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ABSTRACT 

 
 

Abstract. Time/cost trade-offs have been extensively studied in the literature since the development of the 
critical path method. Recently, the discrete version of the problem formulation has been extended to various 
practical assumptions, and solved with both exact and heuristic optimization procedures. In this paper, we 
present a electromagnetic meta-heuristic (EM) algorithm for the discrete time/cost trade-off problem under 
four different assumptions. We extend the standard electromagnetic meta-heuristic with problem specific 
features and investigate the influence of various EM specific parameters on the solution quality. We test the 
new meta-heuristic on a benchmark set from the literature and present extensive computational results. 
 
Keywords: discrete time/cost trade-off problem; work continuity; time/switch constraints; net present 

value; electromagnetism 

 

1 Introduction 

 

Time/cost trade-offs in projects have been the subject of research since the development of the critical path 

method, and has led to problem descriptions under various assumptions. While the early endeavours mainly 

focused on a linear non-increasing relation between activity duration and cost (Kelley and Walker (1959), 

Fulkerson (1961), Kelley (1961), Ford and Fulkerson (1962), Siemens (1971) and Elmaghraby and Salem 

(1984)), researchers gradually extended this basic problem type to concave (Falk and Horowitz (1972)), convex 

(Lamberson and Hocking (1970), Kapur (1973), Siemens and Gooding (1975), Elmaghraby and Salem (1982)) 

or discrete time/cost relations (Crowston and Thompson (1967), Crowston (1970), Robinson (1975) Billstein 

and Radermacher (1977), Wiest and Levy (1977), Hindelang and Muth (1979), Patterson and Harvey (1979), 

Elmaghraby and Kamburowski (1992), De et al. (1995, 1997), Demeulemeester et al. (1996, 1998), Skutella 

(1998) and Akkan et al. (2005)).  

 

The specific problem addressed in this paper is the discrete time/cost trade-off problem and involves the 

selection of a set of execution modes (i.e. time/cost pairs for each activity) in order to achieve a certain 

objective. The objective of this problem description can be threefold. The so-called deadline problem involves 

the scheduling of project activities in order to minimize the total cost of the project while meeting a given 

deadline. The budget problem aims at minimizing the project duration without exceeding a given budget. A 

third objective involves the generation of the complete efficient time/cost profile over the set of feasible project 

durations. Due to its practical relevance, the discrete time/cost trade-off problem has been the main subject of 

research, leading to various solution approaches for various variants of the problem. In this paper, we study the 

discrete time/cost trade-off problem (DTCTP) under four different assumptions, and develop a meta-heuristic 

solution approach for the deadline version of the problem based on the principles of electromagnetic 

optimization (Birbil and Fang (2003)).  
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The outline of this paper is as follows. In section 2, we briefly present four versions of the discrete time/cost 

trade-off problem and give an overview of previous research efforts in the literature. Section 3 explains the 

building blocks of our electromagnetic meta-heuristic for the four versions of the problem in detail. In section 

4, we illustrate our novel approach on a problem example. Section 5 reports computational experience on a 

benchmark dataset. Section 6 draws overall conclusions and highlights future research avenues.  

 

2 Problem description 

 

We assume that a project is represented by an activity-on-the-arc network G=(N,A) where the set of nodes, N, 

represents network events and the set of arcs, A, represents the activities of the project. The nodes of the 

network are numbered from the single start node 1 to the single end node n. The duration dij(k) of an activity (i, 

j) ∈  A is a discrete, non-increasing function of the amount of a single non-renewable resource (money, cij(k)) 

allocated to it. The tuple (dij(k), cij(k)) is referred to as a mode, and we assume that each activity has Mij modes 

with dij(1) < dij(2) < … < dij(Mij) and cij(1) > cij(2) > … > cij(Mij). We assume that the project is the subject of a 

pre-specified project deadline δn. A solution can be represented by a selected set of modes (dij(k), cij(k)) (with k 

∈  {1, …, Mij}) for each activity (i, j) such that a certain objective is optimized. In the current paper, we study 

four versions of the discrete time/cost trade-off problem which differs in their objective function or their 

problem characteristics. In the next sub-section, we briefly review the specific differences between the four 

versions of the DTCTP. Section 2.1 briefly discusses the relevance of the four problem types in research 

environments and in practice.  

 

2.1 Problem descriptions 

 

Table 1 summarizes the numerous research efforts from literature and presents the classification codes of the 

four DTCTP variants according to the classification scheme of Herroelen et al. (1999). 

 

Table 1. A literature overview for the discrete time/cost trade-off problem and its extensions 

Problem Classification
type code1

Exact Heuristic
DTCTP 1,T cpm, δ n ,disc,mu av [1],[2],[5],[6],[7],

[8],[9],[10],[11]
[22],[27],[29],[40]

DTCTP-tsc 1,T tsc,cpm, δ n ,disc,mu av [34],[39] [36]
DTCTP-wc 1,T cpm, δ n ,disc,mu av [28],[36] [36]
DTCTP-npv 1,T cpm, δ n ,disc,mu npv [15] [36]

1 Following the classification scheme of Herroelen et al. (1999)

Literature

[1],[36]
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The basic discrete time/cost trade-off problem (DTCTP) involves the scheduling of project activities by 

selecting a mode k for each activity (i, j) in order to minimize the total cost ∑
∈ Aji

ij kc
),(

)(  of the project.  

 

The discrete time/cost trade-off problem with time-switch constraints (DTCTP-tsc) is very similar to the 

DTCTP, but assumes that activities are forced to start in a specific time interval and are down in some specified 

rest interval. Time-switch constraints have been introduced by Yang and Chen (2000) as a logical extension of 

the analyses and achievements of Chen et al. (1997), and have been incorporated in the DTCTP as a special 

type of constraints in which each activity follows one of three possible work/rest patterns: Firstly, if an activity 

follows a day-pattern it can only be executed during day time, from Monday till Friday. Secondly, an activity 

follows a d&n-pattern if it can be executed during the day or night, from Monday till Friday. Finally, a dnw-

pattern means that the corresponding activity can be in execution every day or night and also during the 

weekend.  

