
1

FACULTEIT ECONOMIE
EN BEDRIJFSKUNDE

HOVENIERSBERG 24

B-9000 GENT
Tel. : 32 - (0)9 – 264.34.61
Fax. : 32 - (0)9 – 264.35.92

WORKING PAPER

A scatter search procedure for maximizing the net present
value of a resource-constrained project with fixed activity cash

flows

Mario Vanhoucke 1,2

October 2006

2006/417

1 Faculty of Economics and Business Administration, Ghent University, Gent, Belgium
2 Operations & Technology Management Centre, Vlerick Leuven Gent Management School, Gent, Belgium
mario.vanhoucke@ugent.be

D/2006/7012/3X

2

ABSTRACT

In this paper, we present a meta-heuristic algorithm for the resource-constrained project scheduling
problem with discounted cash flows. We assume fixed payments associated with the execution of project
activities and develop a heuristic optimization procedure to maximize the net present value of a project
subject to the precedence and renewable resource constraints.

We investigate the use of a bi-directional generation scheme and a recursive forward/backward
improvement method from literature and embed them in a meta-heuristic scatter search framework. We
generate a large dataset of project instances under a controlled design and report detailed computational
results. The solutions and project instances can be downloaded from a website in order to facilitate
comparison with future research attempts.

Keywords: Resource-constrained project scheduling; Net present value; Scatter search

1 Introduction and problem formulation

Project scheduling has been a research topic for many decades, resulting in a wide variety of optimization

procedures. The main focus on the project duration minimization has led to the development of various

exact and (meta-)heuristic procedures for resource-constrained project scheduling problems (RCPSP) under

a wide variety of assumptions. For an overview of resource-constrained project scheduling in general, we

refer to excellent overview papers of Brücker et al. (1999), Herroelen et al. (1998), Icmeli et al. (1993),

Kolisch and Padman (2001) and Özdamar and Ulusoy (1995). Less, but not little, attention has been spent

on the presence of financial aspects in project scheduling, leading to various optimization models where the

net present value of the project, rather than the project duration, is the major objective. This problem

formulation appears when a series of cash flows occur over time during project execution. The increasing

attention on net present value maximization has led to the development of financial model formulations

under various assumptions (positive and negative cash flows/time-dependent and –independent cash

flows/single-mode versus multi-mode formulations/etc.). Mika et al. (2005) give an extensive literature

overview of net present value maximization in project scheduling, and hence, it does not need to be

repeated here. Despite the growing financial attention in project scheduling, little effort has been made to

facilitate comparison between procedures as is the case in other domains (see e.g. the competitive nature of

research on the basic resource-constrained project scheduling problem (see e.g. Hartmann and Kolisch

(2000) and Kolisch and Hartmann (2006)).

In this paper, the single-mode resource-constrained project scheduling problem with discounted cash flows

(RCPSPDC) is studied. This problem formulation is an extension of the basic RCPSP to the presence of

activity cash flows, and assumes renewable resources with a constant availability and no activity pre-

emption. We assume that all activity cash flows occur at predefined time points during execution of the

corresponding activity, and hence, exclude more general problem formulations with, for example, progress

3

payments, time-dependent cash flows or payments associated with events. We present a scatter search

algorithm and present a large set of data instances under a controlled design. Computational results are

reported and detailed information is uploaded on a website accessible by other researchers.

A project is represented by an activity-on-the-node network G = (N, A), where the nodes in the set N

represent the project activities and the arcs of set A the finish-start precedence relations with a time-lag of

zero. The activities are numbered from a dummy start node 0 to a dummy end node n + 1. Each activity i

has a duration di and its performance involves a series of cash flow payments and receipts throughout this

duration. When cfit denotes the pre-specified cash flow of activity i in period t of its execution, a terminal

value ci upon completion can be calculated by compounding cfit to the end of the activity as

� =
−= i i

d

i

td
iti ecfc

1
)(α with α the discount rate. If the non-negative integer variable si represents the starting

time activity i, its discounted value at the beginning of the project is)(ii ds
iec +−α . Each activity requires rik

units of renewable resource k which has a constant availability of ak units. Each project must be finished

before a pre-specified project deadline δn+1. The problem can be represented as m,1|cpm,δn,cj|npv following

the classification scheme of Herroelen et al. (1999) or as PS|prec|�
jCF

jC β following the classification

scheme of Brücker et al. (1999) and is known to be NP-hard (Blazewicz et al. (1983)). A conceptual

formulation for the RCPSPDC can be given as follows:

Maximize�
=

+−
n

i

ds
i

iiec
1

)(α [1]

Subject to

jii sds ≤+ Aji ∈∀),([2]

�
∈

≤
)(tSi

kik ar k = 1, …, K and t = 1, …, δn+1 [3]

11 ++ ≤ nns δ [4]

where S(t) denotes the set of activities in progress in period]t - 1, t].

Eq. [1] maximizes the net present value of the project. Eq. [2] takes the finish-start precedence relations

with a time-lag of zero into account. The renewable resource constraints are satisfied thanks to eq. [3]. Eq.

[4] imposes a hard pre-specified deadline to the project. Alternatively, we could have considered a problem

formulation without any pre-specified project deadline. However, in order to prevent that negative cash

flows are never executed, a huge lump sum payment (positive cash flow) would then be necessary. Our

solution approach does not exclude this alternative problem formulation.

