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Abstract

A regression including integrated variables yields spurious results if the residuals contain
a unit root. Although the obtained estimates are unreliable, this does not automatically
imply that there is no long-run relation between the included variables as the unit root in
the residuals may be induced by omitted or unobserved integrated variables. This paper uses
an unobserved component model to estimate the partial long-run relation between observed
integrated variables. This provides an alternative to standard cointegration analysis. The
proposed methodology is described using a Monte Carlo simulation and applied to investigate
purchasing-power parity.

JEL Classification: C15, C32
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1 Introduction

Since the seminal articles of Engle and Granger (1987) and Johansen (1988), cointegration analysis

has become a standard econometric tool for estimating relationships involving integrated variables.

An important drawback of cointegration analysis is that it requires all variables constituting an

equilibrium relation to be included in the analysis. The implication of omitting relevant integrated

variables is double. First, any economic theory indicating a long-run relation between a vector of

integrated variables will fail to yield a cointegrated regression in the presence of omitted integrated

variables. Examples of this problem are legion. Using post-war aggregate U.S. data Rudd and

Whelan (2006), for instance, fail to reject the null hypothesis of no cointegration between con-

sumption, labour income and financial wealth. They argue that a non-stationary component in the

relation between these variables might be induced by non-stationarity of the expected return on

wealth. Second, Engel (2000) shows that standard cointegration tests are seriously biased towards

finding cointegration in the presence of omitted integrated variables. Simulating samples of 100

observations, cointegration tests with a nominal size of 5% are found to have true sizes that range

from 90% to 99% even though there is a non-stationary component that accounts for 42% of the

100-year forecast variance. Combining these two arguments suggests that cointegration analysis is
∗I thank Lorenzo Pozzi for useful comments and suggestions. I acknowledge financial support from the Interuni-

versity Attraction Poles Program - Belgian Science Policy, contract no. P5/21.
†SHERPPA, Ghent University, Gerdie.Everaert@UGent.be, http://www.sherppa.be
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not always conclusive in terms of detecting a long-run relation between integrated variables, both

in cases where cointegration is found and in cases where it is rejected.

The interest of this paper is to estimate the long-run relation between integrated variables when

possibly not all of the integrated variables constituting an equilibrium relation are included in the

analysis. As an alternative to standard cointegration analysis, we propose to use the unobserved

component (UC) approach as outlined in, for instance, Harvey (1989) and Durbin and Koopman

(2001). In the UC framework, omitted variables can be treated as unobserved components which

can be inferred from the observed data using the Kalman filter. This allows for estimation of the

long-run relationship between the observed integrated variables using maximum likelihood and for

inference on the long-run parameters using a Wald or a likelihood ratio test even if the variables

are not cointegrated.

Although UC models have recently become very popular to decompose time series into a

number of unobserved components (like trend, cycle, seasonal, ...), they are only rarely used to

filter omitted variables from a long-run relation between integrated variables. Examples are Harvey

et al. (1986), who add an unobserved component to the employment-output relation to account

for the underlying productivity trend, and Sarantis and Stewart (2001) who add an unobserved

component to the consumption-income relationship to account for omitted variables such as wealth.

A major obstruction to its use is that a general UC model is not necessarily identified. Nelson

and Plosser (1982), for instance, show that a difference-stationary process can be decomposed into

a permanent and transitory component in an infinite number of ways depending on the assumed

correlation between innovations to these two unobserved components. Typically identification is

achieved by assuming innovations to be mutually independent. In the context of this paper, this

restriction would imply innovations to the observed and to the unobserved/omitted variables to

be uncorrelated. Obviously, this is a strong restriction. In a number of recent papers (see e.g.

Morley et al., 2003; Morley, 2007) it is shown that an UC model with correlated innovations is

identified provided that it has sufficiently rich dynamics. Therefore, this paper allows for correlated

innovations and checks under which conditions the model is identified.

The performance of the UC framework relative to standard cointegration analysis, both in

terms of estimation and inference, is studied using a Monte Carlo experiment. We consider a

simple dynamic bivariate triangular process similar to the one in Inder (1993). Concerning the

relation between the 2 observed integrated variables, the experiment nests three important cases:

(i) independent random walks, (ii) cointegrated variables and (iii) a long-run relation with an

integrated missing component. In all of these cases, the UC framework provides a consistent and

asymptotically normally distributed estimate for the long-run relation between the 2 observed

variables. In the first and third case, this entails an important improvement over standard estima-

tors, for instance a static ordinary least squares (OLS) estimator, as these yield spurious results in
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both of these cases. In the second case, the performance of the UC model is similar to that of the

static OLS estimator, which is superconsistent in this case. The nice properties of the UC model

in the third case are of important practical relevance especially as under the various parameter

settings considered in the experiment, standard cointegration tests with a nominal size of 5% have

actual sizes up to 89.1%. This indicates that spurious regressions will wrongly be considered to be

cointegrating regressions in far too many cases. Combining the results for the three cases suggests

that the UC model is a valuable alternative to standard cointegration analysis.

The paper is structured as follows. Section 2 introduces the correlated UC framework as

an alternative to standard single equation cointegration analysis in a simple dynamic bivariate

process. Section 3 presents a Monte Carlo comparison. In section 4, the proposed UC methodology

is applied to testing purchasing-power parity (PPP).