 

The discrete time/cost trade-off problem with work continuity constraints (DTCTP-wc) also minimizes the total 

cost of the schedule, that consists of the sum of both the direct activity costs (resulting from the selection of a 

mode for each activity) and work continuity cost for each activity group A’ ⊂  A. Work continuity constraints 

have been defined by El-Rayes and Moselhi (1998) in order to model the timely movement of project resources 

and hence to maintain continuity of work. The work continuity cost represents the cost of the use of resources 

during the execution of activity group A’. This cost can be minimized by minimizing the time-span between the 

first activity (start of use of resources) and last activity (release of resources) of the activity group A’. 

Vanhoucke and Debels (2007) have shown that the DTCTP-wc can be easily transformed into the basic DTCTP 

by adding two extra arcs per work continuity resource group. 

 

The discrete time/cost trade-off problem with net present value optimization (DTCTP-npv) involves the 

scheduling of project activities in order to maximize the net present value of the project subject to precedence 

relations. In addition to the cost cij(k) of mode k of activity (i, j), we assume that positive cash flows are 

associated to the project events (nodes). We use +
jC  ≥ 0 to denote the positive payment received at the 

realization of event j. Note that we assume that, without loss of generality, each cash outflow cij(k) occurs at the 

completion of each activity. This is a reasonable assumption, since it is always possible to calculate a terminal 

value of each activity’s cash flow upon completion by compounding the associated cash flow to the end of the 

activity as follows: ∑
=

−=
)(

1

))(()()(
kd

t

tkdt
ijij

ij
ijekckc α , where α represents the discount rate, )(kdij  the duration of 

activity (i, j) at mode k and )(kct
ij  the value of the known and deterministic cash outflow (i.e. the cost) of 
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activity (i, j) at mode k in period t of its execution. Consequently, the net cash flow of each event j equals 

∑
∈

+ −=
jAji
ijjj kcCkcf

),(

)()( , with jA the set of all incoming arcs of event j. 

 

 

2.2 Practical relevance 

 

The development of a meta-heuristic algorithm is based on and inspired by various real-life projects where 

time/cost trade-offs are a matter of degree. Most of these applications have been described elsewhere such that 

a detailed description needs not to be repeated here. The use of time/switch constraints is straightforward and 

boils down to the presence of rest and work periods in daily work schedules. Although the specific choice of 

three work/rest patterns does not exclude more general problem descriptions, it is based on a practical 

construction project in the field of a water purification company in Belgium (Europe). In this project, a number 

of filtering machines have to be installed to purify water towers and make use of one or more filtering bags. 

The more filtering bags are used at the same time, the lower the duration of the particular job but the larger the 

execution cost. Some of these machines can work without human intervention (a dnw-pattern) or, in other 

cases, with a human intervention once and a while, such as control operations (since these activities only 

require one person once and a while, they follow a d&n-pattern). Of course, certain activities of the project 

require a whole team and can therefore only be executed during the day (day-pattern activities) (source: 

Vanhoucke et al. (2002)). The practical relevance of work continuity constraints have been extensively 

described in literature. In Vanhoucke (2006), a literature overview and various practical applications of work 

continuity constraints in project scheduling have been given, among which a huge and complex tunnel 

construction project in the Netherlands, Europe (see www.westerscheldetunnel.be). Optimization of work 

continuity could lead to enormous cost savings in the schedule for a large freezing machine needed to bore the 

links between the two lanes of the tunnel. The use and practical value of net present value optimization has 

been extensively described in Herroelen et al. (1997). Vanhoucke and Demeulemeester (2003) have illustrated 

the optimization of the net present value in a capacity expansion and construction project at a water purification 

company in Belgium, Europe. 

 

3 Electromagnetic optimization 

 

In this section, the electromagnetic meta-heuristic procedure to solve the four variants of the DTCTP is 

explained in detail. The EM approach follows the same generic approach as the original EM algorithm of Birbil 

and Fang (2003) and can be displayed in pseudo-code as follows: 

 
 Algorithm EM DTCTP-extensions   
  Create initial population 
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  while stop criterion not met 
   compute forces 
   apply forces 
   local search 
  endwhile 

 

In the remainder of this section, we explain the specific sub-routines of our EM algorithm for the four different 

versions of the DTCTP. 

 

Create initial population: the algorithm creates an initial population containing popsize population elements. 

Each population element, or a so-called solution point xt (t = 1, …, popsize) represents a vector of activity 

modes that need to be transformed into a project schedule. The EM algorithm randomly assigns values to each 

element t
ijx  ((i, j) ∈  A) of vector xt between 1 and Mij, and transforms the resulting vector into a project 

schedule using the following scheduling generation schemes: The DTCTP and the DTCTP-wc can be 

efficiently scheduled by determining the earliest completion time of each activity, using the traditional forward 

pass critical path calculations (problem cpm|Cmax). The DTCTP-tsc can be efficiently scheduled by the adapted 

forward pass critical path calculation method of Yang and Chen (2000) (problem cpm,tsc|Cmax). The DTCTP-

npv reduces to the well-known max-npv problem (problem cpm|npv), which can be efficiently solved by the 

recursive search procedure of Vanhoucke et al. (2001). In order to use this activity-on-the-node (AoN) 

procedure, the AoA project network needs to be considered as an AoN network: each event j is then an activity 

with zero duration and a cash flow cfj(k) and the arcs represent the precedence relations with time-lags lij = 

dij(k). 

