

FACULTEIT ECONOMIE
EN BEDRIJFSKUNDE

TWEEKERKENSTRAAT 2
B-9000 GENT

Tel. : 32 - (0)9 – 264.34.61
Fax. : 32 - (0)9 – 264.35.92

WORKING PAPER

The Impact of Structural Complexity on the Understandability of

UML Statechart Diagrams

José A. Cruz-Lemus 1
Ann Maes 2

Marcela Genero 1

Geert Poels 2

Mario Piattini 1

January 2007

2007/438

1 ALARCOS Research Group, University of Castilla-La Mancha, Spain
2 Management Informatics Research Group, Ghent University, Belgium

The research reported in this working paper was initiated during a summer research stay of Mr. Cruz-
Lemus and Dr. Genero at Ghent University (June - September 2004). The authors wish to thank Prof.
Dr. Ir. Frank Gielen (Ghent University) for reviewing this working paper.

 D/2007/7012/09

The Impact of Structural Complexity on the
Understandability of UML Statechart Diagrams

José A. Cruz-Lemus1, Ann Maes2, Marcela Genero1,
Geert Poels2 and Mario Piattini1

1ALARCOS Research Group
Department of Information Technologies and Systems
UCLM-Soluziona Research and Development Institute

University of Castilla-La Mancha
Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain

{JoseAntonio.Cruz, Marcela.Genero, Mario.Piattini}@uclm.es
2Faculty of Economics and Business Administration

Department of Management Information, Operations Management and Technology
Policy, Ghent University

Hoveniersberg 24, 9000 Gent, Belgium
{A.Maes, Geert.Poels}@UGent.be

Abstract. Given the relevance that UML models and their quality have gained in actual

software development strategies, such as the Model Driven-Development (MDD), we

present an empirical study about the effect that structural complexity has on the

understandability of UML statechart diagrams, i.e., the diagram’s ability to be easily

understood. The current study is based on a family of three experiments. We have

studied the data obtained in these experiments and built a preliminary understandability

prediction model by means of a regression analysis using a technique specifically

recommended when the data had been obtained through a repeated measures design.

1. Introduction

Paradigms such as Model-Driven Development (MDD) [1] and architectural

frameworks such as the Model-Driven Architecture (MDA) [32] recognize that models

are the foundation of software system development. As no system can be built on loose

foundations, the focus of software quality assurance is shifting from system

implementation towards system modeling.

To assure model quality, instruments are needed to evaluate and measure

quality. Since the Unified Modelling Language (UML1) [34] became the standard for

modelling software systems, a high number of quality metrics have been proposed for

UML models, in particular for class diagrams [2, 9, 11, 19, 22, 28] and use case

diagrams [20, 23, 30]. The development of metrics for diagrams used as behavioural

models has been less emphasized. Moreover, the current metric proposals [14, 38, 39,

43] have not gone beyond the definition step. Due to the broad use of some types of

behavioural diagrams, in particular statechart diagrams, there is a raising interest in

controlling also the quality of these diagrams [2, 26]. In this paper we present a new set

of structural complexity metrics for UML statechart diagrams and show that they can be

used to evaluate a key quality, i.e., the diagram’s ability to be easily understood.

Diagrams that are hard to understand are difficult to analyze, modify, extend, integrate

with other diagrams, or reuse. To achieve the promised benefits of MDD in terms of

increased reusability and productivity, it is necessary to control model

understandability. Therefore instruments are needed to measure understandability early

on in the model development process. Metrics can provide such an early quality

assurance instrument.

We are aware that nowadays, there are several software design tools capable to

automatically produce very complex models that are syntactically correct and

semantically complete and valid, but these facts do not necessarily make these models

easy to understand. In this work, we assume a relationship between complexity and

1 For this research we based on UML v.1.4 [34]. After the release of the new version of UML

(UML 2) [33] we kept all the previous work as the new version does not introduce significant differences

that affect to our use of UML statechart diagrams.

quality only for some types of quality, more concretely for understandability, where

human users are directly and completely involved.

Our research is based on the framework defined by Briand et al. [6, 8], which is

the basis for much empirical research in the area of software quality [15, 29, 37]. For

example, this framework was used by Siau [41] for understanding the complexity of

UML. As we can see in Figure 1, this framework hypothesizes that the structural

complexity of an UML statechart diagram affects its cognitive complexity [10].

Cognitive complexity represents the mental burden of the persons who build or use

models (e.g. analysts, designers, developers, testers, maintainers, users, ...). Cognitive

complexity is, however, difficult to measure. To distinguish from cognitive complexity,

we will refer to a model’s collection of structural properties as structural complexity,

which is a measurable kind of complexity. According to Systems Theory, the

complexity of a system is based on the number of (different types of) elements and on

the number of (different types of) (dynamically changing) relationships between them

[35]. Hence, the structural complexity of an UML statechart diagram is determined by

the elements that compose it.

Briand et al.’s framework hypothesizes that high cognitive complexity will result

in reduced understandability which impedes the analyzability and modifiability of the

model, amongst other model qualities.

