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Abstract Longitudinal consumer behavior has been modeled by sequence analysis. A popular 

application involves Acquisition Pattern Analysis exploiting typical acquisition patterns to predict 

a customer’s next purchase. Typically, the acquisition process is represented by an extensional, 

unidimensional sequence taking values from a symbolic alphabet. Given complex product 

structures, the extensional state representation rapidly evokes the state-space explosion problem. 

Consequently, most authors simplify the decision problem to the prediction of acquisitions for 

selected products or within product categories. This paper advocates the use of intensional state 

definitions representing the state by a set of variables thereby exploiting structure and allowing to 

model complex, possibly coupled sequential phenomena. The advantages of this intensional state 

space representation are demonstrated on a financial-services cross-sell application. A Dynamic 

Bayesian Network (DBN) models longitudinal customer behavior as represented by acquisition, 

product ownership and covariate variables. The DBN provides insight in the longitudinal 

interaction between a household’s portfolio maintenance behavior and acquisition behavior. 

Moreover, it exhibits adequate predictive performance to support the financial-services provider’s 

cross-sell strategy comparable to decision trees but superior to MulltiLayer Perceptron neural 

networks.  

Keywords: state space representation, longitudinal, sequence analysis, 
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1 Introduction 

Sequence analysis has become common place in the longitudinal analysis of 
consumer behavior. One of the most popular applications is Acquisition Pattern 
Analysis, describing the next logical product/service acquisition for a customer, 
based on the sequential pattern of a customer’s acquisition history and on the 
pattern of other customers. Extant research testifies to a common order in which 
household units acquire durable goods (Clarke and Soutar 1982; Corfman et al. 
1991, Dickson et al. 1983; Feick 1987; Hauser and Urban 1986; Hebden and 
Pickering 1974; Lush et al. 1978; Kasulis et al. 1979; Mayo and Qualls 1987; 
Pyatt 1964; Paroush 1965; McFall 1969; Prinzie and Van den Poel 2007) or 
financial services (Dickenson and Kirzner 1986; Kamakura et al. 1991; Li et al. 
2005; Paas 1998; Paas, Bijmolt and Vermunt 2007; Paas and Molenaar 2005; Paas, 
Vermunt and Bijmolt 2007; Prinzie and Van den Poel 2006; Stafford et al. 1982, 
Soutar and Ward 1997). Minor divergences from this common order of 
acquisition might stem from cultural differences just like a companies reputation 
varies between cultures (Falkenreck and Wagner 2008). Notwithstanding these 
slight deviations, marketing managers can exploit this common acquisition order; 
i.e. priority pattern, to support cross-selling efforts aimed to augment the number 
of products/services customers acquire from a firm. Typically, the customer’s 
longitudinal acquisition sequence is represented as an unstructured, 
unidimensional sequence, thereby limiting the practical value of any cross-sell 
model inferred from it in multiple ways.  

Firstly, the unidimensional representation impedes capturing the 
acquisition behavior at a sufficient level of detail or for the full product range. For 
example, in an lth-order Markov model the next acquisition is described by l 
previous values of one random variable Xt , taking values from a symbolic 
alphabet N={1, …, M}. This extensional representation of the customer’s 
acquisition state, one in which each state is explicitly named rather than described 
by variables as in an intensional state representation (Boutilier, Dean and Hanks 
1999), rapidly results in an explosion of the state space and as a consequence 
computational intractability of the methods modelling this information. To 
illustrate this difference between an extensional and an intensional state 
representation, assume we want to represent a household’s longitudinal holiday 
behavior. An extensional state definition represents the household’s holiday 
sequence by literally mentioning the name of the consecutive holiday destinations: 
e.g., Puerto Plata  Paris  Tirol. This extensional state definition of holiday 
behavior literally lists all possible holiday destinations rapidly leading to a very 
long list and hence state space explosion. On the other hand, an intensional state 
definition will define a holiday by describing the properties of a holiday in multi-
valued features or state variables. For example the same longitudinal holiday 
behavior could be described by two state variables: activity {sun bath, ski, scuba 
dive, hiking, visiting attractions} and distance {short, medium, long}: (sun bath, 
long)  (visiting attractions, short)  (ski, medium). Describing the set of 
holiday destinations by state variables (intensional representation) is much sparser 
than listing all possible holiday destinations (extensional representation). 
Analogously, representing acquisition behavior by literally mentioning the 
acquired products as opposed to describing the features of the products acquired 
in state variables is often computational intractable. Therefore, in practice, the 
state-space explosion problem forces the researcher either to select a limited set of 
products or to analyze the acquisition behavior at less detailed level, e.g. product 
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categories. In both scenarios, the cross-sell predictive performance and practical 
value are limited. In the first scenario, the customer might acquire a product or 
service not included in the acquisition pattern analysis. In the last scenario, 
marketing communication at the product category level might lack specificity and 
consequently effectiveness.  

Secondly, the analysis of acquisition behavior as a unidimensional process 
largely neglects that the longitudinal acquisition behavior might be related to 
other longitudinal behavior like portfolio evolution and other covariates changing 
over time. Analogous to tree-based decision systems capturing multivariate cross-
sectional interactions (Yada, Ip and Katoh 2007), the Latent Markov analysis has 
been employed (Paas, Bijmolt and Vermunt 2007; Paas, Vermunt and Bijmolt 
2007) to model the interaction between the longitudinal acquisition process and 
covariates changing over time. However, a latent Markov model is unable to 
model longitudinal interactions as opposed to a Dynamic Bayesian Network. A 
latent Markov model assumes that, when controlling for covariate values at time t, 
the latent class membership only depends on the previous class membership at 
time t-1. Hence, unlike Dynamic Bayesian Networks (DBNs), a latent Markov 
model does not allow modeling coupled processes; i.e. longitudinal interactions, 
like the simultaneous evolution of the acquisition sequence with the evolution of 
one or more covariates also exhibiting a Markov property.  

