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Abstract

A regression including integrated variables yields spurious results if the residuals contain
a unit root. Although the obtained estimates are unreliable, this does not automatically
imply that there is no long-run relation between the included variables as the unit root in
the residuals may be induced by omitted or unobserved integrated variables. This paper uses
an unobserved component model to estimate the partial long-run relation between observed
integrated variables. This provides an alternative to standard cointegration analysis. The
proposed methodology is described using a Monte Carlo simulation and applied to investigate
purchasing-power parity.

JEL Classification: C15, C32
Keywords: Spurious Regression, Cointegration, Unobserved Component Model, PPP.

1 Introduction

Since the seminal articles of Engle and Granger (1987) and Johansen (1988), cointegration analysis
has become a standard econometric tool for estimating relationships involving integrated variables.
An important drawback of cointegration analysis is that it requires all variables constituting an
equilibrium relation to be included in the analysis. The implication of omitting relevant integrated
variables is double. First, any economic theory indicating a long-run relation between a vector of
integrated variables will fail to yield a cointegrated regression in the presence of omitted integrated
variables. Examples of this problem are legion. Using post-war aggregate U.S. data Rudd and
Whelan (2006), for instance, fail to reject the null hypothesis of no cointegration between con-
sumption, labour income and financial wealth. They argue that a non-stationary component in the
relation between these variables might be induced by non-stationarity of the expected return on
wealth. Second, Engel (2000) shows that standard cointegration tests are seriously biased towards
finding cointegration in the presence of omitted integrated variables. Simulating samples of 100
observations, cointegration tests with a nominal size of 5% are found to have true sizes that range
from 90% to 99% even though there is a non-stationary component that accounts for 42% of the

100-year forecast variance. Combining these two arguments suggests that cointegration analysis is
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not always conclusive in terms of detecting a long-run relation between integrated variables, both
in cases where cointegration is found and in cases where it is rejected.

The interest of this paper is to estimate the long-run relation between integrated variables when
possibly not all of the integrated variables constituting an equilibrium relation are included in the
analysis. As an alternative to standard cointegration analysis, we propose to use the unobserved
component (UC) approach as outlined in, for instance, Harvey (1989) and Durbin and Koopman
(2001). In the UC framework, omitted variables can be treated as unobserved components which
can be inferred from the observed data using the Kalman filter. This allows for estimation of the
long-run relationship between the observed integrated variables using maximum likelihood and for
inference on the long-run parameters using a Wald or a likelihood ratio test even if the variables
are not cointegrated.

Although UC models have recently become very popular to decompose time series into a
number of unobserved components (like trend, cycle, seasonal, ...), they are only rarely used to
filter omitted variables from a long-run relation between integrated variables. Examples are Harvey
et al. (1986), who add an unobserved component to the employment-output relation to account
for the underlying productivity trend, and Sarantis and Stewart (2001) who add an unobserved
component to the consumption-income relationship to account for omitted variables such as wealth.
A major obstruction to its use is that a general UC model is not necessarily identified. Nelson
and Plosser (1982), for instance, show that a difference-stationary process can be decomposed into
a permanent and transitory component in an infinite number of ways depending on the assumed
correlation between innovations to these two unobserved components. Typically identification is
achieved by assuming innovations to be mutually independent. In the context of this paper, this
restriction would imply innovations to the observed and to the unobserved/omitted variables to
be uncorrelated. Obviously, this is a strong restriction. In a number of recent papers (see e.g.
Morley et al., 2003; Morley, 2007) it is shown that an UC model with correlated innovations is
identified provided that it has sufficiently rich dynamics. Therefore, this paper allows for correlated
innovations and checks under which conditions the model is identified.

The performance of the UC framework relative to standard cointegration analysis, both in
terms of estimation and inference, is studied using a Monte Carlo experiment. We consider a
simple dynamic bivariate triangular process similar to the one in Inder (1993). Concerning the
relation between the 2 observed integrated variables, the experiment nests three important cases:
(i) independent random walks, (ii) cointegrated variables and (iii) a long-run relation with an
integrated missing component. In all of these cases, the UC framework provides a consistent and
asymptotically normally distributed estimate for the long-run relation between the 2 observed
variables. In the first and third case, this entails an important improvement over standard estima-

tors, for instance a static ordinary least squares (OLS) estimator, as these yield spurious results in



both of these cases. In the second case, the performance of the UC model is similar to that of the
static OLS estimator, which is superconsistent in this case. The nice properties of the UC model
in the third case are of important practical relevance especially as under the various parameter
settings considered in the experiment, standard cointegration tests with a nominal size of 5% have
actual sizes up to 89.1%. This indicates that spurious regressions will wrongly be considered to be
cointegrating regressions in far too many cases. Combining the results for the three cases suggests
that the UC model is a valuable alternative to standard cointegration analysis.

The paper is structured as follows. Section 2 introduces the correlated UC framework as
an alternative to standard single equation cointegration analysis in a simple dynamic bivariate
process. Section 3 presents a Monte Carlo comparison. In section 4, the proposed UC methodology

is applied to testing purchasing-power parity (PPP).

