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ABSTRACT 
 

The crew scheduling problem in the airline industry is extensively investigated in the 

operations research literature since efficient crew employment can drastically reduce 

operational costs of airline companies. Given the flight schedule of an airline company, 

crew scheduling is the process of assigning all necessary crew members in such a way 

that the airline is able to operate all its flights and constructing a roster line for each 

employee minimizing the corresponding overall cost for personnel. In this paper, we 

present a scatter search algorithm for the airline crew rostering problem. The objective is 

to assign a personalized roster to each crew member minimizing the overall operational 

costs while ensuring the social quality of the schedule. We combine different 

complementary meta-heuristic crew scheduling combination and improvement 

principles. Detailed computational experiments of all characteristics of the procedure are 

presented. Moreover, we compare the proposed scatter search algorithm with an exact 

branch-and-price procedure and a steepest descent variable neighborhood search.  

 
Keywords: airline crew rostering; meta-heuristics; scatter search 

 

1 Introduction 

The crew scheduling problem in the airline industry is extensively investigated in the 

operations research literature since scheduling crew efficiently can drastically reduce 

operational costs of airline companies (Kohl and Karisch, 2004). The airline crew scheduling 

problem typically consists of assigning duties to crew members securing the safety of all 

flights and constructing a roster line for each employee minimizing the corresponding overall 

cost for personnel. In Europe, crew costs typically constitute the second largest expense after 

fuel costs, typically amounting 15-20% of total airlines operations costs (El Moudani et al., 

2001). However, in the modern work environment, apart from minimizing the operational 

personnel costs, roster solutions additionally need to incorporate individual preferences since 

these have an important impact on the service quality (Ernst et al., 2004). Next to these often 

conflicting objectives, the assignment has to consider a multitude of restrictions forced by 

governmental regulations, union agreements, and company-specific rules restricting the 

construction of the flight duties as well as the crew members’ lines-of-work (Cappanera and 

Gallo, 2004; Caprara et al., 1998a; El Moudani et al., 2001; Ernst et al., 2004; Kohl and 

Karisch, 2004; Thiel, 2004). Due to its complexity, the airline crew scheduling problem is 

usually decomposed into the airline crew pairing problem and the airline crew rostering 

problem which are likely to be solved sequentially. Both problems are known to be NP-hard 

(Yu, 1998). 
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The crew pairing problem aims to find a set of (anonymous) crew itineraries or pairings that 

covers the crew needs on each flight of the planning period minimizing the associated crew 

costs. A pairing is basically a sequence of flight duties, starting and ending at the same crew 

base and has to be assigned to one or more crew members working in one or more crew 

positions (ranks). The construction of pairings is constrained by many feasibility rules, i.e., 

company, union and regulatory rules (e.g., the maximum elapsed time, the minimum 

connection time between flights, the maximum number of working days, and the maximum 

number of flight legs) and is performed anonymously without consideration of a crew 

member’s individual needs or desires (Hoffman and Padberg, 1993; Kohl and Karisch, 2004; 

Makri and Klabjan, 2004; Medard and Sawhney, 2004; Thiel, 2004; Vance et al., 1997).  

In the crew rostering problem, the constructed set of pairings is assigned to individual crew 

members and sequenced to individual crew rosters considering all governmental rules, union- 

and company agreements as well as other activities such as pre-assigned activities (e.g., 

vacation, requested and granted off-periods, office, simulator/training, medical examination), 

ground duties, reserve duties (during which the employee must be available to replace another 

crew member who cannot work his/her assigned pairing), and off-duty blocks. In this step, all 

the pairings need to be assigned to as many crews as required by the flights in the pairing and 

each crew member receives a roster. The creation of rosters for individual crew members 

usually takes place 2 to 6 weeks before the flights are operated (Kohl and Karisch, 2004; 

Thiel, 2004).  

 

Even though crew pairing problems are different from airline to airline with respect to rules 

and costs, the main characteristics remain the same. The rule structures are comparable and 

objective functions are based on pay and reflect mainly real costs. On the other hand, the crew 

rostering process generally aims not only at minimizing the operational cost for the airline 

company but also at maximizing the social quality as perceived by the crew members. In 

contrast to pairing, crew rostering can be done in various ways following different 

approaches. The so-called ‘bidlines approach’, especially used by American airline 

companies, first generates anonymous lines-of-work or bidlines which are assigned to 

individuals after an elaborated bidding process. By expressing a bid, i.e., a global preference, 

for the roster lines, a crew member knows exactly what he/she will get if the bid is granted. A 

drawback is the rather rigid structure of this approach since problems arise when some 

bidlines cannot be assigned entirely to crew members due to conflicts with pre-assignments 

and vacation days. The ‘personalized rostering approach’, however, directly constructs 

individual rosters for each crew member. This approach, particularly exercised by European 

airline companies, is based on a fair-and-equal share principle satisfying certain quality 

preferences involving workload (e.g., free days, night flying duties). In this approach the crew 
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members express their preference for certain attributes of their rosters without knowing 

exactly how their rosters will look like (Kohl and Karisch, 2004; Medard and Sawhney, 2004; 

Thiel, 2004). 

 

Most of the published work involving the airline crew scheduling problem relates to crew 

pairing (e.g., Anbil et al., 1991; Anbil et al., 1992; Andersson et al., 1998; Barnhart and 

Shenoir, 1996; Barnhart et al., 1994; Barnhart et al., 1995; Barutt and Hull, 1990; Desaulniers 

et al., 1997; Gershkoff, 1989; Graves et al., 1993; Hjorring and Hansen, 1999; Hoffman and 

Padberg, 1993; Housos and Elmroth, 1997; Lavoie et al., 1998; Levine, 1996; Vance et al., 

1997). Compared to the crew pairing problem, crew rostering has received much less 

attention in the academic literature (Kohl and Karisch, 2004). The reason is that most of the 

cost benefits can be achieved by having productive pairings that minimize costs. Several 

approaches proposed in the literature make use of mathematical programming and column 

generation techniques where the subproblems, i.e., generating rosters for individual crew 

members, are solved as constrained shortest path problems (e.g., Cappanera and Gallo, 2001; 

Fahle et al., 2002; Freling et al., 2001; Gamache and Soumis, 1998; Gamache et al., 1998; 

Gamache et al., 1999; Jarrah and Diamond, 1997; Kohl and Karisch, 2000; Lasry et al., 2000; 

Sellmann et al., 2002). However, the crew rostering problem is known to be complex and 

difficult and that is why most of these approaches solve the problem heuristically. Others 

suggest meta-heuristic approaches to solve the airline crew rostering problem (e.g., Campbell 

et al., 1997; Christou et al., 1999; El Moudani et al., 2001; Gamache et al., 2007; Kerati et al., 

2002).  

 

In this paper, a scatter search procedure is presented to solve the airline crew rostering 

problem. In section 2, we describe the specific problem characteristics and formulate the 

problem as a generalized set partitioning type problem. In section 3, we explain the 

algorithmic details of our procedure. In section 4, we present computational results of all 

facets of the proposed meta-heuristic procedure and compare our procedure with the exact 

branch-and-price procedure of Gamache et al. (1999) and a variable neighbourhood search 

based on the principles of Hansen and Mladenović (2001). In section 5, conclusions are drawn 

and directions for future research are given. 