STRUCUTURAL
COMPLEXITY

COGNITIVE
COMPLEXITY

affects affects

UNDERSTANDABILITY
ANALIZABILITY
MODIFIABILITY

Figure 1. Relationship between structural complexity,

cognitive complexity and understandability [7]

The relationship between structural complexity and external quality properties

has been repeatedly demonstrated. According to Briand et al. [8], it is difficult to

imagine what could be alternative explanations for these results besides cognitive

complexity mediating the effect of structural complexity on software quality.

Understandability, as an external quality attribute, is hard to measure early in the

modelling process. Therefore, an indirect measurement based on internal properties of

the model such as the structural complexity, is required [7, 17]. In the literature, there

are some interesting works related to complexity metrics [17, 22].

In section 2 we identify the UML modeling constructs that may contribute to the

structural complexity of statechart diagrams and we define a metric for each of them. In

section 3 these metrics are applied to a large sample of statechart diagrams in order to

detect the underlying dimensions of structural complexity that they measure. Based on

this understanding, a family of laboratory experiments was conducted in order to

validate the metrics as understandability indicators. The design of this family of

experiments is presented in section 4. In section 5 we analyze the collected data and

interpret the results. In the final section 6, conclusions are presented and suggestions for

further research are suggested.

2. Metrics Definition

Based on the UML meta-model [34], our measurement experience and the more

commonly used elements when modelling an UML statechart diagram [16], we

considered the following UML constructs as contributing to the structural complexity of

UML statechart diagrams:

• Action. An action is a specification of an executable statement that forms an

abstraction of a computational procedure that results in a change in the state of

the model, and can be realized by sending a message to an object or modifying a

link or a value of an attribute. In a state, we can find several types of actions:

entry actions, exit actions and do/Activity actions, i.e., sequences of actions that

are executed consecutively while staying in the state.

• State. A state is an abstract meta-class that models a situation during which

some invariant condition holds. This invariant may represent a static situation

such as an object waiting for some external event to occur. However, it can also

model dynamic conditions such as the process of performing some activity; that

is, the model element under consideration enters the state when the activity

commences and leaves it as soon as the activity is completed.

• Composite State. A composite state is a state that contains other states vertices

(states, pseudo-states, etc.). The association between the composite and the

contained vertices is a composition association. Hence, a state vertex can be a

part of at most one composite state.

• Simple State. A simple state is a state that does not have sub-states.

• Event. An event is the specification of a type of observable occurrence. The

occurrence that generates an event instance is assumed to take place at an instant

in time with no duration. Strictly speaking, the term ‘event’ is used to refer to

the type and not to an instance of the type. However, on occasion, where the

meaning is clear from the context, the term is also used to refer to an event

instance. An event can have the association parameter, which specifies the list of

parameters defined for the event.

• Guard. A guard is a boolean expression that is attached to a transition as a fine-

grained control over its firing. The guard is evaluated when an event instance is

dispatched by the state machine. If the guard is true at that time, the transition is

enabled, otherwise, it is disabled. Guards should be pure expressions without

side effects and have the attribute expression, which is the boolean expression

that specifies the guard.

• Transition. A transition is a directed relationship between a source state vertex

and a target state vertex. It may be part of a compound transition, which takes

the state machine from one state configuration to another, representing the

complete response of the state machine to a particular event instance.

Based on these constructs, we defined a set of metrics for measuring structural

complexity. A working hypothesis underlying the metric definition is that the more a

particular construct is used when developing a statechart diagram, the more that

construct adds to the structural complexity of the diagram. Hence, each metric captures

the extent to which a particular construct is used in a diagram.

A brief description of the metrics is presented in Table 1. Further details about

their definition can be found in [13].

Table 1. Metrics for UML statechart diagrams.

Metric Description
NEntryA
(Number of entry actions)

The total number of entry actions, i.e. the actions
performed each time a state is entered.

NExitA
(Number of exit actions)

The total number of exit actions, i.e. the actions
performed each time a state is left.

NA
(Number of activities)

The total number of activities (do/activity) in the
statechart diagram.

NSS
(Number of simple states)

The total number of states considering also the simple
states within the composite states.

NCS
(Number of composite states)

The total number of composite states.

NG
(Number of guards)

The total number of guard conditions.

NE
(Number of events)

The total number of events.

NT
(Number of transitions)

The total number of transitions, considering common
transitions (the source and the target states are
different), the initial and final transitions, self-
transitions (the source and the target states are the
same) and internal transitions (transitions inside a
state that responds to an event but without leaving the
state).

CC
(Cyclomatic Complexity)

It is defined as |NSS-NT+2|

These metrics were defined in a methodological way following three main steps:

metric definition, theoretical and empirical validation. The theoretical validation was

executed through Briand et al.’s property-based framework, which prescribes a set of

intuitively derived axioms that metrics should satisfy in order to be considered as valid

measures [5]. In the theoretical validation process of these metrics, we also used the

Measurement Theory-based DISTANCE framework [36] for guaranteeing the construct

validity of the empirical studies where these metrics were used. Through these

validations, all the metrics were characterized as ratio scale metrics, which is relevant

when statistically analyzing the metrics values obtained in empirical studies. The

empirical validation of these metrics is the subject of this paper.

