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Abstract

This article provides necessary and sufficient conditions for a collection of binary rela-
tions to have a common ordering extension. We also characterize the quasi-ordering that is
obtained by taking the intersection over all these ordering extensions. Next, we consider
the special case where the collection contains only two relations. In this special case, our
necessary and sufficient conditions can be reformulated to include solely binary relations
that are defined on a certain subset of the universal domain. The usefullness of our re-
sults are illustrated with several examples and we relate our findings to the results in the
literature.

Keywords: Common ordering extension, consistency, Szpirajn’s lemma

JEL-classification: C60; D90; D63

1 Introduction
Szpilrajn’s lemma (1930) states that every partial relation can be extended to a linear order. This
result has many important applications in economic theory1 of which Richter’s revealed pref-
erence characterization (Richter, 1966) and Svensson’s result on the existence of equitable and
efficient welfare orderings on the set of infinite utility streams (Svensson, 1980) are especially
noteworthy.

The literature on binary extensions has taken several directions and contains many inter-
esting results of which we are only able to mention a few. Dushnik and Miller (1941) generalize
Szpilrajn’s lemma by showing that any strict partial order is equal to its ordering extensions.
Building on the original result of Szpilrajn (1930), Suzumura (1976) shows that a relation has an
ordering extension if and only if it is ‘consistent’, i.e. its transitive closure does not conflict with
its asymmetric part. Donaldson and Weymark (1998) extends the result of Dushnik and Miller
(1941) by showing that any quasiordering can be written as the intersection of its ordering ex-
tensions (see also Bossert (1999) for a proof that explicitly uses the result of Dushnik and Miller
(1941)). Duggan (1999) provides a general extension result from which all previous mentioned
results can be obtained as special cases. In an interesting paper, Banerjee and Pattanaik (1996)
demonstrate that the maximal set of a quasi-ordering can be recovered by taking the union of
the greatest sets of its ordering extensions (see also Suzumura and Xu (2003) for similar results).
Many other papers in the literature deal with the characterization of the set of binary relations
which have an ordering extension that satisfies some additional conditions. See, among others,
Scapparone (1999) for the additional condition of convexity, Demuynck (2009) for the condi-
tions of convexity, monotonicity and homotheticity, Jaffray (1975) and Bossert et al. (2002)
for the condition of semicontinuity, Herden and Pallack (2002) for the condition of continuity
and Clark (1993) and Demuynck and Lauwers (2009) for the condition of linearity. Finally
we mention two researches that tackle the problem of extending a binary relation conditional

1We refer to Andrikopoulos (2009) for an thourough overview of the influence of Szpilrajn’s lemma in eco-
nomic theory
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on an existing list of comparisons. Suzumura (2004) generalizes a result of Arrow (1963) by
providing sufficient conditions for the existence of an ordering extension that coincides with
a specified ordering on a certain subset of its domain. Alcantud (2009) tackles the problem of
extending a quasi-ordering conditional on a finite list of ex-ante feasible comparisons. These
two papers will be discussed in more depth in section 3.

In this research we study the issue concerning the existence of a common ordering exten-
sion. In a first part we consider two, not necessarily finite, collections, C 1 and C2 of binary
relations and we are concerned with the existence of an ordering, R̃, such that R̃ extends ev-
ery relation in C1 and contains every relation in C2. Our main result characterizes the set of
pairs (C1,C2) for which such an ordering exists. From this result, we derive Suzumura’s (1976)
characterization, concerning the existence of an ordering extension for a single relation, as a
corollary. We also extend the result of Donaldson and Weymark (1998) by characterizing the
quasi-ordering that is obtained by taking the intersection over all these ordering extensions.
We show the usefullness of these results by providing several examples.

In a second part of this paper, we restrict the setting to the special case where C2 is empty
and C1 contains only two relations. This is also the setting of the papers by Suzumura (2004)
and Alcantud (2009) and we compare our findings with their results. Our main result shows
that, in this special setting, the necessary and sufficient conditions can be reformulated to
include solely binary relations that are defined on a certain subset of the universal domain of
alternatives.

