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ABSTRACT 
 

The efficient management of nursing personnel is of critical importance in a hospital’s 

environment comprising a vast share of the hospital’s operational costs. The nurse scheduling 

process affects highly the nurses’ working conditions, which are strongly related to the provided 

quality of care. In this paper, we consider the rostering over a mid-term period that involves the 

construction of duty timetables for a set of heterogeneous nurses. In scheduling nursing personnel, 

the head nurse is typically confronted with various (conflicting) goals complying with different 

priority levels, which represent the hospital’s policies and the nurses’ preferences. In constructing 

a nurse roster, nurses need to be assigned to shifts in order to maximize the quality of the 

constructed timetable satisfying the case-specific time related constraints imposed on the 

individual nurses’ schedules. Personnel rostering in healthcare institutions is a highly constrained 

and difficult problem to solve and is known to be NP-hard. In this paper, we present an exact 

branch-and-price algorithm for solving the nurse scheduling problem incorporating multiple 

objectives and discuss different branching and pruning strategies. Detailed computational results 

are presented comparing the proposed branching strategies and indicating the beneficial effect of 

various principles encouraging computational efficiency.  

 

Keywords: Nurse Scheduling, Branch-and-Price, Branching Strategies  

 

1 Introduction 

 

Recruiting and keeping the right staff are key challenges for the healthcare industry. The performance 

and quality of a health system ultimately depend on the quality and motivation of health human 

resources (Zurn, Dolea, and Stilwell, 2005). Therefore, recruitment and retention problems should be 

appropriately addressed since staff shortages or unmotivated health workforce are likely to have 

adverse effects on the delivery of health services and outcome of care. A key factor is the 

organizational support to employees, which is especially revealed in the policies and practices 

conducted by the health organizations. In this respect, personnel scheduling is a central component and 

is essential for the delivery of care to patients. On the one hand, it is of critical importance to have 

suitably qualified staff on duty at the right time since this is a large determinant of service organization 

efficiency and customers’ requirements satisfaction in providing the continuity of care. On the other 

hand, Cline, Reilly, and Moore (2003) identify unattractive schedules and high workloads as two 

important factors leading to discontentment and a high nursing turnover. More and more, hospitals 

adopt scheduling policies that increasingly accommodate preferences and requests of their nursing 

staff and abandon the more traditional cyclic scheduling. In spite of recent technological advances, it is 

obvious that health care managers face significant challenges as all these issues congregate at a time 

when managers are under increasing pressure to control costs while simultaneously ensuring the 
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delivery of high-quality care. One potential way of easing this pressure is to develop better nurse 

scheduling decision support systems that can help to produce rosters that employ resources more 

efficiently. The efficient management of nurses is vital to any organization’s overall success because 

nursing labor costs typically represent over 40% of a hospital’s total budget (Kazahaya, 2005; Welton, 

2006). Hence, the management has interests such as minimizing overtime, maintaining continuity of 

care, maximizing morale, and minimizing turnover and absenteeism. These are all factored into the 

scheduling process, at least implicitly. Solving the nurse scheduling problem properly has a positive 

impact on the nurses’ working conditions, which are strongly related to the quality level of health care 

and the recruitment of qualified personnel (Burke et al., 2004).  

 

This trade-off among roster quality, cost, morale, and performance and its difficulty to model, quantify 

and parameterize adequately all compromising factors partly explains the wide interest in the literature 

for the nurse workforce management process. The nurse workforce management is often seen as a 

three-phase sequential process that basically consists of a staffing, a scheduling, and an allocation 

phase (Abernathy, Baloff, and Hershey, 1971). In this paper, we present an exact procedure to solve 

the nurse scheduling problem (NSP), which consists of generating a configuration of individual 

schedules for all nurses. We concentrate on the scheduling phase rostering the nurses over the mid-

term period that involves the construction of duty timetables for a set of heterogeneous nurses over a 

pre-defined period of, for example, one month. A part of the problem data, such as the number of 

personnel in a ward, the required qualifications, and the definition of shift types is determined at the 

strategic level (i.e., the staffing phase). Constructing timetables of work for personnel in healthcare 

institutions is a highly constrained and difficult problem to solve and is known to be NP-hard 

(Osogami and Imai, 2000). Each employee of the available nursing staff should be assigned to an 

individual schedule, which needs to be conform to the applicable nurse scheduling policies. These 

individual schedules can be viewed as a sequence of days on and days off, where the nurse can be 

assigned to a particular shift (e.g., early, day, evening, night shift). For the remainder of the paper, we 

denote such a line-of-work for a nurse as the individual nurse’s schedule whereas the timetable for all 

nurses is depicted as the nurse roster.  

In constructing a nurse roster, nurses need to be assigned to shifts such that the quality of the 

constructed timetable is maximized while satisfying the case-specific time related constraints imposed 

on the individual nurses’ schedules (Burke et al., 2004). In scheduling nursing personnel, the head 

nurse is typically confronted with various (conflicting) goals complying with different priority levels, 

which represent the hospital’s policies and the nurses’ preferences. In the literature a huge variety of 

objective function possibilities is considered whereas the imposed constraints can typically be 

processed as hard or soft constraints with varying constraint parameters and penalty costs (Burke et 

al., 2004). In the following, the major components of the nurse scheduling problem under study are 

discussed, i.e.,  
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- The hospital objectives typically consists of ensuring a continuous service with appropriate 

nursing skills and staffing size, while avoiding additional costs for unnecessary overtime (Azaiez 

and Al Sharif, 2005; Bard and Purnomo, 2005b). Hence, the hospital must provide some minimum 

level of care in terms of the number of nurses per skill category for each shift. These minimal 

coverage requirements express the required number of nurses per shift and per day for all skill 

categories (e.g., registered nurses, licensed practical nurses, nurse aides, technicians, senior and 

junior personnel), and are inherent to any shift scheduling problem. In the personnel scheduling 

literature, various example cases are described with strictly separated skill categories, 

hierarchically substitutable qualifications, or user definable substitution, which is particularly well 

suited to real-world practice (Burke et al., 2004; Bard and Purnomo, 2005b). In case of shortages 

in any ward, the corresponding head nurse can call upon ward nurses doing overtime or may 

borrow nurses from other wards having a similar specialty. Setting the assignment priorities and 

the corresponding penalty costs properly, understaffing is compromised first by overtime for part-

time nurses and then by floating nurses. Nonetheless, our model (see section 3) is primarily 

designed for scheduling permanent staff. Insufficient coverage is avoided by adding slack 

variables that provide an estimation of the required overtime hours or the floating staff size since 

the slack variables refer to the extra number of nurses per skill level and shift types for each period 

and each day. Hence, the coverage constraints are handled as soft constraints that can be violated 

at a certain penalty cost expressed in the objective function. These penalty costs are conceived in a 

way the personnel shortages are equally distributed over the time horizon. Moreover, the 

redundancy of nursing personnel is also avoided by penalizing overstaffing such that redundant 

personnel is equally distributed over the scheduling period.  

- The quality of a personnel roster in the modern work environment is more and more measured in 

terms of satisfying the individual nurses’ preferences (Ernst et al., 2004). The way these 

preferences are quantified in the objective function determines the perceived quality of the nurse 

roster over the scheduling horizon and the perception of fairness between the nurses (Warner, 

1976). Azaiez and Al Sharif (2005) conducted an extensive survey to gain understanding on real-

world nurses’ preferences. All of the identified kind of preferences can be modelled by defining 

each nurse’s preference of working a particular shift on a particular day and sequence dependent 

preferences (e.g., continuity problems, number of consecutive working days). The latter can be 

incorporated by defining a (soft) case-specific time related constraint and a corresponding penalty 

cost that is incurred whenever the nurse’s individual schedule violates the case-specific constraint 

and, hence, does not comply with the nurse’s preferred sequence of shifts. According to Zurn, 

Dolea, and Stilwell (2005), accommodating individual preferences and personal requests will 

foster a higher morale, a more attractive work environment, increased flexibility to deal with 

personal matters and higher retention rates. Not considering nurses’ preferences causes nurses’ 
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frustration leading to either working under high stresses or quitting their jobs (Azaiez and Al 

Sharif, 2005).  