3. Components of Structural Complexity

To substantiate our working hypothesis, we needed to investigate what kind(s) of

structural complexity is (or are) measured by the metrics. As it is clear that many metric

values will tend to be correlated, we do not consider each metric as measuring a

different aspect of a diagram’s structural complexity. We therefore first study the

underlying dimensions of structural complexity captured by the metrics by employing a

data reduction technique, using a sample of statechart diagrams.

In order to create summaries of the defined metrics, Principal Component

Analysis (PCA) is the most commonly used technique. Principal components (PCs) are

linear combinations of the standardized independent variables.

PCs are calculated as follows: the first PC is the linear combination of all

standardized variables that explains a maximum amount of variance present in the data

set. The second and subsequent PCs are linear combinations of all standardized

variables, where each new PC is orthogonal to all previously calculated PCs, and

captures the next largest amount of variance under these conditions. Usually, only a

subset of all variables contributes significantly to the variance of a PC (i.e. shows a high

‘loading’ for that PC). In order to identify PCs and their high loading variables, we

consider the rotated components. This is a technique where PCs are subjected to an

orthogonal rotation. As a result, the rotated components show a clearer pattern of

loadings, where the variables either have a very low or high impact on the PC.

When applying PCA, larger samples are better than smaller samples, all other

things being equal. Large samples tend to minimize the probability of errors, maximize

the efficiency of population estimates, and increase the generalizability of the results.

To obtain a large sample, we performed an extensive search in textbooks, journal papers

and Internet sources in order to find UML statechart diagrams to include in our sample.

We finally used 92 different diagrams, which is sufficient considering the sample size

guidelines provided in [21]. The results of the PCA are shown in Table 2.

Table 2. PCA results

Rotated Components 1 2 3
NEntryA 6.759E-02 0.892 0.222
NExitA -7.197E-02 0.898 -8.855E-02

NA 0.302 0.216 0.704
NSS 0.808 -9.190E-03 -0.153
NCS 0.335 7.296E-02 -0.769
NE 0.876 3.729E-02 7.187E-02
NG 0.664 -1.414E-02 0.211
NT 0.975 3.743E-03 -0.111
CC 0.878 1.416E-02 -5.665E-02

 SSF AWS NA

Based on these results, three PCs are extracted, which jointly explain almost

75% of the variance in the data set:

• Simple States Features (SSF), composed by the metrics that were grouped in

the first component, that is, NSS, NE, NG, NT and CC. All these metrics have in

common that they explore the relationships between the different states of the

diagrams and also the states themselves.

• Activities Within States (AWS), composed by the metrics NEntryA and

NExitA, the activities performed after entering or leaving a state.

• Number of Activities (NA). The third component is composed only by this

metric. The number of activities that a statechart diagram contains has shown to

be a metric that highly affects the understandability of a diagram [13], so it is

not strange that this metric has to be studied on its own.

When further investigating the relationship between structural complexity and

understandability, we will work with these three components. So, we calculated the

values for the components SSF and AWS as the mean of the metrics values that were

included into each component.

It is important to highlight that the PCA suggested that the metric NCS, that

counts the number of composite states of the diagrams, does not belong to any of the

components, so we decided to discard it in this empirical validation and conducted a

specific study of the effect of composite states on the understandability of the diagrams

[12].

4. A Family of Experiments

In this section we will describe each step of the experimental process [42] that we

followed to empirically validate the obtained components and evaluate their ability to

serve as indicators for the understandability of UML statechart diagrams.

As Miller [31], Basili et al. [4] and Shull et al. [40], among others, suggested,

simple studies rarely provide definite answers. Following these suggestions, we have

carried out a family of experiments. We are aware that only after performing a family of

experiments an adequate body of knowledge can be built to extract useful measurement

conclusions regarding the use of OO design metrics to be applied to real measurement

projects [4, 40].

Families of experiments promise to save preparation costs while increasing the

benefits of running them. Researchers who want to participate in the family of

experiments save work because they can reuse the framework and experimental

material. Furthermore, reusing a framework also helps raise the quality of the studies.

At the same time, individual studies possess added value when they are part of a family

of experiments because they are analyzed with respect to the whole family, not only

with respect to their own context. That is, families of experiments allow learning more

effectively from individual empirical studies, because studies add to a body of

knowledge, instead of providing information limited to one context. A higher effort is

required for preparing a family of experiments but, as previously commented, the

expected benefits are large and the resources investment is worth.

Our family of experiments consists of a controlled experiment and two

replications of this. A descriptive graph of the chronology of the three experiments can

be found in Figure 2 .

Figure 2. Chronology of the family of experiments

As most of the features are the same in the three members of the family, we will

explain them together. However, we will comment on any possible difference between

them.

Step 1: Definition.

Using the GQM [3] template for goal definition, the goal of the experiment and

its replications is detailed in Table 2.

Table 2. Goal of the experiment.