Section 2 provides notation, definitions and the statements of the main results. We also
include several examples. Section 3 discusses the special case whereC2 is empty andC1 contains
only two relations. All proofs are in the appendix.

2 Common ordering extensions
Let X be a non-empty set of alternatives. A binary relation R is a subset of the cartesian prod-
uct X ×X . The inverse R−1 of R is the relation {(x, y) ∈ X ×X |(y, x) ∈ R}. The asymmetric
part, P (R) of R is given by R−R−1 and its symmetric part, I (R) is given by R∩R−1. We denote
by∆X the diagonal relation on X ,∆X = {(x, x) ∈X ×X |x ∈X }.

A relation, R, is reflexive if ∆X ⊆ R. It is transitive if for all x, y and z ∈ X , (x, y) ∈ R
and (y, z) ∈ R implies (x, z) ∈ R. The relation, R, is complete if for all x, y ∈ X , (x, y) ∈ R or
(y, x) ∈ R or both. A complete relation is always reflexive. A complete and transitive relation
is called an ordering while a reflexive and transitive relation is a quasi-ordering. The transitive
closure T (R) of a relation R is the set of pairs (x, y) such that there exists a finite number
n ∈ N0 and a sequence x = x1, x2, . . . , xn = y such that for all i < n, (xi , xi+1) ∈ R. It is easy
to see —by induction— that a binary relation R is transitive if and only if R = T (R). The
transitive closure is increasing: R ⊆ T (R), idempotent: T (T (R)) = T (R) and monotone: if
R⊆Q then T (R)⊆ T (Q).

A relation R̃ is an extension of the relation R if R⊆ R̃ and P (R)⊆ P (R̃). A binary relation,
R is consistent if for all (x, y) ∈ T (R), (y, x) /∈ P (R). This property can be written more
succinctly by the condition, T (R)∩ P (R)−1 = ;. The following theorem is due to Suzumura
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(1976).

Theorem 1 (Suzumura, 1976). A binary relation has an ordering extension if and only if it is
consistent.

The proof of theorem 1 depends on Szpilrajn’s lemma (Szpilrajn, 1930) which states that
every partial order has a linear extension. The original proof of Szpilrajn uses Zermelo’s well-
ordering theorem which is equivalent to the Axiom of Choice and Zorn’s lemma2. As such,
theorem 1 contains a non-constructive argument. This implies that, although it is always pos-
sible to know if there exists an ordering extension, it is not always possible to actually con-
struct such an extension. It is important to know that —as is usual in the literature— this
non-constructive nature carries over to all other results in this paper.

Before we state our main result, we need one more definition. Consider two index sets A1
and A2 and let C1 and C2 be two collections of binary relations on X :

C1 = {Rα ⊆X ×X |α ∈A1} and C2 = {Rβ ⊆X ×X |β ∈A2}.

Observe that the setsC1 andC2 are not restricted to be finite or countable. We abuse previous
terminology and say that the relation R̃ extends the collection C1 if R̃ extends all relations in
C1 and we say that R̃ extends the ordered pair (C1,C2) if R̃ extends C1 and for all Rβ ∈ C2,
Rβ ⊆ R̃. In practice it will always be clear from the context if a given relation extends a single
relation, R, a collection of relations,C1, or a pair of collections (C1,C2). We are now ready to
give our main result.

Theorem 2. The pair (C1,C2) has an ordering extension if and only if for all α ∈A1:

T







⋃

γ∈A1∪A2

Rγ






∩ P (Rα)

−1 = ;.

If we set C2 = ; and if we restrict C1 to contain a single relation R, then theorem 2 repro-
duces theorem 1. Hence, we obtain Suzumura’s characterization as a corollary.

Consider a pair (C1,C2) that satisfies the condition of theorem 2 and let Σ be the non-
empty set of its ordering extensions. The following theorem generalizes the result of Don-
aldson and Weymark (1998) that every quasi-ordering equals the intersection of its ordering
extensions.

Theorem 3. Let (C1,C2) satisfy the condition in theorem 2 and let Σ be the non-empty set of its
ordering extensions, then:

∆X ∪T







⋃

γ∈A1∪A2

Rγ






=
⋂

R̃∈Σ

R̃.

