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Abstract

The within-groups estimator is inconsistent in dynamic panels with fixed T since the

sample mean used to eliminate the individual effects from the lagged dependent variable is

correlated with the error term. This paper suggests to eliminate individual effects from an

AR(1) panel using backward means as an alternative to sample means. Using orthogonal

deviations of the lagged dependent variable from its backward mean yields an estimator that

is still inconsistent for fixed T but the inconsistency is shown to be negligibly small. A Monte

Carlo simulation shows that this alternative estimator has superior small sample properties

compared to conventional fixed effects, bias-corrected fixed effects and GMM estimators.

Interestingly, it is also consistent for fixed T in the specific cases where (i) T = 2, (ii) the AR

parameter is 0 or 1, (iii) the variance of the individual effects is zero.

JEL Classification: C15, C32

Keywords: Dynamic panel, Individual effects, Backward mean, Orthogonal deviations,

Monte Carlo simulation

∗I thank Bart Cockx for helpful suggestions and constructive comments on an earlier version of this paper. I
acknowledge financial support from the Interuniversity Attraction Poles Program - Belgian Science Policy, contract
no. P5/21.

†SHERPPA, Ghent University, Gerdie.Everaert@UGent.be, http://www.sherppa.be

1



1 Introduction

We know from Nickell (1981) that in dynamic panels with individual effects the fixed effects

or within-groups (WG) estimator is inconsistent when the cross-sectional dimension N tends to

infinity but the time dimension T is fixed. Given this inconsistency, the literature has focused

mainly on instrumental variables (IV) and generalised method of moments (GMM) estimators.

These estimators are consistent for large N and fixed T (see Arellano and Bond, 1991; Blundell and

Bond, 1998) or for large N and large T (see Anderson and Hsiao, 1982; Alvarez and Arellano, 2003).

Especially the first-differenced GMM estimator of Arellano and Bond (1991) and the system GMM

estimator of Arellano and Bover (1995) and Blundell and Bond (1998) are increasingly popular.

Unfortunately, these standard GMM estimators (i) have a (much) larger standard error compared

to least squares (LS) estimators (see e.g. Arellano and Bond, 1991; Kiviet, 1995) and (ii) may suffer

from substantial finite sample bias due to a weak instruments problem (see Ziliak, 1997; Bun and

Kiviet, 2006). In order to avoid these problems, bias-corrections for the WG estimator have been

proposed by, among others, Kiviet (1995), Bun (2003), Bun and Carree (2005) and Everaert and

Pozzi (2007). The advantage of these estimators is that they reduce the bias of the WG estimator

while maintaining its relatively small dispersion. Although these estimators perform remarkably

well in most cases, the remaining bias may be substantial when T is relatively small.

In this paper we follow a different route. We stick to LS estimation of the model but remove

the individual effects from an AR(1) panel in a slightly different way than by taking deviations

from sample means. Inspection of the WG estimator for N → ∞ shows that its inconsistency

stems from the asymptotic correlation between the within-transformed, i.e. in deviation from its

individual sample mean, lagged dependent variable and the idiosyncratic error term at time t.

This correlation is due to the fact that the sample mean of the lagged dependent variable includes

observations for time t, . . . , T which are all affected by the idiosyncratic error term at time t. This

suggests that obtaining a consistent LS estimator for N →∞ requires the variable that eliminates

the individual effects used at time t to be orthogonal to the innovations at time t, . . . , T . Therefore,

this paper suggests to transform the lagged dependent variable into orthogonal deviations from its

backward mean in stead of from its sample mean. This is equivalent to adding the backward mean

of the lagged dependent variable as a regressor in the model, which then serves as a proxy for the

individual effects. This alternative estimator, referred to as WGob, is shown to be consistent for

T → ∞ but converges at a slower rate and is inconsistent for N → ∞ and T fixed. Fortunately,

this inconsistency is shown to be negligibly small. Interestingly, the WGob estimator is consistent

for fixed T in the specific cases where (i) T = 2; (ii) the AR(1) coefficient is either 0 or 1 and (iii)

the ratio of the variance of individual effects over the variance of the idiosyncratic error is zero.

Note that for small values of T and an AR(1) parameter close to 1 standard estimators are known

to fail.

A Monte Carlo simulation is used to examine the finite sample properties of the WGob es-

timator compared to first-differenced and system GMM estimators and the bias-corrected WG
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estimator suggested by Kiviet (1995). The most important finding is that, despite being inconsis-

tent for N →∞ and converging at a slower rate when T →∞, the WGob estimator seems more

attractive than the standard estimators as it is found to be more robust with respect to alternative

parameter values. As such it considerably outperforms the standard estimators in terms of bias

and dispersion in the cases where these estimators are know to fail, while not performing much

worse in all other cases.

The layout of the paper is as follows. Section 2 presents the model and the assumptions.

Section 3 motivates using orthogonal deviations from backward means from inspection of the

Nickell bias. Section 4 analyses the asymptotic properties of the WGob estimator. Section 5

presents the results of a Monte Carlo simulation comparing the finite sample performance of the

suggested WGob estimator to a number of standard dynamic panel data estimators. Section 6

concludes.

2 Model and assumptions

Consider a standard dynamic panel data model with individual effects

yit = θyi,t−1 + αi + εit, (i = 1, . . . , N ; t = 1, . . . , T ) , (1)

where yit is the observation on the dependent variable for unit i at time t and αi + εit is the usual

decomposition of the error term into the unobserved individual heterogeneity αi or individual effect

and the unobserved disturbance term εit. For notational convenience we assume yi0 is observed.