Thirdly, the adoption of an extensional rather than factored or intensional 
state space representation largely ignores the structure exhibited by the 
product/service space and typically results in a simplified representation of the 
decision environment. However, most marketing problems, including cross-sell 
problems, exhibit considerable structure (e.g. products can be structured according 
to their attributes or target groups, Baier and Gaul 1999; Kagie, van Wezel and 
Groenen 2008) and thus can be solved using special-purpose methods that 
recognize that structure (Boutilier, Dean and Hanks 1999). Amongst other 
techniques, Dynamic Bayesian Networks (DBNs) could be employed to exploit 
the structure of the state. DBNs generalize (hidden) Markov models by allowing 
states to have internal structure. DBNs represent the state of the environment (e.g. 
customer) by a set of variables; i.e. intensional state representation as opposed to 
(hidden) Markov’s extensional state representation. The DBN models the 
probabilistic dependencies of the variables within and between time steps. If the 
dependency structure is sufficiently sparse, it is possible to analyze real-life 
problems with much larger state spaces than using Markov models. In addition to 
reducing computational complexity while maintaining the decision problem’s 
complexity, DBN’s intensional state-space representation enables the marketing 
manager to gain insight into the structure of the problem, in case the customer’s 
acquisition process.   

This paper illustrates the advantages of Dynamic Bayesian Networks for 
acquisition pattern analysis with the aim to support the cross-sell strategy of a 
financial-services provider. The DBN models multidimensional customer 
behavior as represented by acquisition, product ownership and life-cycle 
sequences. The results convey that, in addition to the ability to model structured 
multidimensional, potentially coupled, sequences, the DBN exhibits adequate 
predictive performance to support the financial-services provider’s cross-sell 
strategy. The DBN outperforms MultiLayer Perceptron neural networks and it has 
comparable predictive performance to decision trees, while providing more 
insight in the longitudinal interactions. 
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The remainder of the paper is structured as follows. In the Methodology 
Section, we briefly present the Dynamic Bayesian Networks. In Section 3, we 
describe the cross-sell application demonstrating the advantage of DBNs for 
acquisition pattern analysis. Section 4 discusses the main findings. Finally, the last 
section draws conclusions and suggests avenues for further research. 

2 Methodology 

2.1 Dynamic Bayesian Networks as an extension of Bayesian 
Networks 

A Bayesian Network encodes the joint probability distribution of a set of variables, 
{Z1, …, Zd} as a directed acyclic graph expressing conditional dependencies and a 
set of conditional probability models. Each node corresponds to a variable which 
can be discrete or continuous. The model computes the probability of a state of 
the variable given the state of its parents. The set of parents of Zi, denoted by 
Pa(Zi), is the set of nodes with an arc to Zi in the graph. The structure of the 
network encodes that each node is conditionally independent of its non-
descendants given its parents. The probability of an arbitrary event Z = (Z1, …, Zd) 
is computed as follows: 

 ( ) ( ))(1 ii
d
i ZPaZPZP =∏=  (1) 

Dynamic Bayesian Networks (DBNs) (Dean and Kanazawa 1989) extend 
Bayesian Networks for modeling dynamic systems thereby also exploiting 
conditional independence. In a DBN, a state at time t is represented by a set of 
random variables Zt = (Zi,t, …, Zd,t). The set of Zt could be divided into 
unobserved state variables Xt and observed state variables Yt which can be 
discrete or continuous. In a two-time slice Bayesian Network the state at time t+1, 
Zt+1 is only dependent on the immediately preceding state Zt, i.e. P(Zt+1|Zt) or 
first-order Markov property. Typically, the transition models are assumed to be 
invariant across time slices, i.e. a stationary process. A DBN is a pair of Bayesian 
networks (B0, B ) where B0 represents the initial distribution P(Z0) and B  is a 
two-time slice Bayesian Network (2TBN) defining the transition distribution.  

Studying these initial and transition distributions as embodied by the 
respective Conditional Probability Distributions (CPDs) enable the manager to 
gain insight into the within and between time-slice dependencies. The 
representation of the CPD defining a particular P(Zi|Pa(Zi)) depends on whether 
the child Zi is discrete or continuous and whether the parents are discrete, 
continuous or a mixture. Firstly, we discuss some of the possible types of CPD 
given the child Zi is discrete. If all its parents Pa(Zi) are discrete then the CPD is a 
multinomial distribution represented by a Conditional Probability Table (CPT). If 
all its parents Pa(Zi) are continuous then the CPT could be a multinomial logit 
function or a multi layer perceptron. If its parents Pa(Zi) are a mixture of discrete 
and continuous state variables then the CPD could be a mixture of multinomial 
logit functions or a mixture of multi layer perceptrons. Secondly, if the child Zi is 
continuous then the CPD could be a conditional linear Gaussian or a mixture of 
Gaussians. The joint distribution represented by a DBN; joining the initial 
distribution and the transition distributions, is obtained by unrolling the 2TBN as 
follows: 
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2.2 Predictive Model Evaluation: class-specific PCCs and wPCC 

The predictive performance of the Dynamic Bayesian Network is evaluated in 
terms of class-specific Percentage Correctly Classified (PCCs) and the overall 
wPCC on a separate validation and test set, i.e. data sets of instances not used for 
model estimation. 