2 Cointegration versus UC analysis
2.1 A simple bivariate process

Consider a dynamic bivariate triangular process

a(L)yie =+ B(L)yar + pu, (1)
O(L)Ayar = p2+ea, (2)
Kt = Vit &, (3)

Vi = V-1t (4)

where y1; and yo; are scalar variables, p; and uo are constants and the error terms &1, €9; and
11+ are zero mean Gaussian white noise processes with covariance matrix €2
2
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Q= Ocies 032 Oeym . (5)

Ocym Oeam Oy

The lag polynomials are defined as (L) =1 —a1L — ... —a,LP, B(L) = Bo + 1L+ ...+ B,L?
and ¢(L) = 1— 1L+ ...+ ¢.L". They all have roots outside the unit circle. The choice for
such a simple model is purely for expositional purposes. A highly similar model is used in, among
others, Kremers et al. (1992) and Inder (1993). The main difference is that the error structure of
y1¢ includes an I(1) component when 0,2] . # 0. The non-zero off-diagonal elements of 2 allow for
endogeneity of yo; and collinarity between innovations to v; and innovations to yy; and yo;.

The long-run relation between ys; and y1; can be obtained from rewriting equation (1) as
yie = M+ Aoyae +71(L) Ay + v2 (L) Ayas + wy, (6)

where Ay = §(1)/(1) measures the long-run impact of yo; on yi4, with a(1) =1 —a1 —... —ayp



and B(1) = Bo + b1 + ... + B4, and where

a(l) —a(L)
a()(1-L)’

s
B ama-n T any

i
AL = o)’ (L) =

As equation (2) implies that yo; is I(1), y1+ and yo¢ are said to be cointegrated if Ay # 0 and
o7, =0 such that yy; and ya; are I(1) while y; in equation (1) and w; in equation (6) are 1(0). If

A2 = 0 and/or 0,271 # 0, y1; and yo; are not cointegrated.

2.2 Static cointegration analysis

If Ay is the primary parameter of interest, Engle and Granger (1987) suggest to use OLS to estimate

a static version of the model in (1)
Y1t = A1+ Aayar + vy, (7)

where from using (6) vy = v1(L)Ay1¢ + y2(L)Aya + wi. In estimating (7) the dynamic terms
in Ay and Ays; and possible endogeneity of yo; can be ignored due to the superconsistency
property of the OLS estimator when y;; and y9; are cointegrated (Stock, 1987). When y;; and
yo¢ are not cointegrated, estimating (7) yields spurious results. Testing the null hypothesis that
y1: and yo; are not cointegrated amounts to testing whether v, ~ I(1) against the alternative
that vy ~ I(0). Typically this is done using the cointegrating regression Augmented Dickey-Fuller
(CRADF) test. As the CRADF test has low power against stationary alternatives with a root close
to unity, Shin (1994) and Harris and Inder (1994) suggest to test for the null of cointegration by
testing for stationarity of vy building on the Kwiatkowski et al. (1992) unit root test. Leybourne
and McCabe (1994) test the null of cointegration by directly testing whether the variance of the

shocks to the random walk component vy is zero, i.e. Hy : 072]1 =0.

2.3 Dynamic cointegration analysis

Although the OLS estimator for \; in a static equation like (7) is superconsistent, its asymptotic
distribution depends on nuisance parameters arising from serial correlation in v; and endogeneity
of yo; (Phillips and Durlauf, 1986; Phillips and Hansen, 1990). Moreover, omitting dynamic terms
and ignoring endogeneity leads to substantial small sample biases (Banerjee et al., 1986) and
results in low power of the residual based cointegration tests mentioned above (Kremers et al.,

1992; Zivot, 1994; Banerjee et al., 1996).
Dynamic OLS/GLS estimator

The dynamic OLS (DOLS) estimator suggested by Saikkonen (1991) eliminates nuisance terms

that stem from endogeneity and serial correlation by augmenting (7) with leads and lags of Aysy

ko

Y1t = A1+ Aayor + Z bjAyai_; + €4, (8)
P,



where the error term ¢; is uncorrelated with the regressors at all leads and lags but is in general
serially correlated. Therefore, Stock and Watson (1993) suggest to estimate (8) using feasible
generalised least squares (GLS), referred to as dynamic GLS (DGLS). Monte Carlo evidence
in Stock and Watson (1993) shows that the DOLS and DGLS estimators yield an important

improvement over the static OLS estimator both in terms of estimation and inference.
ECM estimator

Banerjee et al. (1986) suggest to estimate Ay by estimating the dynamic equation (1), which is

conveniently written in error correction model (ECM) form as

61(L)Ay1 = 05(L)Ayar — a(1) (Yre—1 — A\ — Agyae—1) + pua, 9)
where
_a(l) —a(l)L _ BL) - B1)L
h(n) = U= ) -

Using Monte Carlo simulations Inder (1993) demonstrates that in a dynamic setting the ECM
estimator provides precise estimates and valid inference even in the presence of endogenous vari-
ables. To test for the null of no cointegration Kremers et al. (1992), Zivot (1994) and Banerjee
et al. (1996) suggest to use a t-test for «(1) = 0 . Using Monte Carlo simulations, this ECM test

for cointegration is found to be more powerful than residual based tests.