We further assume:

Assumption A1. εit ∼ i.i.d.
(
0, σ2

ε

)
across i and t and independent of αi and yi0.

Assumption A2. The initial conditions satisfy

yi0 =
αi

1− θ
+ ηi0, (i = 1, . . . , N) ,

where ηi0 is independent of αi and i.i.d. with the steady state distribution of the homogeneous

process so that ηi0 is the infinite weighted sum
∑∞

s=0 θsεi,−s.

Assumption A3. αi ∼ i.i.d.
(
0, σ2

α

)
across i.

For the presentation of the estimators below, it is convenient to write model (1) in the form

yi = θyi,−1 + αiιT + εi, (2)

where yi = (yi1, . . . , yiT )′, yi,−1 = (yi0, . . . , yi,T−1)
′, ιT is a T × 1 vector of ones and εi =

(εi1, . . . , εiT )′. Upon stacking this information on all N cross-sections, i.e y = (y′1, . . . , y
′
N )′,
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y−1 =
(
y′1,−1, . . . , y

′
N,−1

)′, α = (α1, . . . , αN )′ and ε = (ε′1, . . . , ε
′
N )′, we have

y = θy−1 + Dα + ε, (3)

where D = IN ⊗ ιT is a NT ×N dummy variable matrix.

3 Intuitive motivation: the Nickell bias revisited

Let the WG operator Q be given by

Q = IN ⊗QT , with QT = IT − ιT ι′T /T , (4)

which is a symmetric and idempotent matrix that transforms the data into deviations from indi-

vidual specific means:

QT yi = ỹi = yi − ιT ȳi, and QT yi,−1 = ỹi,−1 = yi,−1 − ιT ȳi,−1, (5)

where ȳi = T−1
∑T

t=1 yit and ȳi,−1 = T−1
∑T

t=1 yi,t−1. Since QT ιT = 0, the individual effects in

model (3) are cancelled out by premultiplying by Q, obtaining

ỹ = θỹ−1 + ε̃, (6)

where ỹ = (ỹ′1, . . . , ỹ
′
N )′, ỹ−1 =

(
ỹ′1,−1, . . . , ỹ

′
N,−1

)′ and ε̃ = (ε̃′1, . . . , ε̃
′
N )′ with ε̃i = εi − ιT ε̄i and

ε̄i = T−1
∑T

t=1 εit. The least squares estimate of θ in equation (6) defines the WG estimator

θ̂WG =
(
ỹ′−1ỹ−1

)−1
ỹ′−1ỹ =

(
y′−1Qy−1

)−1
y′−1Qy, (7)

where use is made of Q being symmetric and idempotent.

The WG estimator can also be written as the least squares estimator for θ after transforming

the data into deviations from forward (cf. Arellano and Bover, 1995; Alvarez and Arellano, 2003)

or backward means. Define the backward mean operator M b
T as

M b
T = diag

[
1,

1
2
, . . . ,

1
T

]
× LT , (8)

where LT is a T ×T lower triangular matrix of ones, i.e. LT,ij = 1 for i ≤ j and 0 otherwise, such

that Qb

Qb = IN ⊗Qb
T , with Qb

T = c
(
IT −M b

T

)
, (9)
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is the operator that transforms the data into scaled deviations from backward means:

Qb
T yi = ỹb

i = c
(
yi − ȳb

i

)
, and Qb

T yi,−1 = ỹb
i,−1 = c

(
yi,−1 − ȳb

i,−1

)
. (10)

where c = diag
[
1,
√

2,
√

t√
t−1

, . . . ,
√

T√
T−1

]
, ȳb

i =
[
ȳb

i1, . . . , ȳ
b
iT

]′ and ȳb
i,−1 =

[
ȳb

i1,−1, . . . , ȳ
b
iT,−1

]′ with

ȳb
it = t−1

∑t
s=1 yis and ȳb

it,−1 = t−1
∑t−1

s=0 yis.

Note that opposed to Q, Qb is not a symmetric and idempotent matrix. As the rows of Qb
T add

up to zero, i.e. Qb
T ιT = 0, the individual effects in model (3) are cancelled out by premultiplying

by Qb, obtaining

ỹb = θỹb
−1 + ε̃b, (11)

where ỹb =
(
ỹb′

1 , . . . , ỹb′

N

)′
, ỹb
−1 =

(
ỹb′

1,−1, . . . , ỹ
b′

N,−1

)′
and ε̃b =

(
ε̃b′

1 , . . . , ε̃b′

N

)′
, ε̃b

i =
(
ε̃b

i1, . . . , ε̃
b
iT

)′
with ε̃b

it = εit − ε̄b
it and ε̄b

it = t−1
∑t

s=1 εis. The scale factor c is introduced to ensure that

QbQb′ = I such that the transformation preserves the orthogonality of the error terms, i.e. if

var(εi) = σ2IT then ε̃b
i also has var

(
ε̃b

i

)
= σ2IT . The least squares estimate of θ in equation (11)

θ̂WG =
(
ỹb′

−1ỹ
b
−1

)−1

ỹb′

−1ỹ
b =

(
y′−1Q

b′Qby−1

)−1

y′−1Q
b′Qby, (12)

indeed equals the WG estimator in (7) as it can easily be verified that Qb′Qb = Q.

