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Abstract. Given the relevance that UML models and their quality have gained in actual 

software development strategies, such as the Model Driven-Development (MDD), we 

present an empirical study about the effect that structural complexity has on the 

understandability of UML statechart diagrams, i.e., the diagram’s ability to be easily 

understood. The current study is based on a family of three experiments. We have 

studied the data obtained in these experiments and built a preliminary understandability 

prediction model by means of a regression analysis using a technique specifically 

recommended when the data had been obtained through a repeated measures design.  

 

1. Introduction 

Paradigms such as Model-Driven Development (MDD) [1] and architectural 

frameworks such as the Model-Driven Architecture (MDA) [32] recognize that models 

are the foundation of software system development. As no system can be built on loose 

foundations, the focus of software quality assurance is shifting from system 

implementation towards system modeling. 



To assure model quality, instruments are needed to evaluate and measure 

quality. Since the Unified Modelling Language (UML1) [34] became the standard for 

modelling software systems, a high number of quality metrics have been proposed for 

UML models, in particular for class diagrams [2, 9, 11, 19, 22, 28] and use case 

diagrams [20, 23, 30]. The development of metrics for diagrams used as behavioural 

models has been less emphasized. Moreover, the current metric proposals [14, 38, 39, 

43] have not gone beyond the definition step. Due to the broad use of some types of 

behavioural diagrams, in particular statechart diagrams, there is a raising interest in 

controlling also the quality of these diagrams [2, 26]. In this paper we present a new set 

of structural complexity metrics for UML statechart diagrams and show that they can be 

used to evaluate a key quality, i.e., the diagram’s ability to be easily understood. 

Diagrams that are hard to understand are difficult to analyze, modify, extend, integrate 

with other diagrams, or reuse. To achieve the promised benefits of MDD in terms of 

increased reusability and productivity, it is necessary to control model 

understandability. Therefore instruments are needed to measure understandability early 

on in the model development process. Metrics can provide such an early quality 

assurance instrument.  

 

We are aware that nowadays, there are several software design tools capable to 

automatically produce very complex models that are syntactically correct and 

semantically complete and valid, but these facts do not necessarily make these models 

easy to understand. In this work, we assume a relationship between complexity and 

                                                 

1 For this research we based on UML v.1.4 [34]. After the release of the new version of UML 

(UML 2) [33] we kept all the previous work as the new version does not introduce significant differences 

that affect to our use of UML statechart diagrams. 



quality only for some types of quality, more concretely for understandability, where 

human users are directly and completely involved. 

 

Our research is based on the framework defined by Briand et al. [6, 8], which is 

the basis for much empirical research in the area of software quality [15, 29, 37]. For 

example, this framework was used by Siau [41] for understanding the complexity of 

UML. As we can see in Figure 1, this framework hypothesizes that the structural 

complexity of an UML statechart diagram affects its cognitive complexity [10]. 

Cognitive complexity represents the mental burden of the persons who build or use 

models (e.g. analysts, designers, developers, testers, maintainers, users, ...). Cognitive 

complexity is, however, difficult to measure.  To distinguish from cognitive complexity, 

we will refer to a model’s collection of structural properties as structural complexity, 

which is a measurable kind of complexity.  According to Systems Theory, the 

complexity of a system is based on the number of (different types of) elements and on 

the number of (different types of) (dynamically changing) relationships between them 

[35]. Hence, the structural complexity of an UML statechart diagram is determined by 

the elements that compose it.  

 

Briand et al.’s framework hypothesizes that high cognitive complexity will result 

in reduced understandability which impedes the analyzability and modifiability of the 

model, amongst other model qualities. 
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Figure 1. Relationship between structural complexity,  

cognitive complexity and understandability [7] 

The relationship between structural complexity and external quality properties 

has been repeatedly demonstrated. According to Briand et al. [8], it is difficult to 

imagine what could be alternative explanations for these results besides cognitive 

complexity mediating the effect of structural complexity on software quality. 

 

Understandability, as an external quality attribute, is hard to measure early in the 

modelling process. Therefore, an indirect measurement based on internal properties of 

the model such as the structural complexity, is required [7, 17]. In the literature, there 

are some interesting works related to complexity metrics [17, 22]. 

