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Abstract 

Generalized additive models (GAMs) are a generalization of generalized linear models (GLMs) 

and constitute a powerful technique which has successfully proven its ability to capture nonlinear 

relationships between explanatory variables and a response variable in many domains. In this 

paper, GAMs are proposed as base classifiers for ensemble learning. Three alternative ensemble 

strategies for binary classification using GAMs as base classifiers are proposed: (i) GAMbag 

based on Bagging, (ii) GAMrsm based on the Random Subspace Method (RSM), and (iii) 

GAMens as a combination of both. In an experimental validation performed on 12 data sets from 

the UCI repository, the proposed algorithms are benchmarked to a single GAM and to decision 

tree based ensemble classifiers (i.e. RSM, Bagging, Random Forest, and the recently proposed 

Rotation Forest). From the results a number of conclusions can be drawn. Firstly, the use of an 

ensemble of GAMs instead of a single GAM always leads to improved prediction performance. 

Secondly, GAMrsm and GAMens perform comparably, while both versions outperform GAMbag. 

Finally, the value of using GAMs as base classifiers in an ensemble instead of standard decision 

trees is demonstrated. GAMbag demonstrates comparable performance to ordinary Bagging. 

Moreover, GAMrsm and GAMens outperform RSM and Bagging, while these two GAM 
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ensemble variations perform comparably to Random Forest and Rotation Forest. Sensitivity 

analyses are included for the number of member classifiers in the ensemble, the number of 

variables included in a random feature subspace and the number of degrees of freedom for GAM 

spline estimation. 
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1. Introduction 

Ensemble classifiers or multiple classifier systems (MCS) have received considerable attention in 

applied statistics (Hastie et al., 2001), machine learning (Dietterich, 2000) and pattern recognition 

(Kuncheva, 2004) for over a decade. Several studies demonstrate that the practice of combining 

several base classifier models into one aggregated classifier leads to significant gains in 

classification performance over its constituent members (Bauer and Kohavi, 1999). Over the 

years, different ensemble algorithms have been proposed, which differ along three structural 

dimensions of ensemble design, i.e. (i) the choice of the base or member classifier, (ii) the 

treatment of the input training data and (iii) the aggregation strategy for the outputs of member 

classifiers. Firstly, two broad strategies exist for choosing the members of an ensemble (Canuto et 

al., 2007). In hybrid ensembles, different types of algorithms are combined, whilst in non-hybrid 

ensembles, one classifier algorithm is chosen as base classifier, and replicated multiple times in 

order to constitute an ensemble. Secondly, many algorithms differ in terms of the treatment of the 

training data, used as input for each base classifier. Possibilities include data sampling schemes 

(Breiman, 1996), variable selection (Ho, 1998) or more complex data transformations (Kuncheva 

and Rodriguez, 2007; Rodriguez et al., 2006). A third ensemble design characteristic involves the 

fusion rule used for the ensemble member outputs, ranging from simple average aggregation to 

more complex combination rules (Skurichina and Duin, 2000).  

The most popular classifier ensemble schemes are non-hybrid and apply a base classification 

algorithm to differently permutated training sets. A well-known method in this category is 

Bagging (Breiman, 1996), an acronym of bootstrap aggregating. Although numerous variations 

have been proposed since its introduction (e.g. Bauer and Kohavi, 1999; Bühlmann, 2002; Croux 

et al., 2007; Hothorn and Lausen, 2005), Breiman’s original implementation is still a widely used 

ensemble classifier. In Bagging, each ensemble member is trained on a bootstrap sample of the 
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training data, i.e. a random sample of observations drawn with replacement and having the same 

size as the original training data. Ensemble classification is obtained by means of uniform 

majority voting, where an unlabeled observation is assigned the class with the highest number of 

votes among the individual classifiers’ predictions. Theoretically, bootstrapping can induce large 

differences in the constructed individual classifiers which substantially improves the accuracy of 

the ensemble classifier (Breiman, 1996).  