2.4 An unobserved component framework

The results of the above mentioned estimation and test procedures are not always conclusive in
terms of detecting the long-run relation between y1; and y9;. Upon finding no cointegration one
cannot automatically conclude that there is no long-run relation between y1; and yo;, as the unit
root in p; may be induced by omitted or unobserved I(1) variables. In this case v; represents (a
linear combination of) omitted or unobserved I(1) variables which ought to be included in (1) for
1t to be I(0). Although the presence of a unit root in p; implies that the results obtained from
estimating equation (7), (8) or (9) using OLS/GLS are spurious, the model in equations (1)-(4)
can be cast into a linear Gaussian state-space (SS) representation and estimated using maximum
likelihood (ML). As such, it is possible to obtain a non-spurious estimate for the long-run relation

between y;; and yo even if they are not cointegrated.
State-space representations
The general SS form! is given by

yt:AIt+ZOlt+€t, €tNN(0,H), t::lw..,jﬂ’7 (10)

o1 = Say + Ry, ne ~ N(0,Q), Eleyn] =G, (11)

1See e.g. Harvey (1989) or Durbin and Koopman (2001) for an extensive overview of SS models.



where y; is a p x 1 vector of p observed endogenous variables modelled in the observation equation
(10), x¢ is a k x 1 vector of k observed exogenous or predetermined variables and «; is a m x 1
vector of m unobserved states modelled in the state equation (11). The matrices 4,72, S, R, H,Q
and G are time-invariant but generally depend on an unknown parameter vector 1.

If the explanatory variable yo; is weakly exogenous in equation (1), the SS representation of
the UC model in equations (1)-(5) is given by the observation equation

n= [ 22500 500y ][ 7 ] e, =

with the state equation being equation (4) and where H = 02 ,Q = 07 and G = o.,,,. Without
loss of generality, the constant p; is included in the state variable v;. The condition that yo; is
weakly exogenous means that no relevant information to the estimation of the unknown parameters
in equation (1) is lost by conditioning on y2: (Engle et al., 1983), i.e. it is not necessary to construct
a model for yo;. This is the case if o.,., = 0 and o.,,, = 0.

If the explanatory variable yo; is not weakly exogenous, the reduced form of the UC model in

equations (1)-(2) is given by

yie = 1+ Bopz + & (L)yie—1 + B (L)yae—1 + vi + €11 + Bocar, (13)
yor = po+ ¢ (L)y2—1 + €2, (14)
where
1—a(L L)— 1-¢'(L)L 1 L—1)¢(L
iy Lm0 B = RS 1 (L=l
L L L
This reduced form UC model can be cast in SS form with observation equation
Eot
Y1t o (L) p'(L) Y1e—1 Bo 1 DBo E1t
_ , 15
[ yar ] [ 0 L) ||y | Tl 0 || 0 (15)
H2
and state equation
Eat 0 0 O Eo2t—1 1 0 c
ve |=10 10 vier |+ 0 1 { 2’&}, (16)
112 00 1 1o 0 0 |L™M

2
o o
where H = 02 ,Q = &2 2
1
Ocamr Opy
constant 7 is again included in the state variable v;.

] and G = [ 02, Ocyny ]/ . Without loss of generality, the

Identification

It is not immediately obvious that the SS models presented above are identified. First consider

the single equation model in equations (12) and (4). In order to check identification, first derive



the stationary UC autoregressive moving-average (ARMA) representation of the model which is,

under the assumption that ys; is weakly exogenous, given by
a(L)Ayiy — B(L)Ayas = mie + Ay (17)

The right-hand side of equation (17) will have nonzero autocovariances through lag 1. Then, by
Granger’s lemma (Granger and Newbold, 1986) the reduced-form ARMA representation of the
model is given by

a(L)Ayys — B(L)Ayay = E(L)er = <, (18)

where the MA lag polynomial (L) is of order 1. After normalising &y = 1, &; and o2, are obtained
such that the autocovariances of the right-hand side of (18) match with those of (17). The SS
model in (17) is identified if its parameters can be inferred from the reduced form in (18). As the
left-hand side of both equations is equal, the (p+¢+1) parameters in the AR lag polynomials «(L)
and (L) are always identified. The remaining 3 structural coefficients (02,07 ,0c,,,) cannot be
inferred from the 2 coefficients &; and o2 on the right-hand side of (18), though. The relation

between the reduced form and the UC parameters is given by

Y = 2(031 + 051771) + ngﬂ
"= *(0—?1 + Uslﬂl)v
¥ = 0 for 72>2

where the values for the autocovariances v, = cov (¢, <—-) for 7 = 0,1 can be estimated from
the data through the reduced-form ARMA representation of the model. This shows that 2, and
Oc,n, are not individually identified but only their sum is. Morley et al. (2003) point out that a
separate identification of agl and o, requires €q; to exhibit rich enough dynamics. In stead of
generalising equation (3) by allowing £1; to be generated from a more general ARMA process we
impose o¢,,, = 0. This identifying restriction affects the estimate for 0’?1 but leaves the estimates
for the other structural coefficients unaffected. As we are only interested in estimating the long-run
relation between yq; and yo, this restriction is without loss of generality.