In absence of a specific predictive objective, e.g. predict classes k=1 and 
k=3 well, we evaluate the DBN in terms of its ability to correctly classify cases in 
all classes K. Given this objective and the class imbalance of the dependent, it is 
inappropriate (Barandela et al. 2003) to express the classification performance in 
terms of the average accuracy like the Percentage Correctly Classified (PCC). 
Analogous to Morrison’s (1969) proportional chance criterion, the predictive 
evaluation of the models should take the distribution of the multinomial 
dependent into consideration. Firstly, we will weigh the class-specific PCCs with 
regard to the prior class distribution. Each class k (k ∈   K) of the dependent has a 
strict positive weight wk (3), with fk referring to the relative frequency of the class 
on the dependent variable. The class-specific weights sum to one as in (3). Given 
the weights, the weighted PCC equates to (4):  
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with  . The weighted PCC is related to the balanced error 
rate. We penalize models predicting several alternatives by equally dividing the 
100% classified over all alternatives predicted. Secondly, we benchmark the 
model’s performance to the proportional chance criterion Crpro rather than the 
maximum chance criterion Crmax (Morrison 1969): 

kkk PCCwwPCC *=

  (5) ∑
=

=
K

k
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3 A Financial-Services Cross-sell Application 

The benefits of Dynamic Bayesian Networks (DBNs) for acquisition pattern 
analysis are illustrated in a financial-services cross-sell application. From a data 
warehouse of an international financial-services provider a household’s 
acquisition sequence is derived in eleven service categories (Table 1). Notice that 
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the acquisition sequences are constructed at the household level, as household 
units are the principal decision-making unit in the financial-services market 
(Guiso et al. 2002). The objective is to extract patterns from the acquisition 
sequences enabling to predict the next financial service acquisition for each 
household.  

Unlike most previous research in Acquisition Pattern Analysis, the 
longitudinal acquisition behavior is augmented with other longitudinal behavior 
like the household’s service portfolio sequence at each acquisition event. A 
household reducing the number of financial products between two acquisition 
events should have a smaller service portfolio at the second acquisition event. 
Furthermore, we address the effect of the household’s family life-cycle on the 
household’s service portfolio at a given acquisition moment.  
Table 2 defines the intensional state space representation. The ownership state 
variables clearly reflect the structure of financial services, which can be 
partitioned into investments, credits, checking accounts and insurances. The latter 
reflects how DBNs exploit structure intrinsic to the environment. The ownership 
state variables at time t incorporate the newly acquired service at time t, thereby 
revealing information on how the household’s financial portfolio has been 
enriched by the newly acquired service. The age state variable is a proxy for the 
household’s stage in the family-life cycle. Households residing in different stages 
of the family-life cycle typically hold different service portfolios due to household 
need evolution (Hebden and Pickering 1974; Kamakura et al. 1991; Mayo and 
Qualls 1987; Paas, Bijmolt and Vermunt, 2007). The operationalization of the 
family-life cycle is based on the Wells and Gubar’s (1966) Family Life-Cycle 
(FLC) model defining family life-cycle stages by age of the household head, 
employment status of the household head, and the age of the youngest child (see 
Table 3). As the employment status of the household head was not for all 
households known and the age of the youngest child was typically unknown, the 
family life-cycle is solely based on the age of the household head. From the FLC 
model three aggregated family life-cycle stages based on age can be derived (see 
last column in Table 3): 1) FLC group 1: 35 - : young couple, young parents 1 and 
young parents 2, 2) FLC group 2: age [35, 54[ : mature parents 1, mature parents 
2, and mature couple and 3) FLC group 3: age 55 + : retired couple.  

By defining different Dynamic Bayesian Network architectures through 
specifying alternative within-time slice and between-slice effects for the state 
variables in Table 2 and selecting the best network architecture, the marketing 
manager gains insight in how the different longitudinal dimensions influence each 
other. How are the acquisition sequence, the portfolio sequence and the life-cycle 
sequence related? Section 3.2 discusses the various network architectures 
estimated and identifies the best network architecture. Beforehand the data and the 
data preparation are elaborated on in next Section 3.1.   

3.1 Data and Data Preparation 

From the original database of the financial-services provider containing 
information on approximately 860,000 households, households are selected with 
at least two acquisition dates. The latter ensures the reliable estimation of the 
transition probabilities from one acquisition event to the next. Households with an 
exceptional high number of services acquired or with too many missing values on 
the service category are deleted. After data preparation, 600,340 households are 
retained. We randomly assigned 200,113 households to the estimation sample, 
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200,114 households to the validation sample and the remaining 200,113 
households to a test sample.  

3.2 Dynamic Bayesian Network Architecture Selection 

To infer how the longitudinal dimensions are related different Dynamic Bayesian 
Network architectures are defined by specifying different within-time slice and 
between-time slice effects between the state variables listed in Table 2.  

3.2.1 Within-Time Slice Effects 

All DBNs provide in a within-time slice effect of age on a household’s service 
portfolio in accordance to the life-cycle hypothesis.  

The alternative DBNs differ as to which within-time slice effects are 
determined between the ownership state variables reflecting the structured 
financial-services product space. To guide the definition of different within-time 
slice effects between the ownership state variables, we estimated Kendall’s tau 
association between the ownership state variables. All association measures in 
Table 4 are statistically significant at α=0.001 thereby providing further insight 
into the structure in the financial-services product space. Table 4 portrays a large 
negative association between the household’s ownership of investment products 
and insurances. The second largest association exists between the ownership of 
credits and checking accounts. Finally, the third largest association exists between 
the ownership of investment products and checking accounts. The next 
association is smaller than 0.20 in absolute value and is not considered for 
constructing the alternative DBNs.  

3.2.2 Between-Time Slice Effects 

Each DBN specifies between-time slice effects of service portfolio and service 
acquisition on the household’s next service acquisition.  

The alternative DBNs differ in whether they include a first-order Markov 
effect between service portfolio (from now on referred to as Markov Portfolio) or 
not (from now on referred to as No Markov Portfolio). Allowing for this Markov 
property on a covariate like service portfolio would be impossible within a Latent 
Markov model. 