Several variations upon Bagging have been proposed in search for further performance 

improvements. Two popular strategies involve (i) increasing variation in the training data for base 

classifiers and (ii) the use of alternative base classifier algorithms.  
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Firstly, several studies have shown the impact of variations of the input data used for the training 

of base classifiers. Varying the training data of the members of an ensemble is a strategy to 

increase diversity amongst member classifiers, which is generally perceived as a key driver of 

ensemble performance (Kuncheva and Whitaker, 2003). In the Random Subspace Method (RSM; 

Bryll et al., 2003; Ho, 1998), variables are randomly sampled to create training data sets for a 

decision tree ensemble. RSM, also referred to as Attribute Bagging (Bryll et al., 2003), specifies 

that each ensemble member is trained using a random feature subset (RFS), i.e. a random 

selection of explanatory variables sampled without replacement and of a predefined size. A 

related method is the Random Forest algorithm by Breiman (2001), which has demonstrated high 

classification performance in many fields of research (e.g. Archer and Kirnes, 2008; Diaz-Uriate 

and de Andres, 2006; Gislason et al., 2006; Prasad et al., 2006; Svetnik et al., 2003). A Random 

Forest combines Bagging and a specific form of RSM where random feature subset selection is 

performed at each node of a member decision tree. More recently, Rodriguez et al. (2006) 

proposed Rotation Forest, an ensemble classifier based on rotations of the feature space through 

principal component analysis (PCA). The purpose of Rotation Forest is to increase the individual 

classifier performance and the diversity within the ensemble. Diversity is achieved for each 



classifier by applying feature extraction, while one tries to increase the performance by using all 

principal components and training the model on the whole data set. 

A second strategy to increase classification performance is to select an alternative base classifier 

algorithm. Many studies have proposed ensembles based on alternative base classifiers, such as 

Artificial Neural Networks (Hansen and Salamon, 1990; Maclin and Shavlik, 1995; Opitz and 

Shavlik, 1996; Schwenk and Bengio, 2000; Zhou et al., 2002) , Support Vector Machines (Kim et 

al., 2002, 2003), parametric regression techniques (Prinzie and Van den Poel, 2008) and 

nonparametric regression techniques (Borra and Di Ciaccio, 2002). 

This paper introduces generalized additive models (GAMs; Hastie and Tibshirani, 1986), a 

statistical technique for nonparametric or semi-parametric modeling, as ensemble members for 

ensemble classification. It contributes to the ensemble literature by proposing three GAM 

ensemble classifiers for binary classification based on Bagging, the Random Subspace Method 

and a combination of both. In each of the proposed methods, average aggregation is used to 

combine posterior class membership probabilities, generated by the member GAMs. In an 

experimental validation using 12 binary classification data sets from the UCI repository, 

classification performance is compared to single GAM performance, and amongst the three GAM 

ensemble algorithms. Further, the GAM ensemble approaches are compared to their counterparts 

based on decision tree base classifiers: RSM, Bagging, and Random Forest, which implements 

both Bagging and a specific form of RSM. The recently proposed Rotation Forest algorithm is 

included as an additional high performance benchmark, which also consists of decision trees 

trained in parallel, and demonstrated superior performance over Random Forest and ordinary 

Bagging earlier (Rodriguez et al., 2006). 

The paper is organized as follows. In Section 2, GAMs are reviewed and three variations of the 

GAM ensemble algorithm are presented. Section 3 reports the experimental results. Section 4 
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includes sensitivity analyses of classification performance based on the ensemble size, the 

number of variables per random feature subspace and the number of degrees of freedom for 

spline smoothing. In the last section, conclusions and suggestions for further research are given. 

2. Methodology 

This section briefly presents an overview of generalized additive models and the GAM 

specification used for ensemble members, and presents details of the proposed ensemble 

classifiers. Consider the following notations. X  is a set of p independent variables, 

{ } and  is a binary response variable. Denote a training data set by 

{( )}  consisting of n observations. Each observation  is a combination of an 

input vector  and a response  with 

=X

=D

pXX ,...,1

ii yx , n
i 1=

ix

Y

),( ii yx

iy ∈iy {0,1}. Training a base classifier  involves using 

the training data to formalize a mapping of the input variable space onto the binary response 

variable, . The prediction of a base classifier is the conditional class membership 

probability

lC

Y lC

)1(YP = X . An ensemble classifier C  consists of  base classifiers; m =C  

{ }.  mCC ,...,, 3CC ,1 2

2.1. Generalized additive models 

Generalized additive models are used as base classifiers in the proposed ensemble algorithms. 