It is well known that θ̂WG is consistent for T → ∞ but inconsistent for N → ∞ and T fixed

(cf. Nickell, 1981; Anderson and Hsiao, 1981). Inserting (3) in (7) and using QD = 0

θ̂WG = θ +
(
ỹ′−1y−1

)−1
ỹ′−1 (Dα + ε) = θ +

(
y′−1Qy−1

)−1
y′−1Qε, (13)

shows that this inconsistency stems from the fact that for fixed T the term y′−1Qε does not

converge to zero as N → ∞ since the sample mean ȳi,−1 used in the within transformation

ỹi,t−1 = yi,t−1 − ȳi,−1 is correlated with the error term εit. Obtaining a consistent LS estimator

for N → ∞ requires the variable that eliminates the individual effects used at time t to be

orthogonal to the innovations εit, . . . , εiT . This suggests using backward means in stead of sample

means. However the representation of the WG estimator in (12) shows that this yields exactly the

same estimator. Inserting (11) in (12)

θ̂WG = θ +
(
ỹb′

−1ỹ
b
−1

)−1

ỹb′

−1ε̃
b = θ +

(
y′−1Q

b′Qby−1

)−1

y′−1Q
b′Qbε, (14)

shows that the inconsistency of the WG estimator can also be seen to stem from the correlation

between y−1 and ε in deviation from their backward means. Interestingly, ỹb
it,−1 = yi,t−1 − ȳb

i,−1

is not correlated with the error term εit but the inconsistency of θ̂WG in (14) is due to the fact

that Qb is not symmetric and idempotent which implies that y′−1Q
b′Qbε 6= y′−1Q

b′ε. Therefore,

the next section analyses the properties of an estimator that uses an alternative, symmetric and
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idempotent, backward mean operator.

For comparison with the estimator presented below, the expression for the inconsistency of the

WG estimator for N →∞ is given by (see Nickell, 1981; Anderson and Hsiao, 1981)

plim
N→∞

(
θ̂WG − θ

)
= −

(1 + θ)
(
1− 1

T
1−θT

1−θ

)
T − 1− 2θ

1−θ

(
1− 1

T
1−θT

1−θ

) . (15)

For small values of T the inconsistency is given by

plim
N→∞

(
θ̂WG − θ

)
= −1 + θ

2
for T = 2, (16)

= − (1 + θ) (2 + θ)
2 (3 + θ)

for T = 3, (17)

while for reasonably large values of T , (15) can be approximated by

plim
N→∞

(
θ̂WG − θ

)
' −1 + θ

T
. (18)

4 Orthogonalising regressors to backward means

The backward mean representation in (14) shows that the inconsistency of the WG estimator

for N → ∞ stems from the fact that Qb is not a symmetric and idempotent matrix. Therefore,

instead of taking deviations from backward means define the backward orthogonal operator Qb
⊥

Qb
⊥ = INT − ȳb

−1

(
ȳb′

−1ȳ
b
−1

)−1

ȳb′

−1, (19)

where ȳb
−1 =

(
ȳb′

1,−1, . . . , ȳ
b′

N,−1

)′
such that Qb

⊥ has the interpretation of a ‘residual maker’ matrix,

i.e. premultiplying by this matrix transforms the data into residuals of an auxiliary regression

on ȳb
−1. These residuals are by construction orthogonal to ȳb

−1. It is easily verified that Qb
⊥ is a

symmetric and idempotent matrix. Premultiplying (3) by Qb
⊥ yields

ŷb = θŷb
−1 + α̂b + ε̂b, (20)

where ŷb, ŷb
−1, α̂b and ε̂b are the residuals of the auxiliary regressions of y, y−1, α and ε on ȳb

−1.

The LS estimator for θ in (20), we shall refer to this as WGob, is given by

θ̂WG
⊥ =

(
y′−1Q

b
⊥y−1

)−1
y′−1Q

b
⊥y =

(
ŷb′

−1y−1

)−1

ŷb′

−1y. (21)

where use is made of the idempotency of Qb
⊥.

Remark 1. Using the Frisch-Waugh-Lovell theorem, θ̂WG
⊥ is numerically identical to the LS

estimate for the coefficient on y−1 in a regression of y on y−1 augmented with ȳb
−1. This makes
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the suggested estimator straightforward to apply in practice.

Inserting (3) in (21) yields

θ̂WG
⊥ = θ +

(
ŷb′

−1y−1

)−1

ŷb′

−1 (Dα + ε) = θ +
(
y′−1Q

b
⊥y−1

)−1
y′−1Q

b
⊥ (Dα + ε) , (22)

In contrast to Qb, the rows of Qb
⊥ do not sum to zero by construction such that Qb

⊥D is not

necessarily 0. This implies that by premultiplying the data by Qb
⊥ the individual effects in α are

not cancelled out exactly such that the transformed explanatory variable ŷb
−1 in the numerator of

(22) is potentially correlated with the error term Dα + ε.

The results collected in the following two Lemma’s are useful to establish the asymptotic

properties of the WGob estimator. All proofs are in the appendix.

Lemma 1. Under assumptions (A1)-(A3)

σ2
y−1

=
1

NT
E
[
y′−1y−1

]
=

σ2
α

(1− θ)2
+

σ2
ε

1− θ2
, (23)

σ2
ȳb
−1

=
1

NT
E
[
ȳb′

−1ȳ
b
−1

]
=

σ2
α

(1− θ)2
+

σ2
ε

(1− θ)2
1
T

T∑
t=1

1
t

(
1− 2θ

t

1− θt

1− θ2

)
, (24)

σy−1ȳb
−1

=
1

NT
E
[
y′−1ȳ

b
−1

]
=

σ2
α

(1− θ)2
+

σ2
ε

1− θ2

1
T

T∑
t=1

1
t

1− θt

1− θ
, (25)

where σ2
y−1

is the population variance of y−1, σ2
ȳb
−1

is the population variance of ȳb
−1 and σy−1ȳb

−1

is the population covariance between y−1 and ȳb
−1.

