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1 The absolute and relative S-gini indices
Assume that income is distributed according to a continuous and differentiable cumulative
distribution function (cdf) F : [0,∞]→ [0,1] with finite mean, µ, and continuous population
density function (pdf) f . The absolute single-series Gini (absolute S-Gini), Aδ∞, and the Relative
single series Gini (relative S-Gini), Rδ

∞, with parameter δ ∈R++ are given by:

Aδ∞ =µ−Hδ
∞ and Rδ

∞ = 1−
Hδ
∞

µ
,

with Hδ
∞ = δ

∫ ∞

0
x (1− F (x))δ−1 d F (x).

These indices exist for all values of δ ≥ 1, but for values of δ < 1 it is possible that Hδ
∞

reaches infinity. From now on, we assume that Hδ
∞ is well defined for all values of δ under

consideration.
The parameter δ determines the weight attached to the income of individuals at different

points in the income distribution. As δ increases, more weight is given to the bottom of the
income distribution. For δ equal to one, H 1

∞ is equal to the mean µ and R1
∞ and A1

∞ are both
equal to zero. For δ equal to 2, the indices A2

∞ and R2
∞ reduce to the well-known absolute and

relative Ginis. We refer to Donaldson and Weymark (1980), Yitzhaki (1983) and Bossert (1990)
for an in depth discussion of the properties related to the S-Gini index.
The most common finite sample estimators for the S-Ginis are given by:

Aδn =µn −Hδ
n and Rδ

n = 1−
Hδ

n

µn

with Hδ
n =

∑n
i=1

�

(n− i + 1)δ − (n− i)δ
�

x̃i

nδ

Here x̃i represents the i th smallest value in the sample (the i th order statistic) and µn is the
sample mean,

∑n
i=1 x̃i/n.

The estimators Aδn and Rδ
n are strongly consistent estimators for Aδ∞ and Rδ

∞ and they
are asymptotically normally distributed (Barrett and Pendakur, 1995; Zitikis and Gastwirth,
2002). Unfortunately, they are not unbiased and their bias depends on the sample size, n, the
value of the parameter, δ, and the distribution, F .

The sample mean µn is an unbiased estimator for the population mean µ, hence, for the
absolute S-Gini, Aδ∞, we only need to construct an unbiased estimator for the term Hδ

∞. Such
estimator would also provide us with an almost unbiased estimator for Rδ

∞. This last estimator
is not unbiased because it is divided by the sample mean which is itself an estimator of the
population mean. The next section provides an unbiased estimator of Hδ

∞ and the last section
provides simulation results to compare these estimators with the estimators Aδn and Rδ

n .
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2 A unbiased estimator for Hδ
∞

We denote by
�

n
k

�

the stirling number of the second kind with upper index n and lower index

k. The number
�

n
k

�

represents the number of ways that a set of size n can be partitioned into

k subsets. We denote by
�

n
k

�

the binomial coefficient with upper index n and lower index k,

i.e. the number of k element subsets of an n element set. Finally, we denote by 〈n〉k the falling
factorial n(n− 1) . . . (n− k + 1). The following identities1 will be used in this section:

�

n
k

�

=
�

n
n− k

�

, R-1

�

n
k

�

=
�

n− 1
k − 1

�

+ k
�

n− 1
k

�

, R-2

x r=
r
∑

j=0

�

r
j

�

〈x〉 j , R-3

〈k〉 j

�

n
k

�

=〈n〉 j

�

n− j
k − j

�

, R-4

(x + y)n=
n
∑

j=0

�

n
j

�

x j yn− j . R-5

We focus on the case where the parameter δ takes only integer values. Assume that we
have a set of observations {x1, . . . , xn} that is drawn i.i.d. from the cdf F . The i th order statistic
x̃i will have pdf f(i) equal to:

f(i)(x) = i
�

n
i

�

F (x)i−1(1− F (x))n−i f (x).

