, the robust order-α quantile frontier

approach of Aragon et al. (2005) considers efficiency as the proportional augmentation of out-

put that unit (x, y) ∈ ψ needs to have to obtain a 1-α percent probability to be dominated,

given the inputs. By definition, α is in [0, 1] and should be close to 1.

λ(x, y) = sup{λ|SY |X(λy|x) > 1− α}, with SY |X = Prob(Y ≥ y|X ≤ x) (5)

As proven by Cazals et al. (2002) and Daouia and Simar (2007), partial frontier estimates

converge by a
√
n-rate to the true partial frontier. Because the distance to a partial frontier

- close to the full frontier - is estimated, partial frontier efficiency estimates are not bounded

at one (as the traditional DEA models).

2.2 The domination approach: α efficiency

Alternatively to the nonparametric (deterministic) frontier approach, which estimates effi-

ciency as a distance to a frontier, Daraio and Simar (2007a) and Aragon et al. (2006) propose

to estimate efficiency as the probability that another observation does not produce more out-

put with less or equal inputs. The obtained estimator is labeled as ‘α efficiency’.3 Technically,

α efficiency estimates the order-α of the estimated quantile frontier which passes through this

unit:

Definition αoutput(x, y) = 1− SY |X , with SY |X = Prob(Y ≥ y |X ≤ x) .

The empirical estimation of the α efficiency is then obtained by estimating:

α̂ = 1− ŜY |X,n +
1

Nx
= 1−

∑
i|Xi≤x I(Yi ≥ y)

Nx
+

1

Nx
, with Nx =

n∑
i=1

I(X ≤ Xi). (6)

This discrete and easy-to-use estimator of α efficiency in equation (6) has been proposed by

Daraio and Simar (2007a). Aragon et al. (2006) extended this to a smooth and monotone

estimator. For the ease of explanation, in this paper, we focus on the discrete estimator.

However, our results can straightforwardly be extended to the smooth estimator.

The α efficiency has some attractive characteristics which makes it an appealing efficiency es-

timation procedure. We briefly present the appealing characteristics in six properties. Firstly

and similar to the traditional methods, it relies on the monotonicity property. Indeed, under

Assumption 2.1, α is monotone nonincreasing with x and monotone nondecreasing with y.

Assumption 2.1 Assume that SY |X(y|x) is continuous for any x. Then for (x, y) such that

SY |X(y|x) < 1, SY |X(y|x) is monotone nondecreasing with x and monotone nonincreasing

with y.

3Which is not the same as the order-α estimator of Daouia and Simar (2007).
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Proposition 2.2 Under Assumption 2.1, whenever defined, α is monotone nonincreasing

with x and monotone nondecreasing with y.

By construction, SY |X(y|x) is monotone nonincreasing in y. The assumption that SY |X(y|x) is

monotone nondecreasing in x is a reasonable assumption in production analysis (as discussed

in Daouia and Simar, 2007). The latter assumption states that there is more probability to

observe a level of output higher than a fixed value y for firms using less input than a level of

x2, than for firms using less input than a level of input x1 with x1 ≤ x2 (Daouia and Simar,

2007). If the assumption seems invalid in a particular setting, Aragon et al. (2006) proposed

to use isotonization in order to enforce monotonicity with respect to x.

The use of α̂ as an estimator of α requires that α̂ is a consistent and robust estimator.

Proposition 2.3 α̂ is a consistent estimator of α: When n→∞, α̂→ α.

By construction, α̂ is a consistent estimator of α.4 Unlike efficiency estimates with DEA or

FDH, α estimates are not downward biased by construction.

Proposition 2.4 α̂ is a robust estimator of α: for a given number of outliers, when n→∞,

α̂with outliers → α.

The α efficiency estimator shares the robust properties of robust nonparametric efficiency

estimation methods. In contrast to DEA or FDH, the impact of a given number of outliers

decreases dramatically if the sample size increases. Proposition 2.3 and 2.4 are illustrated

numerically in the Appendix.

Proposition 2.5 α is distributed over [0,1] and α̂ is distributed over the interval ]0, 1].

Proposition 2.5 indicates that α and α̂ are conveniently distributed over a fixed interval. An

efficiency score equal to 1 denotes full efficiency.

Proposition 2.6 α̂→ α at
√
n convergence speed.

In contrast to the traditional methods of DEA and FDH, α efficiency does not require frontier

smoothing (which is required in (robust) DEA and FDH to estimate the frontier). Conse-

quently,
√
n convergence speed is preserved, where n denotes the units with X ≤ Xi.

4This is because ŜY |X(y|x) is a consistent estimator of SY |X(y|x) and 1/Nx→ 0 if n→∞.
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3 A second stage: Explaining efficiency

Typically a researcher is less interested in the efficiency scores an sich, but the more in

the determinants behind those efficiency estimates. Indeed, while the efficiency scores can

provide insights in the relative performance of an individual observation, the prediction and

explanation of the scores allow for a more generalized interpretation. The literature counts

various approaches to examine the efficiency drivers (for a recent overview, see De Witte and

Kortelainen, 2008). This subsection explores with the two-stage approach and the conditional

efficiency estimates two popular procedures.

3.1 Two-stage approach

The two-stage approach estimates in a first phase nonparametrically the efficiency scores

(most commonly by FDH or DEA). In a second phase, it explains the obtained estimates by

a (semi)parametric approach. Explaining efficiency in a two-stage approach consists thus of

estimating (7) by (8):

λi = m(Zi) + εi (7)

λ̂i = m̂(Zi) + ε̂i. (8)

Although the two-stage approach has been applied frequently, Simar and Wilson (2007) indi-

cate rigorously that it can be a rather tricky procedure. In particular, they show that inference

is invalid in many papers that use a typical two-stage procedure with traditional efficiency

estimates - such as DEA and FDH - in the first stage.5 Three problems are addressed in

Simar and Wilson (2007). (1) Traditional non-parametric efficiency estimates λ̂DEA-FDH
i are

downwards biased. (2) Efficiency estimates are serially correlated, in a complicated, unknown

way. (3) In any meaningful two-stage analysis, the explanatory variables Zi are correlated

with the input-output set (Xi,Yi). Consequently, Zi is correlated with the error term εi.