Lemma 2. For T →∞ we have

plim
T→∞

(
ȳb′

−1ȳ
b
−1

)−1

ȳb′

−1y−1 = 1, (26)

such that

plim
T→∞

ŷb
−1 = plim

T→∞
Qb
⊥y−1 = y−1 − ȳb

−1 = ỹb
−1 = Qby−1. (27)

Moreover

1
NT

E
[
ỹb′

−1 (Dα + εit)
]

= 0, (28)

1
NT

E
[
ỹb′

−1y−1

]
=

σ2
ε

1− θ2

(
1− 1

T

T∑
t=1

1
t

1− θt

1− θ

)
. (29)
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For N →∞ we have

plim
N→∞

1
NT

ŷb′

−1 (αD + ε) =
(
1− δy−1ȳb

−1

) σ2
α

1− θ
, (30)

plim
N→∞

1
NT

ŷb′

−1ŷ
b
−1 =

(
1− ρ2

y−1ȳb
−1

)
σ2

y−1
, (31)

where ρy−1ȳb
−1

= σy−1ȳb
−1

/(
σt,ȳb

−1
σy−1

)
is the population correlation between yi,t−1 and ȳb

it,−1 and

δy−1ȳb
−1

= σy−1ȳb
−1

/
σ2

ȳb
−1

is the population OLS regression coefficient of y−1 on ȳb
−1.

The first part of this Lemma shows that as T →∞, ŷb
−1 converges to ỹb

−1 which is uncorrelated

with Dα + ε. The second part provides the variance of ŷb
−1 and its covariance with Dα + ε when

N →∞. This allows us to derive the asymptotic properties of θ̂WG
⊥ .

Theorem 1. θ̂WG
⊥ is consistent as T →∞ (regardless of whether N is fixed or tends to infinity)

but inconsistent as N →∞ (and T fixed) with the asymptotic bias term given by

plim
N→∞

(
θ̂WG
⊥ − θ

)
=

1− δy−1ȳb
−1(

1− ρ2
y−1ȳb

−1

)
σ2

y−1

σ2
α

1− θ
, (32)

=
θ (1− θ) AT

(1− θ) + BT + CT
σ2

ε

σ2
α

, (33)

where

AT =
1
T

T∑
t=1

1
t

(
1 + θt−1 − 2

t

1− θt

1− θ

)
, (34)

BT =
1
T

T∑
t=1

1
t

(
2θt − (1− θ)− 2θ

t

1− θt

1− θ

)
, (35)

CT =
1
T

T∑
t=1

1
t

(
(1− θ)− 2θ

t

1− θt

1 + θ
− 1

t

1
T

(1− θt)2

1 + θ

)
. (36)

This theorem shows that the asymptotic properties of the WGob estimator are qualitatively

the same as those of the standard WG estimator. The following corollary provides a quantitative

analysis of the asymptotic bias of θ̂WG
⊥ for N →∞.

Corollary 1.

(a) plim
N→∞

(
θ̂WG
⊥ − θ

)
is positive for 0 < θ < 1 and negative for −1 < θ < 0.

(b) plim
N→∞

(
θ̂WG
⊥ − θ

)
increases in σ2

α

σ2
ε

with an upper bound given by

plim
N,

σ2
α

σ2
ε
→∞

(
θ̂WG
⊥ − θ

)
=

θ (1− θ)
∑T

t=1
1
t

(
1 + θt−1 − 2

t
1−θt

1−θ

)
T (1− θ) +

∑T
t=1

1
t

(
2θt − (1− θ)− 2θ

t
1−θt

1−θ

) , (37)
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(c) plim
N→∞

(
θ̂WG
⊥ − θ

)
= 0 in the following cases (i) T = 2, (ii) θ = 0, (iii) θ = 1 and (iv)

σ2
ε

/
σ2

α →∞.

(d) For small values of T the upper bound of the inconsistency is given by

plim
N→∞

(
θ̂WG
⊥ − θ

)
= 0 for T = 2, (38)

plim
N,

σ2
α

σ2
ε
→∞

(
θ̂WG
⊥ − θ

)
=

θ (1− θ)
4 (3− 3 /8 + θ)

for T = 3, (39)

while for reasonably large vales of T , (33) and θ < 1 can be approximated by

plim
N→∞

(
θ̂WG
⊥ − θ

)
' θ (1− θ)

ln (T )
T

. (40)

(e) The inconsistency is O (ln (T ) /T ) such that, compared to WG, convergence is at a slower

rate as T grows large.