- The case-specific time related constraints imposed on individual nurses’ schedules are determined 

by personal time requirements, specific nurse contract stipulations and regulations, specific 

workplace scheduling policies and practices, collective union agreement requirements, national 

legislation, etc. These rules define acceptable schedules for the individual nurses and the head 

nurse and reduce the set of feasible individual roster lines. In practice, hospitals must provide 

flexibility to define personal work agreements relaxing the hospital- and ward-specific time related 

constraints and, hence, are confronted with a wide variety of contracts (both full- and part-time) 

(Burke et al., 2004).  

 

The remainder of the paper is organized as follows. In section 2, we give an overview of the relevant 

literature applying mathematical programming approaches for solving personnel scheduling problems. 

In section 3, we discuss the various features of the implemented branch-and-price approach. We 

describe a method to obtain near-optimal solutions based on column generation, which serves as an 

upper bound for the branch-and-bound-tree in search for the optimal solution. Furthermore, we 

suggest several branching strategies and a node pruning strategy to search the branch-and-bound-tree 

efficiently. In section 4, we present the results of our computational experiments giving insights in the 

performance of the proposed branching schemes, node pruning strategies, and speed-up techniques. In 

section 6, conclusions are drawn and directions for future research are given.  

 

2 Literature Overview  
 

Problem descriptions and models vary drastically and depend on the characteristics and policies of the 

particular business environment. Hence, in the literature many objective function possibilities subject 

to a huge variety of constraint combinations are explored. Since personnel scheduling problems have 

this multitude of formulations, many procedures have been proposed to solve personnel scheduling 

problems in general and the nurse scheduling problem in particular (Burke et al., 2004; Ernst et al., 

2004). Exact procedures and in particular mathematical programming techniques have been frequently 

proposed in nurse scheduling literature for both the cyclical and non-cyclical scheduling of nursing 

personnel, i.e., assignment programming (Caron, Hansen, and Jaumard, 1999), linear programming 

(e.g., Morris and Showalter, 1983), integer programming (e.g., Billionnet, 1999), mixed-integer 

programming (e.g., Beaumont, 1997), network programming (e.g., Balakrishnan and Wong, 1990), 

non-linear programming (e.g., Warner, 1976), goal programming (e.g., Arthur and Ravindran, 1981; 

Azaiez and Al Sharif, 2005; Berrada, Ferland, and Michelon, 1996; Brusco and Johns, 1995; Musa and 

Saxena, 1984), and branch-and-bound approaches (Trivedi and Warner, 1976). In these papers, 

multiple goal objective models have received considerable attention as they attempt to optimize 
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simultaneously a number of often conflicting objectives due to the different parties in hospital settings. 

These objectives often involve maximizing utilization of full-time staff, minimizing the number of 

employees, minimizing understaffing and overstaffing costs, minimizing labour costs as well as 

minimizing deviations from desired staffing requirements, nurse preferences, nurse special requests, 

and fair assignment of employees to schedules. The goals with different priority levels and 

corresponding weights represent the hospital policies and the nurses’ preferences. 

However, these models are often rather simplified approaches, rely eventually on heuristic principles 

to achieve near-optimal solutions or consider far more variables that can be dealt with a reasonable 

computing effort. In order to overcome these difficulties, several authors have solved personnel 

scheduling problems using column generation and closely connected resulting branch-and-price 

approaches (e.g., Bard and Purnomo, 2005a, 2005b; Beliën and Demeulemeester, 2005, 2006; 

Caprara, Monaci, and Toth, 2003; Jaumard, Semet, and Vovor, 1998; Mehrotra, Murphy, and Trick, 

2000; Gamache et al., 1999). Jaumard, Semet, and Vovor (1998) were the first to present a basic 0-1 

column generation model with a dedicated resource constrained shortest path auxiliary problem for the 

scheduling of nursing personnel. Motivated by the changing work environment accommodating 

personnel preferences and requests, Bard and Purnomo (2005a) proposed a multi-objective model 

formulation for the nurse scheduling problem that is solved with a heuristic column generation 

approach that combines integer programming and heuristics to generate new columns. Moreover, Bard 

and Purnomo (2005b) present a column generation approach additionally taking the nurses’ 

competencies into account. They give insight in the beneficial effect of substituting nurses by nurses 

with lower competencies when there is a critical staff shortage and few alternatives leading to 

considerable reductions in the need for expensive outside nurses and much better schedules for the 

regular staff as measured by preference satisfaction. Beliën and Demeulemeester (2005) do not 

consider the nurse scheduling problem as a separate problem but describe an approach where the 

minimal coverage constraints are dependent on the master operation room schedule. The goal is to 

determine the master surgery schedule in the operation room needing the least number of 

homogeneous nurses. It is outside the scope of their paper to find efficient branching schemes for the 

separate nurse scheduling problem. Caprara, Monaci, and Toth (2003) present some mathematical 

models and solution algorithms for a family of staff scheduling problems. The main objective is the 

minimization of the number of employees needed to perform all daily assignments in the horizon and 

is solved using a column generation approach. Concerning related personnel scheduling problems, 

Mehrotra, Murphy, and Trick (2000) present a branch-and-price technique for the tour staff scheduling 

problem. They devise and implement specialized branching rules suitable for solving the set covering 

type formulation implicitly using column generation. Gamache et al. (1999) discuss several interesting 

techniques in order to improve the performance of their branch-and-price algorithm for solving the 

related airline crew scheduling problem. Furthermore, Beliën and Demeulemeester (2006) develop a 

branch-and-price procedure for scheduling medical trainees to tasks. In Beliën and Demeulemeester 
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(2006) the authors compare different branching strategies, i.e., branching on the column variables, 

branching on the original variables and a problem-specific branching on precedence relations, and 

conclude the branching scheme on the timetable cells provides consistently the best results.  

 

The contribution of this paper to the nurse scheduling literature is twofold. Firstly, we propose a 

branch-and-price procedure for the nurse scheduling problem that is able to solve real-world problem 

instances exactly. The described nurse scheduling problem is very flexible in terms of objective 

function possibilities, nurses’ substitutability, case-specific time related constraints, nurse-specific 

characteristics and comprehends most characteristics encountered in practice. Secondly, different new 

and existing branching strategies, node reduction mechanisms, and speed-up techniques have been 

proposed and/or fine-tuned in order to give insights and improve the computational performance 

solving the nurse scheduling problem to optimality. We have tested the proposed procedure in a real-

world problem environment and investigated the sensitivity of the proposed optimization principles by 

varying systematically the problem characteristics. 

 

3 Solution procedure 

 

In order to solve the nurse scheduling problem properly, we decompose and reformulate the traditional 

nurse scheduling problem formulation using the assignment variables (Musa and Saxena, 1984) based 

on the Dantzig-Wolfe decomposition in order to generate tighter bounds. This reformulation gives rise 

to an integer master program with a large number of variables, i.e., columns, and a subproblem, which 

formulation defines the structure of a (feasible) column (Barnhart et al., 1998; Vanderbeck, 2000). The 

integer master program is dealt using an integer programming column generation procedure, i.e., 

branch-and-price, which solves the identified pricing problem to check the optimality of an LP 

solution and branches when the optimal LP solution does not satisfy the integrality conditions. In this 

section, we discuss the algorithmic details of the branch-and-price approach to solve the nurse 

scheduling problem. In the following, the pseudo-code for the branch-and-price procedure to solve the 

NSP is described. 