 

In section 2 we identify the UML modeling constructs that may contribute to the 

structural complexity of statechart diagrams and we define a metric for each of them. In 

section 3 these metrics are applied to a large sample of statechart diagrams in order to 

detect the underlying dimensions of structural complexity that they measure. Based on 

this understanding, a family of laboratory experiments was conducted in order to 

validate the metrics as understandability indicators. The design of this family of 

experiments is presented in section 4. In section 5 we analyze the collected data and 

interpret the results. In the final section 6, conclusions are presented and suggestions for 

further research are suggested. 



 

 

2. Metrics Definition 

Based on the UML meta-model [34], our measurement experience and the more 

commonly used elements when modelling an UML statechart diagram [16], we 

considered the following UML constructs as contributing to the structural complexity of 

UML statechart diagrams: 

• Action. An action is a specification of an executable statement that forms an 

abstraction of a computational procedure that results in a change in the state of 

the model, and can be realized by sending a message to an object or modifying a 

link or a value of an attribute. In a state, we can find several types of actions: 

entry actions, exit actions and do/Activity actions, i.e., sequences of actions that 

are executed consecutively while staying in the state.  

• State. A state is an abstract meta-class that models a situation during which 

some invariant condition holds. This invariant may represent a static situation 

such as an object waiting for some external event to occur. However, it can also 

model dynamic conditions such as the process of performing some activity; that 

is, the model element under consideration enters the state when the activity 

commences and leaves it as soon as the activity is completed. 

• Composite State. A composite state is a state that contains other states vertices 

(states, pseudo-states, etc.). The association between the composite and the 

contained vertices is a composition association. Hence, a state vertex can be a 

part of at most one composite state. 

• Simple State. A simple state is a state that does not have sub-states.  



• Event. An event is the specification of a type of observable occurrence. The 

occurrence that generates an event instance is assumed to take place at an instant 

in time with no duration. Strictly speaking, the term ‘event’ is used to refer to 

the type and not to an instance of the type. However, on occasion, where the 

meaning is clear from the context, the term is also used to refer to an event 

instance. An event can have the association parameter, which specifies the list of 

parameters defined for the event.  

• Guard. A guard is a boolean expression that is attached to a transition as a fine-

grained control over its firing. The guard is evaluated when an event instance is 

dispatched by the state machine. If the guard is true at that time, the transition is 

enabled, otherwise, it is disabled. Guards should be pure expressions without 

side effects and have the attribute expression, which is the boolean expression 

that specifies the guard.  

• Transition. A transition is a directed relationship between a source state vertex 

and a target state vertex. It may be part of a compound transition, which takes 

the state machine from one state configuration to another, representing the 

complete response of the state machine to a particular event instance. 

 

Based on these constructs, we defined a set of metrics for measuring structural 

complexity. A working hypothesis underlying the metric definition is that the more a 

particular construct is used when developing a statechart diagram, the more that 

construct adds to the structural complexity of the diagram. Hence, each metric captures 

the extent to which a particular construct is used in a diagram. 

 



A brief description of the metrics is presented in Table 1. Further details about 

their definition can be found in [13]. 

Table 1. Metrics for UML statechart diagrams. 

Metric Description 
NEntryA  
(Number of entry actions) 

The total number of entry actions, i.e. the actions 
performed each time a state is entered. 

NExitA  
(Number of exit actions) 

The total number of exit actions, i.e. the actions 
performed each time a state is left. 

NA 
(Number of activities)  

The total number of activities (do/activity) in the 
statechart diagram. 

NSS  
(Number of simple states) 

The total number of states considering also the simple 
states within the composite states. 

NCS  
(Number of composite states) 

The total number of composite states. 

NG  
(Number of guards) 

The total number of guard conditions. 

NE 
(Number of events) 

The total number of events. 

NT 
(Number of transitions) 

The total number of transitions, considering common 
transitions (the source and the target states are 
different), the initial and final transitions, self-
transitions (the source and the target states are the 
same) and internal transitions (transitions inside a 
state that responds to an event but without leaving the 
state). 

CC  
(Cyclomatic Complexity) 

It is defined as |NSS-NT+2| 

 

These metrics were defined in a methodological way following three main steps: 

metric definition, theoretical and empirical validation. The theoretical validation was 

executed through Briand et al.’s property-based framework, which prescribes a set of 

intuitively derived axioms that metrics should satisfy in order to be considered as valid 

measures [5]. In the theoretical validation process of these metrics, we also used the 

Measurement Theory-based DISTANCE framework [36] for guaranteeing the construct 

validity of the empirical studies where these metrics were used. Through these 

validations, all the metrics were characterized as ratio scale metrics, which is relevant 



when statistically analyzing the metrics values obtained in empirical studies. The 

empirical validation of these metrics is the subject of this paper. 