4

The foundation for the current research paper has been laid by Selle and Zimmermann (2003) who have

developed a so-called bi-directional schedule generation scheme for large-scaled RCPSPDC instances with

generalized precedence constraints (problem m,1|gpr,δn,cj|npv or PS|temp|�
jCF

jC β). In our paper, we

rely on a slightly modified version of this bi-directional generation scheme (BDGS) extended with a

recursive forward/backward improvement method (FBIM) (Vanhoucke et al. (2001)) to increase the net

present value. We test various priority rules implemented in the bi-directional generation scheme and

develop a scatter search (SS) algorithm to solve the RCPSPDC. The outline of our paper is as follows. In

the next section, we briefly give an overview of various generation schemes to solve the RCPSPDC.

Furthermore, we discuss our specific implementation of the BDGS and its extension to the FBIM. We

illustrate the beneficial effect on a problem example. In section 3, we outline the building blocks of our

scatter search algorithm. In section 4, we discuss detailed computational results for the BDGS with and

without the FBIM and the SS algorithm. We end with conclusions and ideas for future research avenues in

section 5.

2 Schedule generation scheme

The resource-constrained project scheduling problem with discounted cash flows belongs to the class of

NP-hard problems, and hence, many heuristic solution procedures have been developed and described in

the literature. Many research papers, however, focus on the development of single-pass algorithms in which

activities are ranked by a priority vector determining the order of resource allocation during a schedule

generation process. Since these methods can only generate a single solution, they are often extended by

improvement methods and/or backward scheduling schemes.

In the literature, various variants on a single-pass forward algorithm have been proposed. Russell (1986)

relies on a single-pass forward algorithm and compares several heuristics using information from the

network flow model solution of Russell (1970). Padman and Smith-Daniels (1993) solve the RCPSPDC

with a single-pass forward algorithm and 8 greedy heuristics. Pinder and Marucheck (1996) also rely on a

single-pass forward algorithm using 17 different priority rules. Sepil and Ortac (1997) present an earliest

start schedule (ESS) generation scheme with three new and three existing priority rules for the RCPSPDC

with progress payments. Padman et al. (1997) present optimization-based heuristics and solve the

RCPSPDC with a single-pass greedy forward algorithm using 9 priority rules using information on

tardiness penalties, target schedule times, opportunity costs and cash flow weights. To that purpose, they

rely on revised dual prices obtained by iteratively optimizing the network flow formulation of Russell

(1970).

5

As mentioned before, other authors extend the single-pass algorithm with improvement techniques in order

to increase the net present value. Smith-Daniels and Aquilano (1987) initially solve an enhanced version of

the RCPSPDC (including material handling cost) with a single-pass forward step, followed by a right-shift

step based on a series of three priority rules. Baroum and Patterson (1996) extend their single-pass cash

flow weight-based procedure with a multi-pass shifting improvement algorithm. The cooperative, multi-

agent system presented by Zhu and Padman (1997) generates initial solutions based on single-pass

construction heuristics and improves these schedules by the method of iterative repair. These so-called

modification agents include pairwise swaps of adjacent activities, forward and backward shifts and positive

left insertion techniques.

Inspired by the basic principle of the net present value where positive cash flows should be scheduled early

and negative cash flows should be scheduled late, many authors rely on a combination of forward and

backward scheduling. Ulusoy and Özdamar (1995) propose an iterative forward/backward scheduling

algorithm based on the principle proposed by Li and Willis (1992) and simultaneously optimize the project

duration and the net present value. Özdamar and Ulusoy (1996) extend this iterative forward/backward

generation scheme with a local constraint based analysis which evaluates the resource and precedence

constraints in determining the necessary sequence of conflicting activities fighting for the same resources.

Likewise, Özdamar et al. (1998) use an iterative forward/backward scheduling algorithm while optimizing

a project’s net present value and tardiness. Kimms (2001) presents a four phased heuristic that consist of a

single-pass construction heuristic (phase 1) followed by three improvement phases. During the

improvement phases, the algorithm takes information contained in a schedule derived by langrangian

relaxation into account. Selle and Zimmermann (2003) have proposed a bi-directional generation scheme

which combines forward and backward scheduling in order to fully exploit the cash flow information.

During the recent decade, increasing computer power has led to the development of various multi-pass

algorithms, leading to resource-constrained project scheduling problem formulations under a wide variety

of cash flows assumptions (for an overview, see Mika et al. (2005)). In this paper, we present a multi-pass

scatter search heuristic (section 3) for the RCPSPDC under the fixed activity cash flow assumptions

described earlier, which relies on a bi-directional generation scheme (next sub-section) and a recursive

forward/backward improvement step (sub-section 2.2).

2.1 The bi-directional generation scheme

The bi-directional priority-rule based method of Selle and Zimmermann (2003) consists of a

simultaneously forward and backward approach and schedules at each iteration all eligible activities as

soon (forward) or as late (backward) as possible with the precedence and renewable resource constraints.

Hence, in each iteration an eligible activity is scheduled at its earliest or at its latest possible starting time

6

given the partial schedule, based on a priority value represented by a random key vector element. The

general idea is that an activity i is forward eligible when all its predecessors have been scheduled (denoted

by eligible activity i(f)) or backward eligible when all its successors have been scheduled (eligible activity

i(b)). Since the generation scheme aims at scheduling eligible activities with positive cash flows as soon as

possible and activities with negative cash flows as late as possible, the generation method considers the

three following cases:

• If cfi(f) ≥ 0 : schedule i(f) as soon as possible,

• If cfi(b) ≤ 0 : schedule i(b) as late as possible,

• If cfi(f) < 0 and cfi(b) > 0 : schedule i(f) as soon as possible when hi(f) ≤ hi(b) (defined hereunder) and

schedule i(b) as late as possible otherwise.

