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ABSTRACT 
 

Abstract. We present a finite capacity production scheduling algorithm for an integrated steel 
company located in Belgium. This multiple-objective optimization model takes various case-
specific constraints into account and consists of two steps. A machine assignment step determines 
the routing of an individual order through the network while a scheduling step makes a detailed 
timetable for each operation for all orders. 
 
The procedure has been tested on randomly generated data instances that reflect the characteristics 
of the steel company. We report promising computational results and illustrate the flexibility of the 
optimization model with respect to the various input parameters. 
 
Keywords . Master production scheduling; manufacturing planning and control; 
scheduling/sequencing. 

 

1 Introduction 

 

Due to the often complex nature of production planning, various hierarchical production planning 

(HPP) approaches have been presented in literature to cope with interactions between product demand, 

production capacity, real-time data, etc… Each hierarchical level imposes various constraints and 

objectives to the lower level while the lower level returns feedback about the production progress. 

There exist different relations of aggregation and desaggregation between the hierarchical levels, 

based on product unit (product parts into products into product archetypes), production unit (machine 

into machine group into production step into factory unit), scope (short term, medium term, long 

term), time unit (minutes, days, weeks, months) and decision level (shop-floor workers, production 

management, top management) (Venkateswaran et al., 2004). Two essential levels in many HPP 

systems are the Master Production Schedule (MPS), which determines medium-long term production 

quantities for the different products, and the Material Requirements Planning (MRP) which translates 

the resulting master schedule into planned start times for the product components. Early endeavours 

approach all HPP-systems as infinite loading systems that were insufficiently integrated with the 

capacity requirements. The MPS was constructed by omitting all capacity constraints and the resulting 

capacity infeasibilities needed to be straightened in the MRP-schedule by ex post facto capacity 

planning techniques such as rough cut capacity planning (RCCP) and capacity requirements planning 

(CRP). However, most studies reveal that these techniques are highly insufficient, and production 

planners induce a lead time increase while incorporating capacity requirements, leading to inferior 

schedules with large work-in-process inventories and high costs (Sum and Hill, 1993; Fry et al., 1992). 

 

The need for integrating capacity limitations into planning algorithms raised in the early 1980s when 

many manufacturing companies started to use MRP as a primary planning tool (Rom et al., 2002). 

Billington et al. (1983) were the first to propose a finite capacity MRP scheduling problem in a multi-

stage environment. The proposed linear programming formulation aims at computing the required 
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production lead times in correspondence with the demands and the available capacity, thereby 

reducing in-process inventory compared to the usual practice in MRP. However, they did not provide 

any efficient heuristic procedure, capable to cope with large scale problem instances. Sum and Hill 

(1993) further defined the research area by also considering setup costs and tardiness costs and by 

including an order merging/breaking mechanism. They presented a heuristic procedure in which a 

schedule generation scheme is incorporated, based on the resource-constrained project scheduling 

problem. Diaz and Laguna (1996) used a topology of multiple parallel work centres for the production 

of similar products and proposed an LP problem formulation for a finite capacity MRP focusing on 

minimising multiple cost components. They did not provide a heuristic procedure to solve real-life 

problems. They stressed the importance of already incorporating resource constraints at the MPS-level 

and proposed some methods to improve the RCCP. Taal and Wortmann (1997) were the first to embed 

capacity constraints in a flexible flow shop environment, and presented a priority rule to create a 

schedule in line with the planning objectives. Finally, Rom et al. (2002) introduced the capacity-

constrained MRP system in a job shop environment. Their LP model formulation allows flexibility to 

change the objective function according to specific planning goals, but does not simultaneously 

optimise multiple objectives. 

 

In this paper, we present a finite capacity production scheduling algorithm for the integrated steel 

company Arcelor Gent (formerly known as Sidmar), located on the Ghent-Terneuzen Canal, around 20 

km from the centre of the city of Ghent (Belgium). Arcelor Gent yearly produces 5 million tonnes of 

flat steel strip for the automotive industry and for all kinds of high-quality applications such as 

domestic appliances, sanitary, heating, construction and furniture and handles every step of the 

production process, from the supply of raw materials to the coating of steel and the production of 

laser-welded blanks. With 5,500 employees, they are one of the largest employers in the region. 

They are part of Arcelor, one of the world ś largest steel companies. For more information, we refer to 

www.sidmar.be.  

 

Planning and scheduling problems in iron and steel production have not drawn as wide an attention of 

the operations management researchers as many other industries. However, the iron and steel industry 

is both capital and energy intensive, which makes the importance of effective planning and scheduling 

in this industry by no means less than that in other industries (Tang et al., 2001). Moreover, Lee et al. 

(1996) argue that tools are available to develop efficient algorithms for the extremely difficult 

scheduling environment of steel and research in this area should be stimulated since the return on 

investment for software to support improved steel making productivity is very high. Most studies 

focus on sub-parts of the production process (Harjunkoski et al., 2001) and ignore interactions 

between these sub-parts, although the objective of steel companies to reduce the lateness and lead-time 

of the orders increases the need for an integral approach of the problem. In our steel shop production 
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system, we provide a solution approach for the complete production process, taking various 

constraints and objectives into account. We restrict our procedure to a daily bucket system, where we 

only assign orders to machines on a daily basis without determining the exact production sequence of 

the orders on a particular day. Though we already incorporate sequence dependent setup costs at this 

aggregated level (see section 2.2), the exact sequence of orders within a daily bucket needs to be 

determined by shop floor decisions or process-specific algorithms and is outside the scope of this 

paper. 