 

Compute forces: This sub-routine calculates charges for each solution point as well as a total force exerted on 

each solution point by all other solution points, following the principles of Coulomb’s law. The charge of each 

solution point xt depends on its objective function value ov(xt) in relation to the objection function value of the 

current best point xbest in the population, with better objective function values resulting in higher charges. The 

charge qt of solution point xt is determined according to equation [1]. Note that the differences in objective 

functions are measured as absolute values in order to cope with both minimization and maximization problems. 

The formula uses |A| as the number of arcs in the project network. 

 

qt =
















−

−
−

∑ =

popsize

l
bestl

bestt

ovov

ovov
A

1
)()(

)()(
exp

xx

xx
        [1] 

 

Next, the algorithm calculates a set of force vectors Ft (t = 1, …, popsize) that are exerted on the corresponding 

solution point xt, as follows:  
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Ft = ∑
≠
=
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The general philosophy of Coulomb’s law is that the total force exerted on a solution point by all other solution 

points is inversely proportional to the distance between the solution points and directly proportional to the 

product of their charges, as shown in equation [2]. The equation has been modelled such that a point with a 

relatively good objective function value will attract the other one, whereas a point with the inferior objective 

value repels the other. The distance between two solution points is measured by the sum of the absolute values 

of the component-wise differences between the mode number of identical activities. This distance measure is 

normalized (denoted by the symbol ||  ||) by dividing it with the maximum of all distances between each pair of 

solution points, in order to lie in the interval [0, 1]. 

 

Apply forces: A new population is generated by moving each population element into a direction dictated by 

the forces. The imposed force is normalized, by dividing it by the maximal force over all dimensions (i.e. the 

total number of arcs) for the population element, and therefore only identifies the direction of the move. The 

magnitude of the move is determined by a randomly selected parameter λ generated from a uniform distribution 

from the interval [0, 1] (in analogy with Birbil and Fang (2003)) and by the number of modes for each vector 

element t
ijx  ((i, j) ∈  A) of vector xt. 

 






















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=

0if)1(

0if)(
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t
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t
ijt
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t
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t
ijijt

t
ijt

ij
t
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Fx
F

F
x

FxM
F

F
x

x

λ

λ
        [3]  

 

Since the t
ijx  vector elements are discrete numbers, while the EM move assumes a fractional solution space, the 

calculated t
ijx  are round up (fractional value above 0.5) or round down (fractional value below or equal to 0.5) 

to prevent that some mode numbers are seldom or never chosen (e.g. without the rounding up mechanism, the 

mode number ijM  will only be chosen (i.e. ij
t
ij Mx = ) when λ = 1 and t

ijF  = tFmax ). 

 

Local search: The generation of new solution points is followed by a local search procedure which explores 

the immediate (Euclidian) neighbourhood of individual points. The EM procedure of the current paper makes 

use of two sequential heuristic procedures after the generation of each new population, as follows: 

 

If (ov(xl) < ov(xt) (DTCTP, DTCTP-tsc and the DTCTP-wc) 
If (ov(xl) > ov(xt) (DTCTP-npv) 

If (ov(xl) ≥ ov(xt) (DTCTP, DTCTP-tsc and the DTCTP-wc) 
If (ov(xl) ≤ ov(xt) (DTCTP-npv) 
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Local search 1 – repair function: Any infeasible solution point xt for which the project duration exceeds the 

project deadline is the subject to a heuristic repair function, which transforms infeasible solution points into 

feasible ones. The repair function iteratively crashes activity durations until the project duration is smaller than 

the pre-specified project deadline. The project activities can be selected according to various heuristic rules: 

- Random selection of activity/mode combinations (RAN): the repair method iteratively selects project 

activities at random and crashes its duration to its neighbourhood mode until a feasible solution is 

obtained. 

- Lowest cost per time unit (LCT): all project activities are ranked according to its cost increase per time 

unit when crashing the activity duration to its neighbourhood mode. The repair method selects the 

activities with the lowest cost increase first, and updates the cost increase ranking each time an activity 

duration has been crashed,. 

- Lowest absolute cost difference (LAC): this method is similar to the LCT method, but ranks all project 

activities according to its lowest absolute cost difference the activity’s current and neighbourhood 

mode. 

 

Local search 2 – improvement search: Feasible solution points can possibly be improved by increasing activity 

durations (and hence, decreasing the activity cost), resulting in an improved objective function. A truncated 

recursive search procedure randomly ranks all activity/mode combinations and searches for improved schedules 

based on a truncated dynamic programming heuristic of Debels and Vanhoucke (2007). This heuristic search 

enumerates a subset of all possible combinations to increase activity durations following the ranking of the 

randomly generated activity/mode list, and is truncated after a very small pre-defined number of backtracking 

steps.  In the current manuscript, the search is truncated after five backtracking steps, to guarantee a very fast 

and efficient improvement search. 

 

Stop criterion: The length of a search is determined by a pre-defined stop criterion, which is a function of the 

number of iterations and the size of the population. More precisely, the length of the search is defined as the 

product of the population size and the maximum number of iterations (i.e. popsize * iter), which serves as a 

measure for the estimated number of generated schedules during the complete search. Indeed, since the 

electromagnetic heuristic completely replaces all population elements at each iteration run, this product serves 

as a reliable estimate for the total number of generated schedules. This approach also allows the fine-tuning of 

the population size for identical stop criteria (i.e. varying the popsize and the iter parameters while keeping 

their product at a constant level). 

 

4 Example 

 

In this section, we show the difference between the four problem types on an example network taken from 

Vanhoucke et al. (2002) and illustrate the philosophy of the electromagnetic meta-heuristic on a small example 
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schedule population of the project. Each arc has two activity modes, which are displayed near the arcs. Dummy 

arcs are displayed as dashed arcs. We assume that the project deadline δn equals 82 days. 