Out of the three issues, the first one (i.e., the bias of the estimated λ̂DEA-FDH
i ) leads in Maxi-

mum Likelihood Estimations to biased and inefficient estimates. However, this small sample

problem can be mitigated by constructing bias corrected estimates by the implementation of

an appropriate bootstrap algorithm (Simar and Wilson, 2007).

The latter two issues disappear asymptotically. However, they disappear only at the slow

convergence rate of the traditional nonparametric efficiency estimates λ̂DEA−FDHi and not at

the usual
√
n-rate achieved by MLEs in standard parametric (truncated) regression models

(Simar and Wilson, 2007). Conventional inference is based on a second-order Taylor ap-

proximation. Higher-order terms cannot be disregarded because of the slow rate with which

5It is important to stress that the Simar and Wilson (2007) critique particularly originates from the use of

full frontier estimates, as FDH and DEA, in the first stage. The next section draws further on this idea.
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the serial correlation among the efficiency estimates disappears. Consequently, conventional

inference will be invalid in this setting (Simar and Wilson, 2008). To overcome these prob-

lems, Simar and Wilson (2007) propose to use a double bootstrap procedure to construct

left-truncated bias-corrected efficiency estimates and make inference valid.

On the other hand, Banker and Natarajan (2008) show that a typical DEA two-stage ap-

proach is statistically meaningful and can be considered as a DEA-based stochastic frontier

estimation. Banker and Natarajan (2008) and McDonald (2009) show that a typical DEA

two-stage approach with OLS in the second stage yields consistent estimates if the inputs are

not (too much) correlated with the environmental variables. Because OLS is not an asymptot-

ically efficient estimator and because the predicted efficiency levels may not lie in the interval

of true efficiency, McDonald (2009) propose to use a quasi-maximum likelihood approach à

la Papke and Wooldridge (1996) to consistently and robustly estimate efficiency in a typical

DEA two-stage approach. A logit transformation can be used to transform the unbounded

linear predictors in the fixes efficiency interval.

Nevertheless, four important issues might arise in a two-stage approach with either full fron-

tier DEA estimates in the first stage, or with bootstrapped DEA estimates in the first stage.

(1) By the use of full frontier approaches in the first stage, the two-stage estimates share the

vulnerability for outliers in X and Y . (2) A two-stage approach implies the introduction of a

separability assumption between the input× output space and the space of Z values (Daraio

and Simar, 2007a). (3) The two discussed approaches impose parametric assumptions on the

functional form of the regression and error distribution. (4) The bootstrap algorithms and

typical two-stage approaches are defined for and tested in 1-level settings.

Out of the four issues, the literature has already solved two. The separability assumption

and parametric assumptions on the regression (issue (2)) can be avoided by the use of a con-

ditional efficiency approach, introduced by Daraio and Simar (2005) and Daraio and Simar

(2007b). Parametric assumptions in the second stage (issue (3)) can be avoided by the use

of a truncated local likelihood two-stage approach as in Park et al. (2008). To robustly and

flexibly explain efficiency in a two-stage approach with a multilevel setting, we propose a new,

flexible and more robust approach to overcome the first, third and latter discussed caveat.

This robust approach is discussed in Section 4.

3.2 Conditional efficiency approach

The conditional efficiency approach - as introduced by Daraio and Simar (2005) and Daraio

and Simar (2007b)- uses the probabilistic formulation of efficiency estimations - as introduced

by Cazals et al. (2002) - to introduce environmental variables Z directly in the production

process. In contrast to the more traditional two-stage approach, by using a probabilistic
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formulation, the conditional efficiency approach does not impose a separability assumption

between the input× output space and the space of Z values. In other words, Z can influence

the attainable set Ψ or the position of the frontier of the attainable set. The conditional

survival function is expressed as:

S(x, y|z) = Prob(Y ≥ y|X ≤ x, Z = z), (9)

such that the conditional efficiency is obtained as:

λ(x, y|z) = sup(λ|SY |X,Z(λy|x, z) > 0). (10)

An estimator of λ(x, y|z) (i.e., λ̂(x, y|z)) can be constructed by smoothing Z by the use of

a Kernel estimator. Daraio and Simar (2005, 2007b) presented a framework to visualize the

effects of the exogenous variables Z. In particular, they suggested that by regressing nonpara-

metrically λ̂(x, y|z) / λ̂(x, y) on Z, the direction of influence can be estimated. Conditional

versions of full frontier approaches, partial frontier approaches and domination approaches

can be used in a conditional efficiency approach. Therefore, the conditional approach is ro-

bust for outliers in X and Y when one of the two latter approaches are used.

The conditional efficiency approach shows its usefulness to robustly explain efficiency in a

growing number of research papers (for an overview of about 18 papers see De Witte and

Kortelainen, 2008). However, it is not advisable to use a conditional efficiency approach in a

highly multilevel setting. In a multilevel setting, the inclusion of multiple levels implies the

introduction of fixed group effects or random group effects. Including fixed group effects in

a conditional efficiency approach is possible, but would imply (1) a dramatically high loss of

degrees of freedom and (2) loss of information of group variables (in education, examples are

class size, school type, school autonomy). To our best knowledge, the conditional efficiency

approach is not suited to include random group effects.6 Consequently, to explain efficiency in

a robust approach in a highly multivariate or multilevel setting, an alternative semiparametric

approach with random group effects is needed.

4 Combining insights: the robust two-stage approach

As both the existing two-stage approaches and the conditional efficiency model are inappro-

priate to use in a (highly) multilevel setting, this section proposes an alternative approach.

6Although De Witte and Kortelainen (2008) proved that the conditional efficiency model could include

many discrete exogenous variables without influencing the curse of dimensionality, in practice, estimations

with many discrete variables (say, more than 20) becomes impractical as the estimation time to estimate the

Kernel bandwidth increases dramatically.
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The proposed model uses insights from the previous sections and smoothly tackles the raised

issues.