Next, consider the stationary UC vector autoregressive moving-average (VARMA) representa-

tion of the multiple equation framework in(15)-(16)

d(L)a(L)Ayry — ¢(L)(B(L) — Bo)Ayar = Bopz + ¢(L)Aery + Bogae + d(L)11e, (19)
P(L)Ayar = pa+ea. (20)

The right-hand side of (19) will have nonzero autocovariances through lag (r+1). Then, by
Granger’s lemma (Granger and Newbold, 1986) the reduced-form VARMA representation of the



model is given by

d(L)a(L)Ayre — ¢(L)(B(L) — Bo)Ayar = wi +&n(L)err + &12(L)ear = <ig, (21)

d(L) Ay = wa+ eq = Sap, (22)

where the MA lag polynomials &;1(L) and &;2(L) are both of order (r + 1) with normalisations
&1,0 = 1 and &120 = 0. The remaining coefficients in &1(L) and &12(L) and 031,052,06162 are
obtained such that the autocovariances of the right-hand sides of (21)-(22) match with those of
(19)-(20). The UC model is identified if its parameters can be inferred from the reduced form.
First note that the left-hand sides of (19)-(20) and (21)-(22) are equal. This shows that the
(p+q+r) parameters in the AR lag polynomials a(L), (B(L) — o) and ¢(L) are always identified.
Second, the coefficients p12 and 3y on the right-hand side of (19)-(20) and the 6 variance-covariances
in © need to be inferred from the 2(r + 1) MA coefficients, the two intercept terms w; and ws
on the right-hand side of (21)-(22) and the 3 variance-covariance parameters o2 ,02,,0c,c,. A
necessary condition for identification is that » > 1, i.e. the reduced form contains as least as much
parameters as the structural UC model. In order to check whether this necessary condition is also
sufficient for identification, a one-to-one mapping between the reduced-form and the structural
parameters should be established, though. Consider for instance a model with ug # 0 and r = 1.

The parameters in the AR part of this model can be estimated directly from the data while the

observable moments of the MA part of the model are the intercept terms w; and wy and the

autocovariances
Yoa1 = 2(14¢1+ ¢3) (02, + 0eryy) + 5502, + (1+ ¢%)021 +20600¢,¢, + 28005,
Yo12 = 0,21 = B0, + Ocrey + Ocynys
Y0,22 = 0327
1,11 —(1+¢1)%(02, + 0eyny) — ¢107271 — Bo(1 4+ ¢1)0c1e, — Bo®10esn:
a2 = 102, = (14 61)0ee, — $10e5m, (23)
Vo1 = &1(02 + 0einy) + Bod10e,zs,
Y212 = P10ee,,
Vr2j = 0 for 721 and ~,1;,=0 for 72>2,

where v, ;; = cov (Sit,Sje—-) with 4,j = 1,2. The 7 non-zero autocovariances together with the
intercepts terms w; and wy provide 9 pieces of information from which in principle the remaining
8 UC coefficients (ua, B0,02,,02,,0% ,0c,c0,02,m, and oc,y,) can be inferred. Inspection of the
autocovariances reveals that o2 , and o0.,,, are again not individually identified, though. Without

loss of generality the model is again identified by setting o.,,, = 0. Imposing this identifying

restriction implies that the remaining structural coefficients are identified either if pus # 0 or if



r 2 1. In the former, the non-zero drift term po implies that both ps and [y can be identified
from the intercept terms w; and wsy while, even if r = 0, the remaining 5 parameters in ) can
be identified from the 5 non-zero autocovariances in (23). In the latter, the zero drift term puo
implies that By should also be identified from the autocovariances in (23). This requires at least
6 non-zero autocovariances, i.e. r > 1.

Intuitively, identification of the long-run impact of ys; on yi1; requires (i) yor to be weakly
exogenous such that it is orthogonal to the unobserved component v; or (ii) the dynamic behaviour
of yo; to differ from that of the unobserved component v; once innovations to these components

are allowed to be cross-correlated.

ML estimation and inference

Provided that the UC model is identified, the likelihood for the linear Gaussian SS model in (10)-
(11) can be calculated by a routine application of the Kalman filter and maximised with respect
to the unknown parameter vector ¢ using an iterative numerical procedure. Pagan (1980) shows
that the resulting ML estimator ’L//J\ is consistent and asymptotically normally distributed provided
that (i) ¢ is an interior point of the parameter space and (ii) the transition matrix S does not
contain unknown polynomials with roots inside the unit circle. As As is an interior point and S
does not contain unknown parameters, inference on the long-run relation between y1; and ys; is
possible using a standard Wald or likelihood ratio (LR) test. Note that testing whether y;; and
yo¢ are cointegrated implies testing whether afh = 0, which is on the boundary of the parameter
space. In this case, the distribution of a Wald or LR test is non-standard but can in principle be
obtained using Monte Carlo simulation. As the interest of this paper is to estimate the long-run
relationship between y1; and yo; irrespectively of whether they are cointegrated or not, we don’t

want to test this hypothesis, though.

3 Monte Carlo experiment

In this section, the performance of 5 alternative estimators for the long-run relationship between

integrated variables is compared using a Monte Carlo simulation.

3.1 Design

As before, we consider the model in (1)-(5), setting p = ¢ = r = 1. Data are generated under a
variety of settings for the parameter vector ¥ = (al, Bo, A2, @1, 2, Ugl , 0?2 , 0’%1  Oerear Term s 062,71).
For each parameter setting we generate 2500 series of length T'. First, we draw a sample of T’
observations for €14, £9; and 7;; out of a multivariate normal distribution with variance-covariance
matrix €. Next, we generate yo; and v; by first drawing initial values for Ays; and Av; from their

stationary distribution and then calculating initial values for ys; and 14 from a diffuse initialisation



on the level

Y21 = Y20+ Ay, where Aypq = (1—¢7) %51 and yo0 ~ N(0,00), (24)
vy = v+ Avy, where Av; =mn; and vy ~ N(0,00). (25)
Data for t = 2,...,T are then generated using (2) and (4) respectively. In order to generate data

for y14, first define the latent variable (; to be the deviation of y;; from its equilibrium level implied

by the levels of u1, yor and 1y

1
Gt Y1t — —— (1 + (Bo + B1)yar + 1) . (26)
(]. — Oél)
Using (1), ¢; can be written as
G = oaG-1+&, (27)
a1 + B a1
where = g1 — — =AYy — —————114.
&t 1t (1 — 041) Yot (1 — al)mt

Setting Aya; = (1 — ¢3)~/2e5; from (24), ¢; can be initialised from (27) as
G=&(1—-a)"% (28)

After generating ¢; for t = 2,...,T using (27) and given data on yo; and vy, y1¢ can then be
calculated from (26).