Interestingly, comparing (16)-(18) to (38)-(40) shows that, over the relevant range 0 ≤ θ ≤ 1,

the inconsistency of θ̂WG
⊥ for fixed T is much smaller than that of the WG estimator. Moreover,

θ̂WG
⊥ is consistent for N →∞ and fixed T when T is extremely small, i.e. T = 2, when θ is either

0 or 1 and when σ2
α = 0. Note that in the cases where T is very small or θ is close to 1, standard

estimators like GMM and bias-corrected WG estimators are known to fail. Figure 1 plots the

upper bound of the inconsistency, calculated from (37), for various values of θ and T . The most

important conclusion from this graph is that the upper bound on the inconsistency is negligibly

small for all values of θ and T , i.e. it is never larger than 0.04. This suggests that this alternative

estimator may be of great practical relevance. Note that compared to the WG estimator, θ̂WG
⊥

converges at a slower rate when T → ∞. This slower rate of convergence is due to the fact that

in calculating the backward mean only information up to time t is used, i.e. as T grows ȳb
i,t−1 is

not updated, while the sample mean used to construct the WG estimator uses information up to

time T .

5 Monte Carlo study of finite sample properties

5.1 Design

In this section we analyse the small sample performance of the WGob estimator presented above

using a Monte Carlo simulation. To generate data from (1) we make a number of additional

assumptions. First, we make the distributional assumptions εit ∼ N
(
0, σ2

ε

)
and αi ∼ N

(
0, σ2

α

)
.

Second, yi0 is drawn from its stationary distribution N
(

αi

1−θ ,
σ2

ε

1−θ2

)
. Third, we impose the nor-

malisation restriction σ2
ε = 1 and calculate σα = µσε (1− θ) where the value of µ controls the

relative impact on yit of the disturbance εit versus the individual effect αi. The performance
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Figure 1: Inconsistency of bθWG
⊥ for N →∞ and

σ2
α

σ2
ε
→∞

of the WGob estimator under different parameter combinations is compared to 4 alternative dy-

namic panel data estimators: (i) WG, the standard within groups estimator, (ii) GMMd, the

first difference GMM estimator proposed by Arellano and Bond (1991), (iii) GMMs, the sys-

tem GMM estimator proposed by Arellano and Bover (1995) and Blundell and Bond (1998),

(iv) WGbc, the bias-corrected WG estimator proposed by Kiviet (1995). For the GMM esti-

mators we report second-step estimates. In order to avoid an overfitting bias (see Ziliak, 1997)

we restrict the number of lagged instruments to a maximum of 3 and stack instruments when

T ≥ 10 (see also Arellano, 2003, p. 170). We opt for Kiviet’s bias-corrected WG estimator

over alternative, more generally applicable, bias-corrections proposed by e.g. Bun and Carree

(2005) and Everaert and Pozzi (2007) as the former is applicable in the proposed Monte Carlo

design. To implement the WGbc estimator we use the GMMs estimator as an initial large-N

consistent estimator. As due to a weak instruments problem the GMM estimators do not nec-

essarily have first or second finite sample moments, we use the median bias (MB), the median

absolute deviation (MAD) and the median absolute error (MAE) as measures to compare the

different estimators.1 We consider the following experiments: θ ∈ {0.4, 0.8}, µ ∈ {1, 5}, (T,N) ∈
{(2, 20) , (5, 20) , (10, 20) , (20, 20) , (40, 20) , (2, 100) , (5, 100) , (10, 100) , (2, 500) , (5, 500)}. For each

experiment, we performed 1000 Monte Carlo replications.

1The MAD is defined as the median of the absolute value of the deviation of an estimator from its median
estimate over the Monte Carlo replications, while the MAE is the median of the absolute value of the deviation of
an estimator from its population value.
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5.2 Results

The results of the Monte Carlo simulation are presented in Tables 1-4. As known from the existing

literature (i) the WG estimator is severely biased, especially when θ approaches 1, with the bias

only disappearing as T grows larger and not as N increases (see Nickell, 1981), but has a dispersion

smaller than achieved by any of the consistent estimators; (ii) in samples with limited N and T

the GMMd estimator performs poorly both in terms of bias and dispersion when θ approaches 1

and/or when µ becomes large (see Blundell and Bond, 1998); (iii) the GMMs estimator improves

significantly on the performance of the GMMd estimator (see Blundell and Bond, 1998) but

remains biased in samples with limited N and T especially when θ is small and µ is large (see

Kiviet, 2006); (iv) the WGbc estimator even outperforms the GMMs estimator in a lot of cases

as it successfully succeeds in removing the bias from the WG estimator while maintaining its

relatively small dispersion, however, it remains (severely) biased when T is small.

Turning to the WGob estimator, despite being inconsistent for N → ∞ and converging at a

slower rate when T → ∞ it performs remarkably well in terms of median point estimates, i.e. in

none of the considered cases it exhibits a considerable bias. As a result the WGob estimator clearly

outperforms the other estimators in terms of MB in the cases where these estimators are (severely)

biased while not being dramatically worse in the cases where these estimators are consistent. The

dispersion of the WGob is larger than that of the WG and WGbc estimators but smaller than that

of the GMM estimators in most cases. This implies that in terms of MAE, the WGob estimator

is slightly outperformed by the WGbc estimator in a number of cases, while being significantly

smaller in others, but outperforms the GMMs estimator in almost all cases, interestingly even

when N = 500.