 

The outline of the paper is as follows. Section 2 gives a problem formulation and defines the various 

constraints and problem objectives into detail. Section 3 presents our solution procedure to solve the 

problem under study. In section 4 we present extensive computational results and conclusions are 

given in section 5. 

 

2 Problem formulation 

 

2.1 Problem parameters and decision variables  

 

A steel shop environment is closely related to a flexible flow shop as it consists of several serial 

production steps, each consisting of several identical machines in parallel (Lee et al., 1996). The 

parallel machines may be clustered into machine groups (e.g. they are located at the same place and 

make use of the same storage facilities). A set of accepted production orders needs to be scheduled. 

The ordered coils can slightly differ from each other in terms of width, thickness, length, quality, etc. 

(Okano et al., 2004), resulting in a wide variety of product types. 

 

In the following, we briefly describe the various parameters and the decision variables in order to 

formulate the production scheduling problem. These parameters will be explained in detail and used 

throughout the remainder of the manuscript. 

 

Parameters 

 

Steel-shop characteristics 

nrq Number of production steps (index q = 1, …, nrq)  

nrn  Number of machine groups (index n = 1, …, nrn) 

nrj Number of machines (index j = 1, …, nrj) 

NQ
qS  Set of machine groups of production step q 

JQ
qS  Set of machines of production step q 
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JN
nS  Set of machines of machine group n 

 

Scheduling horizon 

nrk Number of days (index k  = 1, …, nrk ) 

nrm Number of weeks (index m = 1, …, nrm) 

 

Order characteristics 

nri Number of orders (index i = 1, …, nri) 

Each order can be characterised by: 

vi Volume of order i (in tons) 

ti Due date or delivery date of order i 
Q
iO  Set of production steps needed to produce order i ( Q

iO  ⊂ {1, …, nrq}) 

The orders can be aggregated in order groups or production flows, as follows: 

nrl Number of order groups (production flows) for the flow constraints (index l = 1, …, nrl) 

O
lF  Set of production orders that belong to production flow l  

f lnm Pre-specified flow quantity (in tons) for order group l on machine group n during week m 

 

Order routing network 

Durations: 

pij  Processing time of order i on machine j (in minutes) 

= function of order i, machine j and volume vi 

djj’ Intermediate duration for order i between machine j and machine j’ (in days) 

= transportation and minimal cooling down time 

cjk Capacity of machine j on day k (in minutes) 

Costs: 

aijj’ Assignment cost of order i (in €) if assigned to machines j and j’ 

= sum of costs of transportation and cooling down 

ei Earliness unit cost for order i (in € per day) 

li Lateness unit cost for order i (in € per day) 

uj Utilization cost of machine j (in € per minute deviation of 100% utilization) 
−
lnb  Lower flow penalty cost (scheduled production ≤ lnmf ) (in € per ton) 

+
lnb  Upper flow penalty cost (scheduled production exceeds lnmf ) (in € per ton) 

 

Decision variables 
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A production schedule consists of an assignment of all operations for each order taking various 

constraints (section 2.2) and multiple objectives (section 2.3) into account. Hence, every operation of 

order i needs to be executed on a machine j on a particular day k , resulting in the decision variables as 

follows:  

 

xijk  = 1, if an operation of order i is assigned to machine j on day k  

 = 0, otherwise 

 

Note that we construct a production schedule where the daily machine capacity and processing times 

of the orders are expressed in minutes whereas the intermediate time between machines is expressed in 

days. Hence, for the production of steel, time spent for operations at the machinery lies far beyond the 

time needed to support intermediate manipulations such as transporting, heating or cooling down.  
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Figure 1. An example steel shop (left (a)) and an example order routing network (right (b)) 

 

Figure 1(a) displays an example steel shop network with 4 production steps, 7 machine groups and 11 

machines. Dummy machine 0 and dummy machine 12 (or in general nrj  + 1) are used to represent the 

start and finishing time of an order. Figure 1(b) displays the order routing network of an example 

order for which the routing is limited to production steps 1, 2 and 4. In order to process all operations 

of the order, the algorithm must select a single path from this network consisting of a sequence of 

machines. The production steps of a coil of steel consist of casting, hot rolling, pickling, and cold 

rolling. In order to give specific properties to the coil, extra operations such as annealing, skin passing, 

galvanizing, coating, recoiling or cutting can be performed. Each production step has many typical 

production constraints and solving a steel shop scheduling problem involves handling a large number 

of complicated chemistry-, geometrical- and scheduling rules. 

 

2.2 Problem constraints 
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In this section, we discuss the four different types of technical restrictions (capacity, assignment, 

precedence and setup constraints) that the steel company incorporates in its production schedule. 

 

Capacity constraints: Each machine j has a limited capacity cjk expressed in minutes per day, which 

may not be exceeded by all assigned orders on that machine at day k . In order to avoid that this 

constraint leads to a structural under-use of the available machine capacity, we add the unused 

capacity ∆cjk-1 of the previous day to the capacity cjk. However, the capacity shift ∆cjk-1 is limited to a 

threshold value τ such that a temporal shortage of eligible orders at day k - 1 does not create unrealistic 

capacity at day k . The capacity constraints can be formulated as follows: 

1
1

−
=

∆+≤∑ jkjk

nri

i
ijkij ccxpt   j = 1, …, nrj  and k = 1, …, nrk     [1] 

with  











−∆+=∆ ∑

=
− ijk

nri

i
ijjkjkjk xptccc

1
1,min τ        [2] 

In our production scheduling algorithm, we set τ  equal to 10 minutes. 