2In fact, Szpilrajn’s lemma can be proved using the weaker condition that there exists a free ultrafilter.
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We end this section by giving some examples.

Example 1: Let us start with a simple example. Let X = Rn
+ be the set of consumption

bundles of n goods. Consider an individual with an unknown preference ordering over X that
extends a known relation V . Further, we assume that preferences are monotonic, i.e. if x ≥ y,
then x is at least as good as y. In other words, the true preference relation contains the relation
Q = {(x, y)|x ≥ y}. Then we can set C1 = {V } and C2 = {Q} and we know, from theorem 2
that there exists a monotonic ordering on X which extends V if and only if:

T (V ∪Q)∩ P (V )−1 = ;.

Furthermore, theorem 3 states that the true preference relation contains the relation ∆X ∪
T (V ∪Q) and that this is the largest relation for which we are sure that this inclusion holds.

Now, assume that we know that the preference relation is not only monotonic, but also
strict monotonic, i.e. if x ≥ y and x 6= y then x is preferred to y. This agrees with the condition
that the true preferen relation extends both V and Q. In this case, we set C1 = {V ,Q} and
C2 = ; and we derive the following additional restriction.

T (V ∪Q)∩ P (Q)−1 = ;.

Example 2: Let A be a subset ofR of cardinality at least 2 and let≥ be the usual greater then or
equal ordering on R. Consider the product space X =

∏

i∈N
A. If we interpret the elements of A

as utility levels, then X represents the set of all infinite utility streams. The i th component, xi ,
of x represents the utility level of generation i in state x. Let Qi be the relation on X defined
by,

(x, y) ∈Qi if xi ≥ yi and for all j 6= i : x j = y j .

In words, (x, y) ∈ Qi if generation i has at least as much utility in state y as in state x while
all other generations are indifferent. We say that a social welfare ordering R̃ on X satisfies the
Finite Pareto principle if R̃ extends Qi for all i ∈N.

Further, consider the relation V on X defined by (x, y) ∈V if for all i ∈N, xi > yi . We say
that the social welfare ordering R̃ on X satisfies the Weak Pareto principle, if R̃ extends V .

It would seem that the notions of Finite Pareto and Weak Pareto are somehow related.
However, this is not the case. In particular we show that there exists a social welfare ordering
that satisfies the Finite Pareto principle and violates the Weak Pareto principle everywhere. In
other words, there exists a social welfare ordering R̃ on X that extends Qi for every i ∈N and
R̃ also extends V −1.

Consider the collection C1 = {V −1,Q1, . . . ,Qn, . . .}. We need to show that this collection
has an ordering extension. The relation V is asymmetric3, hence, by theorem 2 it suffices to
show that for R=V −1 ∪

�
⋃

i∈NQi

�

:

T (R)∩V = ;
3A relation, V , is asymmetric if (x, y) ∈V implies that (y, x) /∈V .
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and for all i ∈N

T (R)∩ P (Qi )
−1 = ;.

Step 1. For two elements x, y ∈ X , let A(x, y) = {i ∈ N|xi > yi}. It is easy to see that
A(x, y)∩A(y, x) = ; and A(x, y)∪A(y, x)⊆N.

We show that (x, y) ∈ T (R) if and only if A(x, y) has finite cardinality and A(y, x) is empty
or has infinite cardinality. We work by induction on the number n in the definition of the
transitive closure. For n = 1, we immediately have that |A(x, y)| ≤ 1 and that A(y, x) either
equals the empty set or the set N. Let the conclusion hold for all positive integers n < m
and take the case where n = m. Then, we have that there are elements x, z, y ∈ X such that
|A(x, z)| is finite and |A(z, x)| is infinite or zero and (z, y) ∈ R. If (z, y) ∈ Qi for some i ∈ N,
then, |A(x, y)| is equal to |A(x, z)| plus one and if (z, y) ∈V −1, then |A(x, y)|must be less than
or equal to |A(x, z)|. Hence, if |A(x, z)| is finite, then |A(x, y)|must also be finite. If (z, y) ∈Qi
for some i ∈N and |A(z, x)| is infinite, then |A(y, x)| is greater than or equal to |A(z, x)|minus
one, hence |A(y, x)| is infinite. If (z, y) ∈Qi for some i ∈N and |A(z, x)| is zero, then |A(y, x)|
is also zero. If (z, y) ∈ V −1 and |A(z, x)| is infinite, then |A(y, x)| is greater than or equal to
|A(z, x)|, hence, it is also infinite. Finally, we need to consider the case where (z, y) ∈V −1 and
|A(z, x)| is zero. As |A(x, z)| is finite and |A(z, x)| is zero, we see that the set {i ∈ N|xi = zi}
has infinite cardinality. Further, we have that for all i ∈ N, yi > zi . Conclude that |A(y, x)| is
infinite.