4.1 Introducing robust efficiency estimates in a two-stage approach

The critique of Simar and Wilson (2007) on the (traditional) two-stage model arises from

the use of frontier techniques as FDH and DEA in the first stage. Indeed, FDH and DEA

lead to biased and serially correlated estimates which are correlated with Z. Nevertheless, the

description in the previous section on the robust efficiency estimates indicated that the robust

efficiency models do not suffer from these issues. Therefore, if partial frontier estimates are

used in the first stage, no bootstrap algorithm is needed for valid inference (as is also discussed

in De Witte and Kortelainen, 2008).

Proposition 4.1 Inference is asymptotically valid in a two-stage approach, when robust non-

parametric frontier approaches such as the order-m frontier approach of Cazals et al. (2002)

or the order-α quantile frontier approach of Aragon et al. (2005) are used in the first-stage.

As discussed in the previous section, it is shown by Cazals et al. (2002) and Daouia and

Simar (2007) that partial frontier estimates converge at
√
n-rate to the true partial frontier,

this with n the units with X ≤ Xi. Intuitively, this attractive property is obtained as there

is no smoothing of the frontier. In result, both the correlation among the εi, as well as the

correlation between εi and Zi disappear at
√
n-rate. Consequently, inference in the second

stage is asymptotically valid if robust estimators are used in the first stage.7

However, introducing robust non-parametric frontier methods in a two-stage procedure is

not without problems because the robust efficiency estimates are not bounded at 1. By

consequence, a meaningful 1-to-1 transformation is needed to map the unbounded linear

predictors in the unknown interval [0, close to but larger than 1]. As to our best knowledge

a similar approach is not available in the literature, the next subsection develops a proposal.8

4.2 a Robust two-stage approach

To allow for a valid robust inference in the second stage of a two-stage approach and to

relax the strong assumption that the sample observations (xi, yi, zi) in the observation set

ςn = {xi, yi, zi}ni=1 are realizations of identically, independently distributed random variables,

7It should, however, be noted that asymptotic results are achieved when the sample size goes to infinity

and the proportion of observations with few X ≤ Xi in the whole sample goes to zero. This is a stronger

condition than in traditional asymptotic theory.
8For example, if standardization is used to transform the efficiency estimates, inference is possible, but an

interpretation of the coefficients that holds over different samples is lost.
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we propose to use the following two stages:

Stage 1 Estimate for each observation (x, y) the α efficiency score of Daraio and Simar (2007a)

or Aragon et al. (2006).

Stage 2 Explain the α efficiency scores by using a semiparametric Generalized Additive Mixed

Model (GAMM). (See appendix for an overview of the applied GAMM approach.)

In contrast to previous suggested modeling techniques (as Tobit or bootstrap), the GAMM

model is extremely flexible, and, as such, better suited as a second stage model. In par-

ticular, (1) both discrete and continuous variables can easily be introduced. (2) A priori,

no functional relationship between the continuous variables and α̂ are imposed (only a basic

additivity assumption is required). (3) Random group effects can be introduced to estimate

a multilevel (= mixed) regression. (4) Quasi approaches can be used to allow for over- or

underdispersion in the error structure.

Overdispersion (underdispersion) occurs when the variability of the data is higher (lower)

than we would expect from the given statistical model. In the binomial case, overdispersion

occurs when var(α̂) > µ(1 − µ), with µ = E[α̂]. Underdispersion when var(α̂) < µ(1 − µ).

Over- or underdispersion can be the result of the unknown serial correlation between efficiency

estimates - as discussed in Simar and Wilson (2007). By this dependency, the independence

assumption of the binomial model is violated. In addition, underdispersion is expected be-

cause the estimates are conditional on the set with X ≤ Xi instead of the whole sample - as

in binomial models. If inefficiency and noise are relatively low - such that the observations are

close to the frontier - a high proportion of values close to 1 can be expected. A quasi-binomial

approach introduces an unknown scale parameter s such that var(α̂) = sµ(1 − µ). By the

use of a quasi-binomial specification, estimates are more robust for unobserved heterogeneity

and dependency.

Where the mapping of the unbounded linear predictors in the unknown interval

[0, close to but larger than 1] was a major issue before (see previous section) - inspired by

Venables and Dichmont (2004) - we suggest to explain the α efficiency estimates by general-

ized model with a logit link which maps the unbounded linear predictors in the closed interval

[0, 1]. As discussed above, over- or underdispersion can be expected in the robust two-stage

approach. Therefore, the more flexible quasi-binomial error structure is chosen to allow for

over- or underdispersion in the mean-variance relationship.
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Analogous to Venables and Dichmont (2004), the GAMM model is specified as:

α̂|ζ ∼ Quasi-binomial

(
µ =

eη

1 + eη
, V ar(µ) =

µ(1− µ)

T/s

)
,

with η = β0 + β1(z1) + β2(z2) + . . .+ βp(zp) + s1(zp+1) + s2(zp+2) + . . .+ sq(zp+q) +Wζ

(11)

where α̂ denotes the estimated α efficiency, E[α̂] = µ, η the predictor, Z the fixed effects vari-

ables with p discrete variables and q continuous variables, W the random effects variables,

β the coefficients for Z, ζ the multivariate random effects, T a weights parameter and s the

scale parameter to allow for over- or underdispersion.

The estimation of this type of GAMM is implemented by the ’GAMM’ function in the pack-

age ‘mgcv’ in R. A detailed description of the method can be found in Wood and Augustin

(2002), Wood (2004) and Wood (2006). Particular features of the ’mgcv’ package are that

(1) a variety of approaches can be used for automatic smoothing, (2) interactions between

variables that are smoothed (smooth terms) can be included, (3) mixed models are supported

by the program9, (4) confidence intervals of the smooth terms can be constructed by the use

of Bayesian approximation, (5) the number of degrees of freedom for the smooth terms that

are justified by the data can be estimated by the use Bayesian approximation, (5) estimation

is computationally efficient. In what follows, penalized regression splines - as discussed in

appendix and Wood (2006)- are used to estimate the smooths. This approach controls the

model’s smoothness by adding a wiggliness penalty λ to the least squares fitting problem. By

the automatic estimation of λ - by minimizing a (generalized) cross-validation function - the

selection of an appropriate degree of smoothing is automatic.10

5 Numerical illustrations

To illustrate the appropriate working of the proposed robust two-stage approach, we simulate

data following Badin et al. (2010). We simulate in three steps: (1) a two-variate one-level

setting, (2) a two-variate multilevel setting and (3) a multivariate multilevel setting. Our

results clearly indicate the appropriate working of the suggested procedure.