 

Assignment constraints: In order to process all operations of an order, the algorithm must select a 

unique path from the order routing network consisting of a sequence of machines. Therefore, each 

operation of order i needs to be assigned to one machine j per production step q ∈ Q
iO , as follows:   

∑ ∑
∈ =

=
JQ
qSj

nrk

k
ijkx

1

1    i = 1, …, nri and ∀q ∈ Q
iO       [3] 

 

Precedence constraints: The precedence relations between operations of an order i are shown by the 

order routing network and define the relations between all machines j1 ∈ JQ
qS

1
 and j2 ∈ JQ

qS
2

 of two 

sub-sequent production steps q1 ∈ Q
iO  and q2 ∈ Q

iO  with a minimal time interval equal to the 

duration
21 jijd . Hence, for each couple (q1, q2) ∈ Q

iO  of two subsequent production steps in the routing 

of an order i, the algorithm incorporates the precedence relations as follows:  

( ) ∑∑
==

≤+
nrk

k
kijjij

nrk

k
kij kxdkx

11
2211

  i = 1, …, nri, j1 ∈ JQ
qS

1
 and j2 ∈ JQ

qS
2

    [4] 

 

Setup constraints: Our production scheduler assigns orders to machines on a daily basis and does not 

determine the exact sequence of the individual orders. The setup constraints take sequence-dependent 

setup costs or transition costs into account by imposing campaigns. Orders with similar characteristics 

will be grouped in production campaigns, which is a production run with specific start and end times 
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in which coils of a particular type are processed continuously on a process line (Okano et al., 2004). 

As an example, it is beneficial to start a campaign of thin coils at the cold rolling mill when new 

rollers are installed, since the thicker coils can be rolled when rollers start to wear out. In our problem 

formulation, we cluster orders with low mutual setup costs for a particular machine and ensure that 

only order i of this campaign can be scheduled on machine j on day k  and prevents the assignment of 

all other orders i’, as follows:  

0
'

' =∑
∀i

jkix            [5] 

 

2.3 Problem objective function 

 

Previous research studies reveal that the multiple objectives that are used in the steel making industry 

are often very company-specific. Lee et al. (1996) focus on full capacity use to make the expensive 

machinery pay, raised the issue of allocating orders efficiently among parallel machines and suggested 

to group all orders for coils with similar processing properties in order to reduce setup costs. Okano et 

al. (2004) take a customer satisfaction point of view by minimising the lateness of the orders. 

Moreover, they consider various technical constraints by production campaigns. Wiers (2002) focuses 

on stock quantity reduction by means of lead time minimisation. Our production scheduler optimises a 

multiple objective function by minimising the total cost TC as a sum of five different cost functions: 

assignment cost CA, lateness cost CL, earliness cost CE, utilisation cost CU and production flow cost CF, 

i.e. FUELA CCCCCTC ++++= . 

 

Assignment cost: The total assignment cost is an immediate result of the selection of paths in the 

order routing networks. An assignment cost acijj’ is charged for each arc (j, j’) of the selected path of 

an order i, as follows: 

∑∑ ∑ ∑∑
= = += +==

=
nri

i

nrj

j

nrj

jj

nrk

kk
kij

nrk

k
ijkijj

A xxac
1 1 1' 1'

''
1

'C         [6] 

 

Lateness cost: The lateness cost penalises the production orders that finish later than the pre-

negotiated due date ti, and equals the unit lateness cost li times the number of days order i is late (or 

zero, if the order finishes earlier than ti). The algorithm determines the finishing day k of order i as the 

assignment of the order on the dummy end machine nrj  + 1, and hence the lateness cost can be 

calculated as follows: 

∑ ∑
= =

+ −=
nri

i
i

nrk

k
knrjii

L tkxl
1 1

 1 ),0max(C         [7] 
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Earliness cost: The earliness cost incorporates the lead-time and stock level minimisation and states 

that orders should be started no earlier than necessary to finish within the pre-negotiated due date ti. 

Therefore, the algorithm calculated the latest possible starting time LSTi0 by means of simple 

backward calculations, starting from the end dummy machine nrj + 1. The earliness cost is equal to the 

unit earliness cost ei times the number of days the order i starts earlier than its LSTi0 (or zero, if the 

order starts after its LSTi0). 

 

∑ ∑
= =

−=
nri

i

nrk

k
kiii

E kxLSTe
1 1

00 ),0max(C         [8] 

 

Utilisation cost: The utilisation cost penalises each time unit (minute) a machine is idle. Hence, the 

algorithm measures the deviation between the daily machine capacity 1−∆+ jkjk cc  and the capacity 

use ∑
=

nri

i
ijkij xp

1

 of the assigned orders, such that the total utilisation cost can be calculated as follows: 

∑∑ ∑
= = =

− 







−∆+=

nrj

j

nrk

k

nri

i
ijkijjkjkj

U xpccuC
1 1 1

1        [9] 

 

Production flow cost: The production of steel requires primary resources (i.e. machines) as well as 

secondary resources, such as colourings or chemical additives. An efficient stock management of these 

secondary resources leads to substantial cost reductions. Hence, the steel company clusters orders that 

use the same secondary resources at particular production steps in order groups or production flows. 