 

Algorithm B&P NSP 

 

 Initialize Restricted Master Problem 

 Construct Initial Heuristic Solution 

 

 While level >= 0  

  While LP optimal solution is not met (i.e. reduced cost < 0) 

   Column Generation Procedure 
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   [ Solve Restricted Master Problem 

    Get Dual Prices 

    Solve Pricing Problem 

    Apply Pruning Rule ] 

  End While  

   

  If LP optimal solution < Best found solution 

   If fractional 

    Apply Pruning Rule if possible 

    Apply Branching Strategy 

   Else 

    Save New Best found solution 

    Backtrack 

  Else Backtrack  

 End While 

 

The branch-and-price algorithm starts with a simple but efficient heuristic method producing good 

columns to initialize the restricted master problem, which considers only a subset of the schedules 

nurses can be assigned to (see section 3.1). Next, the algorithm aims to tighten this initial upper bound 

using a heuristic column generation procedure based on the linear programming relaxation of the 

master problem (see section 3.2). In order to obtain this LP relaxation of the master problem relaxing 

the integrality constraints, the search procedure will loop through the column generation procedure. 

The column generation procedure takes only a feasible subset of the schedules into consideration at 

each iteration and solves the restricted master problem ( ). This restricted master problem can be 

formulated as follows 

RMPz

 

Notation 

Problem size parameters 

N  set of regular nurses to be scheduled (index i) 

D  set of days in the planning horizon (index j) 

S  set of shifts adequately covering the demand periods (includes the free shift) 

(index k) 

 

Nurse parameters 

G  set of skill categories (index m) 

iF  set of feasible schedules for nurse i with respect to all hard case-specific time 

related constraints (index l ) 
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ilmjka  1 if schedule l for nurse i covers the required skill competency m of shift k on 

day j, 0 otherwise 
1
ijkp  penalty cost of assigning nurse i to shift k on day j, i.e., inverse to the nurse’s 

preference being scheduled to shift k on day j 
2
ilp  total penalty cost of schedule l violating the case-specific time related 

constraints expressing the preferences and contract stipulations of nurse i 
3
lp  total penalty cost of schedule l violating (soft) time related constraints as a 

result of the specific workplace conditions (i.e., the practices of the head 

nurse)  

ilc  total penalty cost of assigning nurse i to schedule l (i.e., 

) 321
lil

Gm Dj Sk
ijkilmjkil pppac ++= ∑∑∑

∈ ∈ ∈

 

Demand coverage parameters 

mjkR  required number of nurses of skill category m for shift k on day j  

u
rmjkc  penalty cost of understaffing skill competency m on shift k on day j with r 

extra nurses ( { }mjkRr ,...,1∈ ) 

o
qmjkc  penalty cost of overstaffing skill competency m on shift k on day j with q 

nurses ( { }mjkRNq −∈ ,...,1 ) 

u
rmjkn  1 if r  extra nurses are needed to satisfy the coverage requirements of skill 

competency m for shift k on day j 
o
qmjkn  1 if q  nurses are scheduled in surplus to perform skill category m for shift k 

on day j  

 

Decision variables 

ily    1 if nurse i is assigned to schedule l, 0 otherwise 

imjkx   1 if nurse i is assigned to shift k on day j requiring skill competency m, 

0 otherwise 
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Master Problem Formulation  

 

Min   [1] ∑∑∑ ∑∑∑∑∑∑∑
∈ ∈ ∈

−

=∈ ∈ ∈ =∈ ∈

++=
Gm Dj Sk

Rn

q

o
qmjkqmjko

Gm Dj Sk

R

r

u
rmjk

u
rmjk

Ni Fl
ililRMP

mjkmjk

i

ncncycz
1

,
1

 

s.t.    mjk

Rn

q

o
qmjk

R

r

u
rmjk

Ni Fl
ililmjk Rqnrnya

mjkmjk

i

=−+ ∑∑∑∑
−

==∈ ∈ 11
SkDjGm ∈∈∈∀ ,,   [2] 

∑
∈

=
iFl

ily 1      Ni∈∀    [3] 

∑∑
−

==

≤+
mjkmjk Rn

q

o
qmjk

R

r

u
rmjk nn

11

1    SkDjGm ∈∈∈∀ ,,   [4] 

 

The objective [1] of this master problem aims to minimize the weighted sum of penalty costs 

associated with the individual schedules the nurses are assigned to, the number of times the ward is 

confronted with a shortage of personnel, and the number of times too many nursing staff is assigned. 

The penalty costs of the latter two are postulated in a way under- and overstaffing is levelled over the 

planning horizon, i.e., penalty costs  and  increase exponentially with the deficient or 

excessive number of nurses. Constraint [2] indicates the required number of nurses for each skill 

category for each shift on each day. Moreover, formulating the coverage constraints as such allows the 

very flexible definition of substitutability between the nurses. To ensure mathematical feasibility, two 

slack variables  and  are associated with constraint [2] representing department under- or 

overstaffing respectively. Constraint [3] assigns each nurse to a schedule that is feasible to his or her 

specific time related constraints. Constraint [4] is a supporting constraint linearizing the master 

problem formulation. More specifically, this constraint determines that maximum one slack or surplus 

variable can be selected to deal with over- or understaffing. Given the problem structure, the slack 

variables are bounded, i.e., the slack variable modelling overstaffing can be at most the number of 

nurses minus the corresponding coverage requirements and the slack variable modelling understaffing 

can be at most the corresponding coverage requirements. 

u
rmjkc o

qmjkc

u
rmjkn o

qmjkn

 

Next, after solving the restricted master problem, the column generation procedure tries to identify 

new schedules to enter the basis and adds new schedules if necessary. Since adding a schedule (i.e., a 

column) can decrease the value of the linear programming solution only if the inserted column has 

negative reduced cost, we solve the pricing problem that aims to find a schedule with minimum 

reduced cost. The reduced cost of a new column l for nurse i is given by  
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321 )( lil
Gm

ilmjk
Dj Sk

ijkmjki
Gm

ilmjk
Dj Sk

mjkiilil ppapac ++−−−=−−= ∑∑∑∑∑∑
∈ ∈ ∈∈ ∈ ∈

πγπγμ  [7] 

 

with ilμ  reduced cost of column l for nurse i 

mjkπ  dual price of constraint [2] for skill competency m for shift k on day j  

iγ  dual price of constraint [3] for nurse i 

  

If this minimum value is nonnegative then the value of the linear programming solution will not 

decrease by considering other schedules that are not incorporated in the restricted master LP model. 

This implies that we have found the optimal solution of the linear programming relaxation ( . 

Some specific implementation issues of the column generation procedure are discussed in section 3.3. 

If the obtained upper bound is not the optimal solution or the LP relaxation of the master problem 

solved by column generation may does not have an integral optimal solution, we will apply a branch-

and-bound depth-first search in order to drive the search process to the optimal integer solution. 

Branching involves the partitioning of the solution space into disjoint subsets using a particular 

branching strategy such that the current fractional solution is excluded (see section 3.4). Applying a 

standard-branch-and-bound procedure to the master problem over the existing columns is unlikely to 

find an optimal, or even good, or even feasible solution to the original problem. Therefore, it is 

necessary to apply the column generation procedure and possibly generate additional columns at non-

root nodes of the branch and bound tree. At each node, the solution value of the master LP is a lower 

bound for the problem subject to the active branching constraints. If this lower bound exceeds an 

already found upper bound, the algorithm back-tracks. If the lower bound is lower than the current 

best found solution, the algorithm checks whether or not the solution contains fractional columns. If 

the LP solution is integer, the solution is feasible and thus can be saved as the current best found 

solution (UB). If the obtained LP solution is fractional, further branching is needed. If the node is not 

fathomed by a pruning rule (see section 3.5), the algorithm will re-enter the LP optimization loop in 

order to determine a new lower bound given the extra constraint(s). This process continues until 

backtracking leads back to the root node of the branch-and-bound tree (Barnhart et al., 1998; 

Vanderbeck, 2000).  