 
 

1 4 7 9 1211

10

6 8 13

2 3 5 17 16

14

15

18 1 
8  6 

36 2 
2  12 

36 6 
26 13 

16 1
12 15 
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4  20 

28 6
6  8 

38 1
10 3 

22 8
2  14 

38 9
26 27 

32 7
14 24 

40 1
16 19 

40 3 
6  11 

40 1
30 15 

32 15
22 16 

36 10
14 24 

28 4
6  10 

8 4  
6 23 

28 6 
20 29 

20 3 
2  15 

34 1
4  17 

duration 
cost 

Start

End 

 
Additional information for the DTCTP-tsc Additional information for the DTCTP-wc

Arc (i ,j ) Pattern Arc (i ,j ) Pattern Arc (i ,j ) Pattern   Activity group A' = {(3,5), (5,10), (9,12), (10,11), (11,12)} is subject to
(1,2) dnw (5,10) dnw (10,11) d&n   work continuity constraints with a cost 6 per time unit of use.
(1,4) dnw (5,13) dnw (11,12) d&n Additional information for the DTCTP-npv
(1,6) d&n (6,8) dummy (12,15) day Event j Event j Event j
(2,3) d&n (6,15) d&n (12,16) dummy 1 0 7 10 13 6
(2,8) dummy (6,16) dnw (13,14) day 2 10 8 12 14 5
(3,5) dnw (7,9) day (14,15) dummy 3 10 9 11 15 20
(4,7) dnw (8,13) day (14,16) dummy 4 1 10 14 16 15
(4,11) dnw (9,11) dummy (15,17) day 5 3 11 10 17 20
(5,9) dummy (9,12) d&n (16,17) dnw 6 15 12 3

+
jC +

jC +
jC

 
Figure 1. An AoA project network example (source network: Vanhoucke et al. (2002)) 

 

We assume, without loss of generality, that the duration of each activity mode has been expressed in work 

periods of 12 hours. The DTCTP versions without time-switch constraints all assume that activities can be 

executed during all days of the week (no weekends and no holidays), i.e. all days are working days of 12 hours. 

The DTCTP-tsc, on the contrary, allows night execution (for the d&n and dnw patterns), and hence, can be used 

to execute two work periods of an activity. On the other hand, the day and d&n patterns exclude the possibility 

to execute an activity during the weekend. 

 

 

Table 2. Solutions for the example project of figure 1 

Activity Net present Project
cost A' duration A' cost value duration

DTCTP 127 [17,68] 306 13.09 82 days
DTCTP-wc 153 [27,58] 186 13.83 76 days
DTCTP-npv 153 [22,72] 300 18.39 82 days
DTCTP-tsc 199 [23,64] 246 -6.36 82 days

Work continuity
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Table 2 reports the total activity cost, the work continuity cost, the net present value, the duration of the 

activities of the work continuity group and the total project duration for four optimal schedules of the example 

project. The table shows that the objective values of the problem types are indeed optimized (as indicated in 

bold). The optimal DTCTP and DTCTP-tsc schedules have the lowest total activity cost, the DTCTP-wc 

schedule has the lowest total cost (153 + 186) while the DTCTP-npv schedule has the highest net present value. 

Detailed results can be found in appendix 1. Note that the objective function values of the DTCTP-tsc are 

separated from the rest of the table, since they cannot be compared with the values of the other problem 

formulations. The DTCTP-tsc incorporates additional time-switch constraints which are not taken into account 

by the three other problem types.  

 
Figure 2 shows an example translated from our C++ code of an electromagnetic move for the DTCTP on a 

population of three solution elements x1, x2 and x3 with a total activity cost of 159, 138 and 141, respectively. 

The charges, the (normalized) distance matrix and the forces are displayed in the figure. The new solution point 

x4 is generated by performing the resulting move on a subset of the activity set (these activities are indicated in 

grey, e.g. activity (5, 10) is not part of the move) of solution point x3. Computational results of section 4 reveal 

that this outperforms the ‘complete’ move on all activities. The general electromagnetic philosophy is 

conceptually displayed in the figure. Since x3 lies far from x1 and has a better objective function, the resulting 

move is directed away from x1 with a small magnitude. The opposite is true for x3 versus x2. The new solution 

point x4 has a project duration larger than the project deadline, and hence, the algorithm randomly decreases 

some activity durations (displayed by the grey local search area around x4). The improvement step increases the 

duration of activity (13,14) within its available slack, leading to the optimal solution for the DTCTP. 
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Non-dummy
activities x1 x2 x3 F3 ||F3|| M1 R2 I2 Distances Normalized distances

(1,2) 1 1 2 -0.037 -1.000 1 1 1 x1 x2 x3 x1 x2 x3

(1,4) 2 2 2 0.000 0.000 2 2 2 x1 0 5 6 x1 0 0.83 1
(1,6) 2 2 2 0.000 0.000 2 2 2 x2 5 0 5 x2 0.83 0 0.83
(2,3) 2 2 2 0.000 0.000 2 1 1 x3 6 5 0 x3 1 0.83 0
(3,5) 1 2 2 0.000 0.000 2 2 2
(4,7) 2 2 2 0.000 0.000 2 2 2 Charges: q 1 = 0, q 2 = 1 and q 3 = 0.308, 

(4,11) 2 2 2 0.000 0.000 2 1 2
(5,10) 2 1 2 -0.037 -1.000 2 2 2
(5,13) 2 2 2 0.000 0.000 2 2 2
(6,15) 2 2 2 0.000 0.000 2 2 2
(6,16) 2 2 2 0.000 0.000 2 1 2
(7,9) 2 2 2 0.000 0.000 2 2 2