This allows the determination of a pre-specified flow quantity f lnm for order group l on machine group 

n during week m at the MPS level. Our production scheduler takes these flow constraints into account 

by penalizing deviations (either below ( −
lnb ) or above ( +

lnb )) between the scheduled order volumes and 

the pre-specified flow volumes. Thanks to these production flow quantities, the steel company can 

order the corresponding secondary resources on a just in time basis, avoiding excessive safety stocks. 

The production flow cost can be modelled as follows: 

 

∑∑∑
= = =

+

−







<∆∆−

≥∆∆
=

nrl

l

nrn

n

nrm

m lnmlnlnm

lnmlnlnmF

fbf

fbf
C

1 1 1 0 if 

0 if 
        [10] 

 

where nrl has been previously defined as the number of production flows and f lnm the pre-specified 

flow quantity (in tons) for order group l on machine group n during week m. Note that we consider, 

without loss of generality, weekly buckets to describe the pre-specified production flow volumes. The 
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flow deviation ∆Flnm for flow l at machine group n during week m can be calculated as 














−∆+=∆ ∑ ∑ ∑

∈ ∈ ∈O
l

JN
n mFi Sj Wk

ijki-lnmlnmlnm xvfff 1        [11] 

 

with Wm the set of days belonging to week m. 

 

3 Solution approach 

 

In this section, we describe our solution algorithm to solve the production scheduling problem under 

study. Our solution approach consists of two steps, taking the various constraints and objectives into 

account, as follows: 

 

Step 1. Machine assignment problem: each order is assigned to one machine for each production step 

of its routing (assignment constraint), resulting in the total assignment cost CA. 

Step 2. Scheduling problem: all operations of each order need to be scheduled on a particular day 

(given the assigned machines of step 1), taking the three remaining constraints (capacity constraints, 

precedence constraints, setup constraints) and the multiple objectives (lateness costs, earliness costs, 

utilisation costs and flow costs) into account. 
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Figure 2. Our solution approach 

 

Figure 2 displays a fictive example with two orders. In step 1, each order is assigned to a specific 

machine on its routing (path 3 – 6 – 10 for order 1 and path 2 – 8 – 10 for order 2). These assigned 

machine paths will be used as an input to solve the scheduling problem of step 2. In figure 2, both 

orders start on day 2 and have been scheduled as soon as possible. In section 3.1, we discuss the 

scheduling problem (step 2) in detail. Section 3.2 elaborates on the machine assignment problem (step 

1).  

 

3.1 Scheduling problem 

 

In order to schedule all orders in time, the algorithm solves a knapsack problem for each machine and 

for each day of the scheduling horizon. Hence, our schedule generation scheme (SGS) iterates over all 

machines and all days, and can be shown in pseudo-code, as follows: 

 

  For k :=1 to nrk  

   For j:=1 to nrj  

    Knapsack Problem (j,k) 
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The knapsack problem determines for each machine and each day the set of eligible orders E
jkO  that 

are potential candidates to enter the knapsack (i.e. scheduled on machine j during day k). An order i is 

eligible on machine j on day k  if the following constraints are satisfied: 

 

• Assignment constraints: an order can only be scheduled on a machine determined by the 

machine assignment problem of section 3.2, 

• Precedence constraints: an order can only be scheduled if the previous operation of that order 

has been scheduled earlier, taking the intermediate duration into account, 

• Setup constraints: an order can only be scheduled within the production campaign restrictions. 

 

Hence, the knapsack problem boils down to the selection of orders to be scheduled on machine j of 

day k , satisfying the capacity constraints and optimizing the various costs factors of section 2.2. 

 

 max ∑
∈

+++=
E
jkOi

F
ijk

U
ijk

E
ijk

L
ijk CRCRCRCRTCR       [12] 

 subject to 

 ∑
∈

−∆+≤
E
jkOi

jkjkijkij ccxpt 1          [13] 

 

The objective function maximises the total cost reduction TCR when assigning order i to machine j on 

day k . Since the cost of scheduling that order depends on the schedule of all other orders, we need to 

estimate the total cost reduction TCR when assigning order i to machine j on day k , denoted by L
ijkCR  

(estimated lateness cost reduction), E
ijkCR  (estimated earliness cost reduction), U

ijkCR  (estimated 

utilisation cost reduction) and F
ijkCR  (estimated production flow cost reduction). The determination of 

these estimates will be discussed in the remainder of this section. The constraint of equation [13] is 

equal to the capacity constraint of machine j on day k  of equation [1]. The knapsack problem is proven 

to be an NP-complete problem (Hirschberg and Wong, 1976).  

 

Estimated lateness cost reduction: The lateness cost depends on the due date of order i and can only 

be determined when the last operation of order i has been scheduled. Hence, an estimate for the 

lateness cost reduction L
ijkCR  of assigning order i to machine j on day k  is equal to the extra lateness 

cost we would obtain when postponing it to day k  + 1. Hence, we need to rely on an estimate of the 

probability ijkP  as the chance that an order i will increase the lateness by one day if the order is not 



13 

scheduled on day k . Consequently, the estimated lateness cost reduction is equal to iijk
L
ijk lPCR =  and is 

displayed in figure 3. 
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Figure 3. An estimate for order lateness 

 

The probability ijkP  is assumed to be 100% when the scheduling day k  is larger then or equal to the 

latest start time LSTij. This LSTij can be easily determined by means of straightforward backward 

calculations starting from the order due date ti. Moreover, we assume that this probability is a function 

of the remaining operations (denoted as the remaining production steps rps) of the order and a slack-

per-operation parameter a. Therefore, we define a linear function such that the probability increases 

linearly from 0% to 100% between LSTij – a*rps = k = LSTij . Outside the interval [LSTij – a*rps, 

LSTij], the probability equals 0% (k  = LSTij – a*rps) or 100% (k  ≥ LSTij). In our production scheduling 

algorithm, we set a equal to 1. 