9For this, it is assumed that the interest of the researcher is primarily on the fixed effects, including the

smooth terms. Random effects and correlation structures are estimated to structure the residual correlation

in function of the estimation of the fixed effects (Wood, 2006).
10The R code is available upon simple request from the authors.

13



5.1 Step 1: Explaining efficiency in a one-level setting

We simulate a convex technology with 2 additive outputs and 2 inputs. The efficient frontier

is defined as:

y(2) = 1.0845(x(1))0.3(x(2))0.4 − y(1), (12)

where y(1), y(2), x(1) and x(2) are components of, respectively, y and x. We generate X
(j)
i ∼

U(1, 2), Ỹ
(j)
i ∼ U(0.2, 5). The output efficient random points on the frontier are simulated

as:

Y
(1)
i,eff =

1.0845(X
(1)
i )0.3(X(2))0.4

Si + 1
(13)

Y
(2)
i,eff = 1.0845(X

(1)
i )0.3(X(2))0.4 − Y (1)

i,eff (14)

where Si = Ỹ (2)/Ỹ (1) and denotes the slopes which characterize the generated random rays

in the output space for j=1,2.

To introduce inefficiency and environmental variables in a 1-level setting, we generate Ui ∼
Expo(mean = 1/2) and Zj ∼ U(1, 4) for j=1,2. Output is defined by the following production

process:

Y
(1)
i = (1 + 2 ∗ |Z1 − 2.5|3) ∗ Y (1)

i,eff ∗ exp(−Ui) (15)

Y
(2)
i = (1 + 2 ∗ |Z1 − 2.5|3) ∗ Y (2)

i,eff ∗ exp(−Ui) (16)

In result, Z1 is modeled to have a cubic effect on the frontier. Z2 is modeled as irrelevant

for the frontier. The simulation is performed for n = 100 observations according to this

scenario.11

The results, as illustrated in figure 1 and table 1 show that we discover the appropriate,

and significant cubic effect of Z1, while we do (correctly) not find a significant effect of Z2.

Consequently, in this additive 1-level setting, we obtain with the robust two-stage approach

similar results as the conditional approach of Badin et al. (2010) with data-driven bandwidth

selection. The estimated degrees of freedom are with, respectively, 2.427 and 1.134 larger

than 1. This indicates that smoothing is justified by the data. The scale parameter of 0.16

indicates the presence of underdispersion in the mean-variance relation. The variability of

the data is lower than expected in the binomial model. Therefore - in the robust two-stage

approach - it is advisable to use the flexible quasi-binomial model instead of a binomial model.

11We generated a relatively small number of observations as most papers in the efficiency estimation literature

also deal with small sample sizes.
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(a) Effect of Z1 (b) Effect of Z2

Figure 1: Visualization of smooth terms in 1-level setting, n=100. The solid line presents the esti-

mated function. Dashed lines the 95% confidence intervals. Covariate values are shown as

a rug plot along the bottom of the plot.

Table 1: Summary statistics: one-level setting

Parametric coefficients

Variable Estimate Stand.err.

(Intercept) 1.839 0.119∗∗∗

Approx. signif. of smooth terms

Est.degrees of freedom F-value

s(Z1) 2.427 2.901∗

s(Z2) 1.134 0.393

Scale est. 0.161

n 100

Significance levels : ∗ : 5% ∗∗ : 1% ∗ ∗ ∗ : 0.1%

5.2 Step 2: Explaining efficiency in a multilevel setting

We next expand the 1-level simulation to a multilevel setting. To do so, we generate Ui ∼
Expo(mean = 1/2), Zj ∼ U(1, 4) for j=1,2 and Z3 normally distributed between g groups;

Z3,k ∼ N(10, 1) between groups k = 1, .., g, with g=n/20. Output is defined by the following
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production process:

Y
(1)
i = Z3,k ∗ (1 + 2 ∗ |Z1 − 2.5|3) ∗ Y (1)

i,eff ∗ exp(−Ui) (17)

Y
(2)
i = Z3,k ∗ (1 + 2 ∗ |Z1 − 2.5|3) ∗ Y (2)

i,eff ∗ exp(−Ui). (18)

Again, as presented in Table 2 and Figure 2 we find properly the simulated significant cubic

effect of Z1, and an insignificant effect of Z2. The estimated degrees of freedom justified by

the data are equal to 1 for Z2, which indicates that there is no need to smooth Z2. The scale

parameter of 0.13 indicates the presence of underdispersion in the mean-variance relation. It

is therefore advisable to use the flexible quasi-binomial model instead of a binomial model

in this setting. Consequently, in a multilevel additive setting, this simulation illustrates

the usefulness of a robust two-stage approach with quasi-binomial error structure to explain

efficiency.

Table 2: Summary statistics: multilevel setting

Parametric coefficients

Variable Estimate Stand.err.

(Intercept) 1.869 0.1106∗∗∗

Approx. signif. of smooth terms

Est.degrees of freedom F-value

s(Z1) 3.186 4.451∗∗∗

s(Z2) 1.000 0.022

Scale est. 0.127

Observations 100

Significance levels : ∗ : 5% ∗∗ : 1% ∗ ∗ ∗ : 0.1%
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(a) Effect of Z1 (b) Effect of Z2

Figure 2: Visualization of smooth terms in 2-level setting, n=100. The solid line presents the esti-

mated function. Dashed lines the 95% confidence intervals. Covariate values are shown as

a rug plot along the bottom of the plot.

5.3 Step 3: Explaining efficiency in a multivariate and multilevel setting

This third step illustrates the usefulness of the robust two-stage approach in a multivariate

and multilevel setting with the existence of categorical environmental variables. To do so, we

extend the simulation in the following manner. Suppose the data are constructed in a two-

level setting with groups of 20 observations (Z8,k), that there are 5 continuous environmental

variables (Z1−Z5) - constructed as before - and 2 categorical variables (Z6−Z7, with values 1

and 2 with equal probability). Z1, Z3 and Z5 are modeled to have a cubic effect on efficiency.