 

2 Problem description and formulation  
 

2.1 Problem description 

In this paper we investigate a procedure to solve the airline crew rostering problem using the 

personalized rostering approach. The input for the crew rostering problem consists in general 
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of crew information, activities to be rostered, rules and regulations, and objectives for the 

creation of a crew schedule.  

 

When producing personalized rosters, each crew member’s personal records (e.g., hours 

flown, trainings), qualifications (e.g., list of destinations, language proficiency), pre-assigned 

activities (e.g., office duties, training, medical checks), and vacation days are given.  

 

The set of activities which are to be assigned consists of pairings, reserve duties, and pre-

assigned activities. This set of activities covering the service requirements is assumed to be 

given, i.e., the crew pairing problem has been solved. Hence, each duty has a specific start 

time and a specific duration, i.e., service time.  

 

The rules and regulations monitoring the quality of a schedule can basically be divided in 

horizontal and vertical rules (Kohl and Karisch, 2004).  

Horizontal rules only imply the regulations governing the quality of a single crew member’s 

roster line and/or restricting the sequencing of activities. The horizontal rules are concerned 

with the attributes of the crew member for which the roster is generated and with the 

properties of the assigned activities. In the following some important types of rules are given. 

− Several provisions of the collective agreements affect which pairings and rest periods 

(breaks) can be assigned to each employee. Crew members can only be assigned to 

pairings and reserve duties compatible with the crew’s qualifications and pre-assigned 

activities. For example, a crew member is qualified if he or she possesses a safety and 

rescue certificate for the type of aircraft to be used for the pairings or all crew 

members must possess the necessary visas. Hence, only activities consistent with the 

qualifications of a crew member and which do not overlap with pre-assigned 

activities can be assigned to the employee (Gamache et al., 1999; Kohl and Karisch, 

2004; Medard and Sawhney, 2004). 

− There are many rules governing the sequencing of activities and rest periods, e.g., 18 

(22) hours of minimum rest after a day (night) activity, the number of consecutive 

working days or the number of consecutive (over)night duties (Gamache et al., 1999). 

− All airlines have regulations restricting the amount of activities and rest days to be 

assigned to a single crew member. Often, weekly and/or monthly constraints are 

imposed concerning e.g., the number of overnight duties, the number of complete 

days as a rest period, the average weekly rest time, the number of total service time, 

the number of flight time. 
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Vertical rules involve the regulations concerning several roster lines and crew members. 

These rules mainly govern the composition of the crew assigned to a pairing. Each pairing 

must be staffed correctly by the correct number of cabin and service personnel. The 

composition of the crew assigned to a pairing must comply with certain requirements 

concerning the qualifications of individual members and the number of crew members 

performing each function on board of the plane, e.g., the number of experienced crew 

members, language qualification, and crew members who must/cannot fly together (Gamache 

et al., 1999). 

 

These constraints can typically be treated as hard constraints whenever their violation may 

impair the security of the flight (e.g., crew qualifications, national legislation concerning 

duration of work and rest times) or as soft constraints preserving the social quality of the 

schedule (e.g., internal company rules, declared assignments preferences by the crew staff). In 

most airline companies the qualitative indicators have been integrated into the collective 

agreement and as such, they have been considered as (soft) constraints in the model definition 

(Gamache et al., 1999; El Moudani et al., 2001; Medard and Sawhney, 2004).  

 

Airline companies usually set different kind of objectives, e.g., objectives related to real costs, 

objectives in order to preserve the quality of the schedule, and objectives related to individual 

preferences. In our procedure, the objective function consists of three major components. As a 

first objective we aim at the minimization of open time, i.e., unassigned activities. Moreover 

the objective is to maximize the total duration of pairings that is covered by the regular crew 

members during the planning period. Pairings not covered are then assigned to crew members 

working reserve blocks or doing over-time. When not all pairings can be staffed properly by 

the regular crew members, the understaffed pairings are assigned to supplementary crew 

which need to be hired at a fixed crew cost or to so-called freelancers. These employees do 

not receive a fixed salary but get paid for how much they fly per hour. As a second objective, 

the solution needs to ensure impartiality and fairness to all regular crew members. To 

implement the equal assignment criteria, the deviations from the average or ‘standard’ values 

of the involved resource consumption constraints are penalized. As a third objective, the crew 

members can express their preferences for certain roster attributes. The crew members can not 

only express their preferences for specific pairings and reserve duties but also for more 

general scheduling preferences as the moment (day/time) they want to be scheduled. 

  

2.2 Problem formulation 

The formulation of the airline crew rostering problem is based on the Dantzig-Wolfe 

decomposition breaking up the original problem formulation into a master rostering problem 
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and a subproblem obtaining a feasible crew roster respecting all horizontal rules (Ryan, 

1992). The master rostering problem is modelled as a generalized set partitioning type 

problem. Solving the problem generates exactly one roster for each regular crew member and 

at most one roster for freelance and extra personnel such that the demands of the activities are 

met, the solution satisfies constraints between several crew members and the objective is 

optimized (Gamache et al., 1999; Kohl and Karisch, 2004). The master airline crew rostering 

problem can be formulated as follows,  

 

Notation 

Crew members 
rC / eC / fC  set of regular/extra/freelance crew members to be scheduled (index i, 

rCi ∈ / eCi ∈ / fCi ∈ ) 

S    set of skill categories (index k, Sk ∈ ) 
r
ikb / e

ikb / f
ikb  1 if regular/extra/freelance crew member i has skill category k, 0 

otherwise 

Individual crew rosters 
r

iF / e
iF / f

iF  set of feasible roster lines for regular/extra/freelance crew member i 

with respect to all hard horizontal rules (index l , 
r

iFl ∈ / e
iFl ∈ / f

ih Fl ∈ ) 

Activities 

A  set of activities to be scheduled (index j, Aj ∈  with 

QRPA ∪∪= ) 

P   set of pairings to be scheduled (index m, Pm ∈ ) 

R   set of reserve duties to be scheduled (index n, Rn ∈ ) 

Q   set of pre-assigned activities to be scheduled (index o, Qo ∈ ) 

jkR    required number of crew members of skill category k for activity j 

jt    service time of activity j 

Other parameters 
r
ijla / e

ijla / f
ijla  1 if roster l  for regular/extra/freelance crew member i covers activity 

j, 0 otherwise 
r
ilc  penalty cost of roster l  for regular crew member i for the complete 

period 
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e
kc  penalty cost of hiring extra personnel of skill category k for the 

complete period 
f

kc    penalty cost of hiring freelance personnel of skill category k per hour 

u
jkc    penalty cost of understaffing activity j in skill category k 

o
jkc    penalty cost of overstaffing activity j in skill category k 

Decision variables 
r
ily / e

ily / f
ily  1 if regular/extra/freelance crew member i is assigned to roster l , 0 

otherwise  

 