 

Estimated earliness cost reduction: The earliness cost depends on the start of the first operation of 

order i and is measured as the deviation between the start of the first operation and the latest start time 

LSTi0 of this operation. Hence, the estimated earliness cost reduction can be calculated as follows: 

 




−

>≥
=

otherwise,
0iforif0 0

i

iE
ijk e

jLSTk
CR         [14] 

 

Estimated utilisation cost reduction: Each order i that enters the knapsack needs to be produced on 

machine j on day k , and hence, increases the utilisation by ptij minutes (and reduces the utilisation cost 

by uj per minute). Hence, the estimated utilisation cost reduction can be calculated as follows:  

 

ijj
U
ijk ptuCR =            [15] 

 



14 

Estimated production flow cost reduction: Each order i of production flow l (i ∈ O
lF ) that enters 

the knapsack to be scheduled at machine j on day k  will affect the production flow deviation lnmf∆  

(see equation [11]) of machine group n (with j ∈ JN
nS ) during the week m (k ∈ Wm). 

 

We define for each order i a density measure 
ij

iln
U
ijk

E
ijk

L
ijk

i pt

vbCRCRCR −+++
=δ  which measures the 

total estimated cost reduction per time unit (in minutes) if an order i enters the knapsack at machine j 

on day k . The last term states that the entrance of an eligible order i reduces the production flow cost 

by ilnvb −  and hence, assumes that the entrance of eligible order i results in a reduction of the flow 

deviation (there is a flow ‘under-production’) (note that the knapsack problem strives for a maximal 

knapsack density and hence, priority will be given to orders with a high value for the density 

measure). However, some orders can enter the knapsack resulting in an increase of flow deviation (in 

case of a flow ‘over-production’) and hence, an estimate for the production flow deviations needs to be 

calculated.  

 

We calculate an estimate of the flow deviation equations [11] for each order i (denoted by iEF∆ ) 

under the assumption that  

- The orders i’ of the same production flow l (i.e. i’ ∈ O
lF ) on machine j’ that have been 

scheduled by the algorithm on previous days k’ < k of the same week are already included.   

- All eligible orders i” of the same production flow l (i.e. i and i” ∈ O
lF ) with a higher or equal 

density value of order i ( ii δδ ≥" ) will be scheduled (i.e. entering the knapsack) prior to 

scheduling order i, as  

 

∑∑ ∑ ∑
≥

∈∈ ∈
<
∈

−−∆+=∆

ii

O
l

O
l

JN
n m Fi

i
Fi Sj

kk
Wk

kjii-lnmlnmi vxvffEF

δδ "

"
"

' '
'
'

''''1        [16]

   

 

with (a) the pre-specified production flow volumes, (b) the production volume of all scheduled orders 

i’ and (c) the production volume of all orders i” that will probably be scheduled prior to scheduling 

order i plus the production volume of order i. 

 

The value of iEF∆  reveals whether or not scheduling order i on machine j on day k  will lead to 

overproduction of production flow l. If iEF∆  = 0, then scheduling order i will probably reduce the 

(a)       (b)                    (c)  
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underproduction of flow l. If iEF∆  = -vi, then scheduling order i will probably increase the 

overproduction of l. If -vi < iEF∆  < 0, then scheduling order i will probably change the 

underproduction of l to an overproduction. Hence, we rely on this flow deviation estimate to determine 

the production flow cost reduction F
ijkCR  as follows: 










∆+∆+

−=
+−

+

−

ilniiln

iln

iln
F
ijk

EFbEFvb

vb

vb

CR

)( 0- if
 if

0 if

<∆≤
−≤∆

≥∆

ii

ii

i

EFv
vEF

EF

      [17] 

 

Figure 4 illustrates the production flow reduction estimate based on an example project of our 

production scheduler with 9 eligible orders on the third day of a particular week with 3 pre-specified 

production flows for which OF1  = {1, 6, 8}, OF2  = {2, 3, 7} and OF3  = {4, 5, 9}. The order volumes 

and density matrix of the orders are assumed to equal to (8, 7, 11, 12, 9, 9, 6, 13, 8) and (1.10, 0.93, 

0.90, 0.85, 0.80, 0.76, 0.67, 0.63, 0.57), respectively.  
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Figure 4. A fictive example to illustrate the calculation of the production flow cost reduction 

 

The black areas represent the production volume of all scheduled orders i’ on previous days of the 

week for each flow. The density measure serves as a priority estimate for each order to be selected in 

the knapsack (see figure 4), as follows: 
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• Flow 1: 1 – 6 – 8: the entrance of all these orders leads to a decrease of the production flow 

deviation, and hence, the estimate of the flow deviation iEF∆  will be zero or positive.  

• Flow 2: 2 – 3 – 7: the entrance of order 2 leads to a decrease of the production flow deviation 

( iEF∆  ≥ 0). The entrance of order 3 will change the underproduction of flow 2 to an 

overproduction (-vi < iEF∆  < 0) while the entrance of order 7 will increase the production 

flow deviation iEF∆  = -vi. 