2 Cointegration versus UC analysis

2.1 A simple bivariate process

Consider a dynamic bivariate triangular process

α(L)y1t = µ1 + β(L)y2t + µt, (1)

φ(L)∆y2t = µ2 + ε2t, (2)

µt = νt + ε1t, (3)

νt = νt−1 + η1t, (4)

where y1t and y2t are scalar variables, µ1 and µ2 are constants and the error terms ε1t, ε2t and

η1t are zero mean Gaussian white noise processes with covariance matrix Ω

Ω =

 σ2
ε1

σε1ε2 σε1η1

σε1ε2 σ2
ε2

σε2η1

σε1η1 σε2η1 σ2
η1

 . (5)

The lag polynomials are defined as α(L) = 1 − α1L − . . . − αpL
p, β(L) = β0 + β1L + . . . + βqL

q

and φ(L) = 1 − φ1L + . . . + φrL
r. They all have roots outside the unit circle. The choice for

such a simple model is purely for expositional purposes. A highly similar model is used in, among

others, Kremers et al. (1992) and Inder (1993). The main difference is that the error structure of

y1t includes an I(1) component when σ2
η1
6= 0. The non-zero off-diagonal elements of Ω allow for

endogeneity of y2t and collinarity between innovations to νt and innovations to y1t and y2t.

The long-run relation between y2t and y1t can be obtained from rewriting equation (1) as

y1t = λ1 + λ2y2t + γ1(L)∆y1t + γ2(L)∆y2t + ωt, (6)

where λ2 = β(1)/α(1) measures the long-run impact of y2t on y1t, with α(1) = 1− α1 − . . .− αp
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and β(1) = β0 + β1 + . . .+ βq, and where

λ1 =
µ

α(1)
, γ1(L) =

α(1)− α(L)
α(1)(1− L)

, γ2(L) =
β(L)− β(1)
α(1)(1− L)

, ωt =
µt

α(1)
.

As equation (2) implies that y2t is I(1), y1t and y2t are said to be cointegrated if λ2 6= 0 and

σ2
η1

= 0 such that y1t and y2t are I(1) while µt in equation (1) and ωt in equation (6) are I(0). If

λ2 = 0 and/or σ2
η1
6= 0, y1t and y2t are not cointegrated.

2.2 Static cointegration analysis

If λ2 is the primary parameter of interest, Engle and Granger (1987) suggest to use OLS to estimate

a static version of the model in (1)

y1t = λ1 + λ2y2t + υt, (7)

where from using (6) υt = γ1(L)∆y1t + γ2(L)∆y2t + ωt. In estimating (7) the dynamic terms

in ∆y1t and ∆y2t and possible endogeneity of y2t can be ignored due to the superconsistency

property of the OLS estimator when y1t and y2t are cointegrated (Stock, 1987). When y1t and

y2t are not cointegrated, estimating (7) yields spurious results. Testing the null hypothesis that

y1t and y2t are not cointegrated amounts to testing whether υt ∼ I(1) against the alternative

that υt ∼ I(0). Typically this is done using the cointegrating regression Augmented Dickey-Fuller

(CRADF) test. As the CRADF test has low power against stationary alternatives with a root close

to unity, Shin (1994) and Harris and Inder (1994) suggest to test for the null of cointegration by

testing for stationarity of υt building on the Kwiatkowski et al. (1992) unit root test. Leybourne

and McCabe (1994) test the null of cointegration by directly testing whether the variance of the

shocks to the random walk component νt is zero, i.e. H0 : σ2
η1

= 0.

2.3 Dynamic cointegration analysis

Although the OLS estimator for λ2 in a static equation like (7) is superconsistent, its asymptotic

distribution depends on nuisance parameters arising from serial correlation in νt and endogeneity

of y2t (Phillips and Durlauf, 1986; Phillips and Hansen, 1990). Moreover, omitting dynamic terms

and ignoring endogeneity leads to substantial small sample biases (Banerjee et al., 1986) and

results in low power of the residual based cointegration tests mentioned above (Kremers et al.,

1992; Zivot, 1994; Banerjee et al., 1996).

Dynamic OLS/GLS estimator

The dynamic OLS (DOLS) estimator suggested by Saikkonen (1991) eliminates nuisance terms

that stem from endogeneity and serial correlation by augmenting (7) with leads and lags of ∆y2t

y1t = λ1 + λ2y2t +
k2∑

j=−k1

bj∆y2t−j + εt, (8)
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where the error term εt is uncorrelated with the regressors at all leads and lags but is in general

serially correlated. Therefore, Stock and Watson (1993) suggest to estimate (8) using feasible

generalised least squares (GLS), referred to as dynamic GLS (DGLS). Monte Carlo evidence

in Stock and Watson (1993) shows that the DOLS and DGLS estimators yield an important

improvement over the static OLS estimator both in terms of estimation and inference.

ECM estimator

Banerjee et al. (1986) suggest to estimate λ2 by estimating the dynamic equation (1), which is

conveniently written in error correction model (ECM) form as

δ1(L)∆y1t = δ′2(L)∆y2t − α(1) (y1t−1 − λ1 − λ′2y2t−1) + µt, (9)

where

δ1(L) =
α(L)− α(1)L

(1− L)
, δ2(L) =

β(L)− β(1)L
(1− L)

.

Using Monte Carlo simulations Inder (1993) demonstrates that in a dynamic setting the ECM

estimator provides precise estimates and valid inference even in the presence of endogenous vari-

ables. To test for the null of no cointegration Kremers et al. (1992), Zivot (1994) and Banerjee

et al. (1996) suggest to use a t-test for α(1) = 0 . Using Monte Carlo simulations, this ECM test

for cointegration is found to be more powerful than residual based tests.

2.4 An unobserved component framework

The results of the above mentioned estimation and test procedures are not always conclusive in

terms of detecting the long-run relation between y1t and y2t. Upon finding no cointegration one

cannot automatically conclude that there is no long-run relation between y1t and y2t, as the unit

root in µt may be induced by omitted or unobserved I(1) variables. In this case νt represents (a

linear combination of) omitted or unobserved I(1) variables which ought to be included in (1) for

µt to be I(0). Although the presence of a unit root in µt implies that the results obtained from

estimating equation (7), (8) or (9) using OLS/GLS are spurious, the model in equations (1)-(4)

can be cast into a linear Gaussian state-space (SS) representation and estimated using maximum

likelihood (ML). As such, it is possible to obtain a non-spurious estimate for the long-run relation

between y1t and y2t even if they are not cointegrated.