While the first two options are intuitively clear and directly contribute to the maximization of the net

present value, the last option is counterintuitive. The last option either schedules an activity with negative

cash flow as soon as possible or an activity with positive cash flow as late as possible, which is against the

general philosophy of maximizing the net present value. Therefore, Selle and Zimmermann (2003) aim at

minimizing the damage and calculate the hi(f) and hi(b) values as the financial loss arising when an activity is

not scheduled at its earliest start time (positive cash flow activity i(b)) or at its latest start time (negative

cash flow activity i(f)). To that purpose, they calculate the difference between the net present values when

scheduling activity i(f) at its latest possible starting time and scheduling it at its earliest starting time.

Similarly, they calculate the difference between the net present value when scheduling activity i(b) at its

earliest and latest possible start time. The activity with the lowest difference will be selected and scheduled

according to option 3.

The bi-directional schedule generation scheme does not guarantee the construction of a schedule which

ends within the pre-specified project deadline. Tight resource constraints and/or a low project deadline

often result in an infeasible schedule (Selle and Zimmermann (2003)). In order to overcome this

infeasibility problem, we test simple and straightforward extensions of the third option of the bi-directional

generation scheme by implementing various other intuitive heuristic selection methods. More precisely, the

third option is extended with two activity duration based, two resource based, two cash flows based and a

random selection method, as follows:

• Activity Duration (AD): Assign the activity durations di(f) and di(b) to hi(f) and hi(b), respectively.

• Cumulative Activity Duration (CAD): Assign the activity duration di(f) (di(b)) plus the durations of all

its unscheduled successors (predecessors) to the value hi(f) (value hi(b)). This heuristic in known in

literature as the greatest ranked positional weight heuristic.

7

• Resource Demand (RD): Assign the work content �
=

=
K

k
kfififi rdW

1
)()()(* and �

=

=
K

k
kbibibi rdW

1
)()()(*

to hi(f) and hi(b), respectively.

• Cumulative Resource Demand (CRD): Assign the activity work content Wi(f) (Wi(b)) plus the work

content of all its unscheduled successors (predecessors) to the value hi(f) (value hi(b)).

• Cash Flow (CF): Assign the cash flow values -cfi(f) and cfi(b) to hi(f) and hi(b), respectively. Note that this

is a simplified version of Selle and Zimmermann (2003) since it ignores the time value of the activity

cash flows and the time-span between their earliest and latest start time.

• Cumulative Cash Flow (CCF): Assign the cash flow values of activity i(f) (activity i(b)) plus the cash

flows of all its successors (predecessors) to the value hi(f) (value hi(b)). This measure has been used by

Baroum and Patterson (1996) under the name Cash Flow Weight in their single-pass cash flow weight-

based procedure extended by a multi-pass shifting improvement algorithm.

• Random (RAN): Randomly generate a value for hi(f) and hi(b) from the interval [0, 1]. This method

boils down to the random selection of either i(f) or i(b) to be scheduled as soon as possible or as late as

possible, respectively.

In the remainder of this paper, we distinguish between D-feasible (within the project deadline) and D-

infeasible (project duration larger than the deadline) schedules for which the D has been added to avoid

confusion with resource infeasibilities. Although our scatter search algorithm calculates net present values

for both D-feasible and D-infeasible solutions during its search process, it obviously only reports the net

present value of a D-feasible solution as the best found solution at the end of the search. In section 3.1, the

D-infeasibility problem is tackled by extending the subset generation method of the scatter search.

Moreover, D-feasible schedules can often be improved rather easily by shifting activities forwards or

backwards. Baroum and Patterson (1996), for example, rely on a multi-pass forward/backward shifting

algorithm which simply shifts activities with a positive (negative) cash flows to the project start (deadline)

within their available slack. This shifting procedure is also implemented as an improvement technique in

the generation scheme of Selle and Zimmermann (2003). Our improvement method to increase the net

present value of D-feasible schedules relies on a recursive search method, which is discussed in the next

sub-section.

2.2 The recursive forward/backward improvement method

Our improvement method is based on a recursive forward/backward method which is an extended version

of the recursive method of Vanhoucke et al. (2001). The original method is developed to maximize the net

present value of a resource-unconstrained project scheduling problem and aims at detecting sets of

8

activities that can be shifted to increase the total project net present value. The method has been hybridized

by principles and ideas from other research papers (such as Schwindt and Zimmermann (2001)) and has

been proven to be very efficient by Vanhoucke (2006). The extended recursive forward/backward

improvement method differs from the original recursive search method in two ways:

1. The recursive search takes the renewable resource constraints into account: The original recursive

search procedure of Vanhoucke et al. (2001) has been developed for maximizing the net present value

of a project without the presence of renewable resource constraints (the so-called max-npv problem).

The algorithm exploits the ideas of Grinold (1972) who stated that a solution for the max-npv problem

can be represented by a sub-part of the project network representing a tree. The algorithm builds an

earliest start schedule (with a corresponding tree) and aims at repetitively detecting sets of activities

within the tree with a total negative net present value. Hence, shifting these activities towards the project

deadline within the technological precedence relation results in an improved solution. This recursive

search has been used to calculate lower bounds on the RCPSPDC at each node of a branch-and-bound

algorithm of De Reyck and Herroelen (1998) and Vanhoucke et al. (2001). The forward/backward

recursive search of the current manuscript relies on a similar logic but also takes the limited renewable

resource availabilities into account. Both the construction of the initial tree and the shifts of sets of

activities need to take these renewable resource constraints into account, which is illustrated in section

2.3.