• Flow 3: 4 – 5 – 9:  the entrance of all these orders leads to an increase of the production flow 

deviation, and hence, all estimates iEF∆  = -vi. 

The above estimates of the flow deviation equations iEF∆  will be used to calculate the F
ijkCR  values 

(32, 14, -42, 120, -90, 36, -36, 52, -80) which will be used in the objective function of the knapsack 

problem. 

 

3.2 Machine assignment problem 

 

The basic machine assignment problem randomly selects for each order a single path from the order 

routing network consisting of a sequence of machines. However, the algorithm is able to control the 

machine assignment process by estimating cost factors in three various ways, as follows: 

 

Greedy assignment (based on assignment cost) (GA(A)): Each order will be assigned to the path 

with the lowest assignment cost using a shortest path algorithm of Dijkstra (1959). 

 

Greedy assignment (based on assignment, utilisation and production flow cost) (GA(AUF)): The 

orders will be assigned, one after another, to the path with the lowest total cost using the shortest path 

algorithm of Dijkstra (1959). The total cost is equal to the assignment cost (similar to the GA(A) 

approach) plus a penalty estimate for the utilisation and production flow cost. The penalty costs of 

each arc (j, j’) are calculated based on the assignments of all previously assigned orders. To obtain 

utilisation and production flow estimations, we assume that these orders have been scheduled at their 

latest start time LSTij. 

- The utilisation penalty cost for arc (j, j’) of order i is equal to uj when the cumulative available 

capacity of machine j before LSTij has been reserved already completely by the previously  

assigned orders, and equals zero otherwise. 

- The production flow penalty cost for arc (j, j’) of order i equals +
lnb  when the cumulative pre-

specified production flow quantities remaining has been reserved already completely by the 

previously assigned orders, and equals zero, otherwise. 
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Consequently, positive penalty factors for an arc (j, j’) give the shortest path algorithm an incentive to 

select another arc of another path in the order routing network for order i. 

 

Local search assignment (LSA): The local search procedure embeds the SGS of section 3.1 in a local 

search procedure in order to find high quality schedules. The procedure starts with an initial schedule, 

constructed by the GA(A) approach and the SGS procedure, and searches for improvements by 

iteratively changing the machine assignments of a single order i. The pseudo-code of the local search 

procedure can be displayed as follows: 

 

Procedure  LSA() 

 Construct initial schedule  

 For k  = 1 to nrk 

  For i = 1 to nri 

   For q = 1 to nrq 

    For j1 = first machine to last machine of JQ
qS  

     If kijx
1

= 1 

      For j2 = first machine to last machine of JQ
qS  

       change assignment of order i from j1 to j2 

       If “check constraint feasibility” then ∆costs = “phase 1 cost estimate” 

        If ∆costs < 0 then costs = SGS() 

         If costs < best found costs then replace best found schedule  

         Else change assignment of i again from j2 to j1. 

 

The local search procedure iteratively searches for each day k whether a re-assignment of an order 

would lead to improvements. Therefore, the algorithm considers all possible re-assignments of an 

order from machine j1 to machine j2 within a production step q, and checks the resulting constraint 

feasibility and the resulting cost changes, as follows:  

- Check constraint feasibility : this sub-routine checks whether all constraints are satisfied when re-

assigning order i from machine j1 to machine j2 of the same production step q. 

- New cost estimation: The machine assignment change will lead to a new cost, that is estimated in 

two phases.  

o Phase 1. quick and rough estimate: this cost estimate is a quick and rough estimate to 

evaluate whether the order re-assignment is a valuable alternative that needs further 

detailed analysis. The “phase 1 cost estimate” is equal to the change in the assignment 

cost plus the new utilisation and flow cost. For the latter two, the algorithm simply 

calculates the cost changes by ignoring the cost effect on the rest of the schedule. If the 
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rough estimate shows a cost decrease, the algorithm calculates the more detailed cost 

estimate in phase 2 to decide whether the re-assignment will be executed. 

o Phase 2. estimate cost by SGS (only if phase 1 gives an indication that a re-assignment 

would be beneficial): The schedule generation scheme schedules the order on the new 

machine j2 and calculates the resulting cost as described in section 3.1. When the 

resulting schedule cost is lower than the current schedule cost, the new schedule replaces 

the previous one and the algorithm continues its search. 

 

Ideally, this process continues until all days have been considered. In order to limit the computational 

effort, the algorithm will be truncated after 100 generated schedules. 

 

4 Experimental results  

 

In this section, we report detailed computational results of different versions of our solution procedure. 

All procedures have been programmed in Visual C++ 6.0 and tested on an Acer Travelmate 634LC 

with a Pentium IV 1.8 GHz processor. We rely on a self-generated test set of 50 problem instances 

explained in section 4.1. Section 4.2 reports detailed computational results for the various machine 

assignment procedures and the schedule generation scheme. In section 4.3, we illustrate the flexibility 

of the schedule generation scheme and the use of the various penalty costs that can be modified to 

create a schedule that fulfils company-specific objectives. 