Model formulation 

Min ∑∑∑∑∑∑∑∑∑
∈ ∈ ∈ ∈∈ ∈ ∈∈ ∈

+++
f f

i
e e

i
r r

i Ci Fl Aj Sk

f
il

f
ijlj

f
ik

f
k

Ci Fl Sk

e
il

e
ik

e
k

Ci Fl

r
il

r
il yatbcybcyc  

∑∑ ∑∑
∈ ∈ ∈ ∈

+
Aj Sk Aj Sk

jk
o
jkjkj

u
jk wcvtc       (1) 

s.t. jkjkjk
Ci Fl

f
il

f
ijl

f
ik

Ci Fl

e
il

e
ijl

e
ik

Ci Fl

r
il

r
ijl

r
ik Rwvyabyabyab

f f
i

e e
i

r r
i

=−+++ ∑∑∑∑∑∑
∈ ∈∈ ∈∈ ∈

 

      SkAj ∈∀∈∀ ;    (2) 

∑
∈

=
r

iFi

r
ily 1    rCi ∈∀     (3) 

 ∑
∈

≤
e

iFi

e
ily 1   eCi ∈∀     (4) 

∑
∈

≤
f

iFi

f
ily 1    fCi ∈∀     (5) 

{ }1,0∈r
ily    r

i
r FlCi ∈∀∈∀ ;  

{ }1,0∈e
ily    e

i
e FlCi ∈∀∈∀ ;  

{ }1,0∈f
ily    f

i
f FlCi ∈∀∈∀ ;    (6) 

 

The objective (1) minimizes the total penalty cost of assigning a feasible roster to regular, 

extra, and freelance personnel. The penalty cost r
ilc  of a roster line assigned to regular crew 

members is the sum of the crew preferences for roster attributes, i.e., preferences for 

assignable activities and for the preferred rest and working periods, and the accounted penalty 

costs when deviating from the average or ‘standard’ constraint values in order to incorporate 

fairness between the crew members. The penalty costs e
kc  of a roster assigned to extra crew 

members is a fixed lump sum representing the wage cost when hiring these people for the 
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complete scheduling period. When assigning activities to freelance personnel, the penalty cost 

is equal to an hourly wage cost f
kc  times the number of working hours scheduled for the 

respective freelance crew member. Furthermore, the objective minimizes the duration of 

understaffed activities and the number of times more personnel than needed is scheduled for 

an activity. Constraint (2) requires that each activity is adequately staffed for each skill 

category. To ensure mathematical feasibility, two slack variables jkv  and jkw  are associated 

with constraint (2) penalizing under- and overstaffing respectively. Constraint (3) requires 

that exactly one roster is assigned to each regular crew member. Constraint (4) and (5) 

indicate that no more than one roster can be assigned to extra or freelance crew members 

respectively. Constraint (6) is the binary constraint assuring the integrality of the variables. 

 

The subproblem is to obtain a feasible roster line for a crew member and can be modelled as a 

resource constrained shortest path problem (Gamache and Soumis, 1999). This is a minimum 

cost flow problem for which a separate network needs to be constructed for each crew 

member. All crew members’ networks are acyclic having a source and a sink node 

representing the beginning and end of the month. The nodes in the network, except the source 

or the sink node, represent pairings, reserve blocks, rest periods and/or pre-assigned activities. 

Any activity compatible with the crew member’s qualifications is represented in the network. 

Each arc of the network represents a link between two consecutive activities and/or rest 

periods. The network structure typically incorporates the succession and qualification rules 

for a single crew member. In figure 1 the pairings, reserve duties, and pre-assigned activities 

for an example problem are indicated. This problem is transformed to a network for a single 

crew member as displayed in figure 2.  

 

Time
Day 1 Day 2 Day 3 Day 4

p1

p2

r1

p3

p4

r2

r3

pa3,1

Pairing 1

Pre-assigned act. 1

Pairing 2

Pairing 3

Pairing 4

Reserve duty 1

Reserve duty 2

Reserve duty 3

Time
Day 1 Day 2 Day 3 Day 4

p1

p2

r1

p3

p4

r2

r3

pa3,1

Pairing 1

Pre-assigned act. 1

Pairing 2

Pairing 3

Pairing 4

Reserve duty 1

Reserve duty 2

Reserve duty 3

 
Figure 1. An example problem instance 
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Time
Day 1 Day 2 Day 3 Day 4

p1

p2

r1

p3

p4

r2

r3

pa3,1

f1 f2 f3 f4

s t

Time
Day 1 Day 2 Day 3 Day 4

p1

p2

r1

p3

p4

r2

r3

pa3,1

f1 f2 f3 f4

s t

 
Figure 2. Example network structure for a crew member  

(s – source node; t – sink node; fd – free day or rest period) 

 

However, the structure of the network is not sufficient to guarantee that all horizontal 

constraints on roster construction are satisfied by paths in the network. Hence, some 

constraints need to be taken into account during the calculation of the shortest path. A number 

of restrictions cannot be modelled directly in the network structure because activities are 

accompanied by multidimensional resource vectors which consumption is accumulated along 

paths and constrained at intermediate nodes (e.g., service time, flight time). For each of these 

resources, fairness values are postulated in order to obtain an equal distribution of the 

workload among the regular crew members. These fairness measures are calculated as the 

minimum of two values, i.e., the total resource consumption of all eligible activities for the 

specific resource averaged over the regular crew members and the maximum allowable 

resource consumption for a single crew member described by governmental, union-, or 

company rules.  

An overview of the different pseudo-polynomial methodologies developed for solving 

resource constrained shortest paths can be found in Irnich and Desaulniers (2004). We 

implemented a dynamic programming approach for solving the resource constrained shortest 

path problem at hand (Desrosiers et al., 1995, Gamache et al., 1999). This algorithm generates 

feasible roster lines incorporating each employee’s peculiarities and incorporates additional 

penalty costs to relax some horizontal constraints in order to ensure fairness and/or to violate 

soft regulations (Desrochers and Soumis, 1989; Ioachim et al., 1998).  

 

3 Solution procedure 
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Evolutionary algorithms are adaptive heuristic search procedures imitating the ideas of natural 

selection and the survival of the fittest. As such, they represent an intelligent exploitation of a 

random search within a defined search space to solve the problem under study. Scatter Search 

(Glover, 1998) is a population-based meta-heuristic in which solutions are intelligently 

combined to yield better solutions. This meta-heuristic template appeals to strategic designs 

where other approaches resort to randomization. The scatter search methodology is very 

flexible and has successful applications in several application areas, since each of its elements 

can be implemented in a variety of ways and degrees of sophistication. For an overview of the 

basic and advanced features of the scatter search meta-heuristic, we refer to Glover and 

Laguna (2000) and Marti et al. (2006). The generic framework of the scatter search 

methodology is as follows, i.e.,  

 

 Algorithm Scatter Search  
   Diversification Generation Method 
   While Stop Criterion not met 
     Subset Generation Method 
     Solution Combination Method 
     Improvement Method 
     Reference Set Update Method 
   Endwhile 

 

In the following, we describe the implemented meta-heuristic principles for solving the airline 

crew rostering problem. The dedicated search heuristic is performed until a maximum number 

of schedules is evaluated.  