Step 2. We prove the claim by contradiction. Suppose, on the contrary, that (x, y) ∈ T (R)
and (y, x) ∈ P (Qi ). Then |A(y, x)|= 1, a contradiction with the result of step 1. On the other
hand, if (x, y) ∈ T (R) and (y, x) ∈V −1, then A(x, y) =N, again a contradiction with the result
of step 1. Conclude that C1 has an ordering extension.

Example 3: Consider a set X and let let C1 be a collection of consistent relations in X such
that for all V ,Q ∈ C1 either V ⊆ Q or Q ⊆ V . We show that the following conditions are
equivalent:

• the collection C1 has an ordering extension.

• for all relations V and Q in C1, if V ⊆Q, then Q is an extension of R.

In view of theorem 2, we need to show that the condition,

T







⋃

V∈C1

V






∩ P (Q)−1 = ; for all Q ∈C1,

is equivalent to the second condition. Let R =
⋃

V∈C1
V and assume, on the contrary, that

(x, y) ∈ T (R) and (y, x) ∈ P (Q) for some Q ∈ C1. Then there are elements x = x1, . . . , xn = y
and relations V1, . . ., Vn−1 ∈ C1 such that for all i < n, (xi , xi+1) ∈ Vi . Let V be the largest
–with respect to set inclusion– relation in the set {V1, . . . ,Vn−1,Q}. The relation V extends
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all relations in {V1, . . . ,Vn−1,Q}, hence, (x, y) ∈ T (V ) and (y, x) ∈ P (V ). This contradicts the
consistency of V .

On the other hand, if V ,Q ∈C1, V ⊆Q and, on the contrary, (x, y) ∈ P (V ) while (y, x) ∈
Q, we have that (y, x) ∈ T (R) and (x, y) ∈ P (V ), a contradiction.

Notice that theorem 3 implies that the intersection of all the ordering extensions of the
relations in C1 must equal the relation∆X ∪T

�

⋃

V∈C1
V
�

Above result can be applied to various settings. We give one simple example. Consider –
analogue to the setting in example 2– the set X =

∏

i∈NA with A ⊆ R. For an element x =
(x1, . . . , xn, . . .) ∈X , let xn

(i) be the i -th smallest element in the set {x1, . . . , xn}.
For all n ∈ N, consider the the subset Xn of X ×X given by the pairs (x, y) such that for

all i > n, xi ≥ yi . For each n ∈N, consider the relation Rn on Xn defined by (x, y) ∈ Rn if and
only if:

∑

i≤k

xn
(i) ≥

∑

i≤k

yn
(i) for all k ≤ n

It is easy to see that all relations Rn are transitive, hence they are also consistent. In order
to apply previous result it suffices to show that for all numbers n, m ∈ N with n ≤ m, Rm
extends Rn. We refer to Bossert et al. (2007, step 1 in the proof of theorem 1) for a proof of this
assertion and for a discussion and intuition of this —and similar— ordering extension results in
the literature related to the ordering of infinite utility streams.

3 A special case
In this section, we restrict our setting by assuming that C2 = ; and that C1 only contains two
relations V and Q. These restrictions allow us to compare our results with those obtained by
Suzumura (2004) and Alcantud (2009).