 

 

3. Components of Structural Complexity 

To substantiate our working hypothesis, we needed to investigate what kind(s) of 

structural complexity is (or are) measured by the metrics. As it is clear that many metric 

values will tend to be correlated, we do not consider each metric as measuring a 

different aspect of a diagram’s structural complexity. We therefore first study the 

underlying dimensions of structural complexity captured by the metrics by employing a 

data reduction technique, using a sample of statechart diagrams. 

 

In order to create summaries of the defined metrics, Principal Component 

Analysis (PCA) is the most commonly used technique. Principal components (PCs) are 

linear combinations of the standardized independent variables.  

 

PCs are calculated as follows: the first PC is the linear combination of all 

standardized variables that explains a maximum amount of variance present in the data 

set. The second and subsequent PCs are linear combinations of all standardized 

variables, where each new PC is orthogonal to all previously calculated PCs, and 

captures the next largest amount of variance under these conditions. Usually, only a 

subset of all variables contributes significantly to the variance of a PC (i.e. shows a high 

‘loading’ for that PC). In order to identify PCs and their high loading variables, we 

consider the rotated components. This is a technique where PCs are subjected to an 



orthogonal rotation. As a result, the rotated components show a clearer pattern of 

loadings, where the variables either have a very low or high impact on the PC.  

 

When applying PCA, larger samples are better than smaller samples, all other 

things being equal.  Large samples tend to minimize the probability of errors, maximize 

the efficiency of population estimates, and increase the generalizability of the results. 

To obtain a large sample, we performed an extensive search in textbooks, journal papers 

and Internet sources in order to find UML statechart diagrams to include in our sample. 

We finally used 92 different diagrams, which is sufficient considering the sample size 

guidelines provided in [21]. The results of the PCA are shown in Table 2. 

Table 2. PCA results 

Rotated Components  1 2 3 
NEntryA 6.759E-02 0.892 0.222 
NExitA -7.197E-02 0.898 -8.855E-02

NA 0.302 0.216 0.704 
NSS 0.808 -9.190E-03 -0.153 
NCS 0.335 7.296E-02 -0.769 
NE 0.876 3.729E-02 7.187E-02
NG 0.664 -1.414E-02 0.211 
NT 0.975 3.743E-03 -0.111 
CC 0.878 1.416E-02 -5.665E-02

 SSF AWS NA 
 

Based on these results, three PCs are extracted, which jointly explain almost 

75% of the variance in the data set: 

 

• Simple States Features (SSF), composed by the metrics that were grouped in 

the first component, that is, NSS, NE, NG, NT and CC. All these metrics have in 

common that they explore the relationships between the different states of the 

diagrams and also the states themselves. 



• Activities Within States (AWS), composed by the metrics NEntryA and 

NExitA, the activities performed after entering or leaving a state. 

• Number of Activities (NA). The third component is composed only by this 

metric. The number of activities that a statechart diagram contains has shown to 

be a metric that highly affects the understandability of a diagram [13], so it is 

not strange that this metric has to be studied on its own. 

 

When further investigating the relationship between structural complexity and 

understandability, we will work with these three components. So, we calculated the 

values for the components SSF and AWS as the mean of the metrics values that were 

included into each component. 

 

It is important to highlight that the PCA suggested that the metric NCS, that 

counts the number of composite states of the diagrams, does not belong to any of the 

components, so we decided to discard it in this empirical validation and conducted a 

specific study of the effect of composite states on the understandability of the diagrams 

[12].  

 

 

4. A Family of Experiments 

In this section we will describe each step of the experimental process [42] that we 

followed to empirically validate the obtained components and evaluate their ability to 

serve as indicators for the understandability of UML statechart diagrams. 

 



As Miller [31], Basili et al. [4] and Shull et al. [40], among others, suggested, 

simple studies rarely provide definite answers. Following these suggestions, we have 

carried out a family of experiments. We are aware that only after performing a family of 

experiments an adequate body of knowledge can be built to extract useful measurement 

conclusions regarding the use of OO design metrics to be applied to real measurement 

projects [4, 40]. 

 

Families of experiments promise to save preparation costs while increasing the 

benefits of running them. Researchers who want to participate in the family of 

experiments save work because they can reuse the framework and experimental 

material. Furthermore, reusing a framework also helps raise the quality of the studies. 