We consider five alternative estimators: (i) the static OLS estimator in equation (6), (ii) the
DGLS estimator in equation (8), (iii) the ECM estimator in equation (9), (iv) the univariate UC
model (UC_U) in equations (12) and (4) and (v) the multivariate UC model (UC_M) in equations
(15)-(16). The DGLS estimator is implemented by setting as a rule of thumb k; = ko = int [T/?]
(see Saikkonen, 1991). Selecting an alternative number of leads and lags did not have a noteworthy
impact on the main results. The ECM, UC_U and UC_M estimators are implemented by setting,
if relevant, p=qg=1r = 1.

The design of the Monte Carlo experiment nests three special cases. First (Case I), when
A2 = 0 and 07271 # 0, there is no long-run relationship between the random walk processes ¥1;
and yo;. Second (Case IT), when Ay # 0 and 03,1 = 0, y1: and yo; are cointegrated. Third (case
III), when Ay # 0 and ofh # 0, there is a long-run relationship between y;; and yo; but they
are not cointegrated. For each of these cases we analyse the performance of the 5 alternative
estimators in terms of estimation and inference. Next to the median bias and the root mean
squared error (Rmse), we report the percentiles of the empirical distribution of A5.2 We also check

the performance of standard cointegration tests, i.e. a CRADF test on the residuals from the OLS

2We report the median bias instead of the mean bias and percentiles along with the Rmse as the dynamic
estimators ECM, UC_U and UC_M for A2 = (8o + 81)/(1 — a@1) do not have finite moments, especially when a; is
close to 1. It should be noted that the percentiles are not necessarily finite either but they should be less vulnerable
to large outliers in the distribution of Asa.

10



and DGLS regressions and a t-test on the error-correction term in the ECM regression. Critical
values for these cointegration test statistics are obtained by simulating their distributions under the
null hypothesis of no cointegration, i.e by first drawing y1; and yo; from a standardised multivariate
random walk as Ay; ~ IN (0, I;;) and next calculating the considered cointegration test statistics.
The obtained critical values for the OLS and the ECM-based cointegration tests coincide with
those reported in Mackinnon (1996) and Ericsson and MacKinnon (2002) respectively. The reason
why critical values are simulated is that no such values are available for a cointegration test based

on DGLS residuals.

3.2 Results

Results for Case I are reported in Table 1. It is a well-known fact that the OLS estimator yields
spurious results in this case. This can be seen from the fact that, although the median bias is
negligible, the null hypothesis that Ay = 0 is rejected (with a nominal size of 5%) in 74.9% of the
cases for T' = 50. This problem even aggravates as T' grows large. The reason for this huge size
bias is that the OLS estimator does not converge in probability and the t¢- statistic does not have
a well-defined asymptotic distribution. Note that the DGLS and the ECM estimators face the
same problem, although somewhat less pronounced. The UC_U and UC_M estimators are both
unbiased and more or less correctly sized. This shows that these estimators are not vulnerable to
the spurious regression problem. In terms of estimation, the UC_U estimator is much more precise
than the UC_M estimator, which is overparameterised in this case.

Results for the case where y1; and yo; are cointegrated (Case II) are reported in Table 2. The
performance of the estimators is explored both in a static setting (see Panels (a) and (b) where
a; = 0 and By = Ay = 1) and in a dynamic setting (see Panels (¢) and (d) where a3 = 0.5,
Bo = 0.2). In both settings, we discriminate between a case where ys; is exogenous (occ, = 0)
and a case where yo; is endogenous (0¢,., = 0.5). In terms of estimation, the OLS estimator
is superconsistent, i.e. it converges to the true population value at a rate faster than in normal
asymptotics even if dynamic terms and endogeneity issues are ignored. The results in Panels (b),
(¢) and (d) show that even in a small sample (T = 50) the bias induced by endogeneity and
ignoring dynamic terms is small and, as implied by the superconsistency property, disappears
quickly as T increases. In terms of inference, the OLS estimator has a correct size in the static
setting without endogeneity. The effects of endogeneity on the distribution of the OLS estimator
are minimal, while in the dynamic setting the size is unacceptably high. Turning to the DGLS
and ECM estimators, only the latter yields an improvement on the OLS estimator in terms of
estimation. Despite its overparameterisation in the static setting, the ECM estimator has a bias
and Rmse which are highly similar to those of the OLS estimator. In the dynamic setting, the

ECM estimator has a notable lower bias and Rmse. In terms of inference, both the DGSL and

11



Table 1: Monte Carlo results case I: A2 =0, o7, =1
(01 =0, 60 =0, p1 = 0.5, pp = 0.25, 02, =0, 02, =1, 0c,c, =0, 0,9y, =0, 02y, =0)