Analyze Structural complexity metrics for UML statechart
diagrams

For the purpose of Evaluating

With respect to The capability of being used as indicators of the
understandability of UML statechart diagrams

From the point of
view of Researchers

In the context of Computer Science students and teachers

Step 2: Planning.

This phase consists of six different steps:

� Context selection. The context of the experiments was a group of teachers and

undergraduate students and hence the experiment is run off-line, i.e., not in an

industrial software development environment. In the first experiment (E1), the

subjects were ten teachers of the Software Engineering area and eight students

enrolled in the last (fifth) year of Computer Science at the Department of Computer

Science at the University of Castilla–La Mancha. In the first replica (R1), there were

twenty-four students in their third-year of Computer Science and in the second

replica (R2), forty-nine third-year students.

• Subjects selection. The subjects were chosen at our convenience. The experience of

the subjects in UML statechart diagrams in E1 was average for the students, as they

had already taken two complete Software Engineering courses, and it was high for

the teachers, as they belonged to the Software Engineering area. In the replications,

the experience of the students was lower, as they had only taken one Software

Engineering course, and it had not been completed at that moment. All the teachers

involved in the experiment took part voluntarily. We motivated all the students to

participate in the experiments by explaining to them that similar tasks to the

experimental ones could be carried out in exams or practice.

� Variable selection. The independent variables were the UML statechart diagrams

structural complexity components SSF, AWS and NA. The dependent variable was

UML statechart diagrams understandability.

� Instrumentation. The subjects were given twenty UML statechart diagrams,

selected from different sources and related to different universes of discourse that

were easy enough to be understood by each of the subjects. The structural

complexity of each diagram was different, covering a broad range of the metrics

values. We consider this set of twenty diagrams as a representative sample of the

population of UML statechart diagrams that can be found in practice. Fout!

Verwijzingsbron niet gevonden. shows the metrics values for the twenty UML

statechart diagrams. Each diagram also had a test enclosed. It included a

questionnaire in order to evaluate if the subjects had really understood the content of

the UML statechart diagrams. Each questionnaire contained four questions, which

were conceptually similar and written in identical order. They inquired about

navigation between states, values of variables after the execution, values for guard

conditions… Furthermore, the subjects had to write down the time they started

answering the questionnaire and the time they finished. The difference between

these two values, expressed in seconds, is what we called understandability time.

Diagram 20 can be found as an example in Appendix A, at the end of this

document.. The dependent variable was measured by the time the subject spent

answering the questionnaire attached to each diagram (understandability time) and

the understandability efficiency, defined through the following formula:

understandability efficiency = correctness/understandability time (1)

As we can see in the formula, the understandability efficiency of a diagram is a

measure that relates how correctly, i.e. correct answers vs. answered questions, and how

quickly a subject understood a diagram and, in our opinion, this might be a good

indicator of the actual understandability of the subjects.

� Hypothesis formulation. We formulated the following hypotheses:

H0,1: There is no significant correlation between the UML statechart diagrams

structural complexity components and understandability time. H1,1: ¬H 0,1

H0,2: There is no significant correlation between the UML statechart diagrams

structural complexity components and understandability efficiency. H1,2: ¬H 0,2

� Experiment design. We selected a within-subject design experiment, i.e., every

diagram was given to every subject. However, the diagrams were ordered differently

before being given to the subjects for cancelling out potential learning effects.

Table 3. Metrics and component values for each statechart diagram.

Diagram NEntryA NExitA NA NSS NCS NE NG NT CC SSF AWS
1 1 1 0 3 0 6 2 5 0 16 2
2 1 0 3 4 0 6 0 7 1 18 1
3 2 0 2 4 1 4 3 7 1 19 2
4 0 0 2 4 0 11 2 9 3 29 0
5 3 2 2 4 0 13 0 10 4 31 5
6 6 6 0 6 1 12 0 13 5 36 12
7 1 0 1 5 2 6 3 10 3 27 1
8 1 0 3 5 0 12 4 13 6 40 1
9 0 0 3 5 0 8 0 11 4 28 0
10 2 1 0 4 0 6 0 6 0 16 3
11 1 2 1 6 3 12 0 17 9 44 3
12 1 1 1 3 0 5 2 5 0 15 2
13 2 1 0 2 0 4 0 4 0 10 3
14 1 1 2 3 0 8 0 9 4 24 2
15 1 0 4 9 1 11 4 13 2 39 1
16 0 0 5 9 0 23 1 23 12 68 0
17 2 0 1 5 1 6 2 8 1 22 2
18 2 0 1 12 0 23 2 24 10 71 2
19 0 1 0 2 0 5 0 5 1 13 1
20 0 0 0 5 1 11 0 12 5 23 23

Step 3: Operation.

In this phase, experimental data are collected. It includes the following

activities:

� Preparation. In E1, the experience that the subjects had in working with UML

statechart diagrams was higher than in R1 and R2, so we decided to give the

subjects in the replications an intensive training session before the experiments took

place. However, the subjects were not aware of which aspects we intended to study,

nor were they informed about the hypotheses stated.