3.2.3 DBN Network Selection 

Consecutively we estimate for each between-time slice network architecture (i.e. 
No Markov Portfolio and Markov Portfolio) (a) a DBN without within-time slice 
effect between the ownership state variables (Table 5), (b) two DBNs based on the 
strongest association between the investment and insurance ownership state 
variables (Table 6), (c) all possible DBNs based on the two strongest associations 
between the ownership state variables (Table 7), and (d) all possible DBNs based 
on the three strongest associations (Table 8). In total 30 (2*15) alternative DBN 
models have been estimated on a random sample of 50,000 households drawn 
from the estimation sample (200,113 households). Table 5 to Table 8 report the 
model fit of the various DBNs. LL refers to the log likelihood where log denotes 
the natural logarithm. The Bayesian Information Criterion (BIC) balances the 
desire for a better fitting model against the desire for a parsimonious model: 
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)log(2 npLLBIC +−=  (6) 
where LL is the log likelihood, p is the number of independent parameters and n is 
the number of components in the log-likelihood (Schwarz, 1978). The Consistent 
Akaike’s Information Criterion (CAIC) was defined by Bozdogan (1987) as a 
consistent version of the AIC statistic thereby resolving the latter’s magic number 
‘2’ problem:  

 ( )( )1log2 ++−= npLLCAIC         (7) 

The DBN with the smallest CAIC is selected as final network architecture. Given 
the large data set at hand the CAIC criterion is preferred to AIC2 and AIC3 as 
CAIC’s general tendency to underfit reduces with sample size, whereas AIC2 and 
AIC3 tend to overfit with increasing sample size (Bozdogan 1987).  

Inspecting the CAIC statistics in Tables 5 to 8 clearly reveals that a DBN 
incorporating a first-order effect on the household’s service portfolio (Markov 
Portfolio models) largely outperforms an identical DBN except for the absence of 
such a Markov effect (No Markov Portfolio). The latter shows the advantage of 
DBNs to latent Markov models in allowing the researcher to assess the need for a 
Markov effect for the covariates. The best DBN with the lowest CAIC appears in 
bold in Table 8. Figure 1 shows the final Dynamic Bayesian Network architecture 
modeling 1) the within-time slice effect of checking account ownership on the 
ownership of credits, 2) the within-time slice effect of investment ownership on 
the ownership of checking accounts, 3) the within-time slice effect of investment 
ownership on the ownership of insurances, 4) the within-time slice effect of a 
household’s family life cycle (age) on a household’s portfolio, 5) the between-
time slice effects of service portfolio and service acquisition on the household’s 
next service acquisition, and 6) the between-time slice effects of service portfolio 
on the household’s next service portfolio3.  

4 Results 

4.1 Predictive Performance of Selected DBN Model 

We estimated the selected DBN illustrated in Figure 1 using the full-length 
acquisition sequences of the 200,113 households in the estimation sample. The 
selected DBN was estimated with the parameters of the selected DBN on the 
small estimation sample (50,000 households) as starting values. The predictive 
performance of the DBN indicates how well it is able to predict for all households 
in a specific sample the 2-nd until last acquisition event. The robustness of the 
predictive performance of the selected DBN is assessed by applying the DBN on 
the large validation (200,114 households) and large test sample (200,113 
households). 

Table 9 reports the predictive performance on the estimation, validation 
and test samples with respect to the wPCC and the service category-specific PCCs. 

                                                 
3 In response to a reviewer’s comment as to whether some valuable information might be lost due 
to the discretization of the age state variable, we estimated the best DBN with age as a continuous 
state variable. The CAIC of this model (CAIC=2493703) is much worse than the CAIC of the best 
DBN with all state variables discrete (CAIC=1637045). 
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The results show that the DBN is fairly robust as reflected by similar predictive 
performance measures across the estimation, validation and test samples. The 
DBN has a weighted PCC of 34.52% on the test sample, indicating that when 
correcting for the prior distribution of the financial-services groups, the DBN 
allows correctly classifying almost 35% of the next acquisitions. The wPCC on all 
three samples largely outperforms the proportional chance criterion Crpro of 0.18. 
The service category specific PCCs are independent of prior class probabilities. 
The DBN has a high hit rate for car insurances (7), investment products with low 
risk and fixed short term (1) and for investments with limited revenue risks, 
without capital risks nor duration (2). The DBN predicts at least 30% of the 
acquisitions in the other product groups with the exception of other type of 
insurances (8), mortgages (10) and checking accounts (11).  

Table 10 presents the confusion matrix for applying the best DBN on the 
test sample. The off-diagonal cells of the confusion matrix provide insight into the 
pattern of misclassifications. The last row ‘Difference’ reports the percentage 
difference between the percentage predicted ‘Predicted %’ and the actual 
percentage ‘Actual %’ of acquisitions in a given service category. For instance, 
the DBN predicts too many car insurance (7) acquisitions (+15 .21) thereby still 
predicting 75.34% of all car insurance acquisitions. All in all, given DBN’s 
adequate predictive performance, the DBN could be implemented by the 
financial-services provider to support the cross-selling strategies for all services 
except for other type of insurances (8) and checking accounts (11).  
 

4.2 Benchmark with Decision Trees and MultiLayer Perceptron Neural 
Networks 

The predictive performance of the best DBN is benchmarked with decision trees 
and MultiLayer Perceptron neural networks. As decision trees discretize 
continuous variables automatically by selecting an optimal split and as neural 
networks work better with continuous data, we used continuous ownership data 
and continuous age data as input for these methods. A households’ next service 
acquisition is predicted by a households previous service acquisition, his previous 
portfolio (number of investments, loans, checking accounts and insurance policies 
with inclusion of the previously acquired service) and the continuous age of the 
household head one acquisition event ago.  
 Various decision trees are estimated which vary in a) the maximum 
number of branches from a node (2, 3 or 10), b) the maximum depth of the 
decision tree (6, 10 or 30), and c) the number of observations required for a split 
search (4,919; approximately 10% of all acquisitions to predict, or 1,000). Various 
neural networks with MultiLayer Perceptron architecture are estimated which 
differ in the number of neurons. We engaged in a grid search with step size five. 
 Table 11 presents the predictive performance of the various decision trees 
and neural networks estimated as well as the predictive performance of the best 
DBN. The results show that the best DBN outperforms MultiLayer Perceptron 
neural networks and that the best DBN has comparable performance to decision 
trees. Note that the better decision trees are rather complex needing a maximum 
depth of 10.   
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4.3 Managerial Insights 

From a managerial point of view, it is vital to gain insight into the longitudinal 
acquisition process and its’ influential factors. Inspecting the Conditional 
Probability Distributions (CPDs) of a Dynamic Bayesian Network analysis 
enables this. In the application at hand all Conditional Probability Distributions 
are Conditional Probability Tables (CPTs) as all state variables are discrete. 