At the same time, individual studies possess added value when they are part of a family 

of experiments because they are analyzed with respect to the whole family, not only 

with respect to their own context. That is, families of experiments allow learning more 

effectively from individual empirical studies, because studies add to a body of 

knowledge, instead of providing information limited to one context. A higher effort is 

required for preparing a family of experiments but, as previously commented, the 

expected benefits are large and the resources investment is worth. 

 

Our family of experiments consists of a controlled experiment and two 

replications of this. A descriptive graph of the chronology of the three experiments can 

be found in Figure 2 . 



 

Figure 2. Chronology of the family of experiments 

 

As most of the features are the same in the three members of the family, we will 

explain them together. However, we will comment on any possible difference between 

them.  

 

Step 1: Definition. 

Using the GQM [3] template for goal definition, the goal of the experiment and 

its replications is detailed in Table 2. 

Table 2. Goal of the experiment. 

Analyze Structural complexity metrics for UML statechart 
diagrams 

For the purpose of Evaluating 

With respect to The capability of being used as indicators of the 
understandability of UML statechart diagrams 

From the point of  
view of Researchers 

In the context of Computer Science students and teachers 
 

Step 2: Planning. 

This phase consists of six different steps: 

� Context selection. The context of the experiments was a group of teachers and 

undergraduate students and hence the experiment is run off-line, i.e., not in an 

industrial software development environment. In the first experiment (E1), the 



subjects were ten teachers of the Software Engineering area and eight students 

enrolled in the last (fifth) year of Computer Science at the Department of Computer 

Science at the University of Castilla–La Mancha. In the first replica (R1), there were 

twenty-four students in their third-year of Computer Science and in the second 

replica (R2), forty-nine third-year students. 

• Subjects selection. The subjects were chosen at our convenience. The experience of 

the subjects in UML statechart diagrams in E1 was average for the students, as they 

had already taken two complete Software Engineering courses, and it was high for 

the teachers, as they belonged to the Software Engineering area. In the replications, 

the experience of the students was lower, as they had only taken one Software 

Engineering course, and it had not been completed at that moment. All the teachers 

involved in the experiment took part voluntarily. We motivated all the students to 

participate in the experiments by explaining to them that similar tasks to the 

experimental ones could be carried out in exams or practice.   

� Variable selection. The independent variables were the UML statechart diagrams 

structural complexity components SSF, AWS and NA. The dependent variable was 

UML statechart diagrams understandability. 

� Instrumentation. The subjects were given twenty UML statechart diagrams, 

selected from different sources and related to different universes of discourse that 

were easy enough to be understood by each of the subjects. The structural 

complexity of each diagram was different, covering a broad range of the metrics 

values. We consider this set of twenty diagrams as a representative sample of the 

population of UML statechart diagrams that can be found in practice. Fout! 

Verwijzingsbron niet gevonden. shows the metrics values for the twenty UML 

statechart diagrams. Each diagram also had a test enclosed. It included a 



questionnaire in order to evaluate if the subjects had really understood the content of 

the UML statechart diagrams. Each questionnaire contained four questions, which 

were conceptually similar and written in identical order. They inquired about 

navigation between states, values of variables after the execution, values for guard 

conditions… Furthermore, the subjects had to write down the time they started 

answering the questionnaire and the time they finished. The difference between 

these two values, expressed in seconds, is what we called understandability time. 

Diagram 20 can be found as an example in Appendix A, at the end of this 

document.. The dependent variable was measured by the time the subject spent 

answering the questionnaire attached to each diagram (understandability time) and 

the understandability efficiency, defined through the following formula: 

understandability efficiency = correctness/understandability time         (1) 

As we can see in the formula, the understandability efficiency of a diagram is a 

measure that relates how correctly, i.e. correct answers vs. answered questions, and how 

quickly a subject understood a diagram and, in our opinion, this might be a good 

indicator of the actual understandability of the subjects. 

� Hypothesis formulation. We formulated the following hypotheses: 

H0,1: There is no significant correlation between the UML statechart diagrams 

structural complexity components and understandability time.  H1,1: ¬H 0,1 

H0,2: There is no significant correlation between the UML statechart diagrams 

structural complexity components and understandability efficiency. H1,2: ¬H 0,2 

� Experiment design. We selected a within-subject design experiment, i.e., every 

diagram was given to every subject. However, the diagrams were ordered differently 

before being given to the subjects for cancelling out potential learning effects. 