� Execution. The first experiment was performed without supervision. The subjects

were given all the described materials and told to bring it back answered in one

week. However, the replications were run in a two-hour session and there was an

instructor who supervised the experiment and could solve any asked doubt, although

the instructor was finally not asked any question.

� Data Validation. Once the data were collected, we corrected them and noted down

the different times and the number of answered (right and wrong) questions. From

these values, we calculated the two measures of the dependent variable: the

understandability time and efficiency. We also calculated automatically the metric

values through a tool we had built [18]. Concerning the quality of data collecting,

we used ‘pencil and paper’, hence data collection could be considered as critical.

Supervisors did not perform any checks of the times given by students and teachers.

Nevertheless, the subjects assumed the responsibility for writing down the correct

times.

5. Data Analysis and Interpretation

First we tested the impact of the three extracted complexity components (SSF, AWS

and NA) on the understandability of the UML statechart diagrams in terms of

understandability time and efficiency through an ANOVA test. After that, we built a

preliminary understandability prediction model by means of a regression analysis using

a technique specifically recommended when the data had been obtained through a

repeated measures design [27].

5.1 Impact of Structural Complexity on Understandability

To test the impact of structural complexity on understandability a data analysis strategy

is needed that evaluates the joint effect of the three complexity components, but also

allows evaluating individual impacts and pair-wise interaction effects. To test these

individual, interaction and joint effects, we considered each of the complexity

components as a treatment that can be administered, independent of the administration

of other treatments. To simplify the analysis, each treatment was considered at only two

levels: a high level and a low level, resulting in eight possible combinations. To

determine what is ‘high’ or ‘low’, the average value for each component in the set of 20

diagrams was calculated. For each diagram in the sample, if the value of a structural

complexity component was over the average value, that diagram scored ‘high’ on the

component; otherwise it scored ‘low’ for that component.

Next, a sub-set of the 20 diagrams representing all possible combinations of

values (either high or low) for the three components was selected. This way we

randomly selected a set of 8 diagrams, whose metrics values fulfilled the requirements

shown in Table 4, in which, a ‘H’ stands for a High value of the component comparing

its value with the other diagrams’ values (in the full sample of 20 diagrams) and a ‘L’

stands for a low value.

Table 4. Diagram selection

Pattern RS AWS NA Diagram
1 H H H 5
2 H H L 6
3 H L H 16
4 H L L 20
5 L H H 3
6 L H L 13
7 L L H 2
8 L L L 19

In order to test the hypotheses, we had valid values for 84 subjects after rejecting

some data for being incomplete. Since the experimental design comprised repeated

measures we performed a general linear model for repeated measures. Table 5 shows

the obtained results for the main and interaction effects of each component on

understandability time and efficiency when applying multivariate contrast indicators

(using a cutting edge of 0.05).

Table 5. Multivariate contrasts

Effect Understandability
Time

Understandability
Efficiency

SSF 0.218 0.009
AWS 0.000 0.000
NA 0.000 0.000

SSF*AWS 0.000 0.404
SSF*NA 0.000 0.000

AWS*NA 0.000 0.008
SSF*AWS*NA 0.000 0.000

As we can see in Table 5, with respect to the time, all the components and their

combinations (except the SSF component) were significant. As an example, the

relationship between the components SSF and AWS is described in Figure 3. When the

values of the AWS components are high, the lower the values of the SSF component

are, the higher the understandability time of the diagram gets. This is a relationship that

we had not expected, however, for low values of the AWS components there is an

inverse relationship and as the values for the SSF component decreases, the

understandability time of the diagrams decreases as well.

SSF

LH

Es
tim

at
ed

 e
dg

e
m

ea
ns

160

150

140

130

120

110

100

90

AWS

H

L

Figure 3. Estimated edge measure for understandability time (SSF*AWS)

As for the understandability efficiency, only the interaction of the components

SSF and AWS is not significant, as all the rest of values are below the cutting edge

(0,05). We also attach a graphical example of the relationship between two components.

In this case, both for high and low values of the NA component, the lower the values of

the AWS component are, the higher the understandability efficiency gets, although the

pitch line improvement is more important for high values of the NA component (Figure

4).

AWS

LH

E
st

im
at

ed
 e

dg
e

m
ea

ns

,014

,012

,010

,008

,006

,004

NA

H

L

Figure 4. Estimated edge measure for understandability efficiency (AWS*NA)

5.2. Understandability model

Since we used a repeated measures design, we realized that the commonly used

regression approaches were not appropriate for the data collected in the family of

experiments. Hence, we used a technique outlined in [27] called Individual Regression

Equations, and especially designed for repeated measures.

The process consists of two main steps. First, we compute separate regression

equations for each subject in the family of experiments. This way each of the resulting

84 equations represents the best description for a particular subject between both the

understandability time and efficiency and the set of predictor variables. At this point,

the obtained regression coefficients are used to form a N*P table in which the N

subjects represent rows and the P predictor variables the columns. We do not display

this table as the amount of data is excessively big.

In the second and final step of the process, we summarized over the 84 subjects

each regression coefficient to see if it differs reliably from zero. This can be done with a

t test. The results of this test are summarized in Table 6 and Table 7 for the

understandability time and efficiency.