State-space representations

The general SS form1 is given by

yt = Axt + Zαt + εt, εt ∼ N(0,H), t = 1, . . . , T, (10)

αt+1 = Sαt +Rηt, ηt ∼ N(0, Q), E [ε′tηt] = G, (11)
1See e.g. Harvey (1989) or Durbin and Koopman (2001) for an extensive overview of SS models.
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where yt is a p×1 vector of p observed endogenous variables modelled in the observation equation

(10), xt is a k × 1 vector of k observed exogenous or predetermined variables and αt is a m × 1

vector of m unobserved states modelled in the state equation (11). The matrices A,Z, S,R,H,Q

and G are time-invariant but generally depend on an unknown parameter vector ψ.

If the explanatory variable y2t is weakly exogenous in equation (1), the SS representation of

the UC model in equations (1)-(5) is given by the observation equation

y1t =
[

(1−α(L))
L β(L)

] [
y1t−1

y2t

]
+ νt + ε1t, (12)

with the state equation being equation (4) and where H = σ2
ε1
, Q = σ2

η1
and G = σε1η1 . Without

loss of generality, the constant µ1 is included in the state variable νt. The condition that y2t is

weakly exogenous means that no relevant information to the estimation of the unknown parameters

in equation (1) is lost by conditioning on y2t (Engle et al., 1983), i.e. it is not necessary to construct

a model for y2t. This is the case if σε1ε2 = 0 and σε2η1 = 0.

If the explanatory variable y2t is not weakly exogenous, the reduced form of the UC model in

equations (1)-(2) is given by

y1t = µ1 + β0µ2 + α′(L)y1t−1 + β′(L)y2t−1 + νt + ε1t + β0ε2t, (13)

y2t = µ2 + φ′(L)y2t−1 + ε2t, (14)

where

α′(L) =
1− α(L)

L
; β′(L) =

β(L)− β0(1− φ′(L)L)
L

; φ′(L) =
1 + (L− 1)φ(L)

L
.

This reduced form UC model can be cast in SS form with observation equation

[
y1t

y2t

]
=

[
α′(L) β′(L)

0 φ′(L)

] [
y1t−1

y2t−1

]
+

[
β0 1 β0

1 0 1

] ε2t

νt

µ2

 +
[
ε1t

0

]
, (15)

and state equation ε2t

νt

µ2

 =

 0 0 0
0 1 0
0 0 1

 ε2t−1

νt−1

µ2

 +

 1 0
0 1
0 0

[
ε2t

η1t

]
, (16)

where H = σ2
ε1
, Q =

[
σ2

ε2
σε2η1

σε2η1 σ2
η1

]
and G =

[
σε1ε2 σε1η1

]′ . Without loss of generality, the

constant µ1 is again included in the state variable νt.

Identification

It is not immediately obvious that the SS models presented above are identified. First consider

the single equation model in equations (12) and (4). In order to check identification, first derive
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the stationary UC autoregressive moving-average (ARMA) representation of the model which is,

under the assumption that y2t is weakly exogenous, given by

α(L)∆y1t − β(L)∆y2t = η1t + ∆ε1t. (17)

The right-hand side of equation (17) will have nonzero autocovariances through lag 1. Then, by

Granger’s lemma (Granger and Newbold, 1986) the reduced-form ARMA representation of the

model is given by

α(L)∆y1t − β(L)∆y2t = ξ(L)et ≡ ςt, (18)

where the MA lag polynomial ξ(L) is of order 1. After normalising ξ0 = 1, ξ1 and σ2
e , are obtained

such that the autocovariances of the right-hand side of (18) match with those of (17). The SS

model in (17) is identified if its parameters can be inferred from the reduced form in (18). As the

left-hand side of both equations is equal, the (p+q+1) parameters in the AR lag polynomials α(L)

and β(L) are always identified. The remaining 3 structural coefficients (σ2
ε1
, σ2

η1
, σε1η1) cannot be

inferred from the 2 coefficients ξ1 and σ2
e on the right-hand side of (18), though. The relation

between the reduced form and the UC parameters is given by

γ0 = 2(σ2
ε1

+ σε1η1) + σ2
η1
,

γ1 = −(σ2
ε1

+ σε1η1),

γτ = 0 for τ > 2,

where the values for the autocovariances γτ = cov (ςt, ςt−τ ) for τ = 0, 1 can be estimated from

the data through the reduced-form ARMA representation of the model. This shows that σ2
ε1

and

σε1η1 are not individually identified but only their sum is. Morley et al. (2003) point out that a

separate identification of σ2
ε1

and σε1η1 requires ε1t to exhibit rich enough dynamics. In stead of

generalising equation (3) by allowing ε1t to be generated from a more general ARMA process we

impose σε1η1 = 0. This identifying restriction affects the estimate for σ2
ε1

but leaves the estimates

for the other structural coefficients unaffected. As we are only interested in estimating the long-run

relation between y1t and y2t, this restriction is without loss of generality.