Z7 is modeled to have a significant positive effect. We simulate n = 1000 observations.12

Y
(1)
i = Z8,k∗(1+2∗|Z1−2.5|3)∗(1+2∗|Z3−2.5|3)∗(1+2∗|Z5−2.5|3)∗Z7∗Y (1)

i,eff∗exp(−Ui) (19)

Y
(2)
i = Z8,k∗(1+2∗|Z1−2.5|3)∗(1+2∗|Z3−2.5|3)∗(1+2∗|Z5−2.5|3)∗Z7∗Y (2)

i,eff∗exp(−Ui) (20)

The results are presented in Table 3 and Figure 3. As was simulated, we find a significant

cubic effect for Z1, Z3 and Z5, a significant effect for Z7 and an insignificant effect for Z2,

Z4 and Z6. The estimated degrees of freedom justified by the data is equal to 1 for Z4.

This indicates that there is no need to smooth Z4. The scale parameter of 0.129 indicates

underdispersion in the mean-variance relationship, the flexible ‘quasi’ approach that allows

for under- and overdispersion is justified.

12The number of observations is increased to have a sufficient number of observations in each group.
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Combining the three simulated examples clearly illustrates that the robust two-stage approach

can be used to explain efficiency in multivariate and multilevel settings.

Table 3: Summary statistics: multivariate and multilevel setting

Parametric coefficients

Variable Estimate Stand.err.

(Intercept) 1.770 0.150∗∗∗

Z6 -0.022 0.068

Z7 0.159 0.069∗

Approx. signif. of smooth terms

e.d.f. F-value

s(Z1) 4.228 11.815∗∗∗

s(Z2) 2.099 1.826

s(Z3) 4.290 12.296∗∗∗

s(Z4) 1.000 0.223

s(Z5) 4.069 6.244∗∗∗

Scale est. 0.129

n 1000

Significance levels : ∗ : 5% ∗∗ : 1% ∗ ∗ ∗ : 0.1%
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(a) Significant effect of Z1 (b) Insignificant effect of Z2

(c) Significant effect of Z3 (d) Insignificant effect of Z4

(e) Significant effect of Z5

Figure 3: Visualization of smooth terms in 2-level setting, n=1000. The solid line presents the

estimated function. Dashed lines the 95% confidence intervals. Covariate values are shown

as a rug plot along the bottom of the plot.
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6 Real data example - Influence of background on student

performance

6.1 Student performance differences among Dutch provinces

In the Netherlands, there has been recently a debate about quality differences in education

among the 12 Dutch provinces. In particular, in March 2009 the Dutch Ministry of Educa-

tion and Culture acknowledged that the quality of education in the provinces of Groningen,

Friesland and Drenthe (GFD) was lower than in other parts of the country Dijksma (2009).

However, this insight is merely inspired by reports of the schools inspectorate for primary

education. The school inspectorate argued that particularly the resources spend on ‘care’

were significantly lower in the provinces of GFD than in the other 9 Dutch provinces. Never-

theless, in our opinion, school quality is more about obtaining the highest feasible education

attainments, rather than providing as much as possible ‘care’ for students. Additionally,

when comparing the performance of students across provinces, one should control for popu-

lation heterogeneity among the provinces (which was not the case in the school inspectorate

report).13

This section attempts to examine the differences in learning capacities among the Dutch

provinces. As such, we interpret ‘quality’ not in terms of resources for student care, but

rather in terms of obtained educational attainments for given abilities and given exogenous

background characteristics. We examine whether students in GFD are obtaining significantly

less educational attainments, given their abilities and background, in comparison to the other

provinces. In doing so, we control for random school and class specific effects in order to

capture school and class heterogeneity. As we apply the outlined (semiparametric) robust

two-stage model, we use a Bayesian model to structure the remaining error term.

The data are obtained from the 1999 cohort of the Voortgezet Onderwijs Cohort Leerlingen

(VOCL) data. This representative data set follows students during their secondary education

career. The cohort starts in the first year of secondary education with questionnaires on

motivation of the students and the parents. We estimate student attainments by considering

the individual test results for maths at the third year of secondary education as an output

variable (i.e., results in 2002). These test scores are equivalized as to make them comparable

over time.

Similar as Cherchye et al. (2010), we consider the initial test scores of students as input

variables. Using the initial test scores as an input variable creates two advantages. Firstly,

13A complementary analysis in which we examine the impact of student counseling in the different provinces

is impossible due to a lack of adequate data.

20



it is a proxy for the abilities of students (i.e., bright students will have higher initial test

scores). Secondly, by comparing the initial test scores against the third year test scores (i.e.,

the output variable), we obtain a measure for what the students learn at school.14 The initial

test scores are captured by the attainment scores on math at the end of primary education

(i.e., the so-called cito score; the test is taken in 1999). As such, in the setting at hand, the

previously described α efficiency score denotes the probability that there is no other student

with similar or lower abilities who obtains a higher math test score in the third year.

Obviously, to be fair, one should not examine the educational attainments based on the inputs

(i.e., the abilities) only. The literature has rigorously indicated that the attainments of the

individual student are influenced by exogenous characteristics such as (1) education of the

parents, (2) ethnicity, (3) peer and track effects and (4) social segregation (see e.g. Verschelde

et al. (2010) and references therein).15 Whereas the former two variables are included at in-

dividual level in the VOCL data, the latter two variables have to be constructed.

First consider the construction of peer and track effects. The peer effects are constructed

from taking the class average of the math scores (as estimated from the cito-score) in first

year of secondary education. This class average of the cito-math scores presents the peer and

track effects in the first year of secondary education. Following the literature, we capture peer

effects additionally by including dummies for students who are living in one of the four larger

Dutch cities (i.e., Amsterdam, The Hague, Rotterdam and Utrecht). The peer and track

variable controls for (1) track effects and (2) peer and class effects within a track. A large

literature - referenced in Hanushek et al. (2003) - has shown the difficulty to separate peer

effects from other confounding class or school effects in a cross-sectional study. Therefore, no

direct estimation of peer effects is undertaken. The results on peer and track effects are of an

indicative nature and meant to control the setting for the mentioned unobserved track, peer

and class effects.