Table 6. t Test results for the regression models (understandability time)

Understandability Time
Variable CONST NA SSF AWS
Mean 103.2887 8.7019 2.3591 2.0872
SE 2.9558 1.0278 0.3871 1.1511
t 34.994 8.467 6.094 1.813
Sig. 0.0000 0.0000 0.0000 0.073

Table 7. t Test results for the regression models (understandability efficiency)

Understandability efficiency
Variable CONST NA SSF AWS
Mean 0.011575 -0.000813 -0.000204 -0.000273
SE 0.000335 0.000071 0.000022 0.000073
t 34.573 -11.452 -9.207 -3.720
Sig. 0.0000 0.0000 0.0000 0.0000

Since all regression coefficients were significant, we obtained two different

regression equations that could be used for estimating the understandability time and

efficiency based on the different complexity components:

• For the understandability time (UT):

 UT = 103.2887 + 8.7019*NA + 2.3591*SSF + 2.0872*AWS

• For the understandability efficiency (UA):

 UA = 0.011575 - 0.000813*NA – 0.000204*SSF – 0.000273*AWS

As expected, these equations show that the structural complexity of UML

statechart diagrams negatively impacts the understandability efficiency and also directly

affects the time necessary to get a good understanding of it. This implies that the higher

the values of the complexity components are, the lower the values of the obtained

efficiency will be and vice versa. Similarly, we can state that higher structural

complexity values will result in higher understandability times. This gives reason to

believe that these structural complexity components can serve as early indicators of

model understandability.

6. Conclusions, Limitations and Future Work

Given the scarcity of metrics for measuring quality characteristics of behavioural

models we have defined a set of metrics for the structural complexity of UML statechart

diagrams [13]. The main focus of the current study is the empirical validation of those

metrics as early understandability indicators. The empirical data necessary for

performing this validation was obtained through a family of experiments

Before testing the impact of the structural complexity metrics on the

understandability, we performed a PCA in order to discover the underlying dimensions

of structural complexity that they measure and to reduce the number of metrics. This

analysis showed that the effect of some of the metrics could be grouped into three

different components:

• Simple States Features (SSF), composed by a set of metrics that have in common

that they explore the relationships between the different states of the diagrams and

also the states themselves.

• Activities Within States (AWS), composed by the metrics that measure the

activities performed after entering or leaving a state.

• Number of Activities (NA), a metric measuring he total number of activities

(do/activity) in the statechart diagram.

Second, we tested and confirmed the hypotheses concerning the impact of the

three structural complexity components on the understandability time and efficiency.

Finally, we built a preliminary understandability model using the Individual Regression

Equations [27] technique specifically designed for data obtained through repeated

measures. The resulting regression model corroborates the hypotheses that these

complexity factors influence the understandability of UML statechart diagrams.

This way, when a modeller finds two or more possible semantically equivalent

options for modelling a system, he should pay special attention to the use of the

constructs that are part of the components described in this work, e.g., reducing the total

number of activities of the diagram if possible.

Even though these findings are encouraging we consider them as preliminary

because of the limitations of the current study. A first limitation is that the analysis

performed here is based on correlations. We have demonstrated that structural

complexity components have a statistically and practically significant relationship with

the understandability of UML statechart diagrams. Such correlational relationships do

not demonstrate per se a causal relationship. They only provide empirical evidence of it.

Only controlled experiments, where the components or metrics were varied in a

controlled manner and all other factors were held constant, could really demonstrate

causality. However, such a controlled experiment would be difficult to perform, since

varying structural complexity in a system, while preserving its functionality, is difficult

in practice.

Further, the generalisation capabilities of the current study seem limited. Two

main threats to external validity can be identified:

o Materials and tasks used. In the experiment we tried to use statechart

diagrams and tasks which can be representative of real cases, but more

empirical studies taking ‘real cases’ from software companies must be

performed in the future.

o Subjects. To solve the difficulty of obtaining professional subjects, we used

teachers and students from software engineering courses. We are aware that

more experiments with practitioners and professionals must be carried out in

order to be able to generalize these results. However, in this case, the tasks to

be performed did not require high levels of industrial experience, so

experiments with students could be considered as appropriate [4, 24].

Moreover, students are the next generation of professionals, so they are close

to the population under study [25].

Further research might also take into account the limitations of the current

research design. Since we had a repeated measures design, the used regression

technique was adapted and although this technique accurately estimates the regression

coefficients and tests the effects of each variable, it was not possible to calculate R2

values in the regression analysis phase.

Furthermore it was surprising that composite states had not shown influence in

the diagrams’ understandability, so we deeply analyzed the experimental material and

noticed that the selected diagrams did not use several or very complex composite states.

Therefore, we think that composite states deserve further investigation. So in future

research we will perform specific experiments in order to study deeply the effects of

composite states on the understandability of UML statechart diagrams, through new

specific experiments.

Acknowledgements

This research is part of the MECENAS project (PBI06-0024) financed by “Consejería

de Ciencia y Tecnología de la Junta de Comunidades de Castilla-La Mancha” and the

ESFINGE project supported by the “Ministerio de Educación y Ciencia (Spain)”

(TIN2006-15175-C05-05).