)LPz

 

3.1 Initialization of the Restricted Master Problem 

In order to speed up the convergence to the LP optimal solution of the initial column generation 

procedure, the algorithm generates high-quality individual nurse schedules for all nurses based on a 

well performing simple constructive heuristic instead of generating random columns. The constructive 

heuristic successively generates individual nurse schedules by scheduling the nurses in a random 

sequence. The identified subproblem is solved for each nurse taking both the nurse’s preferences and 
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the penalty costs associated with the coverage constraints and soft regulations into account. The 

individual nurse’s schedule is obtained by calculating the nurse’s shortest feasible path using a 

resource constrained shortest path algorithm (see section 3.2.1).  

 

3.2 Initial heuristic solution 

It is well-known that the availability of a good feasible start solution may reduce the size of the 

branch-and-bound tree considerably. According to Barnhart et al. (1998) and Gamache et al. (1999), a 

branch-and-price algorithm can be easily turned into an effective approximation algorithm. This is 

accomplished by branching and searching the tree in a greedy fashion using a depth first strategy. 

Hence, we aim to improve the initial best solution using a more knowledge-based heuristic based on 

the column generation procedure and the appropriate branching strategy on the original variables, 

which is described in section 3.4. The pseudo-code for obtaining this initial heuristic solution is 

described below.  

 

Construct Initial Heuristic Solution 

 While Heuristic Solution Not Found  

  Column Generation Procedure 

  Fix Positive Integer Assignment Variables 

  Fix Fractional Assignment Variable 

 End While 

 

Starting from the initial LP relaxation, we fix all original variables ( 1=imjkx ) for which the sum of 

the columns that cover the original assignment variable is one, i.e., if ∑
∈

=
iFl

ililmjk ya 1. Moreover, we 

fix an additional original fractional variable (i.e., ∑
∈

<<
iFl

ililmjk ya 10 ) to one based on the appropriate 

variable selection strategy (see section 3.4.2). Subsequently, the column generation procedure is 

invoked again to obtain the LP relaxation under the current shift assignment constraints. All additional 

integer positive variables are fixed and, again, a fractional variable is set to one. This process of 

progressively fixing the assignments in the individual schedules continues until a heuristic integer 

solution is obtained, i.e., ∑
∈

=
iFl

ililmjk ya 1 ( SkDjGmNi ∈∈∈∈∀ ,,, ).  

 

3.3 Column generation procedure 

3.3.1 Subproblem and pricing procedure 

The restricted master problem considers a subset of the columns and is solved using the simplex 

method. In order to obtain the LP relaxation, additional columns are generated as needed by solving 
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the pricing problem, i.e., the subproblem with appropriate dual information (Barnhart et al., 1998; 

Vanderbeck and Wolsey, 1996). The way of decomposing the original problem formulation leads to a 

subproblem that consists of generating a feasible individual nurse schedule. The scheduling of a single 

nurse over the complete scheduling horizon can typically be considered as a minimum cost flow 

problem on a suitably defined graph (Bard and Purnomo, 2005a). This problem assigns each day j 

( ) a single shift k ( ) to the nurse, which is denoted by the variables used in the traditional 

problem formulation of the nurse scheduling problem, i.e., . These variables are further referred 

to as the original variables. Moreover, the shift assignment needs to be conform to all (hard) case-

specific time related constraints satisfying the nurse’s preferences and contract stipulations (  and 

) and the (soft) regulations of the specific head nurse ( ) as much as possible. Each unit in a 

hospital may have a different set of hard and soft constraints leading to a different subproblem. 

Moreover, this subproblem will even differ from employee to employee since the specific nurse 

preferences, contract stipulations, work regulations, skill competencies, etc vary largely among the 

nursing staff. Hence, a singular subproblem and associated network is defined for each nurse. All 

nurses’ networks are acyclic having a source and a sink node representing the beginning and end of the 

scheduling period. In constructing nurses’ networks with multiple skill competencies, we duplicate the 

assignable working shifts by the number of skill competencies such that each shift node corresponds to 

one specific skill competency. This implies that the shift assignment assigns a nurse to a shift 

requiring a single specific skill competency and prevents a nurse can provide for multiple skills during 

a particular shift. The graph used for our algorithm consists of (|D| * (|S| – 1) * |G| + |D|) nodes 

representing the daily shift assignments for the nurse under study.  

Dj∈ Sk ∈

imjkx

1
ijkp

2
ilp 3

lp

This pricing problem, i.e., the identified subproblem, is a resource constrained shortest path problem 

(Jaumard, Semet, and Vovor, 1998), which defines the generated paths to be feasible with respect to 

different resource constraints and the path structural constraints. Resource constraints can be 

formulated by means of (minimal) resource consumptions and resource intervals (or resource 

windows) (e.g., minimal number of working hours). Path structural constraints can model further 

requirements concerning the feasibility of paths, which are not covered by resources. Such additional 

requirements might either be an integral part of a feasible path’s definition (e.g., complete weekends, 

11hrs rest between two working shifts) or be implied by branching rules which come up in the context 

of branch-and-price and require modifications of the pricing problem. On acyclic graphs, the resource 

constrained shortest path has been identified to be NP-hard. In nurse scheduling literature, different 

(pseudo-polynomial) methodologies for solving the resource constrained shortest path problem have 

been applied. Bard and Purnomo (2005a) use a swapping heuristic to generate new individual nurse 

schedules. Beliën and Demeulemeester (2005) rely on a dynamic programming approach whereas 
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Jaumard, Semet, and Vovor (1998) propose a dedicated pseudo-polynomial two-phase algorithm to 

solve the resource constrained shortest path problem.  

 

The pricing problem defined above finds the column with the lowest reduced cost. Therefore, if a 

column with negative reduced cost exists, the column generation will always identify a candidate 

column. This guarantees that the optimal solution to the linear program will be found. However, this 

may be computationally prohibitive. Fortunately for the column generation scheme to work, it is not 

necessary to always select the column with the lowest reduced cost, any column with a negative 

reduced cost will do. In our procedure a two phase approach is implemented. In the first phase, the 

procedure tries to generate heuristically columns with negative reduced cost. As in Sol and 

Savelsbergh (1994) several existing columns with a reduced cost close to zero are selected and employ 

fast local improvement algorithms to construct columns with a negative reduced cost. More precisely, 

the heuristic pricing phase exploits the single-shift day neighbourhood and the greedy shuffling 

neighbourhood described in Burke et al. (2003) to alter the selected columns to columns with negative 

reduced cost as best as possible. In case of failure, the procedure switchs to the second phase where 

the column with the lowest reduced cost is obtained by a recursive dynamic programming approach 

(Caprara, Monaci, and Toth, 2003). The optimization algorithm proves optimality or generates an 

additional column with negative reduced cost. If this pricing procedure finds a negative reduced cost 

column during the heuristic pricing phase and hence does not enter the optimal pricing phase, the 

Lagrangean lower bound (see section 3.3.2) cannot be used because the pricing problem has not been 

solved to optimality. 

 

3.3.2 Lagrangean dual pruning 

Lagrangean relaxation can typically be exploited within the framework of a column generation 

procedure, not only to alleviate the “tailing-off effect” to terminate the column generation method 

sooner but also to speed up the pricing algorithm. When searching for an integer optimal solution (and, 

hence, an integer objective function value), Vanderbeck and Wolsey (1996) describe a bound on the 

final LP value based on the LP value of the restricted master problem and the current reduced costs. 

Lagrangean relaxation gives a lower bound in each iteration of the column generation process, which 

needs to be compared to an upper bound on the optimal solution value to check if a node in the 

branch-and-price tree can be fathomed without any risk of missing the optimum. Hence, the column 

generation algorithm can be stopped earlier by proving the optimality of the current best solution if the 

Lagrangean relaxation is higher than the current best solution (UB) minus one (Barnhart et al., 1998; 

Van den Akker, Hoogeveen and Van de Velde, 2002), i.e., 

1−>−∑
∈

UBz
Ni

iRMP μ         [8] 
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Moreover, the Lagrangean lower bound can also be applied to determine if the column generation 

algorithm has converged to the optimal solution value, i.e.,  

⎣ RMP
Ni

iRMP zz ∑
∈

>− μ ⎦          [9] 

 

3.3.3 Upper bound pruning for the pricing problem 

This bound prevents the algorithm from generating additional columns for a particular nurse by 

exploring the possibility of finding a column with negative reduced cost (Beliën and Demeulemeester, 

2005). For calculating a lower bound for the pricing problem, we relax the problem formulation of the 

subproblem by removing all constraints but the path structural constraints and calculate the shortest 

path over the defined network. No columns need to be generated for the nurse solving the integral 

subproblem whenever this lower bound exceeds the upper bound for the pricing problem. A column 

with a reduced cost of zero can be seen as an upper bound for the pricing problem. Moreover, out of 

[7] the upper bound for this relaxed subproblem can be set equal to the dual price of the constraint 

associated with the nurse under study (i.e., iγ ).  