Next, consider the stationary UC vector autoregressive moving-average (VARMA) representa-

tion of the multiple equation framework in(15)-(16)

φ(L)α(L)∆y1t − φ(L)(β(L)− β0)∆y2t = β0µ2 + φ(L)∆ε1t + β0ε2t + φ(L)η1t, (19)

φ(L)∆y2t = µ2 + ε2t. (20)

The right-hand side of (19) will have nonzero autocovariances through lag (r+1). Then, by

Granger’s lemma (Granger and Newbold, 1986) the reduced-form VARMA representation of the
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model is given by

φ(L)α(L)∆y1t − φ(L)(β(L)− β0)∆y2t = ω1 + ξ11(L)e1t + ξ12(L)e2t ≡ ς1t, (21)

φ(L)∆y2t = ω2 + e2t ≡ ς2t, (22)

where the MA lag polynomials ξ11(L) and ξ12(L) are both of order (r + 1) with normalisations

ξ11,0 = 1 and ξ12,0 = 0. The remaining coefficients in ξ11(L) and ξ12(L) and σ2
e1
, σ2

e2
, σe1e2 are

obtained such that the autocovariances of the right-hand sides of (21)-(22) match with those of

(19)-(20). The UC model is identified if its parameters can be inferred from the reduced form.

First note that the left-hand sides of (19)-(20) and (21)-(22) are equal. This shows that the

(p+q+r) parameters in the AR lag polynomials α(L), (β(L)−β0) and φ(L) are always identified.

Second, the coefficients µ2 and β0 on the right-hand side of (19)-(20) and the 6 variance-covariances

in Ω need to be inferred from the 2(r + 1) MA coefficients, the two intercept terms ω1 and ω2

on the right-hand side of (21)-(22) and the 3 variance-covariance parameters σ2
e1
, σ2

e2
, σe1e2 . A

necessary condition for identification is that r > 1, i.e. the reduced form contains as least as much

parameters as the structural UC model. In order to check whether this necessary condition is also

sufficient for identification, a one-to-one mapping between the reduced-form and the structural

parameters should be established, though. Consider for instance a model with µ2 6= 0 and r = 1.

The parameters in the AR part of this model can be estimated directly from the data while the

observable moments of the MA part of the model are the intercept terms ω1 and ω2 and the

autocovariances

γ0,11 = 2(1 + φ1 + φ2
1)(σ

2
ε1

+ σε1η1) + β2
0σ

2
ε2

+ (1 + φ2
1)σ

2
η1

+ 2β0σε1ε2 + 2β0σε2η1 ,

γ0,12 = γ0,21 = β0σ
2
ε2

+ σε1ε2 + σε2η1 ,

γ0,22 = σ2
ε2
,

γ1,11 = −(1 + φ1)2(σ2
ε1

+ σε1η1)− φ1σ
2
η1
− β0(1 + φ1)σε1ε2 − β0φ1σε2η1 ,

γ1,12 = β1σ
2
ε2
− (1 + φ1)σε1ε2 − φ1σε2η1 , (23)

γ2,11 = φ1(σ2
ε1

+ σε1η1) + β0φ1σε1ε2 ,

γ2,12 = φ1σε1ε2 ,

γτ,2j = 0 for τ > 1 and γτ,1j = 0 for τ > 2,

where γτ,ij = cov (ςit, ςjt−τ ) with i, j = 1, 2. The 7 non-zero autocovariances together with the

intercepts terms ω1 and ω2 provide 9 pieces of information from which in principle the remaining

8 UC coefficients (µ2, β0, σ
2
ε1
, σ2

ε2
, σ2

η1
, σε1ε2 , σε1η1 and σε2η1) can be inferred. Inspection of the

autocovariances reveals that σ2
ε1

and σε1η1 are again not individually identified, though. Without

loss of generality the model is again identified by setting σε1η1 = 0. Imposing this identifying

restriction implies that the remaining structural coefficients are identified either if µ2 6= 0 or if
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r > 1. In the former, the non-zero drift term µ2 implies that both µ2 and β0 can be identified

from the intercept terms ω1 and ω2 while, even if r = 0, the remaining 5 parameters in Ω can

be identified from the 5 non-zero autocovariances in (23). In the latter, the zero drift term µ2

implies that β0 should also be identified from the autocovariances in (23). This requires at least

6 non-zero autocovariances, i.e. r > 1.

Intuitively, identification of the long-run impact of y2t on y1t requires (i) y2t to be weakly

exogenous such that it is orthogonal to the unobserved component νt or (ii) the dynamic behaviour

of y2t to differ from that of the unobserved component νt once innovations to these components

are allowed to be cross-correlated.

ML estimation and inference

Provided that the UC model is identified, the likelihood for the linear Gaussian SS model in (10)-

(11) can be calculated by a routine application of the Kalman filter and maximised with respect

to the unknown parameter vector ψ using an iterative numerical procedure. Pagan (1980) shows

that the resulting ML estimator ψ̂ is consistent and asymptotically normally distributed provided

that (i) ψ is an interior point of the parameter space and (ii) the transition matrix S does not

contain unknown polynomials with roots inside the unit circle. As λ2 is an interior point and S

does not contain unknown parameters, inference on the long-run relation between y1t and y2t is

possible using a standard Wald or likelihood ratio (LR) test. Note that testing whether y1t and

y2t are cointegrated implies testing whether σ2
η1

= 0, which is on the boundary of the parameter

space. In this case, the distribution of a Wald or LR test is non-standard but can in principle be

obtained using Monte Carlo simulation. As the interest of this paper is to estimate the long-run

relationship between y1t and y2t irrespectively of whether they are cointegrated or not, we don’t

want to test this hypothesis, though.

3 Monte Carlo experiment

In this section, the performance of 5 alternative estimators for the long-run relationship between

integrated variables is compared using a Monte Carlo simulation.

3.1 Design

As before, we consider the model in (1)-(5), setting p = q = r = 1. Data are generated under a

variety of settings for the parameter vector ψ =
(
α1, β0, λ2, φ1, µ2, σ

2
ε1
, σ2

ε2
, σ2

η1
, σε1ε2 , σε1η1 , σε2η1

)
.