4.3.1 DBN’s Initial Conditional Probabilities 

The DBN’s initial conditional probabilities indicate the effect of state variables 
within a time slice. In the application at hand, the six initial state probability 
distributions document respectively 1) the initial  distribution of acquisitions in 
the eleven service categories, 2) the initial ownership of investments given the 
household’s family life-cycle (age), 3) the initial ownership of credits given 
ownership of checking accounts and the household’s family life-cycle (age), 4) 
the initial ownership of checking accounts given ownership of investments and 
the household’s family life-cycle (age), 5) the initial ownership of insurances 
given ownership of investments and the household’s family life-cycle (age) and 6) 
the initial distribution of households over the three age groups defined. Due to 
space limits the initial conditional probability tables will only be given for one out 
of six initial state probability distributions as an illustration of the output of the 
estimated DBN.  

Initial State Probability Distribution for Acquisition: P(Acqt) 

Inspecting the initial state probability distribution for acquisition reveals that 
most customers first acquire insurances: almost 40% acquire a car insurance 
policy, 21% acquire a fire insurance policy and another 11% acquire another type 
of insurance policy. Other customers start their relationship with the financial-
services provider by acquiring a bank service like an investment product with 
limited revenue risks, no capital risks and no time horizon (8%) or with a 
checking account (6%).   

Initial State Probability Distribution for Ownership Investments: 

P(Own_invt | Aget) 

The initial state probability distribution for investments (Table 12) reveals that 
ownership of investment services substantially increases with a household’s stage 
in the family life-cycle (age). Almost none of the households residing in a life-
cycle stage before the retired couple stage (household head younger than 55 years 
old) hold five or more investments in their portfolio, whereas 4.40% of 
households residing in the retired couple life-cycle stage do. About one quarter 
(24.92%) of the households in the retired couple life-cycle stage have one or two 
investments in their service portfolio compared to 13.33% on average for the 
households residing in earlier family life-cycle stages.  

Initial State Probability Distribution for Ownership Credits: P(Own_loant |  

Own_cat, Aget) 

Irrespective of how many checking accounts a household has the ownership of 
credits decreases as the household evolves to later stages in the family life-cycle.  
Households residing in the retired couple stage (household head being at least 55 
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years old) have almost no chance to own credits. On the contrary, households with 
a household head younger than 35 (young couples, young parents 1 and young 
parents 2) owning five or more checking accounts have the highest probability to 
own three or four credits (31.15%) or five or more credits (11.48%). Households 
residing in life-cycle stages before the retired couple stage holding at least three 
checking accounts in their service portfolio have at least 18.75% of having three 
or four credits in their portfolio too. 

Initial State Probability Distribution for Ownership Checking Accounts: 

P(Own_cat | Own_invt, Aget) 

Irrespective of the number of investments in a household’s service portfolio, 
households in earlier stages of the family life-cycle tend to have more checking 
accounts. In general, the probability to have no checking accounts is rather high 
with a minimum probability of 82.39%! There is almost no chance to own five or 
more checking accounts (maximum is 1.88%). Investigating the interaction effect 
between the number of investments in portfolio and the household’s family life-
cycle shows that households with a household head younger than 35 and owning 
at least 3 investment products have the highest probability to have three or four 
checking accounts (on average 11.47%). 

Initial State Probability Distribution for Ownership Insurances: 

P(Own_Insurt | Own_Invt, Aget) 

The results show that the effect of ownership of investments on the ownership of 
insurance policies is much larger than the effect of life-cycle stage. The results 
corroborate the large negative association between the ownership of investments 
and the ownership of insurances (Kendall’s tau= -0.3903). For example, the 
average (over life-cycle stages) probability to own no insurance policies is only 
8.80% for households owning no investments as compared to 98.38% on average 
for households owning 1 or more investments. 86% of these households having no 
investments have one or two insurance policies. Households belonging to earliest 
life-cycle stages (household head age younger than 35) have the biggest chance to 
still have insurance policies in their portfolio notwithstanding that investments are 
also belonging to their portfolio.  

Initial State Probability Distribution for Age: P(Aget) 

Initially, 53% of the households reside in the young couple, young parents 1 or 
young parents 2 life-cycle stage (household head younger than 35) and 16.47% 
are households residing in the retired couple family life-cycle stage (household 
head being at least 55 years old). 

4.3.2 DBN’s Conditional Probabilities 

The DBN’s conditional probabilities reflect the effect of state variables between 
time slices and as such the system dynamics. In the application at hand, there are 
five conditional probability tables describing respectively, 1) the effect of the 
household’s previous service portfolio at time t, as expressed by the four service 
ownership state variables, and the household’s previous service acquisition at time 
t on the next acquisition at time t+1, 2) the effect of the household’s ownership of 
investments at time t and his life-cycle stage at time t+1 on his ownership of 
investments at time t+1, 3) the effect of the household’s ownership of credits at 
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time t and his life-cycle stage at time t+1 on his ownership of credits at time t+1,  
4) the effect of the household’s ownership of checking accounts at time t and his 
life-cycle stage at time t+1 on his ownership of checking accounts at time t+1, 
and 5) the effect of the household’s ownership of insurance policies at time t and 
his life-cycle stage at time t+1 on his ownership of insurance policies at time t+1.   
The first conditional probability table is of major interest to predicting and 
understanding the household’s next financial service acquisition. The other four 
conditional probability tables are of interest to understand the Markov effect of a 
household’s previous portfolio on his next portfolio. As the paper’s major 
objective is to showcase the advantages of an intensional state definition by 
demonstrating it on a financial-services cross-sell application rather than to 
discuss the marketing insights derived from the acquisition pattern analysis, below 
we will only elaborate on one out of four conditional probability tables for the 
between-time slice ownership effects. 
 