 

4.1 Generation of problem instances 

 

In order to generate problem instances, we have developed an automatic problem generator taking the 

various problem parameters as pre-specified input values. We vary the number of orders (nri) from 

1,000; 2,000; 4,000; 8,000 to 16,000 and generate 10 problem instances per setting, resulting in 50 

problem instances in total. The number of orders as well as all other parameters have been set based on 

the investigation of real-life data available at the company. All other parameters are fixed as follows: 

 

Steel-shop characteristics: nrq = 8, nrn = 12, nrj = 20, NQ
qS  has been created by random assignments 

of machine groups for each production step q and JN
nS  has been constructed by random assignments 

of machines for each machine group n.  

Scheduling horizon: nrk = 21 days and nrm = 3 weeks 

Order characteristics: vi = rand[20, 40] (in tons), ti = rand[3, 2*nrk] and Q
iO  has been created by 

random assignments of production steps to each order i (minimum 3 production steps per order). We 

distinguished nrl = 10 order groups or production flows and also for the assignment of orders to order 
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groups we relied on randomness. In order to generate realistic production flow quantities, the values 

for flnm (in tons) have been generated based on a simulated schedule for each problem instance. 

Order routing network:  

Durations : ptij = rand[0.9 vi, 1.1 vi] (in minutes), djj’ = rand[0, 7] (in days). Similar to the flow 

quantities, the daily machine capacities cjk (in minutes) have been generated based on a simulated 

schedule for each problem instance. 

Costs: aijj’ = rand[0, 99] (€), ei = 4 vi (€ per day), li = rand[0, 3] vi (€ per day), uj = 8 (€) and −
lnb  = +

lnb  

= 8 (€). 

 
4.2 Computational performance of our solution approach 

 

Table 1 displays the performance of the schedule generation scheme (SGS) by solving the knapsack 

problem with an exact and a heuristic approach. More precisely, the exact branch-and-bound 

procedure of Kolesar (1967) is compared with a straightforward greedy search heuristic in which 

eligible orders are chosen in decreasing order of their density measure. The row with label “Avg. 

CPU” displays the average CPU time in seconds and the row with label “Avg. TC” displays the 

average total cost. The total costs consist of the individual cost factors of section 2.3 (Avg. CA, Avg. 

CL, Avg. CE and Avg. CF), as displayed in the remaining rows. Note that the machine assignment 

problem has been solved by randomly assigning each order to one machine for each production step of 

its routing. This machine assignment problem has been repeated ten times. 

 

nri
exact heuristic exact heuristic exact heuristic exact heuristic exact heuristic

Avg. CPU 0.04s 0.04s 0.08s 0.07s 0.18s 0.16s 0.47s 0.38s 1.70s 0.84s
Avg. TC 448,739 453,800 802,156 809,077 1,510,731 1,519,521 2,928,450 2,937,001 5,721,389 5,730,693
Avg. C A 126,557 126,557 253,846 253,846 506,713 506,713 1,009,435 1,009,435 2,024,264 2,024,264
Avg. C L 23,127 22,829 30,735 30,751 53,344 53,897 90,705 90,806 166,188 166,402
Avg. C E 29,339 28,828 64,943 64,218 132,080 131,066 277,023 275,966 565,306 564,322
Avg. C U 129,451 135,275 212,094 219,668 374,385 383,357 701,847 711,758 1,368,577 1,379,292
Avg. C F

140,264 140,309 240,536 240,593 444,208 444,487 849,440 849,035 1,597,052 1,596,411

2000 4000 8000 160001000

 
Table 1. Comparison between exact and heuristic knapsack procedure 

 

The table reveals that both the exact and the heuristic solution procedures for the knapsack problems 

are able to provide solutions within a reasonable time limit. The heuristic approach is able to generate 

high quality knapsack solutions (see the small Avg. TC deviations between the exact and heuristic 

approach) but the extra CPU time the exact approach needs is relatively small. Hence, in the remainder 

of this paper, we rely on the exact approach of Kolesar (1967) to solve the knapsack problems. 

 

Table 2 compares the performance of the various machine assignment procedures of section 3.2. The 

table clearly reveals that more sophisticated assignments such as the greedy assignment GA(AUF) and 
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the local search assignment LSA result in larger CPU times. But the resulting schedule quality of those 

assignment strategies outperforms the simple GA(AC) and the random assignment. The results can be 

summarised as follows: 

LSA versus GA(AC): The LSA approach clearly outperforms the GA(AC) approach at the expense of 

a much larger CPU time. However, in relative terms, the improvement of LSA compared to the 

GA(AC) decreases from 8.48% for 1,000 orders to only 0.73% for 16,000 orders. Note that the LSA 

approach always has a higher assignment cost (the GA(AC) only takes the assignment cost into 

account) but a lower average total cost. 

GA(AUF) versus GA(AC): The GA(AUF) approach clearly outperforms the GA(AC) approach, with 

a relative limited increase in CPU time. The relative improvement increases from 0.62% (1,000 

orders) to 2.09% (16,000 orders). Improvements are most remarkable in the earliness cost, utilisation 

costs and production flow cost. 

LSA versus GA(AUF): The LSA approach outperforms the GA(AUF) approach for problem 

instances with up to 4,000 orders, but performs worse for problem instances with 8,000 and 16,000 

orders. Consequently, due to the heavy CPU-time burden, the LSA approach is not able to find high 

quality solutions (within the 100 generated schedules) that outperform the simple yet time efficient 

GA(AUF) approach. 