On the whole, the WGob estimator seems more attractive than the GMM estimators and the

bias-corrected WG estimator as its performance is found to be robust over the different experi-

ments. As such it considerably outperforms the other estimators in terms of MB and MAE in a

number of cases while being more or less comparable in all other cases.
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Table 1: Monte Carlo comparison of alternative dynamic panel data estimators for θ when θ = 0.4, µ = 1

T N MB MAD MAE T N MB MAD MAE
2 20 2 100

WG -0.696 0.150 0.696 -0.703 0.067 0.703
WGbc -0.233 0.183 0.260 -0.200 0.095 0.200
GMMd -0.065 0.442 0.472 0.005 0.206 0.206
GMMs -0.001 0.270 0.271 -0.010 0.130 0.130
WGob -0.026 0.294 0.294 -0.006 0.126 0.127

5 20 5 100
WG -0.303 0.077 0.303 -0.301 0.032 0.301
WGbc -0.005 0.095 0.095 -0.021 0.041 0.045
GMMd -0.108 0.145 0.162 -0.028 0.069 0.070
GMMs 0.067 0.108 0.121 0.011 0.050 0.051
WGob 0.002 0.101 0.102 0.020 0.045 0.049

10 20 10 100
WG -0.149 0.049 0.149 -0.147 0.022 0.147
WGbc 0.007 0.057 0.057 0.001 0.026 0.026
GMMd -0.005 0.090 0.091 0.002 0.037 0.036
GMMs 0.007 0.078 0.079 0.005 0.034 0.034
WGob 0.017 0.058 0.061 0.023 0.025 0.031

20 20 2 500
WG -0.073 0.032 0.073 -0.700 0.029 0.700
WGbc -0.008 0.034 0.036 -0.189 0.042 0.189
GMMd 0.000 0.053 0.053 -0.004 0.085 0.085
GMMs 0.000 0.048 0.048 -0.010 0.060 0.060
WGob 0.015 0.038 0.037 -0.005 0.056 0.056

40 20 5 500
WG -0.034 0.022 0.036 -0.303 0.021 0.304
WGbc -0.013 0.022 0.023 -0.028 0.028 0.040
GMMd 0.001 0.033 0.034 -0.007 0.044 0.045
GMMs 0.002 0.032 0.032 0.000 0.032 0.032
WGob 0.016 0.024 0.026 0.018 0.030 0.035
GMMd is the first-difference GMM estimator of Arellano and Bond (1991), GMMs is the system GMM estimator

of Arellano and Bover (1995) and Blundell and Bond (1998). Both use a maximum of 3 lagged instruments, with

instruments stacked when T ≥ 10. WGbc is the bias-corrected WG estimator suggested by Kiviet (1995), with

GMMs used as an initial large-N consistent estimator.
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Table 2: Monte Carlo comparison of alternative dynamic panel data estimators for θ when θ = 0.8, µ = 1

T N MB MAD MAE T N MB MAD MAE
2 20 2 100

WG -0.903 0.151 0.903 -0.900 0.065 0.900
WGbc -0.370 0.185 0.377 -0.304 0.099 0.304
GMMd -0.263 0.696 0.782 -0.015 0.349 0.354
GMMs -0.044 0.286 0.282 -0.020 0.145 0.143
WGob -0.051 0.304 0.305 -0.008 0.129 0.130

5 20 5 100
WG -0.430 0.077 0.430 -0.428 0.035 0.428
WGbc -0.100 0.082 0.105 -0.096 0.038 0.096
GMMd -0.239 0.194 0.267 -0.054 0.091 0.097
GMMs -0.002 0.097 0.098 0.001 0.050 0.050
WGob -0.011 0.094 0.096 0.005 0.043 0.043

10 20 10 100
WG -0.220 0.045 0.220 -0.217 0.020 0.217
WGbc -0.030 0.050 0.052 -0.027 0.023 0.031
GMMd -0.012 0.108 0.109 0.002 0.044 0.044
GMMs 0.000 0.078 0.078 0.002 0.035 0.036
WGob 0.000 0.049 0.049 0.008 0.021 0.021

20 20 2 500
WG -0.106 0.026 0.106 -0.902 0.030 0.902
WGbc -0.024 0.030 0.034 -0.288 0.044 0.288
GMMd -0.006 0.059 0.058 -0.004 0.146 0.148
GMMs -0.001 0.049 0.049 -0.009 0.061 0.062
WGob 0.007 0.028 0.029 -0.007 0.057 0.059

40 20 5 500
WG -0.048 0.017 0.048 -0.429 0.015 0.429
WGbc -0.022 0.017 0.025 -0.097 0.017 0.097
GMMd 0.001 0.036 0.037 -0.014 0.041 0.041
GMMs 0.001 0.032 0.033 -0.002 0.023 0.023
WGob 0.009 0.017 0.019 0.005 0.019 0.019
See Table 1.
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Table 3: Monte Carlo comparison of alternative dynamic panel data estimators for θ when θ = 0.4, µ = 5

T N MB MAD MAE T N MB MAD MAE
2 20 2 100

WG -0.696 0.150 0.696 -0.703 0.067 0.703
WGbc -0.084 0.167 0.162 -0.137 0.126 0.156
GMMd -0.541 0.834 1.028 -0.156 0.620 0.651
GMMs 0.361 0.266 0.469 0.127 0.205 0.260
WGob -0.049 0.313 0.312 -0.017 0.131 0.132

5 20 5 100
WG -0.303 0.077 0.303 -0.301 0.032 0.301
WGbc 0.104 0.073 0.111 0.036 0.051 0.061
GMMd -0.227 0.188 0.264 -0.064 0.109 0.110
GMMs 0.469 0.079 0.469 0.194 0.116 0.196
WGob 0.018 0.107 0.109 0.030 0.047 0.053