Conditional Probability Distribution for Acquisition: P(Acqt+1 | Acqt, 

Own_Invt , Own_Loant, Own_Cat, Own_Insurt) 

Managers and analysts can use the inter-time slice acquisition probability 
distributions to interpret realistic settings. For example, in Table 13 we show an 
excerpt from the large transition table for acquisitions. The setting “10 2 2 2 1” 
describes a typical household that took out a mortgage during the previous 
purchase occasion. The household’s service portfolio at the pervious purchase 
occasion includes one or two investment products, loan products, checking 
accounts but no insurance policies. We observe that this profile of households has 
the highest probability of acquiring next an investment product (second column: 
conditional probability of 0.30), followed by a short-term credit or a checkings 
account (0.1667). These probabilities differ substantially from the second set “10 
2 2 2 2”, which represent the transitions for a household owning one or two 
investment products, loan products, checking account and insurance(s). This 
second household type has a very high probability of acquiring a “fire insurance” 
policy (0.6429). 
The conditional transition probabilities table also allows managers to analyze the 
inflow into a particular service category. Let us consider the inflow into category 
3; investment services with limited revenue risks but no capital risks for fixed 
long duration (>10 years). Most transitions of at least 0.30 originate from category 
3. A similar analysis is done for service category 6; fire insurance. In this case, 
transitions into this category of at least 0.30 not only originate from category 6, 
but also from 7 (car insurance), 8 (other types of insurance), and 10 (mortgages). 
Especially, the transition from mortgage acquisition to fire insurance subscription 
is very popular (making up 39% of all transition probabilities of at least 0.30 for 
consecutive acquisitions from another category than car insurances), which seems 
quite logical.  

Conditional Probability Distribution for Ownership Investments: 

P(Own_Invt+1 | Own_Invt, Aget+1) 

Investigating the conditional probability distributions for the ownership state 
variables enables managers to gain insight into the conditions leading to portfolio 
growth or shrinkage and hence into the portfolio dynamics.  
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For example, the conditional probability distribution for ownership 
investment reveals that depending on the number of investments in the 
household’s previous portfolio and the household’s family life-cycle the 
household is likely to have more or less investments in portfolio at the next 
acquisition event (Table 14). Note that a household might churn on services 
between two subsequent acquisition events which is reflected in the values for the 
ownership state variables at the next acquisition event. Households having one or 
two investment products at the previous acquisition event and having a household 
head younger than 35 have the highest chance (4.11%) to have a portfolio at next 
acquisition event missing investment products (portfolio shrinkage). The biggest 
probability of a growing investment portfolio occurs for households residing in 
the retired couple stage. Retired couples having 1 or 2 investments at the previous 
acquisition event have 51.06% probability to have 3 or 4 investments at the next 
acquisition event and 15.16% probability to even grow to a portfolio containing 5 
or more investments. A even stronger effect is observed for retired couples having 
three or four investments at the previous acquisition event. These couples have 
63.18% probability to own five or more investments at the next acquisition event!    

5 Conclusion and Avenues for Further Research 

5.1 Conclusion 

The understanding and the analysis of longitudinal consumer behavior is an 
ongoing and growing research domain. One of the earliest attempts to analyze 
longitudinal consumer behavior goes back to acquisition pattern analysis. In the 
past, the customer’s longitudinal acquisition sequence has been represented as an 
unstructured, unidimensional sequence, thereby limiting the practical value of any 
cross-sell model inferred from it in multiple ways. This paper illustrated the 
advantages of an intensional rather than extensional state-space representation as 
employed by Dynamic Bayesian Networks (DBNs) for acquisition pattern 
analysis with the aim to support the cross-sell strategy of a financial-services 
provider. This new state-space representation alleviates three caveats of past 
acquisition pattern analysis by:  

1) enabling to capture the acquisition behavior at a sufficient level of detail 
or for the full product range, 
2) modeling the relationships between longitudinal behavior or time-
varying covariates by specifying different within and between-time slice 
effects in the Dynamic Bayesian Network architecture (in this case 
acquisition, product ownership and life cycle), and,  
3) exploiting the structure of the cross-sell problem (in this case the service 
space structure as used by the financial-services provider).  

All together the three advantages mentioned contribute to model the cross-sell 
problem in its full complexity while simultaneously providing the manager with 
insights into the structure of the cross-sell problem by inspecting the Conditional 
Probability Distributions (CPDs) of the Dynamic Bayesian Network. 

5.2 Avenues for Further Research 

Several avenues are open for further research. Firstly, extending the 2TBN to a 
higher-order Dynamic Bayesian Network could control for higher-order 
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acquisition and/or portfolio maintenance effects. Also the DBN network 
architecture could be enriched with an acquisition recency state variable providing 
additional support to the cross-sell strategy by defining the best timing for a cross-
sell action.  

Secondly, in the application at hand, the acquisition state variable adopts 
the services partition as used by the financial-services provider. However, one 
could decompose the acquisition state variable with as many state variables as 
there are relevant service features to predict what features the next most likely 
acquired service would have.  

Thirdly, a study could compare the predictive power and interpretability of 
the Latent Markov model commonly used in Acquisition Pattern Analysis to that 
of the Dynamic Bayesian Network model. Enabling such a comparison would 
imply to predict changes in portfolio rather than acquisitions as the latent 
segments in a Latent Markov model explain associations between its indicators.   

Another interesting benchmark lies in a comparison with multi-
dimensional sequence mining (Esposito, Di Mauro, Basile and Ferilli 2008) 
retrieving frequent multi-dimensional patterns in an unsupervised way. Compared 
to the supervised DBNs frequent multi-dimensional sequence mining might prove 
less valuable to support cross-sell strategies as the frequent multi-dimensional 
sequential patterns might not be predictive of a household’s acquisition behavior.  

Further research could also assess the value of a two-step approach. In the 
first step, the multidimensional sequences are clustered (Hirano and Tsumoto 
2005; Steinman and Silberer 2009). Subsequently, within each identified cluster 
alternative Dynamic Bayesian Network models are estimated. This would allow 
for different within- and between-time slice dependencies for groups of instances 
showing similar multidimensional longitudinal sequences.  