 

3.1 Data representation and fitness function 

In evolutionary heuristics, the population elements are encoded in a problem-specific data 

structure. The employed data representation in this paper directly reflects the activities the 

crew member is assigned to over the planning period. This binary encoding indicates a 1 if the 

corresponding crew member is scheduled to operate the corresponding activity and 0 

otherwise. Other meta-heuristic approaches utilize a non-binary representation where for each 

activity the operating crew member is indicated (Christou et al., 1999; El Moudani et al., 

2001; Kerati et al., 2002). An example of the employed data structure is provided in figure 3. 

The activities (the pairings, the reserve duties, and the pre-assigned activities) and the crew 

members (the regular crew members, the extra personnel, and the freelance personnel) are 

displayed respectively on the horizontal and the vertical axis in the matrix. 
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1 1 … 0 0 … 0 0 … 1
… … … … … … … … … …

0 … 0 0 … 0 1 … 0
1 0 … 0 1 … 0 0 … 0
… … … … … … … … … …

1 … 0 0 … 1 0 … 0
1 0 … 0 1 … 0 0 … 0
… … … … … … … … … …

0 … 1 0 … 0 0 … 0

…1 … 11 …Crew member
Activity

rC

eC

fC

P R Q

Pre-assigned
activities

Regular crew members

Freelance personnel

Extra personnel

Pairings Reserve duties

1 1 … 0 0 … 0 0 … 1
… … … … … … … … … …

0 … 0 0 … 0 1 … 0
1 0 … 0 1 … 0 0 … 0
… … … … … … … … … …

1 … 0 0 … 1 0 … 0
1 0 … 0 1 … 0 0 … 0
… … … … … … … … … …

0 … 1 0 … 0 0 … 0

…1 … 11 …Crew member
Activity

rC

eC

fC

P R Q

Pre-assigned
activities

Regular crew members

Freelance personnel

Extra personnel

Pairings Reserve duties

 
Figure 3. The data representation 

 

These chromosomes serve as input for a fitness function which evaluates the quality of the 

solution encoded in each chromosome. The solution quality is calculated as a weighted 

average of the operational costs and the social quality of the population element as described 

in section 2.1. 

 

3.2 The Diversification Generation Method 

In this step, a large set of solution vectors is initialized. Since useful information about the 

structure of optimal solutions is typically contained in a suitably diverse collection of elite 

solutions, a diverse set of initial solutions is generated (Glover and Laguna, 2000). Kapsalis et 

al. (1993) and Reeves (1995) pointed out that introducing high-quality solutions, obtained 

from a heuristic technique, can help a meta-heuristic to find good solutions more quickly.  

Hence, we utilize a constructive heuristic which schedules the crew members in a random 

sequence by solving the identified subproblem taking appropriate preferences and penalty 

costs into account (Moore et al., 1978; Byrne, 1988). We implemented three different 

methodologies initializing the population elements, i.e., the first generates all solutions 

randomly, the second generates all solutions heuristically, and the third strategy generates a 

subset of the solutions with the constructive heuristic and a subset randomly. A subset of 

these initialized population elements are designated to be reference solutions. Refset1 contains 

the best b1 population elements in terms of solution quality. Refset2 contains the b2 most 

diverse solutions with respect to the solutions incorporated in Refset1. The distance between 

two solutions is a measure for diversity and is calculated as the number of different 

assignments between the two solutions.  

 

3.3 The Subset Generation Method  

After the initialization phase, scatter search operates on this reference set by combining pairs 

of reference solutions in a controlled, structured way. In the subset generation method two 

elements of the reference set are chosen in a systematic way to produce points both inside and 
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outside the convex regions spanned by the reference solutions. Glover and Laguna (2000) 

suggest to create new solutions out of all two-element subsets. Choosing the two reference 

solutions out of the same cluster (i.e. Refset1 × Refset1 or Refset2 × Refset2) stimulates 

intensification, while choosing them from different clusters (Refset1 × Refset2) stimulates 

diversification. The way each pair of solutions is selected from these three combinations of 

reference sets has been varied along three different subset generation strategies. The 

completely random selection selects each pair of solutions at random from one of the 

reference sets Refset1 or Refset2. The controlled random selection selects solution pairs from 

both reference sets in a controlled way. More precisely, this mechanism is determined by pre-

defined probabilities that a pair of solution elements comes from Refset1 × Refset1, Refset2 × 

Refset2 or from Refset1 × Refset2. The solutions are randomly selected out of the determined 

reference sets. The controlled selection based on fitness/diversity value employs the same 

mechanism to determine a pair comes from Refset1 × Refset1, Refset2 × Refset2 or from Refset1 

× Refset2. However, this selection strategy selects the combination elements based on their 

fitness value when element of Refset1 and/or the distance when element of Refset2. Fitter 

population elements of Refset1 and more diverse population elements of Refset2 with respect 

to Refset1 have a higher probability of being selected. 

 

3.4 The Solution Combination Method 

At each evolution cycle, the two selected population elements exchange information in such a 

way a new individual is created with attributes of both the parent solutions. In this paper, 

solution points are combined in different ways as described below based on crew-based 

combination methods or path relinking. Analogous to natural selection, all these heuristic 

principles thrive on the idea that the parent solutions will pass their good characteristics on to 

the newly created solution points. Hence, the algorithm preserves or even improves the good 

characteristics of the parent solutions as the population evolves.  

 

3.4.1 Crew-based crossover operators  

The one-point crossover operator randomly selects a crossover point between 1 and the 

number of regular crew members, such that the individual crew rosters before the crossover 

point are copied from the one parent and the individual crew rosters after the crossover point 

are copied from the other parent (Beasley and Chu, 1996; Aickelin, 2000).  

The crossover operator with best tournament selection creates a child schedule that combines 

the best individual crew rosters from both parents. We have implemented this crossover 

operator in two different ways into our algorithm discerning between two notions of ‘best’ 

individual crew rosters, i.e., best in terms of social quality and in terms of overall solution 

quality (operational costs and social quality) (Burke et al., 2001).  
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The crossover operator with random tournament selection selects randomly a crew roster out 

of the two parent solutions for each crew member (Aickelin, 2000; Burke et al., 2001; Dias et 

al., 2003).  

 

3.4.2 Path relinking approach 

The path relinking approach (Glover, 1998) combines solutions using convex linear or non-

linear combinations. The process of generating linear combinations may be characterized as 

generating paths between solutions in Euclidian space (Glover and Laguna, 2000; Glover, 

1998). A path between solutions will generally yield new solutions that share a significant 

subset of attributes contained in both parent solutions, which can differ according to the path 

selected. The moves introduce attributes contributed by a guiding solution and/or reduce the 

distance between the initiating and the guiding solution. The goal is to capture the 

assignments that frequently or significantly occur in high quality solutions, and then to 

introduce some of these compatible assignments into other solutions that are generated by a 

heuristic combination mechanism.  