T Estimator bias(xg) Rmse (Xg) D2.5% D97.5% P(Xg) P(CI)
50 OLS —0.001 0.278 —0.581 0.568 0.749 0.040
DGLS 0.005 0.362 —0.750 0.769 0.381 0.076
ECM 0.001 > 10 —1.307 1.518 0.291 0.062
UC.U —0.003 0.138 —0.281 0.271 0.062 -
UC.M —0.003 0.346 —0.615 0.548 0.045 -
100 OLS —0.006 0.216 —0.436 0.389 0.858 0.048
DGLS —0.001 0.219 —0.443 0.418 0.395 0.084
ECM —0.004 4.531 —0.815 0.741 0.359 0.071
UC.U 0.002 0.095 —0.187 0.186 0.062 -
UC.M —0.004 0.263 —0.404 0.385 0.045 -
250 OLS —0.002 0.143 —0.273 0.290 0.911 0.050
DGLS 0.004 0.129 —0.246 0.266 0.454 0.098
ECM 0.001 1.657 —0.399 0.437 0.418 0.068
UucC.u 0.002 0.058 —0.113 0.115 0.055 -
UCM 0.002 0.125 —0.246 0.244 0.054 -
500 OLS —0.002 0.101 —0.199 0.199 0.941 0.062
DGLS —0.001 0.095 —0.195 0.190 0.504 0.120
ECM —0.003 2.755 —0.252 0.274 0.434 0.078
UuC.u 0.000 0.041 —0.078 0.082 0.052 -
UCM —0.001 0.090 —0.181 0.176 0.076 -

Notes: bias(Xg) and Rmse(Xg) are the Monte Carlo median bias and root mean squared error of A,
respectively. ps s, and pgy 59 are the 2,5% and 97,5% percentiles, respectively, of the Monte
Carlo distribution of Xa. P(X2) is the rejection rate at the 5% level of the test statistic testing
/):2 = A2. For the OLS, DGLS and ECM estimators this is a standard t-test. For the UC_U
and UC_M this is a Wald test. P(CI) is the rejection rate at the 5% level for a test for the
null hypothesis of no cointegration. For the OLS and DGLS estimators, this is a DF test on the
estimated residuals. For the ECM estimator this is a t-test on the error-correction term. The
simulated 5% critical values for the OLS, DGLS and ECM estimators respectively are (i) -3.47,
-4.34 and -3.30 for T' = 50, (ii) -3.40, -3.64 and -3.25 for T' = 100, (iii) -3.36, -3.32 and -3.24 for
T = 250 and (iv) -3.34, -3.24 and -3.23 for T' = 500.

ECM estimator have a more or less correct size in all cases. Only in the case of endogeneity, the
size of the ECM estimator is somewhat different from 5%. Consistent with the finding of Inder
(1993), the relative performance of the ECM estimator suggests that it is better to overspecify
the dynamics of the model than to underspecify. Interestingly, the performance of the UC_U and
the UC_M estimators are almost identical to that of the ECM estimator. This shows that adding
an unobserved I(1) component to the error structure of the ECM does not impair performance in
the special case of cointegration between y1, and yo.

Results for the case where y1; and yo; have a long-run relationship but are not cointegrated
(Case III) are reported in Table 3. The OLS, DGLS and ECM estimators all yield spurious results.
As in Case I, the median bias is negligible but the size of testing the hypothesis that :\\2 =X =1
is unacceptably high. Again, the problem aggravates as T grows large. Important to note is

that cointegration tests also have a large size bias, especially in the static case and for the ECM
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estimator in the dynamic case. This is consistent with the conclusion of Engel (2000) that standard
cointegration tests are strongly biased towards rejecting the null hypothesis of no cointegration in
the presence of an omitted permanent component. The UC_U estimator yields an improvement
both in terms of estimation precision and inference. However, its size only converges slowly to 5%
as T grows large, especially for o.,., # 0. The UC_M estimator is less precise compared to the
UC_U estimator, i.e. its Rmse is about the same as for the OLS, DGLS and ECM estimators, but
has better size properties compared to the UC_U estimator. Note that in a small sample the size
is also too large, though.

Tables 4-5 further explore the performance of the UC_U and UC_M estimators in Case III for a
number of alternative values for the parameters oy, By, ¢1, o and 0727 .- Table 4 reports results for
a setting where innovations to the dependent variable y;; are correlated with innovations to the
unobserved component v; (i.e. o, = 0.5). Table 5 reports results for a setting where innovations
to the explanatory variable yo; are correlated with innovations to the unobserved component v,
(i.e. 0cyy, = 0.5). As the OLS, DGLS and ECM estimators all yield spurious results for o7 # 0,
comparable to the results in Table 3, they were excluded from the tables to economise on space
(results available on request). Comparing Panel (b) from Table 4 with Panel (c¢) from Table 3
shows that, although o ,, is set to zero as an identifying restriction for both the UC_U and
UC_M estimator, the performance of both estimators is not affected, as indicated in section 2.4,
by simulating data with o.,,, = 0.5. The results in Table 4 further show that the estimation
precision deteriorates as (i) «; increases (compare Panels (a), (b) and (c¢)), (ii) the dynamics in
the explanatory variable yo; are less rich (see Panel (e) for less inertia in o, i.e. lower value of ¢y,
and Panel (f) for zero drift, i.e. us =0) and (iii) as the variance of the unobserved component 14
increases (compare Panels (b), (g) and (h)). Given its overparameterisation, UC_M is again less
precise than UC_U. Inference is similar over all parameter settings included in Table 4. Turning
to Table 5, it is immediately clear that the UC_U estimator performs poorly, both in terms of
estimation and inference when o.,,, # 0. The performance of the UC_M estimator deteriorates a
little bit, especially for small T', but is still satisfactory for larger T'.