GAMs were proposed in Hastie and Tibshirani (1986) and have been strongly accepted in several 

domains as a flexible modeling technique, suited for capturing non-linear, unspecified 

relationships between predictor variables and a response variable (Berg, 2007; Clements et al., 

2005; Kawakita et al., 2005). GAMs generalize the family of generalized linear models (GLMs), 

by replacing the linear functional form by a sum of smooth functions (Hastie and Tibshirani, 1986, 

1987, 1990), enabling the discovery of a nonlinear fit between a variable and a response. In order 
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to formalize the relationship between a binary response Y and independent variables 

{ }, the response variable is assumed to follow a binomial distribution and the logistic 

link function is applied. As many data sets contain discrete variables, a linear parametric part is 

introduced into the GAM model to allow the inclusion of these categorical variables. As such, the 

GAM specification that is used in the proposed ensemble classifiers is a logistic, semi-parametric 

additive model of the following form: 

pXX ,...,1
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with  as continuous variables and  as dummy-coded components of 

categorical variables. In this study, the functions  that estimate the 

nonparametric trend for the dependence of the logit on  are smoothing splines. A 

smoothing spline for variable X  solves the following optimization problem: amongst all functions 

cj pjX ,...,1, = bk pkX ,...,1, =

(),( 211 XsXs

XX , 21

)(),...,2 cc pp Xs

cpX,...,

)(xη  with continuous second order derivatives, find the function that minimizes the penalized 

residual sum of squares via   (2) ∑
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b

a
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where λ is a fixed constant and bxxxa n ≤≤≤≤≤ ...21 . The goodness-of-fit is measured by the 

first part of equation (2), while the second term is a penalty term that penalizes curvature in the 

function, where the degree of penalization is determined by the smoothing parameter λ. The 

complexity of )(xη  is measured by λ which is inversely related to the degrees of freedom (df). If 

λ is small (i.e. the df are large), )(xη  is any function that approaches an interpolation to the data. 

When λ is large (i.e. the df are small), )(xη  is closely related to a simple least squares fit. It is 

shown that an explicit and unique minimizer for equation (2) exists, i.e. a natural cubic spline 

with knots at the unique values of xi (Hastie and Tibshirani, 1990). This study specifies λ 
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corresponding to a small number of df as applied in several GAM-related papers (e.g., Baccini et 

al., 2007; Marx and Eilers, 1998; Zwane and van der Heijden, 2004) and the examples provided 

by Hastie and Tibshirani (1990). In order to optimize the GAM, the local scoring algorithm 

(Hastie and Tibshirani, 1986) is applied. 

2.2. GAM Ensemble Classifiers 

Based on the previous GAM specification, three ensemble classifier algorithms based on GAMs 

are proposed. GAMbag implements Bagging, GAMrsm implements the Random Subspace 

Method, and GAMens implements both. The pseudo code for the algorithms is presented in 

Figure 1. 

 

[INSERT FIGURE 1 HERE] 

 

The GAM ensemble algorithms require specification of a number of input parameters. A first set 

of parameters specifies the ensemble strategy. GAMbag incorporates Bagging, which requires 

parameter b to be true. GAMrsm only implements the Random Subspace Method and requires 

parameter s to be true. For GAMens, both parameters are set to true. Secondly, the m parameter 

designates the number of desired GAM base classifiers to be included in the ensemble classifier. 

Thirdly, the desired number of variables to be selected as random feature subspaces is required (r 

parameter). Finally, specification of the number of degrees of freedom to be used in the 

smoothing spline estimation is required (df parameter).  

 

In the prediction phase, outputs of the ensemble member GAMs are combined into an ensemble 

prediction  by means of average aggregation (or mean combination rule), which is used in 

many well-known ensemble classifiers (e.g. RSM and Rotation Forest). In the GAM-based 

)(xC
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ensembles, an ensemble prediction for a given observation takes the average of the posterior class 

membership probabilities produced by the individual ensemble members.  

3. Experimental Validation 

In order to assess the performance of the proposed algorithms, an experimental validation is 

performed on 12 two-class classification data sets from the UCI repository (Asuncion and 

Newman, 2007) that are often used to compare classifier performance (e.g., Kuncheva and 

Rodriguez, 2007; Rodriguez et al., 2006; Zhang and Zhang, 2008). All categorical variables are 

dummy coded. The characteristics of the data sets are found in Table 1. 