In combining the parent solutions, a feasible roster line will be generated for each crew 

member by solving the identified subproblem with appropriate costs. The accounted costs are 

the result of a weighted average based on a (negative) cost given to the assigned activities 

present in both parent solutions maintaining the good characteristics of the initiating solution 

and introducing attributes of the guiding solution, the social quality, and the operational costs. 

In this paper, we have implemented this combination mechanism in two different ways, i.e., a 

restricted path relinking approach where only the activities present in the guiding and 

initiating solution are considered and a total path relinking approach where all activities 

compatible with the crew member’s qualifications are taken into consideration.  

 

3.5 The Improvement Method 

The improvement method applies heuristic processes to improve the total operational costs, 

fairness among the crew members and the crew members’ preferences of the newly generated 

solution points. To that purpose, we implemented different complementary local search 

algorithms based on the findings of Ahuja et al. (2002), each focusing on a different part of 

the scheduling matrix, i.e., the single crew roster-based local search (focusing on the whole 

roster line of a single crew member), the period-based local search (focusing on a single 

period for all crew members), the activity-based local search (focusing on a single activity for 

all crew members), and the schedule-based local search (focusing on the whole schedule for 

all crew members). The single crew roster-based local search was already implemented in a 

heuristic procedure for the crew scheduling problem by Moore et al. (1978) and Byrne (1988) 

making a single pass over an employee list. The drawback of this method is the poor roster 
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quality for the employees scheduled last. The period-by-period construction of a crew 

schedule was already investigated in a single pass heuristic by Nicoletti (1975), Buhr (1978), 

Tingley (1979), and Sarra (1988) but was unable to cope with the potential difficulties on 

succeeding days. Giaferri et al. (1982) combined the single crew roster-based local search and 

the period-based local search in order to overcome problems of both single pass heuristics. 

Maenhout and Vanhoucke (2005) exploited these improvement methods in a meta-heuristic 

procedure for the nurse scheduling problem.  

In the following, we describe these different improvement methods and illustrate the 

respective appropriate network structures on an example problem instance modeling the 

problem as a multicommodity flow problem (Cappanera and Gallo, 2004). Figure 4 displays 

the neighbourhoods of the different local search heuristics exercised on an initial crew 

schedule. The faded nodes and arcs are not taken into account when solving the various 

minimum cost flow problems. The dark arcs and nodes designate the respective paths and 

activities crew members can possibly be assigned to. In the example four crew members are 

to be scheduled over a period of 4 days. All crew members have a source (si) and a sink (ti) 

node. The activities which need to be assigned to the crew members are displayed in figure 1. 

The pre-assigned activity needs to be covered by crew member 3. All activities require 1 crew 

member except from pairing 1 which needs 2 crew members. Crew members have a rest day 

(displayed as a circle node) when they are not assigned to an activity that day. The horizontal 

regulations are limited to the sequencing rules modelled in the network structure of figure 2. 

Crew member 1, for example, works pairing 1 and 2 and has a day off on day 4.  
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Initial network structure of the example crew schedule 
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Network structure of the period-based local 
search for period 1 

 

Time
Day 1 Day 2

p1

p2

r1

p3

f1 f2

s1

s2

s3

s4

[1]

[3]

[4]

[2]

[4]

[1]

[1]

[4]

[2,3]

Time
Day 1 Day 2

p1

p2

r1

p3

f1 f2

s1

s2

s3

s4

[1]

[3]

[4]

[2]

[4]

[1]

[1]

[4]

[2,3]

Network structure of the activity-based local 
search for pairing 4 

 

 

 

      Day 1 Day 2 Day 3

p1

p2

r1

p3

r2

pa3,1

f1 f2 f3

[1]

[3] [3]

[4]

[4]

[2]
[2]

[4][4]

[3]

[3]

Day 1 Day 2 Day 3

p1

p2

r1

p3

r2

pa3,1

f1 f2 f3

[1]

[3] [3]

[4]

[4]

[2]
[2]

[4][4]

[3]

[3]

 
     
 

Network structure for the schedule-based local 
search swapping whole crew rosters 
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Figure 4. Illustration of the different improvement methods on an example crew schedule 
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The single crew roster-based local search optimizes the line-of-work of a single crew 

member, given the roster lines of the other crew members. This local search schedules the 

crew members in a random sequence one by one by solving the identified subproblem with 

appropriate penalty costs for under- and overstaffing, fairness penalty costs, and crew 

preferences. In figure 4 we have illustrated the appropriate network structure when optimizing 

the crew roster of crew member 2.  

 

The period-based local search optimizes the schedule for one period given the assignments of 

the crew members in all other periods. The length of this period during which the assignments 

are optimized is determined such that at most one activity can be assigned to a crew member 

within the period (e.g., one day). In this way, activities can linearly be assigned to the 

individual crew members based on crew preferences, fairness, and appropriate penalty costs 

for under- and overstaffing. To that purpose, the roster schedule over the period is converted 

to a linear assignment problem matrix. The cost matrix consists of the penalty cost and crew 

satisfaction of the whole roster line if the activity under consideration would have been 

incorporated. In constructing the matrix, each activity has a number of columns that is equal 

to its staffing requirements. Moreover, dummy activities and dummy crew members are 

added to allow the under- and overstaffing of activities. The cost of assigning dummy crew 

members to activities is equal to the penalty cost of understaffing the activity. When non-

dummy crew members are assigned to dummy activities, these crew members do not 

contribute to the actual required staffing of the activities considered in the respective period. 

These crew members will overstaff activities or will be assigned a rest period. Since the 

problem is a minimum cost flow problem, the dummy activities represent the best assignment 

for a particular crew member. The cost of this assignment is equal to the minimum 

assignment cost of the (feasible) activities or the rest period the crew member can be assigned 

to plus the penalty cost for overstaffing the particular activity. Of course, certain activity 

assignments are excluded from the matrix in order to cope with all the constraints, taking into 

account the fixed assignments in the other periods of the current solution. For each period of 

the planning horizon, a linear assignment problem is solved by means of the Hungarian 

method (Kuhn, 1955). In figure 4 we have displayed the appropriate network structure when 

optimizing period 1 of the crew schedule. In our example a period corresponds to 24 hours, 

i.e., one day. We have to optimally re-assign pairing 1 and reserve duty 2 given the crew 

members’ assignments on the other days. 

 

The activity-based local search optimizes the assignment of a single activity given all the 

other assignments of the crew members. This local search is implemented similarly to the 
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period-based local search but focuses on only one activity in contrast to the period-based local 

search which focuses on all activities within the period. This local search defines a linear 

assignment problem for each activity. In figure 4 we have displayed the appropriate network 

structure when re-assigning pairing 4 over the crew members.  