Consider the binary operator ◦ on X ×X which is defined by the condition that for two
relations R and S; (x, y) ∈ R◦ S if and only if there exists an element z ∈X such that (x, z) ∈ R
and (z, y) ∈ S. Further, denote by T I (R) the relation T (R)∪∆X . The relation T I (R) is the
smallest —with respect to set inclusion— quasi-ordering containing R. For any relation R on
X , define two subsets of X :

DR = {x ∈X | ∃y ∈X , (x, y) ∈ R},

IR = {y ∈X | ∃x ∈X , (x, y) ∈ R}.
Call DR the domain of R in X and call IR the image of R in X . From now on, fix the relation
Q. Then for a relation S on X denote by S the restricted relation S ∩ (DQ ×DQ) and denote

by S the restricted relation S ∩ (IQ × IQ). If the set IQ or DQ only contains a fraction of the
elements in X it would be beneficial to rewrite our conditions for the existence of an ordering
extension in terms of relations that are restricted to these domains, as in following theorem.

Theorem 4. Let T I (V ) = R. Then the following conditions are equivalent:
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i.) C1 = {V ,Q} has an ordering extension,

ii.) T I
�

Q ◦R
�

∩
�

P (Q) ◦R
�−1
= ; and T I

�

Q ◦R
�

∩
�

Q ◦ P (R)
�−1
= ; and V is consistent,

iii.) T I
�

R ◦Q
�

∩
�

P (R) ◦Q
�−1
= ; and T I

�

R ◦Q
�

∩
�

R ◦ P (Q)
�−1
= ; and V is consistent.

Of course, it is possible to switch the roles of V and Q in the result of theorem 4. So, for
practical purposes, it is of interest to decide which relation fullfills which role. The following
two guidelines may be usefull:

• If one of the two relations is a quasi-ordering, it is probably a good idea to identify V
with this relation. This would simplify the conditions of theorem 4 in two ways. First,
any quasi-ordering is consistent, such that the consistency condition of (ii) and (iii) is
always satisfied. Second, for a quasi-ordering, one has the identity V = T I (V ) = R such
that we can replace R by V in both conditions (ii) and (iii).

• if one of the two relations has a very small domain or image, it may be best to let this
relation take the place of Q.

The smallest consistent relation in X is the empty relation. Using V = ; and, consequently,
R=∆X in theorem 4 gives the following corollary.

Corollary 1. The following conditions are equivalent:

• the relation Q has an ordering extension,

• T (Q)∩ P (Q)−1 = ;,

• T
�

Q
�

∩ P
�

Q
�−1
= ;,

• T
�

Q
�

∩ P
�

Q
�−1
= ;.

Next, let us discuss the two closely related papers mentioned in the beginning of this sec-
tion. Alcantud (2009) focusses on the case where the relation Q is finite and V is a quasi-
ordering. He has two extension result. For his first result he considers a finite list of elements
{a1, . . . ,an, b1, . . . , bn} and assumes that Q = {(bi ,ai )|i = 1, . . . , n} is an asymmetric relation.
If we apply theorem 4 to this setting, we see that IQ = {a1, . . . ,an}. Hence, we can construct

the relation S = V ◦Q given by (ai ,a j ) ∈ S if and only if (ai , b j ) ∈ V . Theorem 4 lets us
conclude that C1 = {V ,Q} has an ordering extension if and only if: T (S) ∩ S−1 = ;, or in
other words, if S is acyclic (see Alcantud, 2009, theorem 1). His second result considers the
case where Q = {(bi ,ai )|i = 1, . . . , n}∪ {(a j , b j )| j = l + 1, . . . , n}. The characterization derived
by Alcantud (2009) for this case is very elegant but quite intricate and it would take too much
space to translate his extension result to our framework without providing interesting new in-
sights. We refer to the paper of Alcantud (2009) for some interesting applications of his results
to economic theory.

Suzumura’s main theorem (Suzumura, 2004) states the following.
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Theorem 5 (Suzumura, 2004). Let V be a binary relation on X and let A be a subset of X such
that, if x 6= y and x, y ∈ A, then (x, y) 6= T (V ). Let Q be an ordering on A. Then there exists an
ordering extension R of V such that the restriction of R on A coincides with Q if and only if V is
consistent.