For each parameter setting we generate 2500 series of length T . First, we draw a sample of T

observations for ε1t, ε2t and η1t out of a multivariate normal distribution with variance-covariance

matrix Ω. Next, we generate y2t and νt by first drawing initial values for ∆y2t and ∆νt from their

stationary distribution and then calculating initial values for y2t and νt from a diffuse initialisation
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on the level

y2,1 = y2,0 + ∆y2,1, where ∆y2,1 = (1− φ2
1)
−1/2ε2,1 and y2,0 ∼ N(0,∞), (24)

ν1 = ν0 + ∆ν1, where ∆ν1 = η1 and ν0 ∼ N(0,∞). (25)

Data for t = 2, . . . , T are then generated using (2) and (4) respectively. In order to generate data

for y1t, first define the latent variable ζt to be the deviation of y1t from its equilibrium level implied

by the levels of µ1, y2t and νt

ζt = y1t −
1

(1− α1)
(µ1 + (β0 + β1)y2t + νt) . (26)

Using (1), ζt can be written as

ζt = α1ζt−1 + ξt, (27)

where ξt = ε1t −
α1β0 + β1

(1− α1)
∆y2t −

α1

(1− α1)
η1t.

Setting ∆y2t = (1− φ2
1)
−1/2ε2,1 from (24), ζt can be initialised from (27) as

ζ1 = ξ1(1− α2
1)
−1/2. (28)

After generating ζt for t = 2, . . . , T using (27) and given data on y2t and νt, y1t can then be

calculated from (26).

We consider five alternative estimators: (i) the static OLS estimator in equation (6), (ii) the

DGLS estimator in equation (8), (iii) the ECM estimator in equation (9), (iv) the univariate UC

model (UC U) in equations (12) and (4) and (v) the multivariate UC model (UC M) in equations

(15)-(16). The DGLS estimator is implemented by setting as a rule of thumb k1 = k2 = int
[
T 1/3

]
(see Saikkonen, 1991). Selecting an alternative number of leads and lags did not have a noteworthy

impact on the main results. The ECM, UC U and UC M estimators are implemented by setting,

if relevant, p = q = r = 1.

The design of the Monte Carlo experiment nests three special cases. First (Case I), when

λ2 = 0 and σ2
η1
6= 0, there is no long-run relationship between the random walk processes y1t

and y2t. Second (Case II), when λ2 6= 0 and σ2
η1

= 0, y1t and y2t are cointegrated. Third (case

III), when λ2 6= 0 and σ2
η1
6= 0, there is a long-run relationship between y1t and y2t but they

are not cointegrated. For each of these cases we analyse the performance of the 5 alternative

estimators in terms of estimation and inference. Next to the median bias and the root mean

squared error (Rmse), we report the percentiles of the empirical distribution of λ2.2 We also check

the performance of standard cointegration tests, i.e. a CRADF test on the residuals from the OLS
2We report the median bias instead of the mean bias and percentiles along with the Rmse as the dynamic

estimators ECM, UC U and UC M for λ2 = (β0 + β1)/(1− α1) do not have finite moments, especially when α1 is
close to 1. It should be noted that the percentiles are not necessarily finite either but they should be less vulnerable
to large outliers in the distribution of λ2.
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and DGLS regressions and a t-test on the error-correction term in the ECM regression. Critical

values for these cointegration test statistics are obtained by simulating their distributions under the

null hypothesis of no cointegration, i.e by first drawing y1t and y2t from a standardised multivariate

random walk as ∆yt ∼ IN (0, Ik) and next calculating the considered cointegration test statistics.

The obtained critical values for the OLS and the ECM-based cointegration tests coincide with

those reported in Mackinnon (1996) and Ericsson and MacKinnon (2002) respectively. The reason

why critical values are simulated is that no such values are available for a cointegration test based

on DGLS residuals.

3.2 Results

Results for Case I are reported in Table 1. It is a well-known fact that the OLS estimator yields

spurious results in this case. This can be seen from the fact that, although the median bias is

negligible, the null hypothesis that λ̂2 = 0 is rejected (with a nominal size of 5%) in 74.9% of the

cases for T = 50. This problem even aggravates as T grows large. The reason for this huge size

bias is that the OLS estimator does not converge in probability and the t- statistic does not have

a well-defined asymptotic distribution. Note that the DGLS and the ECM estimators face the

same problem, although somewhat less pronounced. The UC U and UC M estimators are both

unbiased and more or less correctly sized. This shows that these estimators are not vulnerable to

the spurious regression problem. In terms of estimation, the UC U estimator is much more precise

than the UC M estimator, which is overparameterised in this case.

Results for the case where y1t and y2t are cointegrated (Case II) are reported in Table 2. The

performance of the estimators is explored both in a static setting (see Panels (a) and (b) where

α1 = 0 and β0 = λ2 = 1) and in a dynamic setting (see Panels (c) and (d) where α1 = 0.5,

β0 = 0.2). In both settings, we discriminate between a case where y2t is exogenous (σε1ε2 = 0)

and a case where y2t is endogenous (σε1ε2 = 0.5). In terms of estimation, the OLS estimator

is superconsistent, i.e. it converges to the true population value at a rate faster than in normal

asymptotics even if dynamic terms and endogeneity issues are ignored. The results in Panels (b),

(c) and (d) show that even in a small sample (T = 50) the bias induced by endogeneity and

ignoring dynamic terms is small and, as implied by the superconsistency property, disappears

quickly as T increases. In terms of inference, the OLS estimator has a correct size in the static

setting without endogeneity. The effects of endogeneity on the distribution of the OLS estimator

are minimal, while in the dynamic setting the size is unacceptably high. Turning to the DGLS

and ECM estimators, only the latter yields an improvement on the OLS estimator in terms of

estimation. Despite its overparameterisation in the static setting, the ECM estimator has a bias

and Rmse which are highly similar to those of the OLS estimator. In the dynamic setting, the