Secondly, consider the construction of a social segregation variable. Social segregation scores

are constructed by taking the school average of the parental education level. This is to cor-

rect for institutional effects that are a result of social segregation (e.g. higher involvement of

parents, (self-)selection of more motivated pupils and selection of higher qualified teachers in

‘richer’ schools (Maaz et al., 2008). Some summary statistics are presented in Table 4.

14The initial test scores also indicate what students have learnt during primary education. Our analysis

indicated that there are no significant differences in initial test scores across provinces.
15Although the VOCL data contains survey data on the motivation of the students and the parents, we did

not include motivational variables because of endogeneity issues.
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6.2 Results

Using the outlined robust two-stage model, we estimate four different model specifications

in which alternative assumptions on the class effects and school effects, and on background

influences are taken. While the first two models do not account for random class or school

effects, the latter two models do. The first and third model differ from the other models as

they do not control for background characteristics.

The results are presented in table 5, table 6 and figures 4. In each of the four model specifica-

tions, the scale parameter is significantly smaller than 1 (i.e., respectively 0.316, 0.284, 0.225

and 0.225), which indicates underdispersion in the mean-variance relationship. As such, the

applied quasi approach is justified. We can discuss the results from 4 angles.

Firstly, if we do not control for background characteristics or random school and class effects,

the results indicate provincial disparities in educational achievement, given the abilities of

the students (Model 1). Pupils in Overijsel and Noord-Brabant are performing significantly

better than pupils in Groningen (which is the base dummy variable). Only the province

of Gelderland is consequently underperforming relatively to Groningen. Nevertheless, if we

control for the previously described set of exogenous background characteristics (Model 2),

only Noord-Brabant dominates significantly the province of Groningen. If in addition random

class and random school effects are included in the model (Model 4), no significant regional

disparities are found. This indicates that the results of the school inspectorate do not hold

for secondary education if controlled for exogenous characteristics.

Secondly, we obtain from the class average of the cito-scores a clear indication for the exis-

tence of peer and track effects in the Netherlands in the beginning of secondary education.

The estimated degrees of freedom for the peer and track effects amount to 3.441 and 3.414

in, respectively, Model 2 and Model 4. This suggests that smoothing of the peer effects is

necessary. The 95% confidence intervals show clearly that peer effects are present in the first

class of Dutch secondary education. This finding confirms previous results of De Witte (2009)

who found that the first year of secondary education is crucial in shaping the dropping out

decision (i.e., leaving secondary education without a diploma).

Thirdly, the estimated values of the smoothing parameter of the social segregation proxy reveal

that, if not allowed for random class and school effects (i.e., Model 2), the social segregation

has a significant impact on student attainment possibilities. In addition, education level of

the parents significantly influences the educational attainments. Controlled for random class

and school effects, we observe a linear effect of social segregation (i.e., the smoothing variable

equals 1), with a significant influence of parental education. In sum, the results suggest a

direct effect of family background and an indirect effect through social segregation on the
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educational progress of a pupil in the first year of secondary education. This is in line with

Verschelde et al. (2010), where on the basis of PISA 2006 data, the Netherlands are ranked

as a country with high inequality of opportunity and significant social segregation.

Fourthly, we confirm previous literature in that individual background characteristics have a

significant impact. Students of minority groups (i.e., Morocco, Turkey and Surinamese) are,

given their abilities and given the education level of their parents, performing significantly

less than native students.

Table 4: Descriptive statistics

Variable Minimum Q1 Median Mean Q3 Maximum

CITO math score 1.000 10.000 13.000 12.928 16.000 20.000

Class average CITO math score 3.500 11.417 13.053 12.928 14.837 20.000

Equivalized math test score -0.842 -0.039 0.076 0.092 0.200 1.238

Highest education level parents (EDU) 2.000 4.000 4.000 4.167 5.000 7.000

School average EDU 2.000 3.885 4.154 4.167 4.423 5.500

Big city 0.000 0.000 0.000 0.061 0.000 1.000

Origin Morocco 0.000 0.000 0.000 0.017 0.000 1.000

Origin Suriname-Antilles-Aruba 0.000 0.000 0.000 0.011 0.000 1.000

Origin Turkey 0.000 0.000 0.000 0.012 0.000 1.000

Origin other country 0.000 0.000 0.000 0.085 0.000 1.000

Native pupil 0.000 1.000 1.000 0.875 1.000 1.000

Groningen 0.000 0.009 1.000

Friesland 0.000 0.040 1.000

Drenthe 0.000 0.041 1.000

Overijssel 0.000 0.030 1.000

Flevoland 0.000 0.000 1.000

Gelderland 0.000 0.118 1.000

Utrecht 0.000 0.097 1.000

Noord-holland 0.000 0.099 1.000

Zuid-holland 0.000 0.243 1.000

Zeeland 0.000 0.002 1.000

Noord-brabant 0.000 0.162 1.000

Limburg 0.000 0.157 1.000

α efficiency 0.000 0.499 0.741 0.672 0.896 1.000
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Table 5: Results: parametric coefficients

Variable Model 1 Model 2 Model 3 Model 4

Constant 0.670∗∗∗ 0.243 0.509 0.352

(0.142) (0.149) (0.326) (0.239)

Friesland -0.026 0.293 0.070 0.271

(0.157) (0.151) (0.384) (0.276)

Drente 0.271◦ 0.152 0.065 0.098

(0.158) (0.153) (0.377) (0.294)

Overijssel 0.424∗∗ 0.184 0.053 -0.021

(0.164) (0.159) (0.385) (0.280)

Flevoland 2.804◦ 1.696 1.408 1.250

(1.586) (1.570) (1.454) (1.431)

Gelderland -0.319∗ -0.145 -0.105 -0.194

(0.147) (0.142) (0.356) (0.252)

Utrecht 0.108 -0.102 0.074 -0.021

(0.148) (0.146) (0.358) (0.256)

Noord-holland 0.146 0.209 0.230 0.214

(0.148) (0.144) (0.363) (0.257)

Zuid-holland 0.020 0.073 0.154 0.139

(0.145) (0.140) (0.353) (0.248)

Zeeland -0.012 0.477 0.181 0.528

(0.329) (0.315) (0.544) (0.402)

Noord-brabant 0.309∗ 0.321∗ 0.515 0.357

(0.146) (0.142) (0.365) (0.254)