Summarising, the Monte Carlo simulation shows that standard estimators and cointegration
tests can only deal with cases where y1; and yo; are either independent random walks or cointe-
grated. In the case of a long-run relation with an integrated missing component, these estimators
yield spurious results with standard cointegration tests indicating these results to be a cointegra-
tion regression in far too many cases. The UC approach yields results similar to those of standard
estimators in the case of cointegration and does not yield spurious results in the cases where y1,
and y9; are independent random walks or related in the long-run with an unobserved component.

This suggests that it is better to overspecify than to underspecify the error structure of the model.
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4 An empirical application: testing PPP

The PPP proposition states that once converted to a common currency, national price levels should

be equal
Pt — St =Dy, (29)

where p; is the log of the price level in the home country, s; is the log of the nominal exchange
rate, measured as the home currency price of one unit of foreign exchange, and p; is the log of the
price level in the foreign country. Defining the real exchange rate g; as the relative price of foreign

goods
G = St — Pt + Pt (30)

PPP holds if ¢; = 0. While numerous empirical studies have shown that PPP does not hold in the
short run (see e.g. Frenkel, 1981), the question whether PPP serves as an anchor for the long-run
real exchange rate has been an area of animated research. Empirical studies in the 1980s typically
concluded that PPP failed to hold even in the long run as (i) ¢ was found to follow a random
walk (see e.g. Adler and Lehman, 1983) and (ii) even after relaxing the assumption of long-run
homogeneity s¢, p; and p; were not found to be cointegrated (see e.g. Corbae and Ouliaris, 1988).
This failure to find evidence in favour of PPP is often attributed to low power of standard (ADF
type) unit root and cointegration tests to stationary alternatives with a root close to unity. Using
longer data series and higher-powered techniques, more recent tests do find evidence in favour of
long-run PPP (see e.g. Kim, 1990; Ardeni and Lubian, 1991; Glen, 1992; Taylor, 2002). Using
data on the real exchange rate, relative to the U.S. Dollar, for 19 countries over a period of more
than 100 years Taylor (2002), for instance, shows that the unit root hypothesis can be rejected for
most countries using a generalised-least-squares (GLS) version of the DF unit root test.

Engel (2000) argues that these unit root and cointegration tests in favour of PPP may have
reached the wrong conclusion, though. To see why, consider the price indices p; and p; to be

weighted averages of traded and non-traded goods prices

D (1—r)p; + kpy,

pi o= (=" +rp"

where the superscripts 7' and N indicate traded and non-traded goods respectively and x and
k* are the shares that non-traded goods take in the overall price index in the home and the
foreign country respectively. The real exchange rate can now be decomposed into the relative
price of traded goods ¢f and a component ¢ which is a weighted difference of the relative price

of non-traded to traded goods prices

@w=q +q, (31)
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where

@ = si+p-pi, (32)

@ = & -p") - r0) - i) (33)
As almost any theory of international price determination implies that deviations from the law
of one price for traded goods are stationary, Engel (2000) argues that if ¢; is found to be non-
stationary this should be because the relative price of non-traded goods ¢}¥ is non-stationary,
which can be due to permanent shocks to productivity for instance. As there are no reliable long
time series available for ¢V, non-stationarity of g is tested using unit root tests on g;. This
hypothesis has been rejected in the recent literature. Using a simulation experiment, Engel (2000)
shows that both unit root and ECM cointegration tests on ¢; have a considerable size bias in
the presence of a (large) permanent component in ¢, i.e. for a nominal size of 5% the true size
ranges from 90% to 99% in 100-year long data series when there is a non-stationary component
that accounts for 42% of the 100-year forecast variance of ¢;. This size bias is confirmed by the

simulation results in the previous section.

Combining equations (30) and (31)
pe—si=p —a —q, (34)

shows that there is a one-to-one relation between p; —s; and p; but that this is not a cointegrating
relation if ¢}V is non-stationary. As standard estimators yield spurious results in this case, we will
estimate the long-run relation between p, — s; and p; using the UC framework outlined in section
2.4. The model in equation (32)-(34) can be written is the format of the model in equations (1)-(4)

by setting y1: = pr — st, yor = p; and assuming (see equation (6))

g = —(nL)Ayre + (L) Ay + 11 /(1)) (35)

Agt = —me/a(l). (36)

Consistent with the assumptions in Engel (2000), equation (35) allows ¢ to be a stationary
process with rich dynamics while equation (36) restricts ¢/ to be a simple random walk. The
covariance matrix € in equation (5) allows shocks to the observed variables p; — s; and p} and to
the unobserved component g to be contemporaneously correlated.

Data are taken from Taylor (2002). They consist of the log of annual nominal exchange rates
s+ measured as domestic currency units per U.S. Dollar and the log of consumer price deflators p;;,
where the index i = 1,...,20 covers a set of 20 countries and the index ¢ = 1892, ...,1996 covers
a set of 105 years. The variables y1; and y2: in equations (1)-(2) are taken to be the U.S. Dollar-
denominated price levels in the domestic country, p;;: —s;+, and abroad, p};, respectively. In order to
avoid the choice of a base country, p}, is constructed by aggregating for each country 7 the price lev-

cls of the other 19 countries in the dataset into a ‘world’ basket as pf, = (N — 1) 2 (Pt — 8jt).
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Given that pj, is a ‘world’ basket, the model’s assumption that ys: is weakly exogenous for the
long-run parameters seems reasonable.