Finally, estimating brand-switching models with Dynamic Bayesian 
Networks might be another interesting avenue for further research.  
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 Fig. 1 Best Dynamic Bayesian Network Architecture Modeling Longitudinal Acquisition Behavior For Financial Services 
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Table 1 Financial-Service Product Groups 

Services Group Description 
1 Investment: low risk, fixed short term (≤ 10 years) 
2 Investment: limited revenue risks and no capital risks, no duration 
3 Investment: limited revenue risks and no capital risks, fixed long duration      

(> 10 years) 
4 Investment: some revenue risks and no capital risks 
5 Investment: no revenue risks, some to high capital risks, no duration 
6 Fire insurance 
7 Car insurance 
8 Other types of insurance (e.g., health, household, accident and life insurance 

policies) 
9 Short-term credit 
10 Mortgage 
11 Checking account 
 
Table 2 State Space Definition 

Acquisition (Acq) 11 Acquisition of one or more services from service 
category one to eleven. 

Ownership Investment (Own_Inv) 
Ownership Credit (Own_Loan) 
Ownership Checking Account 
(Own_CA) 
Ownership Insurance (Own_Insur) 

4 1: no ownership 
2: one or two services owned 
3: three or four services owned 
4: five or more services owned 

Family Life-Cycle (Age) 3 1: younger than 35 
2: from 35 to 54 years old 
3: 55 years old or older 

 

Table 3: Family life-cycle stages according to Wells and Gubar (1966) 

Family life-cycle stage Age of the 
household 
head 

Age of the youngest 
child 

Employment FLC 
group 

Young couple 18-34 - Employed 1 
Young parents 1 18-34 0-5 Employed 1 
Young parents 2 18-34 6-17 Employed 1 
Mature parents 1 35-54 0-5 Employed 2 
Mature parents 2 35-54 6-17 Employed 2 
Mature couple 35-54 - Employed 2 
Retired couple 55 +  - Retired 3 

Table 4 Kendall’s Tau Association Measures Between Ownership State Variables 

 Ownership 
Investment 

Ownership 
Credit 

Ownership 
Checking 
Account 

Ownership 
Insurance 

Ownership Investment 1    

Ownership Credit 0.0060*** 1   

Ownership Checking 
Account 

0.2633*** 0.2833*** 1  

Ownership Insurance -0.3903*** -0.0800*** -0.1884*** 1 
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*** Significant at α<0.0001 

 

Table 5 Fit of Dynamic Bayesian Network Architecture Without Within-Time Slice Effects 

Between Ownership State Variables  

Between-time Within-time LL BIC CAIC 
No Markov Portfolio Independent -1017100 2166748.50 2194957 
Markov Portfolio Independent -765440 1664105.20 1692457 
 
 

Table 6 Fit of Dynamic Bayesian Networks based on Strongest Association Between Ownership 

State Variables 

Between-time Within-time  LL BIC CAIC 

No Markov Portfolio Own_Inv  Own_Insur -988900 2110475.4 2138710 
Own_Insur  Own_Inv -988900 2110475.4 2138710 

Markov Portfolio Own_Inv  Own_Insur -742130 1618119.60 1646607 
Own_Insur  Own_Inv -743840 1621544.26 1650032 

 
 
 
Table 7 Fit of Dynamic Bayesian Networks based on Two Strongest Associations Between 

Ownership State Variables 

Between-
time 

Within-time 1 Within-time 2 LL BIC CAIC 

No Markov 
Portfolio 

Own_Inv  
Own_Insur 

Own_CA  
Own_Loan 

-983000 2098802.3 2127064 

Own_Loan  
Own_CA 

-983000 2098802.3 2127064 

Own_Insur  
Own_Inv 

Own_CA  
Own_Loan 

-983000 2098802.3 2127064 

Own_Loan  
Own_CA 

-983000 2098802.3 2127064 

Markov 
Portfolio 

Own_Inv  
Own_Insur 

Own_CA  
Own_Loan 

-739830 1614153.92 1642776 

Own_Loan  
Own_CA 

-739730 1613953.92 1642576 

Own_Insur  
Own_Inv 

Own_CA  
Own_Loan 

-741540 1617573.92 1646196 

Own_Loan  
Own_CA 

-741440 1617373.92 1645996 

 



Table 8 Fit of Dynamic Bayesian Networks based on Three Strongest Associations Between Ownership State Variables 

Between-time Within-time 1 Within-time 2 Own_CA  Own_Invest Own_Invest  Own_CA 

No Markov 
Portfolio 

  LL BIC CAIC LL BIC CAIC 

Own_Inv  
Own_Insur 

Own_CA  
Own_Loan 

-974800 2082529.2 2110818 -974800 2082529.2 2110818 

Own_Loan  
Own_CA 

-974800 2082529.2 2110818 -975600 2084509.8 2112880 

Own_Insur  
Own_Inv 

Own_CA  
Own_Loan 

-974200 2081709.8 2110080 -974800 2082529.2 2110818 

Own_Loan  
Own_CA 

-974190 2081689.8 2110060 -975620 2084549.8 2112920 

Markov 
Portfolio 

Own_Inv  
Own_Insur 

Own_CA  
Own_Loan 

-736980 1609088.3 1637845 -736580 1608288.3 1637045 

Own_Loan  
Own_CA 

-736880 1608888.3 1637645 -735990 16090114 1638173 

Own_Insur  
Own_Inv 

Own_CA  
Own_Loan 

-737510 1612051.4 1641213 -738290 1611708.3 1640465 

Own_Loan  
Own_CA 

-737410 1611851.4 1641013 -737710 1612451.4 1641613 

 
 
 
Table 9 Best Dynamic Bayesian Network’s Predictive Performance 

 wPCC PCC1 PCC2 PCC3 PCC4 PCC5 PCC6 PCC7 PCC8 PCC9 PCC10 PCC11 

Estimation 34.60 72.74 55.50 33.99 33.56 30.08 33.13 75.49 0.66 35.70 19.56 2.59 

Validation 34.27 73.16 55.10 34.09 34.16 29.16 32.92 75.36 0.50 33.25 19.82 1.97 

Test 34.52 72.76 55.23 34.66 34.24 30.75 32.76 75.34 0.51 34.22 19.45 2.04 
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Table 10 Confusion Matrix for Test Sample 