 

3.3.4 Partial Column Generation 

The pricing step in personnel scheduling branch-and-price procedures is traditionally computationally 

intensive. Since the subproblems for different nurses use the same dual information the procedure 

tends to produce schedules covering the same shifts. In order to accelerate the procedure, only a small 

group of subproblems is solved at each iteration rather than all subproblems for all nurses (Gamache et 

al., 1999). As the iterations progress, it becomes increasingly difficult to find a column with negative 

reduced cost. Therefore, more and more subproblems are solved until, ultimately, all subproblems 

need to be solved.  

 

3.4 Branching strategy 

One difficulty in using column generation to solve integer programs is the development of efficient 

branching rules to ensure integrality. A common branching rule that is appropriate for the master 

problem, i.e., 0/1 branching on the column variables, is not applicable for the restricted master 

problem where the columns are generated by implicit techniques. Hence, fixing or bounding a variable 

of the master is not effective since fixing column variables may destroy the structure of the pricing 

problem and leads to an unbalanced branch-and-bound tree (Barnhart et al., 1998). In general, this 

approach comes down to determining the kth best solution to the column generation subproblem at the 

kth level in the branch-and-bound tree, which is much harder than solving the most enterable column.  

In the following, we indicate how the proposed branch-and-price procedure branches to integrality 

using two different branching methodologies, i.e., branching on the original variables and branching 

on the residual problem. The combination of these two branching methodologies results in effective 

 15



branches and pseudo branches. If the algorithm fails to find the optimum because it focused on the 

wrong residual problem at a node and its offspring of the search tree, it can backtrack on the branch 

that defines this residual problem, thereby creating an effective branching on an original fractional 

variable. In figure 1 we illustrated the different branching methodologies on an example problem 

instance where 5 nurses need to be scheduled over a period of 3 days and 4 shifts (early shift (s1), late 

shift (s2), night shift (s3), and free shift (s4)) requiring all the same skill competency. The matrices 

display the values of the original variables (i.e., ∑
∈ iFl

ililmjk ya , SkDjGmNi ∈∈∈∈∀ ,,, ). 

 
Branching on the residual problem

Branching on the original variables
0/1 branching 1/2/…/|S| branching Constraint branching

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 1 0 0 0 1 0 0 0 0 0 1 0

Nurse 2 0 0,5 0,5 0 0 0 0 1 0,5 0,5 0 0

Nurse 3 0 0 0 1 0,4 0 0,6 0 0 0 0,6 0,4

Nurse 4 0 1 0 0 0 1 0 0 0 0,5 0 0,5

Nurse 5 0 0 0,5 0,5 0,5 0 0,5 0 0,5 0 0,5 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 1 0 0 0 1 0 0 0 0 0 1 0

Nurse 2 0 0,5 0,5 0 0 0 0 1 0,5 0,5 0 0

Nurse 3 0 0 0 1 0,4 0 0,6 0 0 0 0,6 0,4

Nurse 4 0 1 0 0 0 1 0 0 0 0,5 0 0,5

Nurse 5 0 0 0,5 0,5 0,5 0 0,5 0 0,5 0 0,5 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 1 0 0 0 1 0 0 0 0 0 1 0

Nurse 2 0 0,5 0,5 0 0 0 0 1 0,5 0,5 0 0

Nurse 3 0 0 0 1 0,4 0 0,6 0 0 0 0,6 0,4

Nurse 4 0 1 0 0 0 1 0 0 0 0,5 0 0,5

Nurse 5 0 0 0,5 0,5 0,5 0 0,5 0 0,5 0 0,5 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

Integer Nurse Schedule

Fractional Nurse Schedules

Branching on the Original Variables

Fix Integer Nurse Schedules

Branching on the Original Variables

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 0,5 0,5 0 0 0,5 0 0,5 0 0 0 1 0

Nurse 2 0 0,5 0,5 0 0 0 0 1 0,5 0,5 0 0

Nurse 3 0,4 0 0,6 1 0,4 0 0,6 0 0,4 0 0 0,6

Nurse 4 0 1 0 0 0 1 0 0 0 0,5 0 0,5

Nurse 5 0,5 0 0 0,5 0,5 0,5 0 0 0,5 0 0,5 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 0 1 0 0 0 0,5 0 0,5 0 0 0,5 0,5

Nurse 2 0,5 0 0,5 0 0,5 0 0,5 0 0,5 0 0 0,5

Nurse 3 1 0 0 0 0,5 0,5 0 0 0,5 0,5 0 0

Nurse 4 0 0 0,5 0,5 0 0 0 1 0 0,5 0,5 0

Nurse 5 0 1 0 0 0 0 1 0 0 0 1 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 1 0 0 0 1 0 0 0 0 0 1 0

Nurse 2 0 0,5 0,5 0 0 0 0 1 0,5 0,5 0 0

Nurse 3 0 0 0 1 0,4 0 0,6 0 0 0 0,6 0,4

Nurse 4 0 1 0 0 0 1 0 0 0 0,5 0 0,5

Nurse 5 0 0 0,5 0,5 0,5 0 0,5 0 0,5 0 0,5 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

 0=im jkx  1=imjkx

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 0 1 0 0 0 0,5 0 0,5 0 0 0,5 0,5

Nurse 2 0,5 0 0,5 0 0 ,5 0 0,5 0 0,5 0 0 0,5

Nurse 3 1 0 0 0 0 ,5 0,5 0 0 0,5 0,5 0 0

Nurse 4 0 0 0,5 0,5 0 0 0 1 0 0,5 0,5 0

Nurse 5 0 1 0 0 0 0 1 0 0 0 1 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 0 0,5 0 0,5 0,5 0 0 0,5 0,5 0 0 0,5

Nurse 2 0 1 0 0 0 0,5 0,5 0 0 0,5 0,5 0

Nurse 3 0 0,5 0,5 0 0 0,5 0 0,5 0 0 0,5 0,5

Nurse 4 0,5 0 0,5 0 0,5 0 0,5 0 0 0 0,5 0,5

Nurse 5 0,5 0 0 0,5 1 0 0 0 0,5 0,5 0 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 0 0,5 0 0,5 0 0,5 0 0,5 0 0 0 1

Nurse 2 0,6 0 0 0,4 1 0 0 0 0,4 0,6 0 0

Nurse 3 0,5 0,5 0 0 0,5 0 0,5 0 0,5 0 0,5 0

Nurse 4 0 0 1 0 0 0 0,5 0,5 0 0 0,5 0,5

Nurse 5 0 1 0 0 0 1 0 0 0 1 0 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 0,5 0,5 0 0 0,5 0 0 0,5 1 0 0 0

Nurse 2 0 0 0,5 0,5 0 0 1 0 0 0 0,5 0,5

Nurse 3 0,6 0,4 0 0 0 1 0 0 0 0,6 0 1

Nurse 4 0,5 0,5 0 0 0,5 0,5 0 0 0 0 0 1

Nurse 5 0 0 0,5 0,5 0 0 0 1 0 0,5 0,5 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 1 0 0 0 1 0 0 0 0 0 1 0