2. The recursive search alternates between a forward and backward step until no improvements can be

found: The original recursive search procedure of Vanhoucke et al. (2001) relies on a forward approach

which only allows shifts of sets of activities towards the project deadline. Hence, this approach requires

an initial start tree where all activities (both with positive and negative cash flows) are scheduled as

soon as possible. In our current manuscript, activity starting and finishing times are the result of the bi-

directional schedule generation scheme, and are not necessarily earliest start schedules nor latest start

schedules. Consequently, the modified recursive search of the current manuscript needs to be enhanced

by a backward step in which the algorithm searches for sets of activities with a total positive net present

value to shift towards the project start. The forward/backward recursive search algorithm of the current

manuscript alternates between a forward step and a backward step until no further improvement (shifts)

can be found.

Note that the recursive forward/backward improvement method can be applied using any generation

scheme and is therefore not restricted to the use in combination with the bi-directional generation scheme.

In the computational results section, we compare the bi-directional generation scheme with a forward and

backward generation scheme, with and without the forward/backward improvement method.

9

2.3 An illustrative example

In this section, we illustrate the different versions of the bi-directional generation scheme on a project

network example displayed in figure 1 with a pre-specified project duration of δn = 29, an interest rate α =

0.01 and a fixed resource availability (a1, a2, a3, a4) = (10, 10, 10, 10). We illustrate the various methods of

section 2.1 in the generation scheme (the bi-directional generation scheme BDGS) and the contribution of

the multi-pass forward/backward shifting algorithm (MPSA) of Baroum and Patterson (1996) and the

recursive forward/backward improvement method (FBIM) of section 2.2.

0,0,0,0

00

11

22

55

33

66

77

44 88

0,0 0,0,1,1

2,227

1,0,10,0

9,426

0,5,3,0

1,-263

5,1,0,0

1,-127 8,0,6,0

6,323

0,9,0,7

8,250

6,0,0,7

4,344

0,0,0,0

0,0

ii
ri1,ri2,ri3,ri4

di, cfi

Figure 1. An example project network

Figure 2 displays five different schedules obtained by using the procedures mentioned earlier (activities

with positive (negative) cash flows are painted in black (gray)). The schedules are the best schedules (with

the highest net present value) obtained by enumerating all possible random key vectors and transforming

them to a schedule using the bi-directional generation method under the different rules of section 2.1.

Schedule 5 has the highest net present value and is equal to the optimal schedule for the project network of

figure 1.

10

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Schedule 5: DC = 1020.69

Schedule 1: DC = 996.70

Schedule 2: DC = 1003.31

Schedule 3: DC = 1004.36

Schedule 4: DC = 1018.54

Figure 2. Five different schedules obtained by different procedures

Table 1 displays illustrative results. The BDGS column shows the results for the bi-directional generation

scheme of section 2.1 under the different priority rules. The table shows that none of the rules is able to

find the optimal solution, although the RAN approach results in the best solution. The multi-pass shifting

algorithm is able to improve schedule 1 by shifting activity 4 with a positive cash flows towards the project

start within its available slack, resulting in schedule 3. The recursive forward/backward improvement

method further optimizes schedule 3 and schedule 4 to the optimal schedule 5. Note that the AD and CF

approaches are not able to find the optimal solution, since schedule 2 can never be improved by shifting

(sets of) activities.

Table 1. The results for the BDGS and the contribution of MPSA and FBIM

BDGS: Bi-Directional Generation Scheme (section 2.1)
MPSA: Multi-Pass Shifting Algorithm (Baroum and Patterson (1996))
FBIM: Forward/Backward Improvement Method (section 2.2)

RAN

Schedule 1 Schedule 3 Schedule 5

Schedule 2
Schedule 4

Schedule 2
Schedule 4

Schedule 2
Schedule 5

CAD, RD
CRD, CCF

AD, CF

BDGS MPSA FBIM

11

Figure 3 illustrates the beneficial effect of the recursive forward/backward improvement method on

schedule 1 to obtain schedule 5. Figure 3 (a) shows the initial tree taking both the precedence and resource

relations of schedule 1 into account. A backward recursion search detects a first set of activities {4} with a

total positive net present value of 323*e-0.01*25. This set is shifted towards the project start within its

available slack, tacking both the precedence relations and resource constraints into account, resulting in the

modified tree of figure 3 (b). A second backward run detects and shifts a second set {3, 4} with a total

positive net present value of -127*e-0.01*16 + 323*e-0.01*22 = 150.99, resulting in schedule 4 (figure 3(c)). A

last backward search detects {5, 6, 7} to be shifted, resulting in the tree of figure 3 (d). The backward

search is followed by a forward search. Since no sets of activities with a negative net present value could be

found, the recursive algorithm stops and returns schedule 5.