ECM estimator has a notable lower bias and Rmse. In terms of inference, both the DGSL and

11



Table 1: Monte Carlo results case I: λ2 = 0, σ2
η1 = 1

(α1 = 0, β0 = 0, φ1 = 0.5, µ2 = 0.25, σ2
ε1

= 0, σ2
ε2

= 1, σε1ε2 = 0, σε1η1 = 0, σε2η1 = 0)
T Estimator bias(λ̂2) Rmse (λ̂2) p2,5% p97,5% P (λ̂2) P (CI)

50 OLS −0.001 0.278 −0.581 0.568 0.749 0.040
DGLS 0.005 0.362 −0.750 0.769 0.381 0.076
ECM 0.001 > 10 −1.307 1.518 0.291 0.062
UC U −0.003 0.138 −0.281 0.271 0.062 -
UC M −0.003 0.346 −0.615 0.548 0.045 -

100 OLS −0.006 0.216 −0.436 0.389 0.858 0.048
DGLS −0.001 0.219 −0.443 0.418 0.395 0.084
ECM −0.004 4.531 −0.815 0.741 0.359 0.071
UC U 0.002 0.095 −0.187 0.186 0.062 -
UC M −0.004 0.263 −0.404 0.385 0.045 -

250 OLS −0.002 0.143 −0.273 0.290 0.911 0.050
DGLS 0.004 0.129 −0.246 0.266 0.454 0.098
ECM 0.001 1.657 −0.399 0.437 0.418 0.068
UC U 0.002 0.058 −0.113 0.115 0.055 -
UC M 0.002 0.125 −0.246 0.244 0.054 -

500 OLS −0.002 0.101 −0.199 0.199 0.941 0.062
DGLS −0.001 0.095 −0.195 0.190 0.504 0.120
ECM −0.003 2.755 −0.252 0.274 0.434 0.078
UC U 0.000 0.041 −0.078 0.082 0.052 -
UC M −0.001 0.090 −0.181 0.176 0.076 -

Notes: bias(bλ2) and Rmse(bλ2) are the Monte Carlo median bias and root mean squared error of bλ2,
respectively. p2,5% and p97,5% are the 2,5% and 97,5% percentiles, respectively, of the Monte

Carlo distribution of bλ2. P (bλ2) is the rejection rate at the 5% level of the test statistic testingbλ2 = λ2. For the OLS, DGLS and ECM estimators this is a standard t-test. For the UC U
and UC M this is a Wald test. P (CI) is the rejection rate at the 5% level for a test for the
null hypothesis of no cointegration. For the OLS and DGLS estimators, this is a DF test on the
estimated residuals. For the ECM estimator this is a t-test on the error-correction term. The
simulated 5% critical values for the OLS, DGLS and ECM estimators respectively are (i) -3.47,
-4.34 and -3.30 for T = 50, (ii) -3.40, -3.64 and -3.25 for T = 100, (iii) -3.36, -3.32 and -3.24 for
T = 250 and (iv) -3.34, -3.24 and -3.23 for T = 500.

ECM estimator have a more or less correct size in all cases. Only in the case of endogeneity, the

size of the ECM estimator is somewhat different from 5%. Consistent with the finding of Inder

(1993), the relative performance of the ECM estimator suggests that it is better to overspecify

the dynamics of the model than to underspecify. Interestingly, the performance of the UC U and

the UC M estimators are almost identical to that of the ECM estimator. This shows that adding

an unobserved I(1) component to the error structure of the ECM does not impair performance in

the special case of cointegration between y1y and y2t.

Results for the case where y1t and y2t have a long-run relationship but are not cointegrated

(Case III) are reported in Table 3. The OLS, DGLS and ECM estimators all yield spurious results.

As in Case I, the median bias is negligible but the size of testing the hypothesis that λ̂2 = λ2 = 1

is unacceptably high. Again, the problem aggravates as T grows large. Important to note is

that cointegration tests also have a large size bias, especially in the static case and for the ECM

12



estimator in the dynamic case. This is consistent with the conclusion of Engel (2000) that standard

cointegration tests are strongly biased towards rejecting the null hypothesis of no cointegration in

the presence of an omitted permanent component. The UC U estimator yields an improvement

both in terms of estimation precision and inference. However, its size only converges slowly to 5%

as T grows large, especially for σε1ε2 6= 0. The UC M estimator is less precise compared to the

UC U estimator, i.e. its Rmse is about the same as for the OLS, DGLS and ECM estimators, but

has better size properties compared to the UC U estimator. Note that in a small sample the size

is also too large, though.

Tables 4-5 further explore the performance of the UC U and UC M estimators in Case III for a

number of alternative values for the parameters α1, β0, φ1, µ2 and σ2
η1

. Table 4 reports results for

a setting where innovations to the dependent variable y1t are correlated with innovations to the

unobserved component νt (i.e. σε1η1 = 0.5). Table 5 reports results for a setting where innovations

to the explanatory variable y2t are correlated with innovations to the unobserved component νt

(i.e. σε2η1 = 0.5). As the OLS, DGLS and ECM estimators all yield spurious results for σ2
η1
6= 0,

comparable to the results in Table 3, they were excluded from the tables to economise on space

(results available on request). Comparing Panel (b) from Table 4 with Panel (c) from Table 3

shows that, although σε1η1 is set to zero as an identifying restriction for both the UC U and

UC M estimator, the performance of both estimators is not affected, as indicated in section 2.4,

by simulating data with σε1η1 = 0.5. The results in Table 4 further show that the estimation

precision deteriorates as (i) α1 increases (compare Panels (a), (b) and (c)), (ii) the dynamics in

the explanatory variable y2t are less rich (see Panel (e) for less inertia in y2t, i.e. lower value of φ1,

and Panel (f) for zero drift, i.e. µ2 = 0) and (iii) as the variance of the unobserved component νt

increases (compare Panels (b), (g) and (h)). Given its overparameterisation, UC M is again less

precise than UC U. Inference is similar over all parameter settings included in Table 4. Turning

to Table 5, it is immediately clear that the UC U estimator performs poorly, both in terms of

estimation and inference when σε2η1 6= 0. The performance of the UC M estimator deteriorates a

little bit, especially for small T , but is still satisfactory for larger T .