Nurse 2 0 0,5 0,5 0 0 0 0 1 0,5 0,5 0 0

Nurse 3 0 0 0 1 0,4 0 0,6 0 0 0 0,6 0,4

Nurse 4 0 1 0 0 0 1 0 0 0 0,5 0 0,5

Nurse 5 0 0 0,5 0,5 0,5 0 0,5 0 0,5 0 0,5 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

 11 =im jx

 12 =imjx  13 =imjx

 14 =imjx

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 1 0 0 0 1 0 0 0 0 0 1 0

Nurse 2 0 0,5 0,5 0 0 0 0 1 0,5 0,5 0 0

Nurse 3 0 0 0 1 0,4 0 0,6 0 0 0 0,6 0,4

Nurse 4 0 1 0 0 0 1 0 0 0 0 1 0

Nurse 5 0 0 1 0 0 0 1 0 0 0 0,5 0,5

Current 
Fractional 

schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 0,5 0,5 0 0 0,5 0 0,5 0 0 0 1 0

Nurse 2 0 0,5 0,5 0 0 0 0 1 0,5 0,5 0 0

Nurse 3 0,4 0 0,6 1 0,4 0 0,6 0 0,4 0 0 0 ,6

Nurse 4 0 1 0 0 0 1 0 0 0 0,5 0 0 ,5

Nurse 5 0,5 0 0 0,5 0,5 0,5 0 0 0,5 0 0,5 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 1 0 0 0 1 0 0 0 0 0 1 0

Nurse 2 0 0,5 0,5 0 0 0 0 1 0,5 0,5 0 0

Nurse 3 0 0 0 1 0,4 0 0,6 0 0 0 0,6 0,4

Nurse 4 0 1 0 0 0 1 0 0 0 0,5 0 0,5

Nurse 5 0 0 0,5 0,5 0,5 0 0,5 0 0,5 0 0,5 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

 2)1( =+∑
∈

− im jk
Hm

kjim xx
i

 2)1( =+ ∑
∈

+

iHm
kjimimjk xx 0=im jkx

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 0,5 0,5 0 0 0,5 0,5 0 0 0 0 1 0

Nurse 2 0,4 0 0 0,6 0,4 0 0 1 0,5 0,5 0 0

Nurse 3 0 0,5 0 0,5 0 1 0 0 0 0,5 0 0,5

Nurse 4 1 0 0 0 0,5 0,5 0 0 0,5 0,5 0 0

Nurse 5 0 0 1 0 0 0 1 0 0 0 1 0

Current 
Fractional 
schedule

Day 1 Day 2 Day 3

Figure 1. Different branching methodologies for the nurse scheduling problem 

 

3.4.1 Branching on the residual problem 

Before selecting an original fractional variable to branch on, we can first focus on the residual 

problem. The residual problem is the problem that remains after retaining the integer individual nurse 

schedules and is comprised of the nurses with fractional nurse schedules who are required to provide 

for the residual required coverage. In other words, two branches are created where the one branch 

fixes the integer individual nurse schedules and the second branch does not and applies one of the 

effective branching strategies proposed in section 3.4.2 on the created branches. This branching 

methodology strongly reduces the search space, accelerating the finding of integer nurse schedules. 
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3.4.2 Branching on the original variables 

As the proposed optimization problem is inherently a set partitioning model, Ryan and Foster (1981) 

suggested a more suitable branching strategy intrinsically based on the original variables (Barnhart et 

al., 1998). Moreover, they pointed out whenever the LP solution of a 0-1 restricted master problem is 

fractional, it is always possible to find a pair of fractional original variables to initiate a new branch. 

Personnel scheduling literature has shown that such branching strategies fixing the original variables 

are compatible with the pricing problem. The optimal configuration of schedules will be constructed 

by progressively fixing the assignments in the individual schedules. Whenever a fractional variable is 

detected, the branching on the original variables can basically be performed using different strategies, 

i.e.,  

- The first possible strategy (i.e., 0/1 branching) determines the obligate assignment of a nurse to a 

particular shift requiring a specific skill competency on a particular day ( ) or explicitly 

prohibits the specific assignment (

1=imjkx

0=imjkx ). This branching strategy is often applied in personnel 

scheduling literature (e.g., Jaumard, Semet, and Vovor, 1998; Mehrotra, Murphy, and Trick, 2000; 

Beliën and Demeulemeester, 2005, 2006).  

- In a second branching strategy (i.e., 1/2/…/|S| branching) we construct as many branches in each 

node as the number of working shifts multiplied by the number of skill competencies compatible with 

the nurse’s abilities plus one for the rest period. In each of these branches, we explicitly assign the 

nurse to a shift on a particular day performing a particular skill or to the rest period 

( ; ). 1=imjkx GmSk ∈∈∀ ,

- As a third branching strategy (i.e., Constraint branching) we implement a constraint based branching 

rule. More precisely, the branching strategy is based on a very common constraint in practice 

advocating the quality of care, i.e., the constraint ‘minimal consecutive working days of the same shift 

type’. This constraint typically hinders frequent schedule changes and advocates the continuity of care 

(Fitzpatrick, Farrell, and Richter-Zeunik, 1987; Haggerty et al., 2003). When a fractional variable is 

detected, the number of branches to be created is equal to the number of combinations the detected 

variable as part of the minimal consecutive shift pattern is assigned to the nurse and the branch 

prohibiting the assignment of the nurse to that shift (e.g., when the minimal consecutive working days 

is 2 for the detected fractional variable for shift type k, three branches can be created, i.e., 

, , and 2)1( =+∑
∈

− imjk
Gm

kjim xx 2)1( =+ ∑
∈

+
Gm

kjimimjk xx 0=imjkx ). When the constraint ‘minimal 

consecutive working days of the same shift type’ is 1 for the particular shift type, this branching 

scheme is identical to the 0/1 branching scheme on the original variables. Neighboring branching 

strategies, referred to as branch-on-follow-on strategies, are already explored by Falkner and Ryan 
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(1987) and Vance et al. (1997) for the bus driver scheduling problem and the airline crew pairing 

problem respectively.  

 

Apart from these three branching strategies, the branching variable can be selected in several ways. In 

our first variable selection strategy (i.e., ‘Most fractional variable’), the fractional variable with 

its fractional part closest to 0.5 is chosen. In case of ties, the variable with the smallest nurse penalty 

cost  is selected. The second variable selection strategy (i.e., ‘Worst assignment’), the algorithms 

selects the fractional variable that is worst in terms of objective function value relative to the nurse’s 

best shift assignment that day. In case of ties the variable with its value closest to 0.5 is selected. The 

third variable selection strategy (i.e., ‘Variable close to one’) selects the fractional variable  

closest to 1. In case of ties, the variable with the smallest nurse penalty cost  is selected. 

imjkx

1
ijkp

imjkx

1
ijkp

 

3.5 Subset dominance rule 

In order to further prune certain nodes of the branch-and-bound tree we have implemented the so-

called subset dominance rule of De Reyck and Herroelen (1998). This dominance rule can be applied 

when the set of branching constraints of a previously examined node in the tree is a subset of the set of 

branching constraints in the current node. Obviously, this dominance rule can only occur when 

branching on the residual subproblem.  

 

4 Computational Results 

 

In order to test the performance of the branch-and-price procedure, we carried out a case study in a 

ward of a Belgian hospital and validated our algorithm on a set of artificially generated problem 

instances of the NSPLib dataset of Vanhoucke and Maenhout (2005a) integrating the characteristics of 

the real-life problem environment. In the ward, the head nurse constructs each month a nurse roster 

starting from an empty roster, which implies that the scheduling process is acyclically organized. In 

order to guarantee the quality of the constructed individual schedules, this process is influenced by the 

(real-life) characteristics of the available nurses (e.g., incidental scheduling preferences, nurse 

competencies) and guided by a set of (hard) case-specific time related ward rules displayed in table 1, 

which prevail in the computational experiments. In order to solve instances under varying assumptions 

and circumstances (i.e., roster construction for another month (e.g., other nurse preferences, other 

minimal coverage requirements)) and verify the robustness of the different proposed solution 

approaches, we downloaded a subset of nurse scheduling problem instances of the NSPLib dataset 

from www.projectmanagement.ugent.be/nsp.php, i.e, the N30 subset where 30 nurses need to be 

scheduled over a period of 28 days (one month) and three working shifts and a free shift. These files 
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are artificially generated based on a set of complexity indicators for the nurse scheduling problem. 