0

1

2

5

3

6

7

4 8

f3 = 16f2 = 11

f1 = 2

f0 = 0

f5 = 25

f4 = 25

f7 = 24

f8 = 29

f6 = 29

00

11

22

55

33

66

77

44 88

f3 = 16f2 = 11

f1 = 2

f0 = 0

f5 = 25

f4 = 25

f7 = 24

f8 = 29

f6 = 29

0

1

2

5

3

6

7

4 8

f3 = 16f2 = 11

f1 = 2

f0 = 0

f5 = 25

f4 = 22

f7 = 24

f8 = 29

f6 = 29

00

11

22

55

33

66

77

44 88

f3 = 16f2 = 11

f1 = 2

f0 = 0

f5 = 25

f4 = 22

f7 = 24

f8 = 29

f6 = 29

0

1

2

5

3

6

7

4 8

f3 = 12f2 = 11

f1 = 2

f0 = 0

f5 = 25

f4 = 18

f7 = 24

f8 = 29

f6 = 29

00

11

22

55

33

66

77

44 88

f3 = 12f2 = 11

f1 = 2

f0 = 0

f5 = 25

f4 = 18

f7 = 24

f8 = 29

f6 = 29

0

1

2

5

3

6

7

4 8

f3 = 12f2 = 11

f1 = 2

f0 = 0

f5 = 21

f4 = 18

f7 = 20

f8 = 29

f6 = 25

00

11

22

55

33

66

77

44 88

f3 = 12f2 = 11

f1 = 2

f0 = 0

f5 = 21

f4 = 18

f7 = 20

f8 = 29

f6 = 25

Figure 3. The recursive forward/backward (backward part) search on schedule 1

(straight lines represent precedence relations and dotted lines represent resource relations)

Note that the MPSA is only able to transform schedule 1 of figure 3(a) to schedule 3 of figure 3(b) and then

terminates. The extra arc between the dummy end activity and the dummy start activity is necessary to

connect two sub-trees in order to construct one tree. In doing so, the recursive search can investigate all

project activities during its search, both for the forward step (starting from dummy start node 0) and the

backward step (starting from dummy end node 8).

3 Scatter search procedure

Scatter search is an evolutionary population-based method in which solutions are combined to yield better

solutions using convex or non-convex linear combinations. Interesting references which describe the basic

(a) Schedule 1 (b) Schedule 3

(c) Schedule 4 (d) Schedule 5

12

as well as more advanced features of the scatter search meta-heuristic have been presented in Glover

(1998), Glover and Laguna (2000) and Marti et al. (2006). The pseudo-code for any general scatter search

algorithm can be described as follows:

 Algorithm Scatter Search
 Diversification Generation Method
 While Stop Criterion not met
 Improvement Method
 Reference Set Update Method
 Subset Generation Method
 Subset Combination Method
 End While

In the following sub-section, we describe our implementation of the scatter search approach to solve the

RCPSPDC taking the various principles of section 2 into account. In section 3.2, we briefly discuss the

dynamic update of three parameter values.

3.1 Our scatter search implementation

The Diversification Generation Method: In this initialization step, an initial pool of solutions is

generated by randomly generating random key (RK) vectors and constructing the corresponding schedule

using the bi-directional forward/backward generation scheme or the well-known serial schedule generation

scheme. If the former generation scheme fails in constructing a schedule within the pre-defined deadline,

the serial generation scheme is applied to generate a resource feasible schedule ignoring the pre-specified

project deadline. As a result, this obtained schedule might end before, on or behind the pre-specified

project deadline. After the schedule generation, information from the obtained schedule will be used to

transform the random key RK into a standardized random key (SRK) which fulfil the topological order

condition of Valls et al. (2003). The implementation of the SRK value follows the four guidelines described

in Debels and Vanhoucke (2007) and its use is based on the detected positive influence on the solution

quality for the resource-constrained project scheduling problem.

The Improvement Method: This local search step aims at improving all elements from the pool of

solutions, as follows:

• D-feasible solutions: these schedules are subject to the recursive forward/backward improvement

method of section 2.2 in order to improve the total net present value of the schedules.

• D-infeasible solutions: these schedules with a project duration larger than the pre-defined project

deadline are subject to the iterative forward/backward scheduling technique of Li and Willis (1992). In

doing so, the algorithm tries to transform D-infeasible schedules into D-feasible schedules. If the

resulting project duration is smaller than or equal to the pre-specified project duration, the obtained

schedules are treated as D-feasible schedules, and hence, are the subject to the recursive

forward/backward improvement procedure as mentioned above.

13

The Reference Update Method: A reference set is created containing high-quality (set B1) and diverse (set

B2) solutions, with B1 ∩ B2 = ∅, as follows:

• The quality subset B1: contains the best solutions found since the start of the procedure. This set only

contains D-feasible schedules and has maximum b1 solution elements. In order to guarantee that the best

known solutions are diverse, a new schedule enters the subset B1 only if the minimal distance to any

existing element in the subset exceeds the threshold value v1 or when the new candidate solution is

better than any generated solution so far. The distance between two solutions x and y represented by

their corresponding vectors SRKx and SRKy is measured as the sum of the absolute values of the

component-wise difference between all vector elements of SRKx and SRKy.

• The diversity subset B2: contains D-feasible solutions that are sufficiently different from the D-feasible

solutions in subset B1 and/or D-infeasible schedules. This set contains exactly b2 solution elements

(since the B2 set also allows D-infeasible solutions, the number of elements is always equal to its

maximal value). The divergence between D-feasible elements in B1 and B2 is guaranteed by a threshold

value v2 which is the minimal required distance between the candidate solution and any element of B1.

The parameter values v1 and v2 are dynamically updated throughout the search process, as explained in

section 3.2. This two-tier design is maintained throughout the whole search of the procedure. While the B1

subset contains the best known solutions so far, the B2 subset is re-constructed from scratch during each

run. Hence, all original elements are removed before the reference set update method begins.

The Subset Generation Method: The scatter search procedure operates on the reference set by combining

pairs of solutions in a controlled way. The algorithm creates new solutions from all two-element subsets as

follows:

• B1 × B1: evaluation of all pairs of elements from B1 containing at least one new solution compared to the

previous generation. This method stimulates intensification since it selects two reference solutions from

the same cluster.

• B1 × B2: evaluation of all pairs combining an element from B1 and an element from B2. This method

stimulates diversification since it selects two reference solutions from a different cluster.