10 20 10 100
WG -0.149 0.049 0.149 -0.147 0.022 0.147
WGbc 0.087 0.053 0.089 0.041 0.028 0.043
GMMd -0.024 0.186 0.184 -0.005 0.080 0.079
GMMs 0.031 0.121 0.124 0.010 0.059 0.059
WGob 0.030 0.058 0.062 0.035 0.025 0.039

20 20 2 500
WG -0.073 0.032 0.073 -0.700 0.029 0.700
WGbc 0.055 0.034 0.058 -0.181 0.070 0.181
GMMd 0.000 0.091 0.091 -0.022 0.308 0.314
GMMs 0.012 0.070 0.070 0.013 0.126 0.130
WGob 0.022 0.036 0.039 -0.001 0.059 0.059

40 20 5 500
WG -0.034 0.022 0.036 -0.303 0.014 0.303
WGbc 0.028 0.022 0.032 -0.021 0.021 0.027
GMMd 0.000 0.052 0.052 -0.016 0.049 0.050
GMMs 0.002 0.042 0.041 0.021 0.032 0.033
WGob 0.018 0.023 0.027 0.031 0.021 0.031
See Table 1.
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Table 4: Monte Carlo comparison of alternative dynamic panel data estimators for θ when θ = 0.8, µ = 5

T N MB MAD MAE T N MB MAD MAE
2 20 2 100

WG -0.903 0.151 0.903 -0.900 0.065 0.900
WGbc -0.298 0.131 0.306 -0.274 0.102 0.274
GMMd -0.729 0.892 1.138 -0.292 0.814 0.876
GMMs 0.108 0.201 0.237 0.046 0.144 0.163
WGob -0.048 0.313 0.310 -0.009 0.131 0.131

5 20 5 100
WG -0.430 0.077 0.430 -0.428 0.035 0.428
WGbc -0.069 0.069 0.077 -0.079 0.035 0.079
GMMd -0.508 0.259 0.510 -0.246 0.183 0.262
GMMs 0.146 0.053 0.148 0.062 0.051 0.077
WGob -0.002 0.095 0.095 0.016 0.043 0.044

10 20 10 100
WG -0.220 0.045 0.220 -0.217 0.020 0.217
WGbc -0.005 0.043 0.042 -0.012 0.021 0.021
GMMd -0.100 0.236 0.257 -0.014 0.099 0.101
GMMs 0.018 0.097 0.102 0.007 0.048 0.049
WGob 0.016 0.046 0.050 0.024 0.020 0.028

20 20 2 500
WG -0.106 0.026 0.106 -0.902 0.030 0.902
WGbc 0.015 0.027 0.030 -0.294 0.056 0.294
GMMd -0.009 0.111 0.110 -0.034 0.402 0.404
GMMs 0.011 0.065 0.064 -0.009 0.089 0.087
WGob 0.020 0.026 0.032 -0.007 0.059 0.059

40 20 5 500
WG -0.048 0.017 0.048 -0.429 0.015 0.429
WGbc 0.019 0.018 0.023 -0.092 0.018 0.092
GMMd 0.000 0.060 0.060 -0.065 0.088 0.101
GMMs 0.004 0.039 0.039 0.012 0.031 0.033
WGob 0.020 0.017 0.023 0.019 0.019 0.022
See Table 1.
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6 Concluding comments

Dynamic panel data models are typically estimated using GMM. These instrumental variables es-

timators may lead to poor finite sample properties, i.e. serious small sample bias and/or relatively

large standard deviations, in case of weak instruments. Bias-corrected WG estimators perform

remarkably well in many cases, but the remaining bias may still be substantial when T is relatively

small. In this article, we stick to a LS estimator but remove the individual effects from an AR(1)

panel using orthogonal deviations from backward means as an alternative to sample means. This

is equivalent to a LS estimator where the backward mean is added as a regressor in the original

model, which is extremely easy to implement in practice. This WGob estimator is consistent for

T →∞ but inconsistent for N →∞. However, the inconsistency is shown to be negligibly small.

Moreover, a Monte Carlo simulation shows that this estimator is surprisingly accurate in compari-

son to established estimators. It considerably outperforms the standard estimators in terms of bias

and dispersion in the cases where these estimators are know to fail, while not performing much

worse in all other cases. In future research we plan to extend the model by adding explanatory

variables and allowing for non-stationary initial conditions.
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Appendices

Appendix A Proofs

Proof of Lemma 1. By continuous substitution and using assumptions (A1)-(A3), we have from
(1) and (10)

yi,t−1 =
αi

1− θ
+

∞∑
j=0

θjεi,t−j−1, (A-1)

ȳb
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1
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Averaging (A-3)-(A-5) over N and T , the results in (23)-(25) follow immediately.
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Proof of Lemma 2. Considering (24) and (25) while letting T →∞:
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where use is made of

lim
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t=1

1
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with γ being the Euler-Mascheroni constant 0.57721 . . .. The dilogarithm lim
T→∞

T∑
t=1

θt
/
t2 ≡ Li2 (θ)

cannot be evaluated in closed form for all values of θ but is convergent for the relevant range
−1 6 θ 6 1. The result in (26) follows from dividing (A-7) by (A-6).