[INSERT TABLE 1 HERE] 

The validation of the proposed GAM ensembles is threefold. Firstly, the predictive performances 

of the GAM-based ensemble classifiers GAMbag, GAMrsm and GAMens are compared to a 

single GAM model. Secondly, the results of the proposed ensembles are compared against each 

other. Thirdly, the GAM ensembles are compared against their corresponding decision tree 

counterparts: RSM, Bagging, Random Forests and Rotation Forest. All these algorithms are well-

known and often used in classifier benchmark studies (e.g. Bauer and Kohavi, 1999; Rodriguez et 

al., 2006). Decision tree Bagging and Random Forest implementations originate from the adabag 

(Alfaro et al., 2006) and randomForest (Liaw and Wiener, 2002) packages in R (R Development 

Core Team, 2009). To allow for a fair comparison between GAMbag and Bagging, the fusion rule 

of Bagging is changed to average aggregation. Rotation Forest is implemented in MATLAB 

based on the implementation as described in Rodriguez et al. (2006) and the single GAM 

classifiers are implemented using the gam package in R (Hastie, 2008). The GAMens variations 

are also implemented in R and made publicly available in the new GAMens package (De Bock et 

al., 2009) accessible via http://cran.r-project.org. Default settings are used for all classifier 
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parameters. All decision tree based algorithms use unpruned CART decision trees. The size of 

random feature subspaces for Random Forests is set equal to the square root of the total number 

of features, as suggested by Breiman (2001). This setting is also used for RSM, GAMrsm and 

GAMens. The number of disjoint feature subsets of the Rotation Forests is chosen in order to 

obtain a fixed number of features per feature subset of three, as suggested by Rodriguez et al. 

(2006). Moreover, the GAM-based algorithms are trained using four degrees of freedom per 

smoothing spline. All ensemble-based algorithms are constructed using 100 constituent members. 

In order to methodologically benchmark the performance between the algorithms correctly, a 5 

times 2-fold cross-validation is performed. Within a 2-fold cross-validation, the training set is 

randomly split into two parts; the first part is used for model training, while the second part is 

used for model validation and vice versa. The performance of the classification methods is 

assessed in terms of Area Under the Receiver Operating Characteristics curve (AUC or AUROC) 

as argued by several authors like Provost et al. (2000) or Langley (2000) to be an objective 

performance criterion, well-suited for the comparison of classifier performance. For the detection 

of significant differences in classifier performance, Demšar (2006) suggests the use of the non-

parametric Friedman test (Friedman, 1937, 1940) with the Bonferroni-Dunn post-hoc test (Dunn, 

1961) for comparing a control classifier with the proposed benchmarks over multiple datasets . 

For every data set and per algorithm, Table 2 provides average AUC values with standard 

deviations for the 5 times 2-fold cross-validation. The highest average AUC per data set is 

indicated in bold. 

[INSERT TABLE 2 HERE] 

Table 3 and Table 4 provide the results of the corresponding Friedman tests with the Bonferroni-

Dunn post-hoc tests. The figures in both tables represent the average rank differences, i.e. the 
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difference between the average rank of the control classifier (CC) and that of the benchmark 

algorithm (BA). The lower the average rank, the better the algorithm. This implies that a negative 

average rank difference means that the control classifier has a lower (better) average rank than the 

benchmark algorithm and vice versa. 

[INSERT TABLE 3 HERE] 

[INSERT TABLE 4 HERE] 

The following conclusions emerge from Table 3 and Table 4. Firstly, a comparison among the 

GAM ensemble variations uncovers that GAMens and GAMrsm significantly outperform 

GAMbag at a 5% significance level, while GAMens and GAMrsm appear to have no 

considerable difference in classification performance.  

Secondly, the results reveal that building an ensemble of GAMs is a viable strategy to increase 

classification performance over the single GAM classifier. This holds for each of the three 

proposed GAM ensembles; GAMbag, GAMrsm and GAMens.  

A third consideration involves a comparison between the newly-proposed ensembles of GAMs 

and the ensembles of decision trees.  

It appears that GAMs as base classifiers in Bagging (GAMbag) perform equally well as using 

standard decision trees (Bagging). Moreover, GAMbag performs comparably to RSM, Random 

Forest and Rotation Forest.  

Furthermore, GAMrsm demonstrates superior performance over its counterpart RSM and 

Bagging. The strong performance of GAMrsm is also demonstrated when compared to Random 

Forest and Rotation Forest. In these cases, GAMrsm performs equally well with respect to these 

high-performing benchmarks.  
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GAMens also exhibits good classification performance when compared to the other benchmark 

ensemble algorithms. GAMens performs significantly better than RSM and Bagging, and there is 

no significant difference in classification performance when compared to Random Forest and 

Rotation Forest. While the differences are not significant, GAMrsm and GAMens both exhibit 

lower average ranks compared to Random Forest and Rotation Forest. 