• B2 × B2: evaluation of all pairs of elements from B2. This generation method is only executed when the

number of solution elements in B1 is lower than a threshold value v3 (with v3 ≤ b1), and is particularly

useful for project instances with a low deadline or tight resource constraints. In doing so, this method

stimulates the generation of D-feasible solutions and aims at the increase of the number of solution

elements in subset B1. Unlike the dynamic update of the parameter values v1 and v2, v3 is fixed

throughout the search process (see section 3.2).

14

The Subset Combination Method: In order to combine solution elements from the different subsets, we

have implemented two straightforward crossover operators, which are both used depending on the origin of

the sets in the subset generation method.

• Two reference solutions from the same cluster (B1 × B1 and B2 × B2): The two-point crossover randomly

selects two crossover points from the interval c1 ∈ [0, n – cmin] and c2 ∈ [c1 + cmin, n] with cmin the

minimal number of activities subject to a change. Two child solutions are constructed by exchanging all

SRK values between c1 and c2 between the parents. Activities that are not subject to a change are

modified in order to preserve the relative ranking of these activities. More precisely, they get an SRK

value equal to its original SRK value plus (minus) a large constant when its original value is higher

(lower) than c2 (c1).

• Two reference solutions from a different cluster (B1 × B2): The cash flow crossover combines

information from both parents into a single child solution as follows: the crossover operator scans all

SRK values of the father and the mother and copies the lowest (largest) SRK value into the child

solution when the cash flow of the corresponding activity is positive (negative). This approach aims at

combining the best characteristics from two diverse solution elements, one from B1 and another from the

B2 cluster with a minimal diversity of v2.

3.2 Dynamic parameter settings

In section 3.1, we have defined three different threshold parameters each with a different function. The v1

and v2 parameters represent minimal distance values between two solutions while the v3 is a parameter to

guide the subset generation method.

The threshold parameter v1 represents the minimal required distance between a candidate solution for

subset B1 and all existing solutions in B1. In the beginning of the search process, the number of D-feasible

elements in B1 is low (initially equal to zero), and hence, the threshold needs to be set very low in order to

allow the entrance of any D-feasible solution that is (sometimes only slightly) different from the current

existing solutions. However, when the search process continues, the number of D-feasible elements in B1

will likely to increase (up to its maximum of b1), and hence, the algorithm need to increase the threshold

value v1 in order to guarantee more diverse high-quality schedules. However, the rate for which the number

of solution elements in B1 increases depends on factors such as the project deadline (finding D-feasible

schedules within tight project deadlines is extremely complex) and the resource constrainedness. Once the

number of D-feasible elements in B1 is equal to its maximum value b1, the threshold value v1 can be

decreased again depending on the number of new solution elements newb1 of B1 during the previous run of

the reference update method. In doing so, the algorithm continually increases or decreases its threshold

15

value along its search. The threshold value can be calculated as newvv
b

b

distdist
v 1

1

minmax

1 *11
−

= . The values for

min
1vdist (max

1vdist) represent the minimal (maximal) threshold values between which v1 varies linearly and

have been set to 1 and 2 * n, respectively.

The threshold parameter v2 represents the minimal required distance between a candidate solution of B2 and

any element of B1. The dynamic calculation of the threshold value v2 follows a similar reasoning as v1 and

depends on the number of D-feasible new solution elements newb2 in B2 during the previous run of the

reference update method. The threshold value can be calculated as newvv
b

b

distdist
v 2

2

minmax

2 *22
−

= . The values

for min
2vdist (max

2vdist) represent the minimal (maximal) threshold values between which v2 varies linearly and

have been set to 1 and 10 * n, respectively.

The threshold parameter v3 represents the minimal number of solution elements in B1 necessary to finish

the B2 × B2 search in the subset generation method. In our implementation, we have set v3 to a fixed value

equal to b1 / 3.

4 Computational results

In this section, we test the performance of the different solution procedures on two randomly generated test

sets consisting of resource-constrained problem instances generated by RanGen (Demeulemeester et al.

2003). Each project instance has been extended by activity cash flows and a project deadline. In section

4.1, the different versions of the bi-directional generation scheme and the recursive improvement method

are tested by enumerating all possible random key values on small project instances of a first dataset. Test

results show that neither the original bi-directional generation scheme, nor its straightforward extensions

are able to produce optimal results, and the random factor is necessary to produce the best results. Section

4.2 reports results of the scatter search procedure, and compares the contribution of the generation

scheme/improvement method on the solution quality.

4.1 Full enumeration

In this section, we compare the performance of the various generation schemes on the first test set by

enumerating all possible random keys that fulfil the topological order condition. Due to the huge amount of

different possible keys, this experiment is restricted to project instances with 10 activities. The test

instances have been generated by RanGen (Demeulemeester et al., 2003) as follows: each instance contains

16

10 non-dummy activities with each duration randomly generated between 1 and 10. Each project instance

has an order strength OS (Mastor (1970)) and a resource-constrainedness RC (Patterson (1976)) fixed at

0.25, 0.50, or 0.75. All project instances have 4 different resource types with availabilities of 10 units and

have a resource use equal to two (each activity needs exact two of the four resources). The project deadline

has been set to the minimal resource-constrained project deadline (obtained by the procedure of

Demeulemeester and Herroelen (1992)) or to this minimal deadline exceeded by 5 time units. The cash

flows have been generated between [-500, 500] such that the percentage of negative cash flows varies

between 0% and 100% in steps of 10%. Using 10 instances for each problem setting, we obtain a problem

set of 3 * 3 * 2 * 11 * 10 = 1920 problem instances.