Limburg -0.085 0.192 0.062 0.263

(0.146) (0.141) (0.398) (0.267)

Big city 0.243∗∗∗ 0.066

(0.060) (0.083)

Maroc -0.183◦ -0.286∗∗

(0.100) (0.096)

Suriname-Antilles-Aruba -0.523∗∗∗ -0.371∗∗∗

(0.117) (0.112)

Turkey -0.404∗∗∗ -0.308∗∗

(0.116) (0.110)

Other country -0.040 -0.043

(0.047) (0.044)

Highest education level parents 0.100∗∗∗ 0.079∗∗∗

(0.014) (0.013)

Random class effects No No Yes Yes

Random school effects No No Yes Yes

Scale est. 0.316 0.284 0.225 0.225

Observations level 1 (pupil) 8135 8135 8135 8135

Observations level 2 (class) 598 598

Observations level 3 (school) 106 106

Significance levels : ◦ : 10% : ∗ : 5% ∗∗ : 1% ∗ ∗ ∗ : 0.1%
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Table 6: Results: approximate significance of smooth terms

Variable Model 1 Model 2 Model 3 Model 4

s(class average CITO math score) e.d.f. 3.441 3.414

F-value 88.93∗∗∗ 55.21∗∗∗

s(school average education level parents) e.d.f. 2.405 1.000

F-value 67.49∗∗∗ 39.53∗∗∗

Random class effects No No Yes Yes

Random school effects No No Yes Yes

Scale est. 0.316 0.284 0.225 0.225

Observations level 1 (pupil) 8135 8135 8135 8135

Observations level 2 (class) 598 598

Observations level 3 (school) 106 106

Significance levels : ∗ : 5% ∗∗ : 1% ∗ ∗ ∗ : 0.1%
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(a) Model 2: effect of class average CITO math

score

(b) Model 2: effect of school average education level

parents

(c) Model 4: effect of class average CITO math

score

(d) Model 4: effect of school average education level

parents

Figure 4: Results: visualization of smooth terms. Solid line represents the estimated function.

Dashed lines the 95% confidence intervals. Covariate values are shown as a rug plot along

the bottom of the plot.

7 Conclusion

Many applications are characterized by a clustered, hierarchical data generating process. The

traditional non-parametric efficiency analysis literature does not include a smooth way of

estimating and explaining efficiency in a highly multi-level context. Indeed, the traditional
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two-stage approach (in which deterministic Data Envelopment Analysis estimates are para-

metrically regressed on background characteristics) has been heavily criticized by Simar and

Wilson (2007). The conditional efficiency approach (Daraio and Simar, 2005) suffers from an

inconvenient slow bandwidth computation if too many variables are included.

This paper suggested an alternative robust approach which is specially tailored for highly

multi-level frameworks. The proposal estimates in a first stage the robust α-efficiency es-

timator of Daraio and Simar (2007a) and Aragon et al. (2006). Thanks to the attractive

features of this estimator, the proposed framework carefully avoids the Simar and Wilson

(2007) critique. In a second phase, the α-efficiency estimators are regressed on the exogenous

background characteristics by a Generalized Additive Mixed Model (GAMM). Besides being

extremely flexible, and requiring only few assumptions, the GAMM approach allows us to

estimate the over- or underdispersion in the error structure. The appropriate working of the

technique is illustrated on simulated data.

Finally, the proposed model is applied on a rich sample of Dutch educational data. In partic-

ular, we examined a claim of the Dutch Ministry of Education in that the quality of education

is lower in three out of the twelve provinces. Contrary to the Ministry of Education, we ana-

lyzed the educational attainments of students while controlling for a broad set of background

characteristics. Our results suggest that, if properly controlled for the exogenous environ-

ment, there are no differences in educational attainments among the Dutch provinces. As a

side effect of our estimations, we find strong social segregation among schools and classes.

This paper opens several avenues for further research. Firstly, the procedure could be further

developed by making it fully non-parametric. Therefore, the GAMM model could be altered.

Secondly, as it stands now, the procedure suffers from a separability approach. Therefore,

in a next step, the α-efficiency scores could be altered such that they account for the back-

ground characteristics. Finally, many real life applications could be developed by using this

technique.16 Indeed, finally the literature on efficiency estimations can estimate panel models

with fixed and random effects, as it can estimate highly multilevel estimations.

8 Appendix

8.1 Numerical illustration of the robust two-stage approach

Simulation 1: consistency and robustness of α To illustrate the robust features of the

robust two-stage approach, we follow the example of Simar and Wilson (2008, p. 488-491).

The production set ψ is bounded above by the concave frontier yeff = g(x) = (2x − x2)1/2.
The probability density function f(x, y) is given by (21). f(x, y) is uniform over ψ (see

16Therefore, the R code is available from the authors upon simple request.
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fig (5(a)). The marginal density of x is given by (22). The marginal distribution function of

x is given by (24). The true α efficiency is given by (26).

f(x, y) =


4
π∀x ∈ [0, 1], y ∈ [0, g(x)],

0 otherwise.
(21)

f(x) =

∫ 0

g(x)
f(x, y)dy =

4

π
(2x− x2)1/2 (22)

FX(x) = Prob(X ≤ x) (23)

=


1 ∀x > 1;

4π−1[x−12 ((2x− x2)2)1/2 + 1
2sin

−1x0 − 1) + π
4 ∀x ∈ [0, 1];

0 ∀x < 0

(24)

FY |X(y |X ≤ x) = Prob(Y ≤ y |X ≤ x) (25)

=


1 ∀y ≥ g(x);

FX(x)−14π−1
{

(x− 1)y + 1
2 [y(1− y2)1/2 + sin−1(y)]

}
∀y ∈ [0, g(x)];

0 ∀y < 0

(26)

Table 7 illustrates that α̂ is a biased, but consistent estimator of α. The effect of outliers is

small and goes to zero when the sample size goes to infinity. Figure (5(b) illustrates that,

by construction, in large sample, there are still units where α̂ is severely imprecise. However,

when n → ∞, the proportion of units (xi, yi) with few units j with Xj ≤ xi in the whole

sample tends to 0.