More precisely, the nurse preferences working shift k on day j and coverage requirement information 

have been generated under a controlled design based on six indicators presented in Vanhoucke and 

Maenhout (2005b) resulting in 96 complexity classes containing each 10 instances. We have randomly 

selected 1 instance from each complexity class and extended them with the set of hard case-specific 

time related constraints displayed in table 1 imposed by the ward. Furthermore, individual sequence-

dependent nurse preferences are defined for each nurse. We test, without loss of generality, our 

procedure with all nurses as full-time personnel having a single skill competency.  

 

Minimum Maximum
- -
- -

144 180
20 20
2 5
2 5
2 5
2 5
1 2
2 2

(*) This data is obtained by interviewing the head nurse of the ward involved in the study.

Parameters

A rest of 11 hours between working shifts needs to be respected
Maximal one assignment per day

  Description

Number of free days after series of night shifts
Consecutive number of rest periods

Consecutive number of assigned late shifts
Consecutive number of assigned night shifts

Consecutive number of assigned early shifts
Consecutive number of working days

Number of Working hours
Number of Working days

T

able 1. Work regulations of full-time nursing personnel 

 

The coverage penalties have been defined as exponentially increasing penalties as follows, i.e., the 

penalty cost  for encountering a staff shortage of one workforce is 100, of two workforces is 200, 

etc. which is multiplied by the number of nurses in shortage. Hence, for one workforce short a penalty 

of 100 is accounted in the objective function, for two nurses 400 is accounted, for three 900, etc. The 

penalty cost  for encountering a staff surplus of one workforce is 5, of two workforces is 10, etc. 

multiplied with the excess number of nurses.  

u
rmjkc

o
qmjkc

 

In this section, we give insight in the computational performance tested on the aforementioned 96 

problem instances analyzing different aspects of the branch-and-price procedure. In section 4.1, we 

compare the performance of the branching schemes proposed in section 3.4 for the nurse scheduling 

problem. In section 4.2, we analyze the impact of the proposed strategies limiting the size of the 

branch-and-bound tree, i.e., the initial heuristic upper bound of section 3.2 and the pruning rule 

indicated in section 3.5. In section 4.3, we test the impact and relevance of the different speed-up 
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techniques from sections 3.1, 3.3.1, 3.3.2, 3.3.3, and 3.3.4 for the nurse scheduling problem. All tests 

were carried out on a Dell computer with a Dual Core processor 2.8 Ghz and 2 Gb RAM. The 

procedure has been linked with the industrial LINDO optimization library version 5.3 (Schrage, 1995). 

 

In the remainder, we report the results on all our tests using  

- parameters describing the search for the LP relaxation of the master problem at the root node 

(index LP),  

- parameters describing the search for the knowledge-based heuristic upper bound at the root 

node (index UB),  

- parameters describing the search for the IP solution (index IP), and  

- parameters providing global information (no index) 

with the following symbols, i.e.,  

 

# iter   number of column generation iterations  

# columns  number of columns generated  

CPUMP    required CPU time to solve the master problem  

CPUSP    required CPU time to solve the subproblem 

CPU    total required time to solve the linear relaxation  

# nodeseffective   number of effective branching nodes  

# nodestotal   total number of nodes  

% optimal percentage of solutions whose optimal solution is obtained within a time limit 

of 3600s 

 

4.1 Performance analysis of different branching strategies for the NSP 

In this section we compare the eighteen different branching strategies comprising the three variable 

selection strategies (‘Most fractional variable’, ‘Worst assignment’, and ‘Variable closest to one’), the 

possible pseudo-branching on the residual problem (‘Branching on the residual problem’ and ‘Without 

branching on the residual problem’), and the three effective branching strategies on the original 

variables (‘0/1 branching’, ‘1/2/…/ S  branching’, and ‘Constraint branching’). Table 2 reports the 

best found results for our branch-and-price procedure for the different branching strategies 

incorporating all features exposed in section 3. 
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Effective branching strategy
Pseudo branching strategy
Branching selection strategy (*) (1) (2) (3) (1) (2) (3)
  # columnsIP 895.96 490.01 387.12 857.67 553.04 437.69
  % optimalIP 96.88% 100.00% 92.31% 92.71% 100.00% 96.71%
  CPUMP 79.22 46.44 25.21 128.75 72.30 60.42
  CPUSP 469.69 347.98 442.63 433.12 353.14 403.84
  CPU 548.91 394.42 467.84 561.87 425.44 464.27
Effective branching strategy
Pseudo branching strategy
Branching selection strategy (*) (1) (2) (3) (1) (2) (3)
  # columnsIP 1887.85 1626.08 2224.08 1747.98 1116.15 1012.35
  % optimalIP 88.54% 92.71% 53.85% 88.54% 92.71% 73.96%
  CPUMP 51.42 48.04 44.10 202.64 145.19 145.98
  CPUSP 643.23 599.12 1324.77 429.99 465.35 738.30
  CPU 694.65 647.16 1368.86 632.63 610.54 884.28
Effective branching strategy
Pseudo branching strategy
Branching selection strategy (*) (1) (2) (3) (1) (2) (3)
  # columnsIP 1584.46 1716.47 999.62 677.04 1224.69 320.19
  % optimalIP 92.71% 84.38% 80.77% 92.71% 88.54% 92.71%
  CPUMP 41.56 47.73 30.24 239.72 229.69 123.08
  CPUSP 555.42 636.50 755.31 384.10 555.10 284.90
  CPU 596.98 684.24 785.55 623.82 784.78 407.98
(*) The branching selection strategy is performed by the 'Most fractional variable' (1), 'Worst assignment' (2), or 'Variable close to one' (3).

Constraint branching

Without branching on the residual problemBranching on the residual problem

Branching on the residual problem Without branching on the residual problem

0/1 branching
Branching on the residual problem Without branching on the residual problem

1/2/…/|S| branching

Table 2. Performance of the different branching strategies  

 

The table reveals that combining the branching on the residual problem and the 0/1 effective branching 

strategy that selects the worst fractional assignment outperforms all other strategies, both in terms of 

the percentage of problems solved to optimality and the required CPU time. For the 0/1 branching 

strategy and the 1/2/…/|S| branching strategy, the selection strategy on the worst fractional assignment 

outperforms both other variable selection strategies. The strategy that selects the fractional variable 

closest to one performs consistently well for the constraint branching strategy, which confirms the 

findings of Vance et al. (1997). In general, the 0/1 branching strategy performs better than the other 

two effective branching strategies. Finally, the inclusion of the branching strategy on the residual 

problem is beneficial over the direct branching on the original variables without the creation of pseudo 

branches except for the branching strategy creating as many branches as the possible number of 

assignments and the constraint branching strategy selecting the variable closest to one. Branching on 

the residual problem typically requires less time for solving the master problem since a fraction of the 

nurses have their schedules fixed.  

 

4.2 Assessment of node pruning strategies 

In this section we analyze the contribution of the pruning rule of section 3.5 with and without the use 

of the initial heuristic solution approach of section 3.2. In table 3 we only display results for the 

branching strategy combining the branching on the residual problem and the 0/1 branching selecting 

the worst fractional assignment since this strategy outperforms all other branching schemes (see table 

2).  
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  # nodeseffective 18.35 12.85
  # nodestotal 24.42 18.92
  CPUIP 543.29 394.42
  % optimalIP 93.75% 100.00%
  # nodeseffective 29.00 17.69
  # nodestotal 39.58 24.58
  CPUIP 1027.26 709.30
  % optimalIP 84.38% 92.71%

 UB Search     
(see section 3.2)

Without       
UB Search

No pruning rules Subset Dominance Rule    
(see section 3.5.2)

 
Table 3. Performance of the different pruning strategies  

 

Table 3 reveals the beneficial effect of incorporating the initial heuristic solution in the branch-and-

price procedure in terms of all displayed parameters. The solution quality provided by this heuristic is 

much better than the solution quality of the constructive heuristic (see section 3.1) providing a much 

tighter bound during the search for the IP solution. Incorporating the pruning rule leads to more 

solutions solved to optimality within the time limit and requires significantly less CPU time and fewer 

nodes in the tree.  