 

nri 1000 2000 4000 8000 16000

Random 0.04s 0.08s 0.18s 0.47s 1.70s
GA(AC) 0.07s 0.13s 0.30s 0.92s 2.46s
LSA 5.54s 9.86s 25.39s 84.63s 229.38s
GA(UAF) 0.17s 0.32s 0.88s 2.54s 6.60s

Random 448,739 802,156 1,510,731 2,928,450 5,721,389
GA(AC) 362,651 645,390 1,209,376 2,358,950 4,604,384

LSA 331,868 605,474 1,174,837 2,330,723 4,570,717

GA(UAF) 360,407 638,359 1,192,511 2,322,494 4,507,826

Random 126,557 253,846 506,713 1,009,435 2,024,264
GA(AC) 43,110 86,780 173,116 345,530 691,843
LSA 45,013 88,945 174,456 346,356 692,463
GA(UAF) 53,739 103,660 205,559 410,145 820,593
Random 23,127 30,735 53,344 90,705 166,188
GA(AC) 17,837 25,501 46,462 82,581 155,232
LSA 15,440 22,276 43,245 81,326 152,738
GA(UAF) 24,974 34,900 61,035 112,022 209,644
Random 29,339 64,943 132,080 277,023 565,306
GA(AC) 27,164 60,428 119,746 255,733 514,755
LSA 27,211 59,645 120,009 255,524 514,987
GA(UAF) 23,192 49,362 99,788 198,063 399,730
Random 129,451 212,094 374,385 701,847 1,368,577
GA(AC) 118,611 193,099 340,400 634,104 1,248,311
LSA 113,521 189,348 337,780 634,050 1,249,648
GA(UAF) 105,974 171,961 301,392 568,778 1,110,039
Random 140,264 240,536 444,208 849,440 1,597,052
GA(AC) 155,930 279,582 529,652 1,041,002 1,994,244
LSA 130,684 245,260 499,346 1,013,468 1,960,880
GA(UAF) 152,527 278,477 525,736 1,033,487 1,967,819

Avg. C E

Avg. C U

Avg. C F

Avg. CPU

Avg. TC

Avg. C A

Avg. C L
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Table 2. Comparison of different machine assignment approaches 

 

4.3 Flexibility of our solution approach 

 

In this section, we analyse the impact of all cost factors on the schedule quality and test the ability to 

modify the cost input parameters to obtain production schedules satisfying company specific 

objectives. In our experiment, we carefully change the cost input factors ei, li, uj, −
lnb  and +

lnb  and test 

their influence on the total quality of the schedule. More precisely, we multiply the original cost factor 

values (see section 4.1) by a factor 0.25, 0.5, 1, 2, 4 or 8 respectively, holding all other cost factors 

constant, and measure the resulting schedule quality by the following four performance measures:  

 

Average lateness: measure the average lateness 
L

C  of all orders over the complete scheduling 

horizon (in days).  

Average earliness: measures the average earliness 
E

C  of all orders over the complete scheduling 

horizon (in days). 

Average utilisation: measures the average machine utilisation/capacity ratio as 

∑∑∑
= = = −∆+
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Average production flow: measures the ratio of all production flow deviations and all pre-specified 

flow quantities as 
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Note that this experiment has also been set up to validate the quality of our cost reduction 

estimates L
ijkCR , E

ijkCR , U
ijkCR  and F

ijkCR , since these estimates will influence the objective function of 

the knapsack problem and hence, the quality of the constructed schedule. Figure 5 displays the results 

for the problem instances with 8,000 orders and 10 different random machine assignments. All other 

problem instances or machine assignment procedures reveal similar results.  
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Figure 5. Influence of the input cost parameters on the performance measures 

 

Figure 5 clearly shows that the schedule quality, expressed in terms of the four performance measures, 

clearly depends on the input cost factors. All figures show an improved performance for the 

corresponding input factor (e.g. figure 5(a) shows an improved average lateness for increasing values 

for the unit lateness cost li, figure 5(b) shows an improved average earliness for increasing value for 

the unit earliness cost ei, etc…). This result illustrates the quality of our cost reduction estimates (see 

section 3.1) and the ability of the users of the scheduling algorithm to influence and define the 

schedule quality (the importance of each part of the multiple objective) by modifying the input cost 

factors. Note that the four cost factors of the multiple objective function not always show a trade-off. 

Figures 5(a) and 5(c) show that increasing importance of order lateness costs has a beneficial effect on 

the order lateness as well as on the average machine utilisation, and vice versa. Hence, both objectives 

are correlated as they stimulate earliest start schedules. 

 

5 Conclusions  
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In this paper, we presented a finite capacity production scheduling algorithm for an integrated steel 

company located in Belgium. The algorithm takes various case-specific constraints into account and 

aims at the optimisation of multiple objectives.  

 

The algorithm consists of two solution steps. A machine assignment step assigns each order to a 

unique machine for each production step. We have tested three different machine assignment methods, 

each taking various cost factors into account. The second step constructs a schedule where each 

operation of all orders is assigned to a particular day, given the assigned machines of the previous 

step. To determine which orders should be selected for scheduling at each machine during each day, 

we construct knapsack problems that take capacity constraints, precedence constraints and set-up 

constraints as well as the multiple objectives (lateness costs, earliness costs, utilisation costs and flow 

costs) into account. 

 

We have tested our algorithm on a randomly generated dataset and have shown that our algorithm is 

flexible towards the user in terms of input cost parameters. Moreover, we show that a local search 

machine assignment (step 1) combined with an optimal knapsack solver (step 2) leads to the best 

performing results. 
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