Table 7: The bias of α̂

Observations mean(α− α̂) with 3 outliers

for n=25 and m=1000 -0.059 -0.032

for n=100 and m=1000 -0.020 -0.014

for n=1000 and and m=1000 -0.003 -0.002
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(a) The setting, 1000 observations (b) Consistency of alpha efficiency estimation

Figure 5: Numerical illustration

8.2 An overview of Generalized Additive (Mixed) Modelling

Generalized Linear Model (GLM) In the seminal work of Nelder and Wedderburn

(1972), Generalized linear models are proposed (1) to allow for response distributions other

than normal and (2) to introduce non-linearity in the model structure. Formally, a GLM

model is represented as

E(Y ) ≡ µ, g(µ) = β0 + β1(x1) + β2(x2) + . . . (27)

where g denotes a known monotonic link function, X the explanatory variables and β the

parameters to be estimated.

Generalized Additive Model (GAM) To avoid parametric assumptions on the unknown

relationship between the response variable and the explanatory variables, Generalized additive

Models (GAMs) as popularized by Hastie and Tibshirani (1990) can be used. A GAM is a

generalized linear model where the linear predictor is specified as a sum of smooth functions

of some or all the covariates (Wood and Augustin, 2002).

E(Y ) ≡ µ, g(µ) = β0+β1(x1)+β2(x2)+. . .+βp(xp)+s1(xp+1)+s2(xp+2)+. . .+sq(xp+q) (28)

here X present the fixed effects variables with p variables modeled parametrically and q vari-

ables modeled nonparametrically. For this, q unknown smooth functions si, with i = 1, . . . , q
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are defined.

A large methodological literature has focused on the issue how to represent smooth func-

tions and to choose the smoothness of these functions (Wood, 2006). The popular backfitting

approach of Hastie and Tibshirani (1990) has as advantage that multiple smooth terms can

be included. The largest disadvantage is that the model selection (= selection of number of

smooths) can be quite cumbersome (Wood and Augustin, 2002). The alternative approach

of Gu and Wahba (1991) has solved the model selection problem. However, the high com-

putational cost of the Gu and Wahba (1991) approach is an important practical barrier. A

penalized regression spline approach as proposed in Eilers and Marx (1996), Marx and Eilers

(1998), Wahba (1980) and Wahba (1990) is a computationally efficient approach to estimate

a GAM with integrated model selection.

To represent smooth functions, known basis functions are used. Consider a set of ba-

sis functions {bk(x) : k = 1, . . . ,m}. Commonly used examples are the polynomial basis

function and the cubic basis function. A k-dimensional polynomial basis is defined as:

b1(x) = 1, b2(x) = x, b3(x) = x2, . . . , bk = x(k−1)(Wood and Augustin, 2002). For a set

of - usually evenly placed - points in the range of x (=‘knots’)
{
x∗j : k = 1, . . . ,m

}
, the cubic

basis can be defined as bk(x) = |x−x∗j |3, for j = 1, . . . ,m, with bm+1 = 1,bm+2(x) = x (Wood

and Augustin, 2002). Then s(x) can be represented as the sum of basis functions, multiplied

by the respective basis parameters αj , with j = 1, . . . ,m.

s(x) =

m∑
j=1

αjβj(x) (29)

where αj are m unknown coefficients.

Spline smoothing has better approximation theory and higher numerical stability with cubic

basic functions than with polynomial basis functions (Wood and Augustin, 2002).

The penalized regression spline approach introduces a penalty λj for wiggliness of smooth

function sk, with k = 1, . . . , q to avoid overfitting of the smooth functions as is the case in

MLE of GAM models (Wood and Augustin, 2002). The deviance function to be minimized

is defined as follows

D(µ)−
∑
k

λk × [wiggliness of sk] (30)

here µ = E(Y ) and deviance function D is 2(l(Y )− l(µ)), with l the log likelihood.

The wiggliness can be defined as ∫
f ′′k (x)2dx = βkSkβk (31)

with Sk a matrix of known basis coefficients. The minimization problem can be defined as:

minimize D(µ) +
∑
k

λkβkSkβk w.r.t.β. (32)
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Estimation of β and λ can be done by penalized iteratively re-weighted least squares (P-

IRLS), using Generalized Cross Validation (GCV) or an UnBiased Risk Estimator (UBRE)

as thoroughly discussed in Wood and Augustin (2002), Wood (2004) and Wood (2006).

Generalized Additive Mixed Model (GAMM) To allow for overdispersed and cor-

related data in a clustered, hierarchical design, extention of the generalized model to the

mixed model setting is needed (Lin and Zhang, 1999). Since the work of Breslow and Clayton

(1993), GLMs are extended to include random effects. To avoid the hard parametric mean

assumption in a GLMM, Generalized Additive Mixed Models are proposed (Lin and Zhang,

1999). A GAMM with identity link can be defined as

E(Y ) ≡ µ, g(µ) = β0+β1(x1)+β2(x2)+. . .+βp(xp)+s1(xp+1)+s2(xp+2)+. . .+sq(xp+q)+Zib+εi

(33)

where Y denotes the response variable, βf , with f = 1, . . . , p the fixed parameters, sk, with

k = 1, . . . , q the smooth functions, Zi a row of the random effects model and b ∼ N(0, φθ)

is a random effects coefficient, with unknown positive definite covariance matrix φθ, with

parameter θ and ε ∼ N(0,Λ) the residual error vector with covariance matrix Λ (Wood,

2006).

It can be shown that each penalized regression smoother can be included in a mixed model

(Wood, 2006). The smooths are treated to have a fixed -unpenalized - component, which can

be absorbed in Xiβ and a random effects -penalized - component, which can be absorbed in

Zib. As for a GLMM , penalized quasi-likelihood approaches as proposed by Breslow and

Clayton (1993) can be used to estimate a GAMM.

This involves an iterative minimization process of an approximation of the understanding

likelihood function

L(β,θ) ∝ |φθ|−1/2
∫
exp

(
l(β,b)− 1

2
bTφ−1θ b

)
db (34)

where l(β,b) is the log likelihood of the GLM that would results from treating both β and b

as fixed effects (Wood, 2006).

As discussed in Wood and Augustin (2002), Bayesian approximation can be used to construct

confidence intervals for the smooth functions.
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