 



Table 3. Metrics and component values for each statechart diagram. 

Diagram NEntryA NExitA NA NSS NCS NE NG NT CC SSF AWS
1 1 1 0 3 0 6 2 5 0 16 2 
2 1 0 3 4 0 6 0 7 1 18 1 
3 2 0 2 4 1 4 3 7 1 19 2 
4 0 0 2 4 0 11 2 9 3 29 0 
5 3 2 2 4 0 13 0 10 4 31 5 
6 6 6 0 6 1 12 0 13 5 36 12 
7 1 0 1 5 2 6 3 10 3 27 1 
8 1 0 3 5 0 12 4 13 6 40 1 
9 0 0 3 5 0 8 0 11 4 28 0 
10 2 1 0 4 0 6 0 6 0 16 3 
11 1 2 1 6 3 12 0 17 9 44 3 
12 1 1 1 3 0 5 2 5 0 15 2 
13 2 1 0 2 0 4 0 4 0 10 3 
14 1 1 2 3 0 8 0 9 4 24 2 
15 1 0 4 9 1 11 4 13 2 39 1 
16 0 0 5 9 0 23 1 23 12 68 0 
17 2 0 1 5 1 6 2 8 1 22 2 
18 2 0 1 12 0 23 2 24 10 71 2 
19 0 1 0 2 0 5 0 5 1 13 1 
20 0 0 0 5 1 11 0 12 5 23 23 

 

Step 3: Operation. 

In this phase, experimental data are collected. It includes the following 

activities: 

� Preparation. In E1, the experience that the subjects had in working with UML 

statechart diagrams was higher than in R1 and R2, so we decided to give the 

subjects in the replications an intensive training session before the experiments took 

place. However, the subjects were not aware of which aspects we intended to study, 

nor were they informed about the hypotheses stated.  

� Execution. The first experiment was performed without supervision. The subjects 

were given all the described materials and told to bring it back answered in one 

week. However, the replications were run in a two-hour session and there was an 



instructor who supervised the experiment and could solve any asked doubt, although 

the instructor was finally not asked any question.  

� Data Validation. Once the data were collected, we corrected them and noted down 

the different times and the number of answered (right and wrong) questions. From 

these values, we calculated the two measures of the dependent variable: the 

understandability time and efficiency. We also calculated automatically the metric 

values through a tool we had built [18]. Concerning the quality of data collecting, 

we used ‘pencil and paper’, hence data collection could be considered as critical. 

Supervisors did not perform any checks of the times given by students and teachers. 

Nevertheless, the subjects assumed the responsibility for writing down the correct 

times.  

 

 

5. Data Analysis and Interpretation 

First we tested the impact of the three extracted complexity components (SSF, AWS 

and NA) on the understandability of the UML statechart diagrams in terms of 

understandability time and efficiency through an ANOVA test. After that, we built a 

preliminary understandability prediction model by means of a regression analysis using 

a technique specifically recommended when the data had been obtained through a 

repeated measures design [27].  

 

5.1 Impact of Structural Complexity on Understandability 

To test the impact of structural complexity on understandability a data analysis strategy 

is needed that evaluates the joint effect of the three complexity components, but also 



allows evaluating individual impacts and pair-wise interaction effects. To test these 

individual, interaction and joint effects, we considered each of the complexity 

components as a treatment that can be administered, independent of the administration 

of other treatments. To simplify the analysis, each treatment was considered at only two 

levels: a high level and a low level, resulting in eight possible combinations. To 

determine what is ‘high’ or ‘low’, the average value for each component in the set of 20 

diagrams was calculated. For each diagram in the sample, if the value of a structural 

complexity component was over the average value, that diagram scored ‘high’ on the 

component; otherwise it scored ‘low’ for that component. 

 

Next, a sub-set of the 20 diagrams representing all possible combinations of 

values (either high or low) for the three components was selected. This way we 

randomly selected a set of 8 diagrams, whose metrics values fulfilled the requirements 

shown in Table 4, in which, a ‘H’ stands for a High value of the component comparing 

its value with the other diagrams’ values (in the full sample of 20 diagrams) and a ‘L’ 

stands for a low value.  