 

The schedule-based local search aims to improve the crew members’ satisfaction by 

swapping (parts of) lines-of-work between crew members. This problem is solved by defining 

a linear assignment problem that optimally re-distributes the lines-of-work of the current 

schedule among the crew members based on Kuhn’s method (1955). This re-distribution 

mechanism has only effect on the social quality of the schedule. The algorithm tries first to 

swap complete lines-of-work and tries then to swap parts of the roster lines (i.e., parts of two 

and three periods, whether or not consecutive) between the crew members taking only the 

pairings and reserve duties into consideration. Each constructed LAP matrix consists of all 

possible swapping alternatives between crew members taking into account the crew member’s 

qualifications and possibly fixed assignments. The assignment cost consists of the cost of the 

complete roster line after the swap would have been executed. In figure 4 we have displayed 

the appropriate network structure when re-assigning the complete crew rosters over the crew 

members. Since only pairings and reserve duties are swapped between crew members the 

crew roster of crew member 3 is adapted when assigning the roster line to one of the other 

crew members leaving out the pre-assigned activity for crew member 3.  

 

3.6 The Reference Set Update Method 

The population evolves over time with the entrance of new solution points and the drop-out of 

old solutions, searching to improve the quality of the best known solution. A new solution 

may become a member of the reference set either if the solution point has a better objective 

function value than the solution point with the worst objective function value in Refset1 or if 

the solution point is more diverse with respect to Refset1 than the least diverse solution point 

in Refset2. The reference set undergoes a static or a dynamic update. In contrast to a static 

update where the reference set is updated only after a number of solution points is generated, 

a dynamic update evaluates each possible reference set entrance instantly. In both cases 

“better” solutions replace the worst solution point in the concerned reference set and the 

ranking is updated. During the search, diversity in the reference set is maintained through the 

use of the artificial tiers in the reference set and by preventing the duplication of solution 

points and/or the entrance of highly resembling solutions.  

 

4 Computational Results  
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In this section we present computational results for the meta-heuristic procedure under study, 

carried out on a Dell computer with a Dual Core processor 2.8 Ghz and 2 Gb RAM. In section 

4.1, we describe the specific settings and characteristics of the problem instances and the 

parameter settings of the described meta-heuristic procedure. In section 4.2, we present 

detailed computational results showing the performance of the implemented meta-heuristic 

principles. In section 4.3, we compare our scatter procedure with a variable neighbourhood 

search based on the principles of Hansen and Mladenović (2001) and the exact branch-and-

price procedure of Gamache et al. (1999).  

 

4.1 Test design 

4.1.1 Problem instance characteristics 

To construct a robust procedure we generated several artificial test files based on real-world 

problem characteristics from literature (Caprara et al., 1998; Gamache et al., 1999; Cappanera 

and Gallo, 2004; Kohl and Karisch, 2004). We have generated 200 problem instances of 10 

regular crew members, 10 extra crew members (on the average), and 10 freelance crew 

members (on the average), and 90 activities (40 pairings, 40 reserve duties and 10 pre-

assigned activities). The set of extra and freelance crew members, i.e., Ce and Cf, are 

determined based on lower bounds described in Caprara et al. (2003) which calculate the 

minimum number of needed personnel for each skill category. These lower bounds indicate 

that the number of employees must be at least equal to the maximum daily request or to the 

ratio between the overall number of activities in the planning horizon and the maximum 

number of activities which can be assigned to a crew member. The wage costs for employing 

extra and freelance crew members amount respectively to 5,000 and 100. 

The problem instances typify the characteristics and attributes of the activities and crew 

members. The crew members have an explicit skill competency and operate as cabin 

personnel (e.g., captain, first officer) or service personnel (e.g., steward, hostess). Moreover, 

for each crew member multiple qualifications are described, i.e., his/her seniority, the types of 

aircraft he/she is able to operate on, the type of airport he/she is able to take off/land, the 

propertied visas and the language proficiency. Furthermore, the crew members express their 

preference for each activity and for the moment (day/time) they want to be scheduled. 

Activities have a specific service time resulting from the pre-determined start and end time. 

Pairings and reserve duties are characterized by a required number of crew members for each 

skill competency performing the task. Pairings are also described by a specific flight time, the 

required number of experienced crew members of cabin and service personnel, the required 

number of crew members of cabin and service personnel knowing all the safety regulations of 

the specific pairing, the aircraft type, the required visa type and required language 

competency. Pre-assigned activities are characterized by the crew member required to 
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perform the duty. Based on these specifications, the compatibility of a crew member with a 

specific activity can be determined in advance. Moreover, based on the start and end times, an 

activity is defined as a morning activity (starting between 6 am and 10 am), a day activity 

(scheduled between 10 am and 22 pm), a night activity ((partially) scheduled between 22 pm 

and 6 pm), or an overnight activity (starting before 22 pm and finishing after 6 pm). A 

complete day (i.e., a time interval of 24 hours starting at midnight) is called idle if no duty or 

part of a duty is executed during that day, otherwise the day is called working (Caprara et al., 

1998a; Caprara et al., 1998b). 

Furthermore, the imposed horizontal and vertical rules need to be defined and specified 

according to the company’s policy. The vertical rules constrain the required number of crew 

members for each skill category, the required number of experienced crew members for cabin 

and service personnel and the required number of crew members for cabin and service 

personnel knowing all safety regulations of the activity. The penalty cost of not satisfying the 

vertical rules amounts to 1,000 for pairings, 100 for reserve duties and 10,000 for pre-

assigned activities. In order to minimize the open time adequately, these penalty costs are 

multiplied by the respective service time of the understaffed activity. Horizontal regulations 

guard the social quality of a crew’s roster line and/or restrict the sequencing of activities. 

Obviously crew members can only be assigned to one activity at a time and to activities which 

are compatible with the crew’s qualifications. There is a minimum rest time restricting the 

sequencing of activities of 18 hrs after a day or morning activity and of 22 hrs after overnight 

and night duties. Furthermore, weekly and monthly restrictions are imposed constraining the 

attributes of a crew’s roster line. An overview of all incorporated horizontal regulations for 

regular and extra crew members is provided in table 1 together with appropriate minimum and 

maximum values for each constraint. Moreover, the fairness values and the accounted penalty 

costs when the characteristics of the roster assigned to regular crew members deviate from 

these averages are also displayed in the table.  

 

Table 1. Horizontal rules restricting a crew’s roster line 
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Fairness
Penalty cost

0 2 (*) 1
1 4 2 10
1 3 2 10
1 2 2 10

(*) (*) 20 2
(*) (*) 38 2
0 4 (*) 2
8 16 12 10
4 12 8 10
4 8 6 10

(*) (*) (*) 2
(*) (*) (*) 2
4 8 - -
1 2 - -
1 2 - -
1 2 - -
0 1 - -

Minimum value Maximum value Fairness value

  number of consecutive night duties
  number of consecutive overnight duties

  service time/month
  number of consecutive working days
  number of consecutive days off
  number of consecutive morning duties

  number of pairings/month
  number of reserve blocks/month
  number of days off/month
  flight time/month

  number of days off/week
  flight time/week
  service time/week
  overnight duties/month

  overnight duties/week
  number of pairings/week
  number of reserve blocks/week

Constraints

 
(-: not applicable; (*): pre-calculated upon the characteristics of the problem instance) 

 

The crew rosters for freelance personnel are restricted by the same maximum parameter 

values for the distinct constraints whereas all minimum value constraints are removed. 