In order to see that this theorem follows from theorem 4 observe that consistency of V
is indeed necessary to have an ordering extension. Let us show that it is also sufficient. The
domain and image of Q is equal to A. Set R = T I (V ). The premises of theorem 4 imply
that Q ◦R = Q, P (Q) ◦R = P (Q) and Q ◦ P (R) = ;. The second condition of theorem

4 is satisfied if T I
�

Q ◦R
�

∩
�

P (Q) ◦R
�−1
= ;, which is equivalent to the condition that

T (Q)∩P (Q)−1 = ;. This condition is always satisfied —because Q equals its transitive closure—
and, hence, C1 has an ordering extension. Suzumura provides several interesting applications
of this theorem to the field of welfare economics.

In order to illustrate the usefulness of theorem 4 we conclude this section with an example
that cannot be solved using the results of Suzumura (2004) or Alcantud (2009).

Example 4: Let X be a subset of the set of consumption vectors Rn and assume that we
know that the preference relation of the individual extends a certain relation V . Assume
also that there is a bundle a = {a1, . . . ,an} below which the individual cannot survive. Let
Q = {(x, y)| for some i , xi ≥ ai and for all i , yi < ai}. It seems natural to require that the true
preference relation extends the relation Q. Also observe that the image of Q equals the set
IQ = {x ∈X |for all i , xi < ai}.

Let S = R ◦Q with R = T I (V ). The relation S contains all elements (x, z) from IQ × IQ

such that there exists an y ∈X for which (x, y) ∈ R and (y, z) ∈Q. It is easy to see that theorem
4 implies that the following conditions are equivalent:

• The set C1 = {V ,Q} has an ordering extension,

• T (S)∩ S−1 = ; and V is consistent.

The advantage of using the relation S instead of V ∪Q is that —if a is not to large– the image
of S contain only a small subset of X .

4 Appendix

Proof of Theorem 2: To simplify notation, we define the relation R=
⋃

γ∈A1∪A2
Rγ .

(←) Obviously, T (R) is a transitive relation, hence, it is consistent. By Theorem 1, T (R)
has an ordering extension, say R̃. Clearly, Rβ ⊆ R̃ for all β ∈ A2 so we only need to verify
that R̃ extends Rα for all α ∈ A1. Observe that Rα ⊆ R̃. Now, assume on the contrary that
there exists an α ∈ A1 such that (x, y) ∈ P (Rα) and (y, x) ∈ R̃. From this, it follows that
(x, y) ∈ I (R̃). Also, (y, x) ∈ T (R). Indeed, if on the contrary (x, y) ∈ P (T (R)), then also
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(x, y) ∈ P (R̃), contradicting the previous result that (y, x) ∈ I (R̃). Conclude that (y, x) ∈ T (R)
and (x, y) ∈ P (Rα). This, however, contradicts the condition in the theorem.

(→) On the other hand, let R̃ be an ordering extension of (C1,C2). Obviously, R ⊆ R̃ and,
from monotonicity of the transitive closure, T (R) ⊆ T (R̃) = R̃. Further, for all α ∈ A1;
P (Rα)⊆ P (R̃). Conclude that the condition in the theorem, T (R)∩ P (Rα)

−1 = ;, holds for all
α ∈A1.

Proof of Theorem 3: Again, we define the relation R=
⋃

γ∈A1∪A2
Rγ .

(⊆) Let (x, y) ∈ T (R)∪∆X . Clearly R ⊆ R̃ for all R̃ ∈ Σ and every relation in Σ is reflexive.
Hence, by monotonicity of the transitive closure (x, y) ∈ T (R̃) = R̃ for all R̃ ∈ Σ. Conclude
that (x, y) ∈

⋂

R̃∈Σ R̃.

(⊇) To see the reverse, let (x, y) ∈
⋂

R̃∈Σ R̃ and assume, on the contrary, that (x, y) /∈ T (R)∪∆X .
If (y, x) ∈ P (Rα) for some α ∈A1, then (y, x) ∈ P (R) for all R ∈Σ, which is impossible. Hence
(x, y) and (y, x) /∈ Rα for all α ∈A1 and (x, y) /∈ Rβ for all β ∈A2.