In the following Section, additional experiments are performed to investigate the impact on 

classifier performance of varying three ensemble parameters: ensemble size (m), random feature 

subset size (r) and number of degrees of freedom for smoothing spline estimation (df). 

4. Algorithm Parameter Sensitivity Analyses 

The described sensitivity analyses are based on average results of a 5 times 2-fold cross-

validation using the 12 binary UCI data sets as described in Table 1. All algorithm parameters not 

under consideration are chosen as in the previous section.  

Appendix 1 demonstrates the effect of increasing ensemble size on the cross-validated AUC 

performance of GAMbag, GAMrsm, GAMens and the other ensemble benchmarks. Three 

relevant insights are summarized based on Appendix 1. Firstly, it is clear that the gain in AUC 

performance is high for small ensemble sizes (i.e., less than 25 base classifiers) and rapidly 

decreases as the forests continue to grow. This trend is confirmed by numerous other studies (e.g. 

Ho, 1998; Prinzie and Van den Poel, 2008). Secondly, it appears that the order in which 

algorithms perform remains rather stable over the range of ensemble sizes, while only a few shifts 

occur in small ensemble size regions. For example, trends from the GAMrsm algorithm 

demonstrate a faster increase than GAMens in a majority of data sets (i.e. German, Hepatitis, 

Ionosphere, Mammo, Sonar and Wisconsin breast), resulting in few shifts in the small ensemble 

size regions. A third observation is that the performance of the GAM-based ensembles is more 
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sensitive to ensemble size for smaller ensemble sizes, i.e. ensemble sizes with less than 10 

members. For larger ensemble sizes, the GAM ensembles are less sensitive when compared to the 

benchmark algorithms. Finally, the plots in Appendix 1 demonstrate for each of the data sets that 

the classification performance has stabilized at an ensemble size of 100 members, which makes 

this setting a safe choice.  

Appendix 2 shows the sensitivity of GAMrsm and GAMens performance depending on the size 

of random feature subsets (RFS). Plots are also included for RSM and Random Forests, in order 

to investigate whether these algorithms demonstrate comparable sensitivity to the parameter. The 

resolution of the RFS size range depends upon the total number of features in a data set, i.e. in 

steps of 1 for data sets with 20 features or less, in steps of 2 for data sets with features between 20 

and 50 features, in steps of 3 for the German data set with 59 features and in steps of 6 for the 

Horse colic data set. The plots uncover three distinct patterns for GAMrsm and GAMens: an 

inverted U, a descending and an invariant curve. The AUC performance follows an inverted U-

curve in four out of the twelve data sets, meaning that there is an increase in performance until a 

maximum is reached, followed by a downward trend. Further, the descending trend is observed in 

four out of the twelve data sets, where larger random feature subsets show a negative impact on 

AUC performance. In four out of the twelve data sets, the performance is more or less invariant to 

changes in RFS size. Overall, RSM and Random Forests demonstrate deviating trends and are on 

average slightly less sensitive to specification of the parameter. The vertical dotted lines represent 

the random feature subset sizes that are used in the experimental validation in Section 3. In this 

validation, RFS size is equal to the square root of the total number of features. The plots 

demonstrate that the default setting of the RFS size as the square root of the number of features as 

suggested by Breiman (2001) is close to the optimum, i.e. where AUC reaches a maximum value, 

for a majority of the data sets. This observation confirms the experiments on RFS size in Random 
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Forests (Bernard et al., 2009) and the related Extremely Randomized Trees Ensemble (Geurts et 

al., 2006). 

The sensitivity analysis on the variation of the df parameter did not reveal significant differences 

in prediction performance. The sensitivity plots are not included in the paper, but they can be 

obtained by contacting the corresponding author. 