(8,13) 2 2 2 0.000 0.000 2 1 2
(9,12) 2 2 1 0.037 1.000 2 2 2

(10,11) 1 2 1 0.037 1.000 2 2 2
(11,12) 2 1 1 0.000 0.000 1 1 1
(12,15) 1 1 2 -0.037 -1.000 1 1 1
(13,14) 2 2 2 0.000 0.000 2 1 2
(15,17) 2 2 2 0.000 0.000 2 2 2
(16,17) 1 2 2 0.000 0.000 2 2 2

Activity cost: 159 138 141 120 138 127
Duration: 82 82 82 85 82 82
1 Move: only executed on a sub-part of the activity set (see computational results),
   indicated in gray (activity (5,10) was not part of the move). λ has been randomly set to 0.9
2 Repair function: randomly decreases 5 activity durations
3 Improvement method: increases the duration of activity (13,14) within the available slack

Solution points Forces New solution point x4

ov(x3) = 141

ov(x2) = 138

ov(x1) = 159

ov(x4) = 120 → 138 → 117

ov(x3) = 141

ov(x2) = 138

ov(x1) = 159

ov(x4) = 120 → 138 → 117

  
Figure 2. A conceptual representation of the electromagnetic charges and forces calculation 

 

4 Computational results 

 

We have coded the electromagnetic meta-heuristic procedure in Visual C++ version 6.0 to run on a Toshiba 

personal computer with a Pentium IV 2 GHz processor under Windows XP. In order to evaluate the quality of 

the heuristic solutions, we compare them with exact solutions for all four problem types as well as another 

meta-heuristic procedure of Vanhoucke and Debels (2007) which is able to cope with the four versions of the 

problem under study. The DTCTP and the DTCTP-wc instances will be solved to optimality by the procedure 

of Demeulemeester et al. (1998). The DTCTP-tsc instances will be solved by the exact procedure of Vanhoucke 

(2005). The exact procedure for the DTCTP-npv has been linked with the industrial LINDO optimization 

library version 5.3 (Schrage, 1995) in order to rely on an adapted version of the procedure of Erengüç et al. 

(1993). The testset used is an extended set from Demeulemeester et al. (1998) and has been previously used by 

Vanhoucke and Debels (2007). Table 3 summarizes the parameter settings for the different problem instances. 

 

Table 3. Parameter settings for our computational tests 
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DTCTP DTCTP-tsc 2 DTCTP-wc 3 DTCTP-npv 4

1 Each setting contains 30 problem instances, resulting in 30*5*6*5 = 4,500 problem instances
2 The extended set contains 4,500 * 10 = 45,000 problem instances
3 The extended set contains 4,500 * 3 * 3 = 40,500 problem instances
4 The extended set contains 4,500 * 5 = 22,500 problem instances

The number of activities ranges 
from 10, 20, 30, 40 to 50 

activities, the number of modes 
is fixed at 2, 4 or 6 modes or is 
randomly chosen between [1,3], 
[1,7] or [1,11] and the project 

deadline lies between the 
minimal and maximal project 

duration in steps of 0% 
(minimum), 25%, 50%, 75% 

and 100% (maximum)

Extensions
Dataset from [x]1

no 
extensions

Each activity belongs to an 
work/rest pattern, ranging from 
[0,0,100], [0,33,66], [0,66,33], 

[0,100,0], [33,0,66], 
[33,33,33], [33,66,0], 

[66,0,33], 
[66,33, 0] to [100,0,0] (where 

[x,y,z] indicates [%day 
pattern,%day and night 

pattern,%day, %night and 
weekend pattern])

Each event node has a certain 
cash inflow value, which is a 

function of the total cost of all 
incoming activities, ranging 

between the minimal value and 
the maximal value in in steps of 

0% (minimum cost), 25%, 
50%, 75% and 100% 

(maximum cost)

We define three sizes of 
activity groups subject to work 

continuity constraints 
containing 25%, 50% of 75% 
of the original activities. The 
work continuity cost has been 
defined as low, in-between or 

high as, respectively, 75%, 
100% and 150% of the average 

total activity cost of the 
corresponding activity group.

 
 

We test the quality of our meta-heuristic procedure in two ways. In section 4.1, we test the influence of the 

various EM building blocks on the solution quality of the problem instances. In this section, we restrict our tests 

on a subset of table 3, where we have selected only 50-activity networks with the number of modes randomly 

selected between 1 and 11. In section 4.2, we compare our generated solutions with both exact and heuristic 

solutions as described earlier and test our algorithms on the complete testset of table 3. 

 

4.1 Electromagnetic heuristic performance 

 

This section reports results on the influence of the length of the electromagnetic search as well as the 

contribution of the repair function and the improvement method on the solution quality of the four DTCTP 

versions. Figure 3 displays the contribution of the stop criterion on the solution quality. The figure compares 

four equal stop criteria values while varying the population size and the number of iterations for each stop 

criterion. The population size varies between 10 and 100 in steps of 10, keeping the popsize * iter product 

constant at a level of 1,000, 2,500, 5,000 or 10,000. 
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Figure 3. Average solution quality under four stop criterion values  

 

All figures show that a longer search, expressed as increasing popsize * iter values and displayed as separate 

lines in each figure, leads to improved solutions, at the expense of a higher CPU time (see table 4).  