Consider the binary relation V = {(y, x)} and define C ′1 =C1 ∪ {V } and R′ = R∪V . Let
us show that the pair (C ′1 ,C2) satisfies theorem 2.

Assume, on the contrary, that there is a pair (a, b ) ∈ T (R′) such that (b ,a) ∈ P (Rα) for
some α ∈ A1 or that (b ,a) = (y, x). If (a, b ) ∈ T (R) then evidently, (b ,a) /∈ P (Rα) for all
α ∈A1 and by assumption (b ,a) 6= (y, x). Therefore, it must be that (a, b ) ∈ T (R′)−T (R) and
(b ,a) ∈ P (Rα) for some α ∈A1 or (b ,a) = (y, x).

If the first is the case, we know that there must be a finite number of elements a =
x1, . . . , xn = b in X such that for all i < n: (xi , xi+1) ∈ R or (xi , xi+1) = (y, x). Let xl be the last
element in this sequence equal to x and let x f be the first element in this sequence equal to y.
We know that xl and x f exists because (a, b ) /∈ T (R). It follows that (xl , x f ) = (x, y) ∈ T (R), a
contradiction.

If the second is the case, i.e. (b ,a) = (y, x), define xl to be the last instance of x in the
sequence and we derive that (xl , xn) = (x, y) ∈ T (R), again a contradiction.

Conclude that (C ′1 ,C2) satisfies the condition of theorem 2. As such, it has an ordering
extension, say R̃. This relation is also an extension of (C1,C2), hence, it is in Σ. Further, R̃
extends the relation V = {(y, x)}, hence (y, x) ∈ P (R̃), a contradiction.

Proof of Theorem 4 (i)→(ii) and (i)→(iii) are obvious in the light of theorems 1 and 2. We
will focus on the case (ii)→(i) noticing that (iii)→(i) is very similar. We split the proof in a
number of different steps.
Step 1: If V is consistent, then R̃ is an ordering extension of C1 = {V ,Q} if and only if R̃ is
an ordering extension of C ′1 = {R,Q}, with R= T I (V ).

Assume that V is consistent and let C ′1 have an ordering extension, R̃. Then R extends V and
R̃ extends R, hence R̃ extends V . Conclude that R̃ extends C1.
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To see the reverse, letC1 have an ordering extension R̃. Then R⊆ R̃ because R̃ is reflexive,
transitive and it contains V . If (x, y) ∈ P (R), then (x, y) ∈ T I (V ). Hence, there is a number n
such that x = x1, . . . , xn = y and for all i < n, (xi , xi+1) ∈V . Clearly, there must be a number
j < n such that (x j , x j+1) ∈ P (V ), otherwise, (y, x) ∈ T (V )⊆ R. Now, assume on the contrary,
that (y, x) ∈ I (R̃). From V ⊆ R̃ and transitivity of R̃, we see that (x j+1, y) ∈ R̃, (y, x) ∈ R̃ and
(x, x j ) ∈ R̃. Conclude that (x j+1, x j ) ∈ R̃ and (x j , x j+1) ∈ P (V ), a contradiction.

Step 2: If R is a quasi-ordering, then

T (R∪Q) = R∪
h

R ◦T I
�

Q ◦R
�

◦Q ◦R
i

.

(⊆) Let S = R ◦ T I
�

Q ◦R
�

◦Q ◦ R and consider (x, y) ∈ T (R∪Q). Hence, there is a num-

ber n and a sequence x = x1, . . . , xn = y such that for all i < n, (xi , xi+1) ∈ R ∪ Q. We
proof the step by induction, showing that it holds for all (x, xi ), i ≤ n. Consider the case
i = 2. Then (x, x2) ∈ R ∪ Q. If (x, x2) ∈ R, nothing has to be proved. If (x, x2) ∈ Q,
we let (x, x) ∈ R, (x, x) ∈ T I

�

Q ◦R
�

, (x, x2) ∈ Q and (x2, x2) ∈ R. Hence (x, y) ∈ S.