5. Conclusions 

In this paper generalized additive models (GAMs, Hastie and Tibshirani, 1986) are introduced as 

base classifiers for binary ensemble classification using Bagging and/or the Random Subspace 

Method. GAMs constitute a powerful nonparametric technique to model nonlinear relationships 

between explanatory variables and a response variable. We present and evaluate three algorithms 

using GAMs as base classifiers: GAMbag applying Bagging, GAMrsm implementing the Random 

Subspace Method and GAMens combining both previous approaches. The results of the 

experimental validation on 12 UCI binary data sets show evidence of the advantage of using 

GAMs as members in an ensemble classifier. Firstly, constructing an ensemble of GAMs 

increases classification performance over a single GAM classifier. Secondly, both GAMrsm and 

GAMens perform better than GAMbag, while there are no considerable differences in 

performance between GAMrsm and GAMens. Thirdly, the results demonstrate that GAMrsm and 

GAMens significantly improve performance over RSM and Bagging and perform at least as well 

as Random Forest and Rotation Forest on a majority of data sets, while GAMbag performs 

comparably well to RSM and Bagging. 

Moreover, sensitivity analyses are performed in order to investigate the sensitivity of 

classification performance to algorithm parameters (i) ensemble size, (ii) number of elements in 

random feature subsets and (iii) number of degrees of freedom for smoothing spline estimation. 

15 
 



Sensitivity plots in (i) demonstrate that the GAM-based ensembles are overall less sensitive to 

ensemble size compared to the benchmark algorithms for medium to large ensemble sizes (10 – 

100), while for small ensemble sizes (less than 10 ensemble members) AUC performance is 

generally more sensitive to ensemble size. In (ii), the dependence of classification performance 

upon random feature subspace size specification is demonstrated. The plots indicated near-

optimal performance of the default setting for random feature subspace size, i.e. equal to the 

square root of the total number of independent variables in the data set. The sensitivity analyses 

on the number of degrees of freedom (iii) do not show significant differences in classification 

performance. 

Whilst we are confident that our study adds significant value to the current ensemble learning 

literature, a number of limitations and directions for future research are identified. Firstly, the 

proposed GAM ensemble algorithms are validated in a binary classification context, based on the 

original specification of generalized additive models by Hastie and Tibshirani. Future work can 

extend the proposed GAM-based ensemble classifiers to multiclass classification based on an 

extension of the GAM framework to multi-class problems, as for example proposed by Abe 

(1999). Secondly, a number of well-known benchmark algorithms are selected based on the 

frequently-used Bagging and RSM based on decision trees. One can of course argue about using 

(i) other base classifiers in the ensemble (e.g. Support Vector Machines (Kim et al., 2002) or 

Neural Networks (Opitz and Shavlik, 1996)) or (ii) other ensemble strategies (e.g. Boosting 

(Friedman et al., 2000), Bragging (Bühlmann, 2002) or Trimmed Bagging (Croux et al., 2007)) to 

compare the proposed GAM ensemble algorithms to. Thirdly, the main ensemble components in 

GAMens, GAMrsm and GAMbag are based on the manipulation of the training data for the 

member classifiers via Bagging and RSM, and average aggregation as a fusion rule for ensemble 

member output. While it is not feasible to take into account all variations from those components 
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in this study, further investigation may be conducted to analyze alternative approaches and their 

impact on classification performance. 
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Appendix 1: Sensitivity plots for number of members in the ensemble classifier 
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Appendix 2: Sensitivity plots for random feature subspace (RFS) size 
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GAMbag, GAMrsm and GAMens algorithms 

Input 

• : a training set, {( )} i ; ; n
1==D p

i RXx ⊂∈ii yx , =∈YyiD {0,1} 

• m: number of GAMs in the ensemble 

• r: number of randomly selected variables, r ≤ p 

• df: number of degrees of freedom used to estimate smoothing splines s1(.), s2(.), …, sp(.) 

• b: true for Bagging (GAMens and GAMbag) 

• s: true for Random Subspace Method (GAMens and GAMrsm) 

 

Training phase 

For l = 1,2,…,m 

• If s then Rl = D with subset of r randomly selected variables from X 

Else Rl = D 

• If b then Dl = bootstrap sample of Rl 

Else Dl = Rl 

• In Dl, identify continuous variable set Rl,c and binary variable set Rl,b. The numbers of elements 

of both sets are indicated by pl,c and pl,b. 