Table 4. Diagram selection 

Pattern RS AWS NA Diagram
1 H H H 5 
2 H H L 6 
3 H L H 16 
4 H L L 20 
5 L H H 3 
6 L H L 13 
7 L L H 2 
8 L L L 19 

 

In order to test the hypotheses, we had valid values for 84 subjects after rejecting 

some data for being incomplete. Since the experimental design comprised repeated 



measures we performed a general linear model for repeated measures. Table 5 shows 

the obtained results for the main and interaction effects of each component on 

understandability time and efficiency when applying multivariate contrast indicators 

(using a cutting edge of 0.05). 

Table 5. Multivariate contrasts 

Effect Understandability
Time 

Understandability 
Efficiency 

SSF 0.218 0.009 
AWS 0.000 0.000 
NA 0.000 0.000 

SSF*AWS 0.000 0.404 
SSF*NA 0.000 0.000 

AWS*NA 0.000 0.008 
SSF*AWS*NA 0.000 0.000 

 

As we can see in Table 5, with respect to the time, all the components and their 

combinations (except the SSF component) were significant. As an example, the 

relationship between the components SSF and AWS is described in Figure 3. When the 

values of the AWS components are high, the lower the values of the SSF component 

are, the higher the understandability time of the diagram gets. This is a relationship that 

we had not expected, however, for low values of the AWS components there is an 

inverse relationship and as the values for the SSF component decreases, the 

understandability time of the diagrams decreases as well. 
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Figure 3. Estimated edge measure for understandability time (SSF*AWS) 

 

As for the understandability efficiency, only the interaction of the components 

SSF and AWS is not significant, as all the rest of values are below the cutting edge 

(0,05). We also attach a graphical example of the relationship between two components. 

In this case, both for high and low values of the NA component, the lower the values of 

the AWS component are, the higher the understandability efficiency gets, although the 

pitch line improvement is more important for high values of the NA component (Figure 

4). 
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Figure 4. Estimated edge measure for understandability efficiency (AWS*NA) 

 

5.2. Understandability model 

Since we used a repeated measures design, we realized that the commonly used 

regression approaches were not appropriate for the data collected in the family of 

experiments. Hence, we used a technique outlined in [27] called Individual Regression 

Equations, and especially designed for repeated measures. 

 

The process consists of two main steps. First, we compute separate regression 

equations for each subject in the family of experiments. This way each of the resulting 

84 equations represents the best description for a particular subject between both the 

understandability time and efficiency and the set of predictor variables. At this point, 

the obtained regression coefficients are used to form a N*P table in which the N 



subjects represent rows and the P predictor variables the columns. We do not display 

this table as the amount of data is excessively big. 

 

In the second and final step of the process, we summarized over the 84 subjects 

each regression coefficient to see if it differs reliably from zero. This can be done with a 

t test. The results of this test are summarized in Table 6 and Table 7 for the 

understandability time and efficiency. 

Table 6. t Test results for the regression models (understandability time) 

Understandability Time 
Variable CONST NA SSF AWS 
Mean 103.2887 8.7019 2.3591 2.0872 
SE 2.9558 1.0278 0.3871 1.1511 
t 34.994 8.467 6.094 1.813 
Sig. 0.0000 0.0000 0.0000 0.073 

 

Table 7. t Test results for the regression models (understandability efficiency) 

Understandability efficiency 
Variable CONST NA SSF AWS 
Mean 0.011575 -0.000813 -0.000204 -0.000273 
SE 0.000335 0.000071 0.000022 0.000073 
t 34.573 -11.452 -9.207 -3.720 
Sig. 0.0000 0.0000 0.0000 0.0000 
 

Since all regression coefficients were significant, we obtained two different 

regression equations that could be used for estimating the understandability time and 

efficiency based on the different complexity components: 

• For the understandability time (UT): 

 UT = 103.2887 + 8.7019*NA + 2.3591*SSF + 2.0872*AWS 

• For the understandability efficiency (UA): 

 UA = 0.011575 - 0.000813*NA – 0.000204*SSF – 0.000273*AWS 



 

As expected, these equations show that the structural complexity of UML 

statechart diagrams negatively impacts the understandability efficiency and also directly 

affects the time necessary to get a good understanding of it. This implies that the higher 

the values of the complexity components are, the lower the values of the obtained 

efficiency will be and vice versa. Similarly, we can state that higher structural 

complexity values will result in higher understandability times. This gives reason to 

believe that these structural complexity components can serve as early indicators of 

model understandability. 