In order to measure the quality of the generation scheme under study, we calculate the average relative

deviation between the resulting heuristic solutions npvheur and the optimal solution npvopt obtained by the

procedure of Vanhoucke et al. (2001), as
opt

heuropt

npv
npv

npvnpv −=∆ . Table 2 reports the results for the

generation schemes (forward (FOR), backward (BAC) or bi-directional (all remaining columns)) with (yes)

or without (no) the recursive improvement method of section 2.2. The bi-directional generation scheme has

been implemented using the different third option rules of section 2.1. The table reveals that the simple

forward and backward schedule generation scheme perform poor and generate heuristic solutions that

deviate from the optimal solution with approximately 5% (without the recursive improvement method) and

3% (with the recursive improvement method). Moreover, the results show that the use of the bi-directional

scheme improves the results dramatically, although some versions are still not able to generate the optimal

solution under full enumeration. The resource-based approach (RS and CRS) perform worse than the

activity duration based approach (AD and CAD) which is, on its turn, outperformed by the cash flow based

approach (CF and CCF). The results for the original bi-directional generation scheme of Selle and

Zimmermann (2003, column SZ) are very similar to the CF approach. Unfortunately, none of the

straightforward extensions to the original SZ approach is able to always produce optimal results. This

means that for some network instances, the third option will systematically select the wrong activity to be

scheduled (similar to the AD and CF approach of our example in section 2.3) for any RK value, always

leading to sub-optimal results. The results show that a simple modification to a random third option rule

followed by a recursive improvement method leads to the best results. Finally, the table clearly shows that

the use of the recursive improvement method leads to improved results for all approaches in the table.

17

Table 2. Relative deviation npv∆ from the optimal solution (in %)

SZ
no yes no yes no yes no yes no yes no yes no yes no yes no yes

Overall 0.133 0.005 0.310 0.036 0.766 0.065 0.321 0.020 0.036 0.020 0.123 0.023 0.005 0.000 4.668 2.247 5.763 3.159 0.035

0.25 0.108 0.008 0.251 0.061 0.709 0.105 0.369 0.020 0.013 0.000 0.118 0.046 0.000 0.000 5.359 2.361 6.826 3.552 0.012

0.50 0.081 0.005 0.345 0.029 0.695 0.074 0.289 0.010 0.062 0.037 0.128 0.018 0.013 0.000 4.920 1.936 5.243 2.941 0.063

0.75 0.209 0.003 0.334 0.019 0.895 0.015 0.303 0.028 0.034 0.024 0.123 0.006 0.002 0.000 3.725 2.445 5.221 2.985 0.034

0.25 0.194 0.000 0.382 0.001 1.035 0.004 0.551 0.001 0.017 0.000 0.149 0.000 0.004 0.000 6.975 1.954 8.754 3.219 0.016

RC 0.50 0.124 0.011 0.324 0.085 0.734 0.155 0.246 0.045 0.015 0.001 0.130 0.052 0.000 0.000 4.390 2.863 5.666 3.748 0.014

0.75 0.080 0.004 0.224 0.023 0.530 0.034 0.166 0.013 0.078 0.061 0.090 0.018 0.010 0.000 2.639 1.926 2.870 2.511 0.077

0 0.010 0.003 0.039 0.014 0.153 0.037 0.083 0.001 0.029 0.025 0.033 0.022 0.001 0.000 2.988 0.566 3.320 0.922 0.028

5 0.256 0.008 0.581 0.058 1.379 0.093 0.559 0.039 0.044 0.016 0.213 0.024 0.009 0.000 6.348 3.929 8.207 5.396 0.043

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.957 1.956 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.592 0.847 4.554 2.591 0.000

20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.592 0.847 4.554 2.591 0.000

30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.592 0.847 4.554 2.591 0.000

40 0.125 0.004 0.171 0.011 0.658 0.048 0.293 0.021 0.035 0.026 0.091 0.018 0.004 0.000 4.075 1.962 6.214 3.554 0.034

50 0.125 0.004 0.171 0.011 0.658 0.048 0.293 0.021 0.035 0.026 0.091 0.018 0.004 0.000 4.075 1.962 6.214 3.554 0.034

60 0.125 0.004 0.171 0.011 0.658 0.048 0.293 0.021 0.035 0.026 0.091 0.018 0.004 0.000 4.075 1.962 6.214 3.554 0.035

70 0.446 0.018 1.244 0.166 2.945 0.262 1.158 0.055 0.128 0.070 0.449 0.090 0.020 0.000 10.705 4.900 11.943 6.221 0.128

80 0.446 0.018 1.244 0.166 2.945 0.262 1.158 0.055 0.128 0.070 0.449 0.090 0.020 0.000 10.705 4.900 11.943 6.221 0.127

90 0.193 0.007 0.407 0.032 0.565 0.044 0.333 0.042 0.038 0.007 0.183 0.022 0.004 0.000 8.432 4.262 3.248 1.920 0.037

100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.503 2.232 0.000 0.000 0.000

OS

Deadline

%Neg

AD CAD RD CRD BACCF CCF RAN FOR

Table 3 displays the average percentage of D-feasible solutions found per problem instance as the total

number of feasible solutions found divided by the total number of evaluated priority vectors. Since we have

found that the percentage negative cash flows has no significant influence on the number of D-feasible

solutions, it is not included in table 3.