 

The division between the population size and the number of iterations for equal popsize * iter values is less 

intuitively clear. The figures reveal an improving start trend for increasing popsize values, with an optimum at 

70, 60, 20 and 30 for the different DTCTP versions. However, table 4 shows that an increase in the population 

size (and a resulting decrease in the number of iterations) goes hand in hand with a larger CPU time 

requirement. This observation can mainly be explained by the electromagnetic calculations of distances 

between solutions, charges and forces. Consider, as an example, a popsize * iter value of 1,000. A population 

size of 10 and a number of iterations equal to 100 means that 10 * 10 = 100 distances, forces and charges need 

to be calculated per iteration, resulting in 100 * 100 calculations during the complete run. However, when the 

population size equals 100 and the number of iterations equals 10, 100 * 100 distances, charges and forces need 

to be calculated at each iteration, leading to 100,000 calculations during the complete run. We also observed 

that a higher population size leads to more repairs, which also contributes to the higher computational burden. 

 

Due to this observed trade-off between the solution quality and the computational burden, we have selected a 

population size of 30 in the remainder of this manuscript for all DTCTP versions, regardless of the number of 

iterations.  

 

Table 4. CPU times (in seconds) for the DTCTP graph of figure 3 

popsize  * iter 10 20 30 40 50 60 70 80 90 100
1000 0.415 0.523 0.621 0.729 0.861 0.974 1.145 1.301 1.509 1.702
2500 0.938 1.214 1.397 1.597 1.812 2.027 2.256 2.477 2.781 3.024
5000 1.757 2.345 2.650 2.998 3.350 3.689 4.045 4.428 4.846 5.199

10000 3.310 4.557 5.136 5.796 6.429 7.040 7.617 8.264 8.965 9.619

popsize

 
 

The contribution of the improvement method and the repair function is analyzed in table 5 under a stop 

criterion of 999 generated schedules (a popsize of 30 and a number of iterations of 33). The table displays the 
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solution quality measured as the average relative deviation from the best found project cost (for the DTCTP, 

DTCTP-tsc and DTCTP-wc) or from the best found net present value (DTCTP-npv) in each cell (a cell with 0% 

denotes the best found solution method).  

 

Table 5. Influence of the repair function and the improvement method on the solution quality 

no yes no yes no yes no yes
no 1.43% 1.14% 4.05% 5.28%
RAN 0.93% 0.66% 1.60% 1.95%
LCT 0.10% 0.10% 0.20% 0.00%
LAC 0.00% 0.00% 0.00% 0.11%

DTCTP-wc

215.90% 226.20% 162.57% 126.24%

re
pa

ir

Improvement
DTCTP DTCTP-tsc DTCTP-npv

 
 

The table shows the indispensable contribution of the improvement method on the solution quality. The results 

without improvement (columns with label “no”) are very poor, and the repair function has no influence 

whatsoever on the solution quality. This can be explained by the specific implementation of the repair function, 

which decreases activity durations (randomly or controlled) to construct deadline feasible schedules. When this 

repair function is not immediately followed by the improvement method, very poor feasible solutions will be 

created. The contribution of the repair function in combination with the improvement method (columns with 

label “yes”) is best for the LAC heuristic to minimize overall project costs and for the LCT heuristic to 

maximize the net present value. 

 

Although not displayed in a table or a figure, we have found the best results when the forces (eq. [3]) are 

operated on a sub-part of the schedule (see the example of figure 2). More precisely, forces are applied on each 

activity with a probability of only 50%. 

 

 

4.2 Benchmark results  

 

In this section, we report computational results on our benchmark set (table 3) and compare the solutions of 

each DTCTP version with an exact and a meta-heuristic solution. The exact solutions are found by the solution 

approaches of Demeulemeester et al. (1998) (for the DTCTP and the DTCTP-wc), Vanhoucke (2005) (DTCTP-

tsc) and Erengüç et al. (1993) (DTCTP-npv). We also compare the obtained solutions with the heuristic 

solutions of Vanhoucke and Debels (2007), who presented, to the best of our knowledge, the only heuristic 

solution procedure available in the open literature that can solve the four versions of the DTCTP. 

 

Solutions obtained by exact procedures: The results for the exact solution procedure are obtained by 

allowing a maximal time limit of 1 minute. After that, the procedure stops and the solution is reported. In doing 

so, the obtained solution can be classified in one of the following categories: optimal solution, feasible (but not 
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necessarily optimal) solution or infeasible solution (i.e. no solution found). The columns with label “% opt” are 

used to denote the percentage of problem instances for which an optimal solution has been found. The columns 

labelled with “% limit” display the percentage of problem instances for which a feasible (but not guaranteed to 

be optimal) solution has been found within the pre-specified time limit of 1 minute. This means that the 

procedure already has found one or more feasible solutions, but it is truncated after the pre-specified time. The 

columns with “% infeas” show the percentage of problem instances for which no feasible solution has been 

found within the pre-specified time limit of 1 minute. Each problem instance belongs to one of these three 

categories, which are used for comparison purposes with the heuristic procedures. The column labelled “Avg 

CPU” contains the average CPU time needed to solve the problem instances.  

 

Meta-heuristic solutions: The results found by the heuristic procedure are compared with the results of one of 

the three categories. The instances for which an exact solution has been found (i.e. “% opt”) are used to 

compare them with the heuristic solutions as follows. The column labelled with “% opt=” displays the 

percentage of problem instances for which the heuristic solution has found the optimal solution (only for the 

problem instances of column “% opt”). The column indicated with “avg opt” gives the average percentage of 

deviation from the optimal solution (only for the problem instances of column “% opt”). The problem instances 

with a feasible, though not necessarily an optimal solution (i.e. “% limit”) are analyzed as follows. On the one 

hand, the column labelled with “% limit+” displays the percentage of problem instances for which the heuristic 

solution is better than the feasible solution found by the exact procedure (only for the problem instances of 

column “% limit”) On the other hand, the column labelled with “% limit-“ indicates the percentage of problem 

instances for which the heuristic solution is worse than the feasible solution found by the exact procedure (only 

for the problem instances of column “% limit”). The remaining fraction is then the percentage of problem 

instances with a solution equal to the feasible solution found. Furthermore, the columns labelled with “avg 

limit+“ display the average percentage of deviation (improvement) of the heuristic solution (only for the 

problem instances of column “% limit”) while the columns with label “avg limit-“ refer to the average 

percentage of deviation (deterioration) of the heuristic solution (only for the problem instances of column “% 

limit”). 