A standard ADF unit root test shows that the unit root hypothesis cannot be rejected for
pit — S and pf, in any of the included countries (results available on request). As a first step,
we therefore estimate the long-run relation between p;: — s;; and pj, using the OLS, DGLS and
ECM estimators and test for cointegration using an ADF test on the residuals of the OLS and
DGLS regression and a t-test on the error-correction term in the ECM regression. Panel (a) in
Table 6 reports the results for the ECM estimator (the results for the OLS and DGLS estimators
are qualitatively similar and therefore not reported). At the 5% level of significance, the null
hypothesis of no cointegration is rejected for only 10 out of the 20 countries. Moreover, using a
standard t-test Ay is found to be significantly different from 1 in 4 out of the 10 countries where
cointegration is found. So, the evidence in favour of PPP is at most modest.

Next, we estimate the long-run relation between p;; — s;x and pj, using the UC model in
equations (15)-(16). As the full model is not necessarily identified, we first estimate a univariate
AR model to check whether p; has dynamics that are sufficiently rich for identification.® As using
an ADF unit root test p} is found to be non-stationary, we impose a unit root by estimating the

model in first differences. The results (standard errors in brackets)

0.026 0.463 0.258

Api = N AP = (0.007)

(0.009) T (0.097) Api_a- (37)

indicate that p} is a non-stationary AR(3) model with drift, which is sufficiently rich for identi-
fication. The results of applying the UC_M estimator are reported in Panel (b) of Table 6. The
most important result is that the PPP hypothesis is rejected in only 3 out of 20 countries, i.e.
Canada, Denmark and Japan. While :\\2 is not too far from 1 for Canada and Denmark, it equals
1.47 for Japan. The strong rejection of the PPP hypothesis in Japan may be due to the fact that
the secular increase in the relative price of non-traded goods induces a drift in the unobserved
component, which is not allowed for in the model. Note that out of the 10 countries for which we
could not reject the null hypothesis of no cointegration based on the ECM, 7 countries (Brazil,
Germany, the Netherlands, Portugal, Spain, Sweden and Switzerland) have ,,, # 0. Further note
that in 2 countries (Finland and Mexico) for which we found cointegration based on the ECM,
we also have 7, # 0. This indicates that in these countries the conclusion that p;; — s, and
pj, are cointegrated is wrong. Consistent with the line of argumentation in Engel (2000), the
UC framework shows that U.S. Dollar-denominated price levels converge to their PPP level in
most countries once a permanent component in the real exchange rate, which may be induced by

non-stationarity of the relative price of non-traded goods, is modelled explicitly.

3Note that the ‘world’ basket pj, is slightly different for each country i. Therefore, in this explorative estimation
py is calculated as the average over the 20 countries in the sample, i.e. p} = (N)~1 Zj (pjt — Sjt)-
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5 Concluding comments

The concept of cointegration requires all variables constituting a long-run equilibrium relation to
be included in the analysis. Integrated variables that are among a set of variables constituting an
equilibrium relation but that are omitted from the analysis imply that (i) the remaining variables
are not cointegrated and (ii) standard cointegration tests have a serious size bias. As such, standard
estimators for a long-run relation between integrated variables may yield spurious results with
standard cointegration tests indicating these results to be a cointegration regression. This paper
uses an UC framework to estimate the long-run relationship between integrated variables when
possibly not all relevant variables are included in the analysis. A Monte Carlo experiment shows
that for a simple dynamic bivariate triangular process, this approach yields results similar to
those of standard estimators in the case of cointegration and does not yield spurious results in the
cases where the included variables are independent random walks or related in the long-run with an
unobserved component. Based on a Monte Carlo simulation, Inder (1993) concludes that ‘estimates
which include dynamics are much more reliable, even if the dynamic structure is overspecified’. The
Monte Carlo simulation in this paper suggests that estimates that include unobserved integrated
components may be even more reliable, even if both the dynamic structure and the error structure
are overspecified. As the general UC model allows shocks to the observed and to the unobserved
variables to be contemporaneously correlated, one important issue is that of identification. In
this paper, identification stems from the assumption that the unobserved component is a simple
random walk, with the observed explanatory variable having richer dynamics. In practise, this
assumption is not necessarily fulfilled. Allowing for richer dynamics in the unobserved component
is possible although for the model to be identified they should differ from the type of dynamics in
the observed components.

The proposed methodology is applied to testing PPP. Using data on consumer prices and
nominal exchange rates for a set of 20 countries over 105 years taken from Taylor (2002), standard
cointegration analysis provides only weak evidence in favour of PPP. Consistent with the line
of argumentation in Engel (2000), the UC framework shows that U.S. Dollar-denominated price
levels converge to their PPP level in most countries once a permanent component in the real
exchange rate, which may be induced by non-stationarity of the relative price of non-traded goods,
is modelled explicitly. This suggests that PPP holds for traded goods. The strong rejection of
the PPP hypothesis in Japan suggests that the assumption that the unobserved component is
a random walk may be too simplistic in some countries. A more detailed analysis with richer

dynamics in the unobserved component is left for future research.
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