• Estimate l-th base classifier Cl as a semi-parametric GAM with logistic link function and df 

degrees of freedom for smoothing splines s1(.), s2(.), …, sp(.) 
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Prediction phase 

• The probability for observation x to belong to class 1, predicted by ensemble classifier C, is 

∑
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Figure 1: GAM ensemble algorithms pseudo code 
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Data set  
 Observations Discrete variables Cont. Variables Variables after dummy coding 

Credit rating 690 9 6 38 
German 1000 13 7 59 
Heart 270 0 13 20 

Hepatitis 155 13 6 19 
Horse colic 368 16 7 133 
Ionosphere 351 0 34 34 

Mammo 961 2 3 12 
Pima 768 0 8 8 
Sonar 208 0 60 60 
Spectf 267 0 44 44 
Vote 435 16 0 16 

Wisconsin breast 699 0 9 9 
 

Table 1: UCI data set characteristics 

 



 
Dataset Algorithm 

 RSM Bagging Random Forest Rotation Forest GAM GAMens GAMrsm GAMbag 
Credit rating 0.9093 (0.019) 0.9154 (0.013) 0.9314 (0.008) 0.9207 (0.008) 0.892 (0.015) 0.9126 (0.015) 0.9154 (0.014) 0.9107 (0.011) 

German 0.7041 (0.026) 0.73 (0.025) 0.7727 (0.019) 0.7591 (0.018) 0.749 (0.018) 0.7713 (0.024) 0.7729 (0.024) 0.7563 (0.017) 
Heart 0.8994 (0.019) 0.8822 (0.026) 0.8947 (0.02) 0.8875 (0.023) 0.862 (0.036) 0.9088 (0.019) 0.9106 (0.019) 0.8901 (0.022) 

Hepatitis 0.8606 (0.036) 0.8293 (0.053) 0.8748 (0.035) 0.8417 (0.051) 0.722 (0.08) 0.892 (0.038) 0.8897 (0.036) 0.8207 (0.052) 
Horse colic 0.8582 (0.043) 0.9019 (0.035) 0.8947 (0.031) 0.9108 (0.034) 0.714 (0.047) 0.8618 (0.029) 0.8652 (0.026) 0.8249 (0.03) 
Ionosphere 0.9576 (0.011) 0.9465 (0.017) 0.9764 (0.008) 0.9812 (0.008) 0.831 (0.026) 0.9737 (0.012) 0.9729 (0.01) 0.9482 (0.011) 

Mammo 0.8957 (0.008) 0.8958 (0.009) 0.8877 (0.009) 0.8662 (0.01) 0.894 (0.008) 0.8985 (0.008) 0.8996 (0.005) 0.8972 (0.007) 
Pima 0.7881 (0.012) 0.7958 (0.031) 0.8182 (0.016) 0.8083 (0.017) 0.831 (0.016) 0.8413 (0.015) 0.8409 (0.017) 0.8349 (0.015) 
Sonar 0.8596 (0.044) 0.8482 (0.039) 0.8995 (0.037) 0.9092 (0.028) 0.733 (0.045) 0.9136 (0.033) 0.9153 (0.027) 0.7976 (0.025) 
Spectf 0.8076 (0.026) 0.8237 (0.026) 0.834 (0.02) 0.8447 (0.019) 0.625 (0.062) 0.847 (0.013) 0.8513 (0.015) 0.7104 (0.053) 
Vote 0.9844 (0.005) 0.9734 (0.012) 0.9905 (0.004) 0.9832 (0.006) 0.968 (0.019) 0.9827 (0.007) 0.9827 (0.007) 0.9874 (0.005) 

Wisconsin breast 0.9882 (0.004) 0.9854 (0.005) 0.9895 (0.005) 0.9913 (0.004) 0.98 (0.012) 0.992 (0.003) 0.9915 (0.003) 0.9895 (0.006) 

 
Table 2: Classification performance in AUC: average (standard errors) 
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  Benchmark Algorithms (BA) 
  GAMbag GAMrsm GAMens 

Control Classifier (CC) 
GAMbag x 1.42** 1.08** 
GAMrsm -1.42** x -0.33 
GAMens -1.08** 0.33 x 

*= p < 0.10, ** = p< 0.05     
 

Table 3: Average rank differences (CC-BA) among GAM ensembles 
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 Benchmark Algorithms (BA) 
  GAM RSM Bagging Random Forest Rotation Forest 

Control Classifier (CC) 
GAMbag -1.92* -0.25 -0.58 1.33 0.92 
GAMrsm -3.50** -2.25** -2.50** -0.75 -1.00 
GAMens -3.33** -2.08** -2.25** -0.50 -0.83 

*= p < 0.10, ** = p< 0.05       
 

Table 4: Average rank differences (CC-BA) between GAM ensembles and benchmark algorithms 
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