 

Stop criterion: The computational tests haven been performed under various stop criteria. All runs performed 

by exact solution approaches have been truncated after 60 seconds CPU time. The meta-heuristic solution 

approaches make use of two classes of stop criteria: The first class of test runs has been truncated after a pre-

specified number of generated schedules (rows ‘schedule limit’), as discussed previously. More precisely, the 

electromagnetic procedure has been truncated when the product popsize * iter has reached the 1,000 or 5,000 

threshold. These solutions will be compared with the meta-heuristic solution procedure of Vanhoucke and 

Debels (2007) truncated after 1,000 and 5,000 generated schedules. The second class of test runs have been 

truncated after a pre-specified time limit of 0.1 and 0.5 seconds (rows ‘time limit’).  
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Table 6. Computational comparative results 

Exact
% opt
% limit
% infeas
Avg CPU
Heuristic [36a] [a] [36b] [b] [36a] [a] [36b] [b] [36a] [a] [36b] [b] [36a] [a] [36b] [b]
% opt = 79.09% 94.20% 86.22% 96.31% 86.80% 97.65% 92.37% 98.46% 58.70% 84.13% 69.25% 89.11% 90.79% 91.68% 91.92% 92.84%
avg opt 0.50% 0.049% 0.217% 0.028% 0.263% 0.022% 0.117% 0.014% 98.600% 0.118% 0.504% 0.070% 2.536% 1.503% 2.199% 1.453%
% limit + - - - - 29.40% 56.22% 46.31% 59.71% - - - - 80.73% 83.52% 83.53% 84.65%
avg limit + - - - - 0.350% 0.739% 0.580% 0.794% - - - - 107.124% 115.840% 113.074% 116.864%
% limit - - - - - 50.80% 11.00% 25.17% 6.24% - - - - 19.16% 16.33% 16.37% 15.19%
avg limit - - - - - 1.203% 0.088% 0.348% 0.047% - - - - 6.570% 1.436% 3.637% 1.224%
Avg CPU 0.049 0.195 0.244 0.824 0.079 0.273 0.388 1.158 0.075 0.331 0.363 1.465 0.570 0.606 2.869 2.281

Heuristic [36c] [c] [36d] [d] [36c] [c] [36d] [d] [36c] [c] [36d] [d] [36c] [c] [36d] [d]
% opt = 80.51% 85.09% 86.67% 93.98% 86.74% 90.10% 92.51% 97.54% 60.86% 67.21% 71.10% 83.17% 85.62% 84.85% 90.43% 91.01%
avg opt 0.856% 0.607% 0.239% 0.073% 0.380% 0.305% 0.115% 0.023% 1.788% 1.067% 0.482% 0.150% 28.523% 4.504% 11.916% 2.563%
% limit + - - - 14.91% 18.45% 38.78% 51.95% - - - - 64.83% 72.69% 76.97% 80.69%
avg limit + - - - 0.172% 0.205% 0.482% 0.670% - - - - 82.311% 97.491% 101.604% 111.301%
% limit - - - - 73.79% 67.05% 36.30% 15.92% - - - - 35.11% 27.17% 22.90% 19.17%
avg limit - - - - 5.171% 3.359% 0.653% 0.160% - - - - 60.275% 10.961% 25.139% 5.285%
Avg CPU 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.5
Solved by [9] Demeulemeester et al. (1998), [34] Vanhoucke (2005), [15] Erengüç et al. (1993)
[36a] Solved by Vanhoucke and Debels (2007) truncated after 1,000 generated schedules
[a] Solved by electromagnetic procedure of the current paper (popsize = 30 and iter = 1000)
[36b] Solved by Vanhoucke and Debels (2007) truncated after 5,000 generated schedules
[b] Solved by electromagnetic procedure of the current paper (popsize = 30 and iter = 5000)
[36c] Solved by Vanhoucke and Debels (2007) truncated after 0.1 seconds
[c] Solved by electromagnetic procedure of the current paper truncated after 0.1 seconds (popsize = 30)
[36d] Solved by Vanhoucke and Debels (2007) truncated after 0.5 seconds
[d] Solved by electromagnetic procedure of the current paper truncated after 0.5 seconds (popsize = 30)

0.081 7.906 0.105 32.948
0% 2.16% 0% -
0% 8.08% 0% 50.30%

100% 89.76% 100% 49.70%
[9] [34] [9] [15]

DTCTP DTCTP-tsc DTCTP-wc DTCTP-npv
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The results of table 6 can be summarized as follows. Since there is no major difference between the optimal 

procedures for both problem types (apart from extra arcs), their results are discussed together. The table shows 

that the exact branch-and-bound procedure of Demeulemeester et al. (1998) can solve all problem instances for 

the DTCTP and the DTCTP-wc to optimality within the time limit of 60 seconds. Although the electromagnetic 

procedure is able to generate high-quality solutions within a small time fraction, it has already been concluded 

by Vanhoucke and Debels (2007) that it is not beneficial to rely on this meta-heuristic procedure to solve 

instances of this size. These authors have shown that even for tests on larger instances (with up to 200 activities 

and 50 modes) there is no need to use meta-heuristic procedures. The main reason is that the specific approach 

used for the exact branch-and-bound algorithm of Demeulemeester et al. (1998) results very quickly in 

truncated (heuristic) solutions that are very close to the optimal solution. Moreover, thanks to the use of an 

efficient lower bound calculation of Ford and Fulkerson (1962), many nodes can be evaluated in the branch-

and-bound tree within a limited amount of CPU-time, and hence, the meta-heuristic procedure has no 

computational advantage on that aspect. Note that, for obvious reasons, the columns “% limit” and “% infeas”, 

the columns “% limit“ and “% limit+“, and their corresponding columns “avg limit“ and “avg limit+“ are 

empty. 