The expected value of Hδ
n equals:

E(Hδ
n ) =

1

nδ

n
∑

i=1

i((n− i + 1)δ − (n− i)δ)
�

n
i

�∫ ∞

0
xF (x)i−1(1− F (x))n−i d F (x)

1See Graham et al. (1989) for a proof of these identities.
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In order to simplify this expression we split it up into several parts:

E(Hδ
n ) =

1

nδ

∫ ∞

0
x

n
∑

i=1

i(n− i + 1)δ
�

n
i

�

︸ ︷︷ ︸

A1

F (x)i−1(1− F (x))n−i

︸ ︷︷ ︸

A

−

n
∑

i=1

i(n− i)δ
�

n
i

�

︸ ︷︷ ︸

B1

F (x)i−1(1− F (x))n−i

︸ ︷︷ ︸

B

d F (x). (1)

We have that:

A1= i(n− i + 1)δ
�

n
i

�

B1= i(n− i)δ
�

n
i

�

= n(n− i + 1)δ
�

n− 1
i − 1

�

(R-4) = n(n− i)δ
�

n− 1
i − 1

�

(R-4)

= (n− i + 1)δ+1
�

n
n− i + 1

�

(R-1) =
δ
∑

j=0

n
�

δ
j

�

〈n− i〉 j

�

n− 1
n− i

�

(R-1, R-3)

=
δ+1
∑

j=0

�

δ + 1
j

�

〈n〉 j

�

n− j
n− i − j + 1

�

(R-3, R-4) =
δ
∑

j=0

�

δ
j

�

〈n〉 j+1

�

n− 1− j
i − 1

�

.(R-4, R-1)

=
δ+1
∑

j=1

�

δ + 1
j

�

〈n〉 j

�

n− j
i − 1

�

. (R-1)
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These results enable us to simplify A and B :

A=
n
∑

i=1

δ+1
∑

j=1

�

δ + 1
j

�

〈n〉 j

�

n− j
i − 1

�

F (x)i−1(1− F (x))n−i

=
δ+1
∑

j=1

�

δ + 1
j

�

〈n〉 j

n
∑

i=1

�

n− j
i − 1

�

F (x)i−1(1− F (x))n−i

=
δ+1
∑

j=1

�

δ + 1
j

�

〈n〉 j (1− F (x)) j−1. R-5

B =
n
∑

i=1

δ
∑

j=0

�

δ
j

�

〈n〉 j+1

�

n− 1− j
i − 1

�

F (x)i−1(1− F (x))n−i

=
δ
∑

j=0

�

δ
j

�

〈n〉 j+1

n
∑

i=1

�

n− 1− j
i − 1

�

F (x)i−1(1− F (x))n−i

=
δ
∑

j=0

�

δ
j

�

〈n〉 j+1(1− F (x)) j R-5

=
δ+1
∑

j=1

�

δ
j − 1

�

〈n〉 j (1− F (x)) j−1.

Substituting A and B into equation (1) gives:

E(Hδ
n ) =

1

nδ

∫ ∞

−∞
x
δ+1
∑

j=1

��

δ + 1
j

�

−
�

δ
j − 1

��

〈n〉 j (1− F ) j−1 d F (x)

=
1

nδ

∫ ∞

−∞
x
δ+1
∑

j=1

j
�

δ
j

�

〈n〉 j (1− F ) j−1 d F (x) R-2

=
1

nδ

δ
∑

j=1

�

δ
j

�

〈n〉 j H
j
∞. (2)

Equation (2) shows that the expected value of Hδ
n can be expressed as a weighted average of all

indices H m
∞ with m ≤ δ. As such, the estimator Hδ

n will not be unbiased unless H m
∞ is zero for

all m ≤ δ. Equation 2 allows us to construct an unbiased estimator of Hδ
∞ in a recursive way.