Summarising, the Monte Carlo simulation shows that standard estimators and cointegration

tests can only deal with cases where y1t and y2t are either independent random walks or cointe-

grated. In the case of a long-run relation with an integrated missing component, these estimators

yield spurious results with standard cointegration tests indicating these results to be a cointegra-

tion regression in far too many cases. The UC approach yields results similar to those of standard

estimators in the case of cointegration and does not yield spurious results in the cases where y1t

and y2t are independent random walks or related in the long-run with an unobserved component.

This suggests that it is better to overspecify than to underspecify the error structure of the model.
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4 An empirical application: testing PPP

The PPP proposition states that once converted to a common currency, national price levels should

be equal

pt − st = p∗t , (29)

where pt is the log of the price level in the home country, st is the log of the nominal exchange

rate, measured as the home currency price of one unit of foreign exchange, and p∗t is the log of the

price level in the foreign country. Defining the real exchange rate qt as the relative price of foreign

goods

qt = st − pt + p∗t , (30)

PPP holds if qt = 0. While numerous empirical studies have shown that PPP does not hold in the

short run (see e.g. Frenkel, 1981), the question whether PPP serves as an anchor for the long-run

real exchange rate has been an area of animated research. Empirical studies in the 1980s typically

concluded that PPP failed to hold even in the long run as (i) qt was found to follow a random

walk (see e.g. Adler and Lehman, 1983) and (ii) even after relaxing the assumption of long-run

homogeneity st, pt and p∗t were not found to be cointegrated (see e.g. Corbae and Ouliaris, 1988).

This failure to find evidence in favour of PPP is often attributed to low power of standard (ADF

type) unit root and cointegration tests to stationary alternatives with a root close to unity. Using

longer data series and higher-powered techniques, more recent tests do find evidence in favour of

long-run PPP (see e.g. Kim, 1990; Ardeni and Lubian, 1991; Glen, 1992; Taylor, 2002). Using

data on the real exchange rate, relative to the U.S. Dollar, for 19 countries over a period of more

than 100 years Taylor (2002), for instance, shows that the unit root hypothesis can be rejected for

most countries using a generalised-least-squares (GLS) version of the DF unit root test.

Engel (2000) argues that these unit root and cointegration tests in favour of PPP may have

reached the wrong conclusion, though. To see why, consider the price indices pt and p∗t to be

weighted averages of traded and non-traded goods prices

pt = (1− κ)pT
t + κpN

t ,

p∗t = (1− κ∗)pT∗
t + κ∗pN∗

t ,

where the superscripts T and N indicate traded and non-traded goods respectively and κ and

κ∗ are the shares that non-traded goods take in the overall price index in the home and the

foreign country respectively. The real exchange rate can now be decomposed into the relative

price of traded goods qT
t and a component qN

t which is a weighted difference of the relative price

of non-traded to traded goods prices

qt = qT
t + qN

t , (31)
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where

qT
t = st + pT∗

t − pT
t , (32)

qN
t = κ∗(pN∗

t − pT∗
t )− κ(pN

t − pT
t ). (33)

As almost any theory of international price determination implies that deviations from the law

of one price for traded goods are stationary, Engel (2000) argues that if qt is found to be non-

stationary this should be because the relative price of non-traded goods qN
t is non-stationary,

which can be due to permanent shocks to productivity for instance. As there are no reliable long

time series available for qN
t , non-stationarity of qN

t is tested using unit root tests on qt. This

hypothesis has been rejected in the recent literature. Using a simulation experiment, Engel (2000)

shows that both unit root and ECM cointegration tests on qt have a considerable size bias in

the presence of a (large) permanent component in qt, i.e. for a nominal size of 5% the true size

ranges from 90% to 99% in 100-year long data series when there is a non-stationary component

that accounts for 42% of the 100-year forecast variance of qt. This size bias is confirmed by the

simulation results in the previous section.

Combining equations (30) and (31)

pt − st = p∗t − qT
t − qN

t , (34)

shows that there is a one-to-one relation between pt−st and p∗t but that this is not a cointegrating

relation if qN
t is non-stationary. As standard estimators yield spurious results in this case, we will

estimate the long-run relation between pt− st and p∗t using the UC framework outlined in section

2.4. The model in equation (32)-(34) can be written is the format of the model in equations (1)-(4)

by setting y1t = pt − st, y2t = p∗t and assuming (see equation (6))

qT
t = − (γ1(L)∆y1t + γ2(L)∆y2t + ε1t/α(1)) , (35)

∆qN
t = −η1t/α(1). (36)

Consistent with the assumptions in Engel (2000), equation (35) allows qT
t to be a stationary

process with rich dynamics while equation (36) restricts qN
t to be a simple random walk. The

covariance matrix Ω in equation (5) allows shocks to the observed variables pt − st and p∗t and to

the unobserved component qN
t to be contemporaneously correlated.