 

4.3 Incorporation of different speed-up techniques 

Table 4 shows the contribution of the various speed-up techniques of sections 3.1 and 3.3 for the best 

performing procedure identified in section 4.1.  
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(section 3.1) (section 3.3.1) (section 3.3.2) (section 3.3.3) (section 3.3.4)
LP search
  # iterLP 22.69 19.35 22.50 21.19 22.69 44.58 27.92
  # columnsLP 680.77 580.38 675.00 635.77 678.65 494.85 470.31
  CPULP,MP 5.62 2.50 5.33 5.01 5.61 7.39 5.93
  CPULP,SP 171.94 147.79 147.53 149.48 175.08 143.31 138.73
  CPULP 177.57 150.29 152.85 154.49 180.69 150.69 144.66
UB search
  # iterUB 9.65 11.58 9.65 9.31 9.65 12.85 11.23
  # columnsUB 289.62 347.31 295.38 279.23 120.73 372.27 110.12
  CPUUB,MP 0.10 0.09 0.10 0.07 0.11 0.10 0.10
  CPUUB,SP 10.10 10.94 11.12 8.32 8.48 12.19 8.59
  CPUUB 10.20 11.04 11.22 8.39 8.58 12.29 8.68
IP search
  # iterIP 77.46 92.04 79.19 69.31 77.46 118.62 90.50
  # columnsIP 916.22 978.46 909.98 541.82 899.23 845.77 490.01
  CPUIP,MP 19.55 23.78 22.58 17.57 19.55 59.83 40.41
  CPUIP,SP 374.72 382.04 370.18 235.41 364.81 341.33 200.66
  CPUIP 394.26 405.81 392.75 252.98 384.35 401.16 241.07
  % optimalIP 91.67% 92.71% 93.75% 96.88% 91.67% 92.71% 100.00%
Global information
  CPUMP 25.27 26.37 28.00 22.64 25.27 67.32 46.44
  CPUSP 556.76 540.77 528.82 393.22 548.36 496.83 347.98
  CPU 582.03 567.14 556.83 415.86 573.63 564.15 394.42

Combined 
speed-up

Subproblem 
pruning Partial CGWithout speed-

up
Constructive 

heuristic
2 phased 
pricing

Lagrange dual 
pruningSpeed-up techniques

 
Table 4. Effects of the different speed-up techniques 

 

In the following, we compare the results of each specific speed-up technique with the results of the 

base case, i.e., ‘Without speed-up’.  

The gain of implementing the constructive heuristic (see section 3.1) lies especially in the search for 

the LP relaxation of the different problem instances. The procedure needs fewer iterations and, hence, 

has to solve fewer subproblems to obtain the LP relaxation. The beneficial effect on the total needed 

CPU time can be entirely attributed to the time savings in the search for the LP relaxation. No effect 

(or even a small negative effect) can be observed in the search to the initial heuristic and the optimal 

solution.  

The effect of employing the two phase pricing method (see section 3.3.1) can be mainly encountered 

in the search for the LP relaxation and the search for the optimal solution. In both steps, less time is 

needed to solve the pricing step although nearly the same amount of columns needs to be generated in 

the base case. Moreover, fewer iterations are needed of the column generation procedure to obtain the 

LP relaxation. Hence, selecting “good” columns speeds up the convergence of the column generation 

loop. The effect of the speed-up technique cannot be found back in the search for the initial heuristic 

solution due to the many 0/1 constraints on the individual nurse schedules causing the heuristic 

neighbourhoods to perform badly.  

The Lagrangean dual pruning (see section 3.3.2) tails off the column generation loops which can be 

detected in all stages of the search. Fewer iterations are needed to obtain the LP relaxation in each 
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node, which leads to a smaller number of columns to be generated. A huge reduction in CPU time can 

be detected for both the master problem and the subproblem. 

The effect of the upper bound pruning for the pricing problem (see section 3.3.3) can mainly be 

observed in the search for the initial heuristic where a far higher amount of subproblems can be pruned 

compared to the other stages (i.e., ‘IP Search’ and ‘LP Search’). In this stage, a single nurse’s network 

is heavily constrained, which implies that the optimal solution of the relaxed problem deviates only 

little from the individual nurse’s schedule obtained by solving the pricing problem. However, the time 

savings are limited since the time to solve the constrained nurse’s network optimally using the pricing 

procedure is relatively small. The performance of this upper bound is typically strongly dependent on 

the case-specific time related constraints that need to be incorporated in a nurse’s network. The less 

resource constraints the better the pruning rule. 

Implementing partial column generation (see section 3.3.4) leads to a higher number of master 

problem iterations, which causes the higher CPU time to solve the master problem in each stage of the 

search. However, this speed-up technique reduces drastically the number of subproblems needed to be 

solved especially in the search for the LP relaxation. Overall, this method has a positive effect on the 

required CPU time. 

All described effects have a positive effect on the required CPU time. However, due to interactions 

between these speed-up techniques (e.g., Lagrangean dual pruning and two phase pricing) the total 

time gain is less than the sum of the time savings of all these stand-alone speed-up techniques as can 

be observed in the column ‘Combined speed-up’.  

 

6 Conclusion 

 

In this paper an exact branch-and-price procedure has been proposed for the mid-term nurse 

scheduling problem, i.e., assigning nurses to shifts in order to maximize the quality of the constructed 

roster, satisfying the hospital objectives and meeting the legal, union, hospital, and personal 

constraints imposed on the nurses’ individual schedules. The proposed objective function aims to 

minimize the weighted sum of penalty costs associated with the individual schedules the nurses are 

assigned to and with over- and understaffing the ward during a particular shift on a particular day. The 

latter are formulated in such a way the staff shortages and the staff abundances are levelled over the 

time horizon. The described nurse scheduling problem is very flexible in terms of objective function 

possibilities, nurses’ substitutability, case-specific time related constraints, and comprehends many 

real-world problem characteristics. Different branching strategies and node reduction mechanisms 

have been proposed and fine-tuned in order to improve the computational performance solving the 

nurse scheduling problem to optimality. Our computational results indicate that combining the 0/1 

branching strategy selecting the worst fractional assignment with the branching strategy fixing the 

integer nurse schedules performs particularly well. Moreover, we have shown how the size of the 
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branch-and-bound tree can be reduced considerably using different pruning techniques. We have also 

demonstrated the benefits of several speed-up techniques proposed in literature on the nurse 

scheduling problem in particular. We have tested all these theoretical principles on the problem 

structure of a ward in a Belgian hospital. Moreover, we have also investigated the sensitivity of the 

proposed optimization principles by varying systematically the problem characteristics in a controlled 

way testing the proposed procedure on an artificially generated dataset NSPLib. 

 

As for future research, we have the intention to compare the obtained results for the case study with 

the procedure at hand with the results obtained by various commercial software packages, which 

typically thrive on heuristic procedures. In this way, we could benchmark various software packages 

in terms of computational performance whereas the packages now are mainly evaluated on their 

functionalities and compatibility with other hospital information systems. Furthermore, the dynamic 

nature of the demand for nursing services, coupled with absenteeism, personal days, and emergencies 

raises the need for constructing more robust rosters. Instead of adjusting and rescheduling the planned 

mid-term roster frequently during the course of the planned month, we aim to incorporate a part of this 

uncertainty upfront while constructing the mid-term nurse roster. In this way, we want to reduce the 

probability more costly options are needed in order to overcome staff shortages.  
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