 

 

6. Conclusions, Limitations and Future Work 

Given the scarcity of metrics for measuring quality characteristics of behavioural 

models we have defined a set of metrics for the structural complexity of UML statechart 

diagrams [13]. The main focus of the current study is the empirical validation of those 

metrics as early understandability indicators. The empirical data necessary for 

performing this validation was obtained through a family of experiments  

 

Before testing the impact of the structural complexity metrics on the 

understandability, we performed a PCA in order to discover the underlying dimensions 

of structural complexity that they measure and to reduce the number of metrics. This 

analysis showed that the effect of some of the metrics could be grouped into three 

different components: 



• Simple States Features (SSF), composed by a set of metrics that have in common 

that they explore the relationships between the different states of the diagrams and 

also the states themselves. 

• Activities Within States (AWS), composed by the metrics that measure the 

activities performed after entering or leaving a state. 

• Number of Activities (NA), a metric measuring he total number of activities 

(do/activity) in the statechart diagram. 

 

Second, we tested and confirmed the hypotheses concerning the impact of the 

three structural complexity components on the understandability time and efficiency. 

Finally, we built a preliminary understandability model using the Individual Regression 

Equations [27] technique specifically designed for data obtained through repeated 

measures. The resulting regression model corroborates the hypotheses that these 

complexity factors influence the understandability of UML statechart diagrams.  

 

This way, when a modeller finds two or more possible semantically equivalent 

options for modelling a system, he should pay special attention to the use of the 

constructs that are part of the components described in this work, e.g., reducing the total 

number of activities of the diagram if possible.  

 

Even though these findings are encouraging we consider them as preliminary 

because of the limitations of the current study. A first limitation is that the analysis 

performed here is based on correlations. We have demonstrated that structural 

complexity components have a statistically and practically significant relationship with 

the understandability of UML statechart diagrams. Such correlational relationships do 



not demonstrate per se a causal relationship. They only provide empirical evidence of it. 

Only controlled experiments, where the components or metrics were varied in a 

controlled manner and all other factors were held constant, could really demonstrate 

causality. However, such a controlled experiment would be difficult to perform, since 

varying structural complexity in a system, while preserving its functionality, is difficult 

in practice.  

 

Further, the generalisation capabilities of the current study seem limited. Two 

main threats to external validity can be identified:  

o Materials and tasks used. In the experiment we tried to use statechart 

diagrams and tasks which can be representative of real cases, but more 

empirical studies taking ‘real cases’ from software companies must be 

performed in the future. 

o Subjects. To solve the difficulty of obtaining professional subjects, we used 

teachers and students from software engineering courses. We are aware that 

more experiments with practitioners and professionals must be carried out in 

order to be able to generalize these results. However, in this case, the tasks to 

be performed did not require high levels of industrial experience, so 

experiments with students could be considered as appropriate [4, 24]. 

Moreover, students are the next generation of professionals, so they are close 

to the population under study [25]. 

 

Further research might also take into account the limitations of the current 

research design. Since we had a repeated measures design, the used regression 

technique was adapted and although this technique accurately estimates the regression 



coefficients and tests the effects of each variable, it was not possible to calculate R2 

values in the regression analysis phase. 

  

Furthermore it was surprising that composite states had not shown influence in 

the diagrams’ understandability, so we deeply analyzed the experimental material and 

noticed that the selected diagrams did not use several or very complex composite states. 

Therefore, we think that composite states deserve further investigation. So in future 

research we will perform specific experiments in order to study deeply the effects of 

composite states on the understandability of UML statechart diagrams, through new 

specific experiments. 
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Appendix A 

Diagram 20: VCR 

 

 

CHECK TIME (HH:MM:SS): ________ 
 

STOP

PLAY

R EC OR D

R EV_FF

F_AD VAN C E R EWIN DF_AD VAN C E R EWIN D
rev

ff

s top  OR  
tim e ou t

chan ge d ir ect ion

tape end OR s top

p lay

s top

ff

rec

play

rev



Please answer the following questions: 
 
1) If while being in the state STOP the event rev occurs, which state do you get? 
2) If we were in the state STOP and we have reached the state RECORD, which event would have 

occurred at least? 
3) Which events and/or conditions would have occurred and in which order for going from the state 

RECORD to the state PLAY? 
4) Starting at the state STOP, which state would you reach if the following sequence of events and 

conditions occurs?: (1) ff, (2) play, (3) change direction, (4) stop, (5) rec. 
 
CHECK TIME (HH:MM:SS): ________ 
 
 
 