For δ = 1, we have that E(H 1
n) = H 1

∞ = µ. Hence, H 1
n is an unbiased estimator of H 1

∞.
Now, assume that we have an unbiased estimator h m

n of H m
∞ for all m in {1,2, . . . ,δ−1}. Then
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we can construct following estimator hδn of Hδ
∞:

hδn =
1

〈n〉δ






nδ Hδ

n −
δ−1
∑

j=0

�

δ
j

�

〈n〉 j h
j
n






. (3)

This estimator is unbiased:

E(hδn ) = E







1

〈n〉δ






nδ Hδ

n −
δ−1
∑

j=0

�

δ
j

�

〈n〉 j h
j
n













=
1

〈n〉δ






nδ E

�

Hδ
n

�

−
δ−1
∑

j=0

�

δ
j

�

〈n〉 j E
�

h j
n

�







=Hδ
∞.

The unbiased estimator for Aδ∞ is then given by aδn = µn − hδn and the almost unbiased
estimator for Rδ

∞ is given by rδn = 1− hδn /µn. For the Gini index, i.e. δ = 2, it can be shown
that r 2

n = nRδ
n /(n − 1). This is in agreement to the first order correction for the Gini index

found in the literature (see Deaton, 1997; Deltas, 2003; Davidson, 2009).
It can be shown that hδn is equal to the following expression2:

hδn =
n
∑

i=1

δ〈n− i〉δ−1

〈n〉δ
x̃i . (4)

The multiplicators δ〈n− i〉δ−1/〈n〉δ sum to one3 which implies that, analogue to the estima-
tors Hδ

n , the estimators hδn are a weighted average of the order statistics x̃i . Also, note that the
weights attached to the δ−1 highest incomes are equal to zero. This implies that the estimator
hδn does not use all available information. For example, the value of h10

n on a sample of size 10
coincides with the smallest value in the sample.

Simple manipulation of equation (4) shows that we can write hδn as
n
∑

i=1

ai x̃i , with

ai =







δ/n if i = 1

ai−1

�

1−
δ − 1

n− (i − 1)

�

for i > 1. (5)

For δ ≥ 1, as i increases, the weights attached to x̃i decrease in an increasing rate until they
reach zero for x̃n−δ+2. The recursion (5) shows that the estimator hδn is very easy to calculate.

2See appendix A.
3See appendix B
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It also makes it possible to define hδn for non-integer values of δ. Unfortunately, this extension
has the unwanted side-effects that the weights ai do no longer sum to unity, although is will
approximate unity if n is not to small, and that the estimator is no longer unbiased.

3 Simulation
For our empirical illustration we used a lognormal distribution with parameters 9.85 and 0.6.
Our population statistics Aδ∞ and Rδ

∞ were calculated on the basis of a random sample of 50
million observations. We drew 200.000 independent samples of size m (m = 10,30,50). sam-
ples, we calculated the estimators Aδm,aδn , Rδ

m and rδm . Table 1 presents the averages over these
200.000 samples (standard errors are between brackets) for the values δ = 1.5; 2; 5; 7.5 and 10.
Simulation results for other parameter values and other distributions give similar results. Al-
though these sample sizes may considered to be unrealistically small, they are not unreasonable
when comparing the inequality among subsamples or in studies of industrial concentration for
markets with a small number of firms. For each of these

Table 1: simulation results

δ sample Aδn aδn Aδ∞ Rδ
n rδn Rδ

∞
size

1.5 10 4296
(1764)

4378
(1852)

4941

0.1853
(0.0495)

0.1886
(0.0530)

0.217730 4708
(1115)

4802
(1146)

0.2059
(0.033)

0.2100
(0.034)

50 4799
(882)

4870
(899)

0.2105
(0.0262)

0.2136
(0.0268)

2 10 6733
(2600)

7481
(2890)

7458

0.2908
(0.0696)

0.3231
(0.0774)

0.328630 7217
(1574)

7466
(1628)

0.3158
(0.0431)

0.3267
(0.0446)