  Predicted 
  1 2 3 4 5 6 7 8 9 10 11 Row Total 
Actual 1 19747 5048.80 66.29 746.45 409.95 337.29 615.29 4.45 99.46 16.96 49.12 27141.05 
 2 3828.20 26012 573.02 2587 837.93 3550.40 5571.40 120.52 2841.30 685.02 487.43 47094.22 
 3 69.64 1013.50 6247.20 673.64 152.14 2682.40 6689.80 37.89 320.22 67.89 71.72 18026.03 
 4 1189.80 4869.40 732.40 6432.20 808.48 1302.60 2932.10 21.07 336.32 66.65 92.98 18784.01 
 5 496.23 1731.60 250.56 833.06 2071.70 361.73 743.39 12.56 163.39 38.73 34.06 6737.01 
 6 363.41 4998.20 2503.70 1100.80 245.91 34191 57704 254.44 2030.30 676.04 313.04 104380.84 
 7 439.64 4964.80 3560.10 1479.60 297.47 25432 122330 118.47 3142.10 302.04 298.20 162364.42 
 8 132.45 1710.50 1376.50 356.79 89.12 10593 24289 202.12 725.20 214.62 135.70 39825.00 
 9 149.77 5260.10 499.27 364.84 143.11 3817.30 8077.60 120.81 10293 945.04 405.71 30076.55 
 10 44.182 1549.30 267.10 195.60 63.26 2462.10 3106.90 56.20 1357 2228.20 125.03 11454.88 
 11 666.82 12331 390.98 668.33 230.07 3049.90 5186.70 94.49 2783.20 508.17 538.92 26448.58 
Column 
Total 

 27127.14 69489.20 16467.12 15438.31 
 

5349.15 87779.72 237246.18 
 

1043.01 24091.49 5749.35 
 

2551.92 492332.58 

Predicted % 5.51 14.11 3.34 3.14 1.09 17.83 48.19 0.21 4.89 1.17 0.52  
Actual % 5.51 9.57 3.66 3.82 1.37 21.20 32.98 8.09 6.11 2.33 5.37  
Difference 0.00 4.55 -0.32 -0.68 -0.28 -3.37 15.21 -7.88 -1.22 -1.16 -4.85  
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Table 11 Predictive Performance of Decision Trees and MultiLayer Perceptron Neural Networks 

 wPCC 
Model Estimation Validation Test 
DBN 34.60 34.27 34.52 
Decision Tree 1: max. branches 2, max. depth 6, min. obs. 4919 33.56 33.64 33.96 
Decision Tree 2: max. branches 3, max. depth 6, min. obs. 4919 33.56 33.64 33.96 
Decision Tree 3: max. branches 2, max. depth 10, min. obs. 4919 34.14 34.14 34.42 
Decision Tree 4: max. branches 3, max. depth 10, min. obs. 4919 34.14 34.14 34.42 
Decision Tree 5: max. branches 2, max. depth 10, min. obs. 1000 34.31 34.26 34.56 
Decision Tree 6: max. branches 3, max. depth 10, min. obs. 1000 34.60 34.60 34.84 
Decision Tree 7: max. branches 10, max. depth 30, min. obs. 1000 34.60 34.62 34.91 
Neural Network 1: 10 neurons 32.75 32.74 33.00 
Neural Network 2: 15 neurons 33.17 33.28 33.45 
Neural Network 3: 20 neurons 30.27 30.33 33.53 
Neural Network 4: 25 neurons 30.66 30.66 31.01 
Neural Network 5: 30 neurons 31.04 31.07 31.36 



Table 12 Initial State Probability Distribution for Ownership Investments 

  Own_Inv    
  1 2 3 4 
FLC Age 0 1 or 2 3 or 4 ≥5 
1 ≤34 0.8453 0.1276 0.0218 0.0053 
2 [35, 54] 0.8255 0.1390 0.0256 0.0099 
3 ≥55 0.6504 0.2492 0.0564 0.0440 
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Table 13 Extract from The Best DBN’s Acquisition Conditional Transition Probabilities 

     Acqt 
Acqt-1 Own_Invt-1 Own_Loant-1 Own_CAt-1 Own_Insurt-1 1 2 3 4 5 6 7 8 9 10 11 
10 2 2 2 1 0.0000 0.3000 0.0000 0.0000 0.0333 0.1333 0.0000 0.0667 0.1667 0.1333 0.1667 
10 2 2 2 2 0.0000 0.0357 0.0000 0.0000 0.0000 0.6429 0.1071 0.1071 0.0000 0.1071 0.0000 
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Table 14 Conditional Probability Distribution for Ownership Investments.  

P(Own_Invt+1=1)  Aget+1   
  1 2 3 
Own_Invt 1 0.9263* 0.9395 0.9242 
 2 0.0411 0.0461 0.0276 
 3 0.0179 0.0191 0.0111 
 4 0.0055 0.0038 0.0021 
     
P(Own_Invt+1=2)  Aget+1   
  1 2 3 
Own_Invt 1 0.0607 0.0511 0.0627 
 2 0.6627 0.5678 0.3101 
 3 0.0983 0.1128 0.0987 
 4 0.0179 0.0159 0.0115 
     
P(Own_Invt+1=3)  Aget+1   
  1 2 3 
Own_Invt 1 0.0111 0.0079 0.0096 
 2 0.2458 0.3219 0.5106 
 3 0.6150 0.5087 0.2584 
 4 0.0504 0.0516 0.0308 
     
P(Own_Invt+1=4)  Aget+1   
  1 2 3 
Own_Invt 1 0.0019 0.0015 0.0035 
 2 0.0504 0.0643 0.1516 
 3 0.2689 0.3593 0.6318 
 4 0.9261 0.9287 0.9556 
* Numbers in italics show the probability to have the same number of investments at the next acquisition event. 
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