The research presented in the paper was partly performed during a summer

research stay of the main author at Ghent University.

The authors would like to thank sincerely professors Félix García and

Crescencio Bravo from University of Castilla-La Mancha for allowing performing the

experiments with their students.

References

[1] Atkinson, C. and Kühne, T. Model Driven Development: A Metamodeling

Foundation. IEEE Transactions on Software Engineering, 20, (2003), 36-41.

[2] Baroni, A.L., Braz, S., and Brito e Abreu, F. Using OCL to Formalize Object-

Oriented Design Metrics Definitions. In Proceedings of 6th ECOOP Workshop

on Quantitative Approaches in Object-Oriented Software Engineering

(QAOOSE 2002) (Malaga, Spain, 2002). 99-106.

[3] Basili, V., Caldiera, G., and Rombach, H.D. Goal Question Metric Paradigm.

Encyclopaedia of Software Engineering, 1, (1994), 528-532.

[4] Basili, V., Shull, F., and Lanubile, F. Building Knowledge through Families of

Experiments. IEEE Transactions on Software Engineering, 25, (1999), 456-473.

[5] Briand, L., Morasca, S., and Basili, V. Property-Based Software Engineering

Measurement. IEEE Transactions on Software Engineering, 22, 1 (1996), 68-86.

[6] Briand, L., Wüst, J., Ikonomovski, S., and Lounis, H. Investigating Quality Factors

in Object-Oriented Designs: An Industrial Case-Study. In Proceedings of 21st

International Conference on Software Engineering (ICSE 99) (Los Angeles,

USA, 1999). 345-354.

[7] Briand, L., Wüst, J., and Lounis, H., A Comprehensive Investigation of Quality

Factors in Object-Oriented Designs: an Industrial Case Study. 1998,

International Software Engineering Research Network.

[8] Briand, L., Wüst, J., and Lounis, H. Replicated Case Studies for Investigating

Quality Factors in Object-Oriented Designs. Empirical Software Engineering, 6, 1

(2001), 11-58.

[9] Brito e Abreu, F. and Carapuça, R. Object-Oriented Software Engineering:

Measuring and controlling the development process. In Proceedings of 4th

International Conference on Software Quality (McLean, USA, 1994).

[10] Cant, S.N., Jeffery, D.R., and Henderson-Sellers, B. A Conceptual Model of

Cognitive Complexity of Elements of the Programming Process. Information

and Software Technology, 7, 351-362 (1995).

[11] Chidamber, S. and Kemerer, C. A Metrics Suite for Object-Oriented Design.

IEEE Transactions on Software Engineering, 20, (1994), 476-493.

[12] Cruz-Lemus, J.A., Genero, M., Manso, M.E., and Piattini, M. Evaluating the

Effect of Composite States on the Understandability of UML Statechart

Diagrams. In Proceedings of 8th International Conference on Model Driven

Engineering Languages and Systems (MoDELS 2005) (Mentego Bay, Jamaica,

2005). LNCS 3713, 113-125.

[13] Cruz-Lemus, J.A., Genero, M., and Piattini, M., Chapter 7: Metrics for UML

Statechart Diagrams, in Metrics for Software Conceptual Models. 2005,

Imperial College Press: United Kingdom.

[14] Derr, K., Applying OMT, SIGS Books, 1995.

[15] El-Emam, K., Benlarbi, S., Goel, N., and Rai, S. The Confounding Effect of

Class Size on the Validity of Object-Oriented Metrics. IEEE Transactions on

Software Engineering, 27, 7 (2001), 630-650.

[16] Erickson, J. and Siau, K. Thoretical and Practical Complexity of UML. In

Proceedings of 10th Americas Conference on Information Systems (New York,

USA, 2004). 1669-1674.

[17] Fenton, N. and Pfleeger, S., Software Metrics: a Rigurous and Practical

Approach, International Thomson Computer Press, UK, 1997.

[18] García, F., Ruiz, F., Cruz, J.A., and Piattini, M. Integrated Measurement for the

Evaluation and Improvement of Software Processes. In Proceedings of 9th

European Workshop on Software Process Technology (EWSPT'9) (Helsinki,

Finland, 2003). LNCS 2786, 94-111.

[19] Genero, M., Defining and Validating Metrics for Conceptual Models, in

Computer Science Department. 2002, University of Castilla - La Mancha, Spain.

[20] Genero, M., Piattini, M., and Calero, C., eds. Metrics for Software Conceptual

Models. 2005, Imperial College Press: United Kingdom.

[21] Gorusch, R.L., Factor Analysis, Lawrence Erlbaum Associates, Hillsdale - New

Jersey, USA, 1983.

[22] Henderson-Sellers, B., Object-Oriented Metrics - Measures of Complexity,

Prentice-Hall, 1996.

[23] Henderson-Sellers, B., Zowghi, D., Klemola, T., and Parasuram, S. Sizing Use

Cases: how to Create a Standard Metrical Approach. In Proceedings of 8th

International Conference on Object-Oriented Information Systems (OOIS 2002)

(Montpellier, France, 2002). LNCS 2425, 409-421.