Assume that (x, xi ) ∈ R ∪ S for all i ≤ m and consider the case with i = m + 1. Then
(x, xm) ∈ R ∪ S and (xm, xm+1) ∈ R ∪Q. If (x, xm) ∈ R and (xm, xm+1) ∈ R it follows, by
transitivity of R that (x, xm+1) ∈ R. If (x, xm) ∈ R and (xm, xm+1) ∈ Q, then (x, xm) ∈
R, (xm, xm) ∈ T I

�

Q ◦R
�

, (xm, xm+1) ∈ Q and (xm+1, xm+1) ∈ R, hence (x, xm+1) ∈ S. If

(x, xm) ∈ S and (xm, xm+1) ∈ R, then (x, xm+1) ∈
h

R ◦T I
�

Q ◦R
�

◦Q ◦R
i

◦R = S by transi-

tivity of R. If (x, xm) ∈ S and (xm, xm+1) ∈Q, then (x, xm+1) ∈
h

R ◦T I
�

Q ◦R
�

◦Q ◦R
i

◦Q

=
h

R ◦T I
�

Q ◦R
�

◦Q ◦R ◦Q
i

=
h

R ◦T I
�

Q ◦R
�

◦Q
i

⊆
h

R ◦T I
�

Q ◦R
�

◦Q ◦R
i

= S.

Therefore the argument is valid for i = m + 1. Using a simple induction argument it follows
that (x, y) ∈ R∪ S.

(⊇) To see the reverse, notice that R⊆ T (R∪Q), T I
�

Q ◦R
�

⊆ T (R∪Q) and Q ⊆ T (R∪Q).
Hence, R∪ S ⊆ T (R∪Q).

Step 3: The following rules apply for all relations Q and V :

Q ∩V −1 = ;↔ [Q ◦V ]∩∆X = ;
[Q ◦V ]∩∆X = ;↔ [V ◦Q]∩∆X = ;

(1)

The proof is straightforward, so we leave it to the reader.

Step 4: We complete the proof. By step 1,C1 = {V ,Q} has an ordering extension if and only
if C ′1 = {R,Q} has an ordering extension where R = T I (V ). By theorem 2, this is equivalent
to:

T (R∪Q)∩ P (R)−1 = ; and T (R∪Q)∩ P (Q)−1 = ;.
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Let us show its equivalence with condition (ii). Start with the first condition:

T (R∪Q)∩ P (R)−1 = ;,

↔
�

R∪
h

R ◦T I
�

Q ◦R
�

◦Q ◦R
i�

∩ P (R)−1 = ;, (by step 2)

↔
h

R ◦T I
�

Q ◦R
�

◦Q ◦R ◦ P (R)
i

∩∆X = ; (by step 3)

and R∩ P (R)−1 = ;

↔
h

T I
�

Q ◦R
�

◦Q ◦R ◦ P (R) ◦R
i

∩∆X = ; (by step 3 and consistency of R)

↔
h

T I
�

Q ◦R
�

◦Q ◦ P (R)
i

∩∆X = ; (by transitivity of R)

↔T I
�

Q ◦R
�

∩
�

Q ◦ P (R)
�−1
= ; (by step 3)

Now, for the second condition:

T (R∪Q)∩ P (Q)−1 = ;,

↔
�

R∪
h

R ◦T I
�

Q ◦R
�

◦Q ◦R
i�

∩ P (Q)−1 = ;, (by step 2)

↔
h

R ◦T I
�

Q ◦R
�

◦Q ◦R ◦ P (Q)
i

∩∆X = ; (by step 3)

and [R ◦ P (Q)]∩∆X = ; (by step 3)

↔
h

T I
�

Q ◦R
�

◦Q ◦R ◦ P (Q) ◦R
i

∩∆X = ; (by step 3)

and [P (Q) ◦R]∩∆X = ; (by step 3)

↔
h

T I
�

Q ◦R
�

◦ P (Q) ◦R
i

∩∆X = ;

and
h

P (Q) ◦R
i

∩∆X = ;

↔T I
�

Q ◦R
�

∩
�

P (Q) ◦R
�−1
= ; (by step 3)
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