 

4.1.2 Meta-heuristic parameter settings 

Inspired by the ideas of Kolisch and Hartmann (2006), we use the number of created 

schedules as a stop criterion for our meta-heuristic procedure. For the computational 

experiments we apply a stop criterion of 20,000 schedules. Within the limits of this stop 

criterion, we need to carefully design our algorithm such that we find the right balance 

between diversification and intensification. Hence, we combined the different local search 

methods discussed in section 3.5 as follows, i.e., first, the single crew roster-based local 

search optimizes randomly 30% of the crew members’ rosters. Next, the activity-based local 

search and the period-based local search, which optimizes 50% of the identified periods, are 

applied. Last, the schedule-based local search is carried out. This improvement method re-

distributes the complete crew rosters, followed by 70% of all possible three- and two-days 

combinations. The improvement method is iterated over each single improvement method and 

over all improvement methods until no improvement can be found. Furthermore, the total 

population size amounts to 50 containing 30 population elements in Refset1 and 20 solutions 

in Refset2. Mutation is applied on 30% of all activities and is implemented as the activity-

based local search incorporating random costs.  

 

4.2 Structural analysis of the scatter search procedure 

Table 2 displays the effect of different meta-heuristic principles implemented in our 

procedure. More precisely, different strategies and operation modes are implemented for the 
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diversification generation method, the subset generation method, the solution combination 

method, the mutation operator, the improvement method and the reference set update method. 

For each strategy we display the solution quality, the percentage deviation from the best 

performing procedure, the CPU time (in seconds) and its ranking for each step in the 

procedure. In order to test the effect of the different strategies we start from the best 

performing heuristic procedure and implement or leave out a certain strategy or characteristic 

of the procedure. In this way, we can analyze unambiguously the impact of the different 

strategies in terms of solution quality.  

 

Table 2. The performance of different meta-heuristic strategies 
Solution Quality % Deviation CPU time (s) Ranking

Diversification generation method
  Completely random generation 79,803.20 1.69% 23.74 2
  Completely heuristic generation 80,939.09 3.13% 23.92 3
  Combined random and heuristic generation 78,480.67 0.00% 25.44 1
Subset generation method
  Completely random selection 79,984.35 1.92% 24.29 3
  Controlled random selection 79,290.86 1.03% 24.46 2
  Controlled selection based on fitness/diversity  value 78,480.67 0.00% 25.44 1
Solution Combination Method
  One point crossover 79,997.84 1.93% 23.50 7
  Best tournament selection (social quality) 79,949.21 1.87% 23.30 6
  Best tournament selection (overall solution quality) 79,915.44 1.83% 23.62 4
  Random tournament selection 79,860.72 1.76% 24.10 3
  Path relinking 79,941.27 1.86% 31.18 5
  Restricted path relinking 78,886.45 0.52% 23.54 2
  Hybrid solution combination method 78,480.67 0.00% 25.44 1
Improvement method
  No improvement method 131,979.70 68.17% 27.48 6
  No single crew roster-based local search 80,985.19 3.19% 15.33 4
  No period-based local search 80,751.80 2.89% 31.46 3
  No activity-based local search 79,691.01 1.54% 24.16 2
  No schedule-based local search 84,515.52 7.69% 31.26 5
  All local search mechanisms 78,480.67 0.00% 25.44 1
  Non-iterated local search 82,847.10 5.56% 23.45 4
  Iterated local search per local search mechanism 80,081.54 2.04% 29.37 2
  Iterated local search over local search mechanisms 80,487.00 2.56% 25.98 3
  Combined Iterated local search 78,480.67 0.00% 25.44 1
Mutation
  With mutation 78,480.67 0.00% 25.44 1
  Without mutation 79,507.67 1.31% 22.05 2
Update method
  Static update 79,893.11 1.80% 24.13 2
  Dynamic update 78,480.67 0.00% 25.44 1  

 

For the diversification generation method we observe that a more diverse generation of initial 

population elements outperforms the procedure initializing solely heuristic population 

elements (‘Completely heuristic generation’). This beneficial effect of diversity can be found 

back not only in the random generation of some population elements but also in the diverse 

manner solutions are generated (i.e., random and heuristic generation).  
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The results for the subset generation method indicate that the higher the intelligence in the 

selection system of population elements, the better the computational performance. The 

strategy ‘Controlled selection based on fitness/diversity value’ which controls the choice of 

type of subset (leading to diversification and/or intensification) and selects population 

elements based on their fitness/diversity value outperforms both other strategies (‘Completely 

random selection’ and ‘Controlled random selection’). The probabilities for the types of 

subsets, i.e., Refset1 × Refset1, Refset1 × Refset2, or Refset2 × Refset2, were defined as 45%, 

45%, and 10% respectively. 

 

The solution combination method shows that the one-point crossover operator is 

outperformed by the more disruptive crossover operator (i.e., the crossover operator based on 

random tournament selection) and the combination mechanisms incorporating a higher degree 

of problem-specific information (i.e., the path relinking approaches and the crossover operator 

based on best tournament selection). The best tournament selection methods indicate a better 

performance when incorporating all objective function information than focusing only on the 

social quality of the individual crew rosters. The restricted path relinking approach 

outperforms all other algorithms exploring only one combination method. However, 

hybridizing different solution combination methods yield even better results. In the algorithm 

‘Hybrid solution combination method’, we apply the three best combination methods (i.e., the 

restricted path relinking, the random tournament selection and the best tournament selection) 

with a certain probability (i.e., respectively 50%, 25%, and 25%) in order to construct a new 

solution point. 

 

In analyzing the improvement method we examine the role of each local search mechanism 

and the role of iterating the improvement method.  

The beneficial effect of the local search methods can be clearly discerned when leaving the 

improvement method out of the algorithm (‘No improvement method’). In order to establish 

the contribution of the different local search methods, we omitted each improvement method 

leading to four different versions of the algorithm, i.e., ‘No single crew roster-based local 

search’, ‘No period-based local search’, ‘No activity-based local search’, and ‘No schedule-

based local search’). Excluding the schedule-based local search leads to the worst results in 

terms of solution quality. This implies that this singular local search has the highest 

contribution in the improvement method when improving a new solution point. The 

contribution of the period-based and the single crew roster-based local search are fairly 

similar. The activity-based local search, however, has the smallest contribution probably due 

to the small size of its neighbourhood.  
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Furthermore, we tested how the improvement method is best iterated, i.e., no iterations are 

applied (‘Non-iterated local search’), each local search method is separately iterated until no 

improvement is made (‘Iterated local search per local search mechanism’), all local search 

methods are iterated until no improvement is made (‘Iterated local search over local search 

mechanisms’), and the combination of the latter two (‘Combined iterated local search’). The 

table reveals the beneficial effect of iterating the improvement method.  