[24] Höst, M., Regnell, B., and Wohlin, C. Using Students as Subjects - A

Comparative Study of Students & Proffesionals in Lead-Time Impact

Assessment. In Proceedings of 4th Conference on Empirical Assessment &

Evaluation in Software Engineering (EASE 2000) (Keele, UK, 2000). 201-214.

[25] Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El-Emam, K.,

and Rosenberg, J. Preliminary Guidelines for Empirical Research in Software

Engineering. IEEE Transactions on Software Engineering, 28, 8 (2002), 721-

734.

[26] Lam, V. and Padget, J. Symbolic Model Checking of UML Statechart Diagrams

with an Integrated Approach. In Proceedings of 11th IEEE International

Conference and Workshop on the Engineering of Computer-Based Systems

(Brno, Czech Republic, 2004). 337-347.

[27] Lorch, R. and Myers, J. Regression Analyses of Repeated Measures Data in

Cognitive Research. Journal of Experimental Psychology: Learning, Memory

and Cognition, 16, 1 (1990), 149-157.

[28] Lorenz, M. and Kidd, J., Object-Oriented Software Metrics: A Practical Guide,

Prentice Hall, 1994.

[29] Manso, M.E., Genero, M., and Piattini, M. No-redundant Metrics for UML

Class Diagram Structural Complexity. In Proceedings of 15th International

Conference on Advanced Information Systems Engineering (CAISE 2003)

(Klagenfurt, Austria, 2003). LNCS (2681), 127-142.

[30] Marchesi, M. OOA Metrics for the Unified Modeling Language. In Proceedings

of 2nd Euromicro Conference on Software Maintenance and

Reengineering1998). 67-73.

[31] Miller, J. Applying Meta-Analytical Procedures to Software Engineering

Experiments. Journal of Systems and Software, 54, (2000), 29-39.

[32] OMG, MDA - The OMG Model Driven Architecture, Object Management

Group, 2002.

[33] OMG, UML 2.0 – 2nd Revised Submission. 2003, Object Management Group.

[34] OMG, UML Revision Task Force. OMG Unified Modeling Language

Specification, v.1.4. 2001, Object Management Group.

[35] Pippinger. Complexity Theory. Scientific American, 238, 6 (1978), 1-15.

[36] Poels, G. and Dedene, G., Distance: A Framework for Software Measure

Construction. 1999, Department of Applied Economics, Catholic University of

Leuven, Belgium.

[37] Poels, G. and Dedene, G. Evaluating the Effect of Inheritance on the

Modifiability of Object-Oriented Business Domain Models. In Proceedings of

5th European Conference on Software Maintenance and Reengineering (CSMR

2001) (Lisbon (Portugal), 2001). 20-28.

[38] Poels, G. and Dedene, G. Measures for Assessing Dynamic Complexity Aspects

of Object-Oriented Conceptual Schemes. In Proceedings of 19th International

Conference on Conceptual Modelling (ER 2000) (Salt Lake City, USA, 2000).

499-512.

[39] Selic, B., Gullekson, G., and Ward, P., Real-Time Object Oriented Modeling,

John Wiley & Sons, Inc., 1994.

[40] Shull, F., Carver, J., Travassos, G., Maldodano, J., Conradi, R., and Basili, V.,

Replicated Studies: Building a Body of Knowledge about Software Reading

Techniques, in Lecture Notes on Empirical Software Engineering, N., J. and A.,

M., Editors. 2003, World Scientific: Singapore. p. 39-84.

[41] Siau, K. Information Modeling and Method Engineering: a Psychological

Perspective. Journal of Database Management, 10, 44-50 (1999).

[42] Wohlin, C., Runeson, P., Hast, M., Ohlsson, M.C., Regnell, B., and Wesslen, A.,

Experimentation in Software Engineering: an Introduction., Kluwer Academic

Publisher, 2000.

[43] Yacoub, S., Ammar, H., and Robinson, T. Dynamic Metrics for Object-Oriented

Designs. In Proceedings of 6th IEEE International Symposium on Software

Metrics (METRICS 1999) (Boca Raton, USA, 1999). 50-61.

Appendix A

Diagram 20: VCR

CHECK TIME (HH:MM:SS): ________

STOP

PLAY

R EC OR D

R EV_FF

F_AD VAN C E R EWIN DF_AD VAN C E R EWIN D
rev

ff

s top OR
tim e ou t

chan ge d ir ect ion

tape end OR s top

p lay

s top

ff

rec

play

rev

Please answer the following questions:

1) If while being in the state STOP the event rev occurs, which state do you get?
2) If we were in the state STOP and we have reached the state RECORD, which event would have

occurred at least?
3) Which events and/or conditions would have occurred and in which order for going from the state

RECORD to the state PLAY?
4) Starting at the state STOP, which state would you reach if the following sequence of events and

conditions occurs?: (1) ff, (2) play, (3) change direction, (4) stop, (5) rec.

CHECK TIME (HH:MM:SS): ________