Using (A-1), (A-2), assumption (A1) and QbD = 0
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such that averaging over N and T yields the result 1
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follows immediately
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which is the result in (29).
Under assumptions (A1), (A2) and (A3) and letting N →∞, the results in (30) and (31) are

obtained as:
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−1

) σ2
α

1− θ
, (A-11)

where δy−1ȳb
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ȳb
−1

and

plim
N→∞

1
NT
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ȳb′
)

y−1,

= σ2
y−1

− δy−1ȳb
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Proof of Theorem 1. The consistency of θ̂WG
⊥ for T → ∞ follows directly from (28) which

implies that plim
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the latter follows from (A-8).
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ŷb′

−1ŷ
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−1

σ2
α

1− θ
, (A-13)

=

(
1− δy−1ȳb
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−1

)
σ2

y−1

σ2
α

1− θ
. (A-14)

20



Inserting (23) and (25) in (A-13):
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1+θ

σ2
ε

σ2
α

«
θ

PT
t=1

1
t

“
1+θt−1− 2

t
1−θt

1−θ

”
,

=
θ (1− θ)

∑T
t=1

1
t

(
1 + θt−1 − 2

t
1−θt

1−θ

)
T (1− θ) +

∑T
t=1

1
t

(
2θt − (1− θ)− 2θ

t
1−θt

1−θ

)
+
∑T

t=1
1
t

(
(1− θ)− 2θ

t
1−θt

1+θ −
1
t

1
T

(1−θt)2

1+θ

)
σ2

ε

σ2
α

,

where use is made of

δy−1ȳb
−1

=
1 + 1

T

∑T
t=1

1
t

1−θt

1+θ
σ2

ε

σ2
α

1 + 1
T

∑T
t=1

1
t

(
1− 2θ

t
1−θt

1−θ2

)
σ2

ε

σ2
α

. (A-15)

Proof of Corollary 1.

(a) From (32) it follows that for −1 < θ < 1 and T ≥ 3 plim
N→∞

(
θ̂WG
⊥ − θ

)
> 0 when δy−1ȳb

−1
< 1.

From the definition of δy−1ȳb
−1

in (A-15) we have that δy−1ȳb
−1

< 1 if

T∑
t=1

1
t

1− θt

1 + θ
<

T∑
t=1

1
t

(
1− 2θ

t

1− θt

1− θ2

)
,

1− θt

1 + θ
< 1− 2θ

t

1− θt

1− θ2
∀t ≥ 3,

1− θt < 1− θt + θ
t− 2

t

(
1− 2

t− 2
θ − . . .− 2

t− 2
θt−1 + θt

)
∀t ≥ 3.

As for −1 < θ < 1 and t ≥ 3 the term
(
1− 2

t−2θ − . . .− 2
t−2θt−1 + θt

)
> 0, δy−1ȳb

−1
< 1

when θ > 0. When θ < 0, δy−1ȳb
−1

> 1 such that plim
N→∞

(
θ̂WG
⊥ − θ

)
< 0.

(b) The upper bound in (37) is obtained by setting σ2
ε

σ2
α

= 0 in (33).

(c) Follows directly from (33), where for the case θ = 1 use is made of 1−θt

1−θ = t.

21



(d) For T = 2, (37) is given by

plim
N,

σ2
ε

σ2
α
→0

(
θ̂WG
⊥ − θ

)
=

θ (1− θ) (0 + 0)
2 (1− θ)− 1

2 (1− θ) (3 + θ)
= 0, (A-16)

while for T = 3 we have

plim
N,

σ2
ε

σ2
α
→0

(
θ̂WG
⊥ − θ

)
=

θ (1− θ)
(
0 + 0 + 1

3

(
1 + θ2 − 2

3

(
1 + θ + θ2

)))
3 (1− θ) +

(
− 1

2 (1− θ) (3 + θ) + 1
3

(
2θ3 − (1− θ)− 2θ

3 (1 + θ + θ2)
)) ,

=
θ (1− θ) 1

9 (1− θ)2

3 (1− θ)− 1
9

1
2 (1− θ) (11 (3 + θ) + 2θ (1 + 4θ))

,

=
θ (1− θ)

1
2 (21 + 8θ)

=
θ (1− θ)

4 (3− 3 /8 + θ)
. (A-17)

In order to derive an approximation for large T , first note that

AT =
1
T

T∑
t=1

1
t

(
1 + θt−1 − 2

t

1− θt

1− θ

)

= (1− θ)2
1
T

T∑
t=3

1
t

1
t

t−2∑
j=1

(j (t− j − 1)) θj−1


= (1− θ)2

1
T

T∑
t=2

1
t

1− θt−2

1− θ
+

1
t

t−2∑
j=1

(t (j − 1)− j (1 + j)) θj−1


' (1− θ)2

1
T

T∑
t=2

1
t

1− θt−2

1− θ
= (1− θ)

1
T

T∑
t=2

1− θt−2

t
= (1− θ)

ln (T )
T

(A-18)

Inserting (A-18) in (33) yields

plim
N→∞

(
θ̂WG
⊥ − θ

)
' θ (1− θ) ln (T )

T
(A-19)

where use is made of

BT '
1
T

(
−2 ln (1− θ)− (1− θ) (γ + ln (T ))− 2θ

1− θ

(
π2

6
− Li2 (θ)

))
,

= − (1− θ)
ln (T )

T
+ O

(
T−1

)
, (A-20)

CT '
1
T

(
(1− θ) (γ + ln (T ))− 2θ

1 + θ

(
π2

6
− Li2 (θ)

)
− 1

1 + θ

1
T

(
π2

6
− 2Li2 (θ) + 2Li2

(
θ2
)))

,

= (1− θ)
ln (T )

T
+ O

(
T−1

)
. (A-21)

(f) The approximation in (37) shows that the inconsistency of θ̂WG
⊥ is O (ln (T ) /T ).
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