50 7307
(1227)

7455
(1252)

0.3207
(0.0344)

0.3273
(0.0347)

5 10 11545
(3837)

12515
(4055)

12505

0.5011
(0.0938)

0.5438
(0.0982)

0.550830 12193
(2250)

12509
(2289)

0.5345
(0.0535)

0.5484
(0.0541)

50 12319
(1751)

12508
(1768)

0.5411
(0.0415)

0.5494
(0.0417)

7.5 10 12729
(4082)

13853
(4346)

13894

0.5545
(0.0993)

0.6043
(0.1065)

0.612330 13526
(2395)

13900
(2438)

0.5936
(0.0556)

0.6101
(0.0563)

50 13671
(1863)

13895
(1882)

0.60113
(0.0428)

0.61098
(0.0430)

10 10 13398
(4246)

14722
(4598)

14706

0.5828
(0.1026)

0.6414
(0.1151)

0.648030 14287
(2488)

14715
(2539)

0.6268
(0.0569)

0.6457
(0.0580)

50 14443
(1942)

14698
(1947)

0.6353
(0.0437)

0.6466
(0.0441)
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NOTE: These simulations were based on the lognormal distribution: lnX ∼N (9.85,0.6). The statistics Rδ∞ and Aδ∞ were based on a random
sample of 10 million observations. Each average was computed over a set of 200.000 samples. Standard errors are between brackets.

We observe following regularities:

• For integer parameter values, the estimators rδn and aδn performs considerably better
then the estimators Rδ

n and Aδn .

• For noninteger parameter values one can clearly see that the estimator aδn is no longer
unbiased although the bias decreases for larger sample sizes and larger parameter values.
Furthermore, the estimators rδn and aδn seem to perform considerably better in compar-
ison to the estimators Aδn and Rδ

n .

• The standard errors for the estimators rδn and aδn are slightly larger compared to the
standard errors for the estimators Rδ

n and Aδn .
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A Equivalence of equation 3 and 4
The proof is by induction on δ. For δ = 1 we easily establish that both equations 3 and 4
reduce to µn. Assume that the assertion holds for all m <δ. The proof follows if we can show
that:

nδHδ
n =

δ
∑

j=0

�

δ
j

�

〈n〉 j h
j
n.

where h j
n is given by equation 4.

nδHδ
n =

n
∑

i=1

(n− i + 1)δ − (n− i)δ x̃i

=
δ
∑

i=1

x̃i

δ
∑

j=0

�

δ
j

�

〈n− i + 1〉 j −
n
∑

i=1

x̃i

δ
∑

j=0

�

δ
j

�

〈n− i〉 j (R-1)

=
n
∑

i=1

x̃i

δ
∑

j=0

�

δ
j

�

〈n− i〉 j−1((n− i + 1)− (n− i − j + 1))

=
n
∑

i=1

x̃i

δ
∑

j=0

�

δ
j

�

j 〈n− i〉 j−1

=
n
∑

i=1

δ
∑

j=0

�

δ
j

�

〈n〉 j

j 〈n− i〉 j−1

〈n〉 j

x̃i

=
δ
∑

j=0

�

δ
j

�

〈n〉 j h
j
n.

B hδn is a weighted sum

We show that the weights
j 〈n− i〉 j−1

〈n〉 j

sum to one.

n
∑

i=1

j 〈n− i〉 j−1

〈n〉 j

=
n
∑

i=1

j

n

(n− j )!

(i − 1)!(n− i − j + 1)!

(i − 1)!(n− i)!

(n− 1)!

=
j

n

n
∑

i=1

�

n− j
i − 1

���

n− 1
i − 1

�

=
j

n

n−1
∑

k=0

�

n− j
k

���

n− 1
k

�

= 1.
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The last step uses the identity:
m
∑

k=0

�

n
k

���

m
k

�

=
m+ 1

m+ 1− n
(see Graham et al., 1989, problem

1, p173).
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