 

The table shows that meta-heuristic algorithms are good alternatives to exact algorithm for both the DTCTP-tsc 

and the DTCTP-npv. The procedure of Vanhoucke and Debels (2007) and the newly developed electromagnetic 

procedure outperform the exact algorithms, both in terms of CPU time and solution quality. The “schedule 

limit” results also show that the electromagnetic search outperforms the Vanhoucke and Debels (2007) 

procedure, but at a higher CPU time expense (due to the calculation of charges, forces and distances). For this 
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reason, we have tested and compared their results within a time limit of 0.1 and 0.5 seconds. These results show 

that the electromagnetic procedure performs best.   

 

5 Conclusions 

 

This paper studied four variants for the well-known discrete time/cost trade-off problem, and developed an 

electromagnetic meta-heuristic to solve the problem types. The heuristic relies on the law of Coulomb and 

iteratively calculate charges and forces on population elements following the principles of Birbil and Fang 

(2003). The generation of a schedule has been extended by a dual local search method. The first local search 

method repairs infeasible solutions by crashing project activities while the second local search randomly 

increases activity durations of feasible project solutions within the available activity slack. 

 

The computational results are promising and show that solutions are comparable and often better than a 

previously developed procedure of Vanhoucke and Debels (2007). Lower CPU time and higher solution quality 

have been obtained by running tests on a large dataset truncated after a pre-specified number of generated 

solutions of after a certain CPU time limit. 

 

Our future research intensions lie in the development of dedicated solution approaches for the DTCTP-tsc and 

DTCTP-npv. While the meta-heuristic procedures in the current paper are rather general search procedures that 

can deal with all four problem types, dedicated algorithms that exploit problem specific information should 

allow to test and compare results on larger problem instances for which the exact algorithm fail to provide a 

feasible solution. 
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7 Appendix 

Table 7. Optimal mode selection and the corresponding activity cost 
non-

dummy
arcs k  = 1 k  = 2 mode  cost mode  cost mode  cost mode  cost
(1,2) 6 1 1 6 1 6 2 1 1 6
(1,4) 15 3 2 3 1 15 2 3 2 3
(1,6) 12 2 2 2 2 2 2 2 1 12
(2,3) 13 6 1 13 1 13 2 6 2 6
(2,8) 0 0 1 0 1 0 2 0 1 0
(3,5) 15 1 2 1 2 1 2 1 2 1
(4,7) 11 3 2 3 1 11 1 11 2 3
(4,11) 16 15 2 15 2 15 2 15 2 15
(5,9) 0 0 1 0 1 0 2 0 1 0
(5,10) 27 9 2 9 2 9 1 27 2 9
(5,13) 24 7 2 7 2 7 2 7 2 7
(6,8) 0 0 1 0 1 0 2 0 1 0
(6,15) 20 4 2 4 2 4 2 4 2 4
(6,16) 3 1 2 1 2 1 2 1 2 1
(7,9) 15 1 2 1 1 15 2 1 2 1
(8,13) 8 6 2 6 2 6 2 6 2 6
(9,11) 0 0 1 0 1 0 2 0 1 0
(9,12) 24 10 2 10 1 24 2 10 2 10

(10,11) 19 1 2 1 1 19 1 19 2 1
(11,12) 17 1 1 17 1 17 1 17 1 17
(12,15) 10 4 1 10 1 10 2 4 1 10
(12,16) 0 0 1 0 1 0 2 0 1 0
(13,14) 14 8 2 8 1 14 2 8 2 8
(14,15) 0 0 1 0 1 0 2 0 1 0
(14,16) 0 0 1 0 1 0 2 0 1 0
(15,17) 23 4 2 4 2 4 2 4 2 4
(16,17) 29 6 2 6 2 6 2 6 1 29

total activity cost 127 199 153 153
work continuity group A'
dummy activities

DTCTP-wc DTCTP-npvDTCTP
Selected mode and corresponding activity cost

DTCTP-tscinput modes

 
Table 8. The event realization moments and the net present value and work continuity cost 

event
nodes CI RM NC RM NC RM NC RM NC

1 0 0 0 0 0 0 0 0 0
2 10 4 4 4 4 9 9 4 4
3 10 17 -3 23 -3 27 4 22 4
4 1 10 -2 1 -14 10 -2 10 -2
5 3 25 2 31 2 35 2 30 2
6 15 18 13 24 13 18 13 1 3
7 10 30 7 4 -1 13 -1 30 7
8 12 18 12 24 12 18 12 4 12
9 11 50 10 46 -4 35 10 50 10

10 14 44 5 50 5 48 -13 49 5
11 10 64 -6 60 -24 56 -24 70 -6
12 3 68 -24 64 -38 58 -24 72 -24
13 6 41 -7 64 -7 51 -7 61 -7
14 5 52 -3 66 -9 62 -3 72 -3
15 20 71 6 72 6 72 12 75 6
16 15 68 14 66 14 62 14 72 14
17 20 82 10 82 10 76 10 82 -13

net present value 13.09 52.27 13.83 18.39
work continuity cost 306 246 186 300

start event work continuity group
end event work continuity group

CI = cash inflow of each event (       ) 
RM = realization moment of each event
NC = net cash flow for each event (             )

Net present value and work continuity information
DTCTP DTCTP-tsc DTCTP-wc DTCTP-npv

)(kcf j

+
jC

 