 

Incorporating the mutation operator in the algorithm leads to a better performance in terms of 

solution quality.  

 

The table reveals that updating the reference set dynamically (‘Dynamic update’) achieves 

better results then the static update method (‘Static update’) in terms of solution quality.  

 

4.3 Comparison of exact and heuristic procedures  

In this section we compare the performance of the proposed scatter search procedure with 

variable neighbourhood search using 20,000 evaluated schedules as a stop criterion and with 

the branch-and-price procedure of Gamache et al. (1999) truncated at 600 seconds. The latter 

solution method is based on mathematical programming solving the linear relaxation of the 

generalized set partitioning problem by column generation and many NP-hard shortest path 

subproblems, both tailored to the specific problem formulation as described in section 2.2. 

Moreover, we have enhanced the column generation procedure by incorporating Lagrangean 

dual pruning in order to alleviate the “tailing-off effect” to terminate the column generation 

method sooner (Vanderbeck and Wolsey, 1996; Barnhart et al., 1998; Van den Akker et al., 

2002). If the resulting linear programming relaxation is fractional, 0-1 branching is applied to 

allow or prohibit the assignment of a specific activity to a particular crew member. The results 

are displayed in table 3.   

 

In the upper part of table 3 the computational results of the scatter search (‘SS’), the variable 

neighbourhood search (‘VNS’) and the branch-and-price procedure (‘B&P’) in terms of 

solution quality and CPU time are displayed. In order to give insight in which dimension of 

the objective function the scatter search performs better than the two other procedures, we 

display the three different objectives of the objective function, i.e., crew preferences (‘Crew 

Preferences’), fairness or impartiality among the crew members (‘Fairness’), and the 

operational costs due to understaffed activities and the employment of extra or freelance 

personnel (‘Operational costs’). Furthermore, we indicate the percentage both procedures 

deviate from the scatter search procedure in terms of overall solution quality. 
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In the middle and bottom part of table 3, a pairwise comparison is made of the scatter search 

with the variable neighbourhood search and the branch-and-price procedure respectively. We 

report how the scatter search performs worse (‘SS < VNS’ and ‘SS < B&P’), equal (‘SS = 

VNS’ and ‘SS = B&P’), and better (‘SS > VNS’ and ‘SS > B&P’) using two performance 

parameters, i.e., the percentage of problem instances (‘% Problem Instances’) and the 

deviation between the scatter search procedure and the respective procedure in terms of 

solution quality (‘% Deviation’). 

 

Table 3. The performance comparison of different procedures with  

the scatter search methodology 

 Solution Quality 78,480.67 80,402.41 102,701.42
  - Crew Preferences 1,830.77 1,816.99 1,882.48
  - Fairness 709.90 703.92 808.94
  - Operational Costs 75,940.00 77,881.50 100,010.00
 CPU time (s) 25.44 20.52 510.27
 % Deviation 0.00% 2.45% 30.86%

SS < VNS SS = VNS SS > VNS
 % Problem Instances 26.50% 1.00% 72.50%
 % Deviation 0.43% 0.00% 5.69%

SS < B&P SS = B&P SS > B&P
 % Problem Instances 33.50% 6.50% 60.00%
 % Deviation 0.83% 0.00% 88.88%

Overall

SS  vs  B&P

SS  vs  VNS

SS VNS B&P

 
 

The upper part of the table reveals that the scatter search outperforms the variable 

neighbourhood search and the branch-and-price procedure by 2.45% and 30.86% 

respectively. Within the stop criterion of 600 seconds, the branch-and-price procedure is able 

to solve 40% of the problem instances to optimality. The other problem instances obtain an 

integer solution either during the exploitation of the search tree, either due to the heuristic tree 

search described in Gamache et al. (1999), or due to the single pass heuristic exploited by 

Moore et al. (1978) and Byrne (1988) initializing the column generation procedure. 

Examining the different components of the objective function, we observe that the branch-

and-price procedure performs worse for all three objective function dimensions compared 

with the other two procedures. When comparing the scatter search with the variable 

neighbourhood search, the table reveals that the scatter search obtains solutions with much 

lower operational costs whereas the crew members’ preferences and fairness among the crew 
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members are slightly higher. This lower social quality is due to the objective function 

structure and the defined penalty costs enabling the operational costs as the dimension with 

the relative highest potential for improvement.  

Despite the fact that the variable neighbourhood search is implemented with the same stop 

criterion, the scatter search outperforms the variable neighbourhood search for 72.5% of the 

problem instances and by 5.69% in terms of solution quality. This indicates the beneficial 

effect of implementing problem specific solution combination methods over generating a new 

solution point totally ad random. For the problem instances the scatter search is performing 

worse, the deviation in solution quality is rather small, i.e., 0.43%.  

Furthermore, the table reveals that the scatter search outperforms the branch-and-price 

procedure for 60% of the problem instances and by 88.88% in terms of solution quality. This 

huge deviation is partly due to the inability of solving the linear programming relaxation 

within the stop criterion of 600 seconds for some of these problem files and, hence, no integer 

solution can be calculated using the partial branch-and-bound tree exploration. The obtained 

solutions result then out of the single pass heuristic. The branch-and-price procedure achieves 

better results in terms of solution quality for 33.5% of the problem instances. Despite this 

non-negligible amount of problem instances, the deviation in solution quality our scatter 

search procedure is performing worse is rather small, i.e., 0.83%.  

Based on these computational comparisons (in terms of solution quality and CPU time), we 

can conclude the scatter search surpasses the implemented variable neighbourhood search and 

the branch-and-price procedure.  

 

5 Conclusion 

 

In this paper, a scatter search procedure has been proposed for an airline crew rostering 

problem which rosters regular crew members and decides if extra and/or freelance personnel 

should be employed. Moreover, the procedure determines the rosters of the engaged extra and 

freelance workforce minimizing the operational costs. The crews’ lines-of-work are 

constructed based on a personalized rostering approach ensuring fairness between the regular 

crew members taking the crew members’ preferences into account. We have discussed and 

investigated all aspects leading to a successful and effective procedure able to solve real-

world crew rostering problems. Moreover, we have compared the performance of our 

algorithm with a variable neighbourhood search and an exact branch-and-price procedure 

showing the efficient performance of the proposed algorithm.  

 

For future research, the integration of crew pairing and crew rostering into one problem 

would turn out beneficial over the decomposition approach. This integration would provide a 
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higher flexibility making it easier to maximize the social quality of the schedule and minimize 

the operational costs. The further development of high-quality meta-heuristic approaches will 

become an important factor in this step since increasing the problem size, flexibility and 

complexity will be harder to solve for exact procedures. Furthermore, the construction of 

robust schedules will become a main issue in future research. Generally, schedules need to be 

maintained and repaired until the moments of operations resulting in delays and cancellations 

which lead to dissatisfied customers, higher operational costs, and a lower social quality for 

the crew members. Procedures need to be developed which can uptake this uncertainty and 

variability upfront leaving out the costly ad hoc adjustments.  
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