Data are taken from Taylor (2002). They consist of the log of annual nominal exchange rates

sit measured as domestic currency units per U.S. Dollar and the log of consumer price deflators pit,

where the index i = 1, . . . , 20 covers a set of 20 countries and the index t = 1892, . . . , 1996 covers

a set of 105 years. The variables y1t and y2t in equations (1)-(2) are taken to be the U.S. Dollar-

denominated price levels in the domestic country, pit−sit, and abroad, p∗it, respectively. In order to

avoid the choice of a base country, p∗it is constructed by aggregating for each country i the price lev-

els of the other 19 countries in the dataset into a ‘world’ basket as p∗it = (N − 1)−1 ∑
j 6=i (pjt − sjt).
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Given that p∗it is a ‘world’ basket, the model’s assumption that y2t is weakly exogenous for the

long-run parameters seems reasonable.

A standard ADF unit root test shows that the unit root hypothesis cannot be rejected for

pit − sit and p∗it in any of the included countries (results available on request). As a first step,

we therefore estimate the long-run relation between pit − sit and p∗it using the OLS, DGLS and

ECM estimators and test for cointegration using an ADF test on the residuals of the OLS and

DGLS regression and a t-test on the error-correction term in the ECM regression. Panel (a) in

Table 6 reports the results for the ECM estimator (the results for the OLS and DGLS estimators

are qualitatively similar and therefore not reported). At the 5% level of significance, the null

hypothesis of no cointegration is rejected for only 10 out of the 20 countries. Moreover, using a

standard t-test λ2 is found to be significantly different from 1 in 4 out of the 10 countries where

cointegration is found. So, the evidence in favour of PPP is at most modest.

Next, we estimate the long-run relation between pit − sit and p∗it using the UC model in

equations (15)-(16). As the full model is not necessarily identified, we first estimate a univariate

AR model to check whether p∗t has dynamics that are sufficiently rich for identification.3 As using

an ADF unit root test p∗t is found to be non-stationary, we impose a unit root by estimating the

model in first differences. The results (standard errors in brackets)

∆p∗t =
0.026

(0.009) +
0.463

(0.097) ∆p∗t−1 −
0.258

(0.097) ∆p∗t−2. (37)

indicate that p∗t is a non-stationary AR(3) model with drift, which is sufficiently rich for identi-

fication. The results of applying the UC M estimator are reported in Panel (b) of Table 6. The

most important result is that the PPP hypothesis is rejected in only 3 out of 20 countries, i.e.

Canada, Denmark and Japan. While λ̂2 is not too far from 1 for Canada and Denmark, it equals

1.47 for Japan. The strong rejection of the PPP hypothesis in Japan may be due to the fact that

the secular increase in the relative price of non-traded goods induces a drift in the unobserved

component, which is not allowed for in the model. Note that out of the 10 countries for which we

could not reject the null hypothesis of no cointegration based on the ECM, 7 countries (Brazil,

Germany, the Netherlands, Portugal, Spain, Sweden and Switzerland) have σ̂η1 6= 0. Further note

that in 2 countries (Finland and Mexico) for which we found cointegration based on the ECM,

we also have σ̂η1 6= 0. This indicates that in these countries the conclusion that pit − sit and

p∗it are cointegrated is wrong. Consistent with the line of argumentation in Engel (2000), the

UC framework shows that U.S. Dollar-denominated price levels converge to their PPP level in

most countries once a permanent component in the real exchange rate, which may be induced by

non-stationarity of the relative price of non-traded goods, is modelled explicitly.

3Note that the ‘world’ basket p∗it is slightly different for each country i. Therefore, in this explorative estimation

p∗t is calculated as the average over the 20 countries in the sample, i.e. p∗t = (N)−1 P
j (pjt − sjt).
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5 Concluding comments

The concept of cointegration requires all variables constituting a long-run equilibrium relation to

be included in the analysis. Integrated variables that are among a set of variables constituting an

equilibrium relation but that are omitted from the analysis imply that (i) the remaining variables

are not cointegrated and (ii) standard cointegration tests have a serious size bias. As such, standard

estimators for a long-run relation between integrated variables may yield spurious results with

standard cointegration tests indicating these results to be a cointegration regression. This paper

uses an UC framework to estimate the long-run relationship between integrated variables when

possibly not all relevant variables are included in the analysis. A Monte Carlo experiment shows

that for a simple dynamic bivariate triangular process, this approach yields results similar to

those of standard estimators in the case of cointegration and does not yield spurious results in the

cases where the included variables are independent random walks or related in the long-run with an

unobserved component. Based on a Monte Carlo simulation, Inder (1993) concludes that ‘estimates

which include dynamics are much more reliable, even if the dynamic structure is overspecified’. The

Monte Carlo simulation in this paper suggests that estimates that include unobserved integrated

components may be even more reliable, even if both the dynamic structure and the error structure

are overspecified. As the general UC model allows shocks to the observed and to the unobserved

variables to be contemporaneously correlated, one important issue is that of identification. In

this paper, identification stems from the assumption that the unobserved component is a simple

random walk, with the observed explanatory variable having richer dynamics. In practise, this

assumption is not necessarily fulfilled. Allowing for richer dynamics in the unobserved component

is possible although for the model to be identified they should differ from the type of dynamics in

the observed components.

The proposed methodology is applied to testing PPP. Using data on consumer prices and

nominal exchange rates for a set of 20 countries over 105 years taken from Taylor (2002), standard

cointegration analysis provides only weak evidence in favour of PPP. Consistent with the line

of argumentation in Engel (2000), the UC framework shows that U.S. Dollar-denominated price

levels converge to their PPP level in most countries once a permanent component in the real

exchange rate, which may be induced by non-stationarity of the relative price of non-traded goods,

is modelled explicitly. This suggests that PPP holds for traded goods. The strong rejection of

the PPP hypothesis in Japan suggests that the assumption that the unobserved component is

a random walk may be too simplistic in some countries. A more detailed analysis with richer

dynamics in the unobserved component is left for future research.
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