Table 3. Average percentage of D-feasible solutions per problem instance

0.25 0.50 0.75 0.25 0.50 0.75
Deadline

0.25 85.26 38.12 22.71 99.78 82.77 70.98
0.50 95.38 49.37 37.12 100.00 90.45 73.44
0.75 100.00 66.98 72.85 100.00 93.46 94.19

RC

OS

0 5

First, the table clearly reveals that infeasibilities occur more often when the order strength is low and the

resource-constrainedness is high. Selle and Zimmermann (2003) have shown that their bi-directional

generation scheme is not always able to generate D-feasible instances and the likelihood for infeasibilities

increases with tight resource constraints. The decreasing complexity for the order strength has been noted

by various authors (see e.g. Herroelen and De Reyck (1999) and Demeulemeester et al. (2003), amongst

others). Second, the table shows that finding feasible solutions is harder for a project scheduling problem

with a tight deadline. It is intuitively clear that a project instance with a strict deadline leads to more D-

infeasible schedules than a similar instance with more scheduling freedom. Finally, we note that the results

differ only slightly between the different versions of all generation schemes. The minimal overall value is

18

equal to 75.88% (the AD approach) while the maximal value equals 78.99% (the FOR approach). This is,

however, not shown in table 3.

4.2 Scatter search

In this section, we present detailed computational results to test the performance of the scatter search

algorithm and compare the obtained results with optimal or best known feasible solutions. Moreover, we

present a randomly generated dataset containing 17,280 RCPSPDC instances that can be downloaded from

our website for future research purposes.

The test instances has been generated by RanGen (Demeulemeester et al. 2003) under the settings

displayed in table 4. The project deadline has been set to the minimal resource-constrained project deadline

exceeded by a certain percentage of this project duration (see table). In order to find the minimal project

deadline, we have used the branch-and-bound procedure of Demeulemeester and Herroelen (1992) for the

25-activity instances and the decomposition-based genetic algorithm of Debels and Vanhoucke (2007) for

all other instances truncated after 100,000 generated schedules. Hence, the minimal project deadlines for

the 50, 75 and 100-activity instances are not necessarily optimal. Using 10 instances for each problem

setting, we obtain a problem set of 4 * 3 * 3 * 2 * 4 * 6 * 10 = 17,280 problem instances.

Table 4. Parameter settings used to generate the test instances for the RCPSPDC

Numer of activities 25, 50, 75 or 100
Activity durations Randomly selected from the interval [1, 10]
Order strength OS 0.25, 0.50 or 0.75
Number of resource types 4
Resource constrainedness RC 0.25, 0.50 or 0.75
Resource use RU 2 or 4
Project deadline 5, 10, 15 or 20

Discount rate α 0.01
Percentage negative cash flows 0, 20, 40, 60, 80 or 100

Table 5 displays the results for the 25-activity instances and compares the solutions obtained by the branch-

and-bound procedure of Vanhoucke et al. (2001) with the heuristic solutions obtained by our scatter search

procedures truncated after 5,000 generated schedules and by a random start heuristic. The branch-and-

bound procedure has been truncated after a pre-specified time limit of 100 seconds, which results in three

classes of solutions: optimal, feasible and infeasible solutions. The optimal solutions have been found

within the pre-specified time limit. The feasible solutions have been reported after truncation and cannot be

proven to be optimal. If after the time limit no feasible solution can be found, this solution enters the class

of infeasible solutions. The random start heuristic randomly generates 5,000 random key vectors that are

19

transformed into a schedule by the bi-directional generation scheme and improved by the recursive

forward/backward improvement method. The heuristic solutions obtained by the scatter search procedure

and the multi-start heuristic are compared with all solutions from these three classes. Furthermore, we

report whether the heuristic solution is worse (lower net present value, denoted by “–“), equal (“=”) or

better (higher net present value, or “+”) than the corresponding solution obtained by the BB procedure. The

different runs correspond with different versions of the scatter search procedure, as follows:

• Run 1: Scatter search with iterative forward/backward algorithm of Li and Willis (1992)

• Run 2: Scatter search with iterative forward/backward algorithm of Li and Willis (1992) followed by

the recursive forward/backward improvement method of section 2.2

• Run 3: Scatter search with the bi-directional generation scheme (with a random choice for the third

option)

• Run 4: Scatter search with the bi-directional generation scheme (random choice) followed by the

recursive forward/backward improvement method of section 2.2.

Table 5. Computational results for the 25 activity networks

infeasible feasible optimal
11.20% 49.86% 38.94%

– 60.30% × 36.97% 23.33%
= 15.95% 0.23% 0.12% 15.60%
+ 23.75% 10.97% 12.78% ×
– 69.51% × 36.57% 32.94%
= 6.74% 0.00% 0.74% 6.00%
+ 23.75% 11.20% 12.55% ×
– 67.36% × 35.21% 32.15%
= 7.52% 0.00% 0.74% 6.78%
+ 25.12% 11.20% 13.91% ×
– 21.23% × 7.66% 13.56%
= 30.23% 0.00% 4.86% 25.37%
+ 48.54% 11.20% 37.34% ×
– 13.89% × 5.95% 7.94%
= 37.08% 0.00% 6.09% 31.00%
+ 49.03% 11.20% 37.82% ×

R
un

 3
R

un
 4

R
an

-

do
m

Sc
at

te
r

Se
ar

ch

St
ar

t

B&B

R
un

 1
R

un
 2

The table reveals the following encouraging results. First, the comparison between the random start rows

and the scatter search – run4 reveals that the scatter search procedure outperforms the random start

heuristic (both procedures work with the bi-directional generation scheme (random choice) followed by the

recursive forward/backward improvement method). Second, the scatter search procedure never leads to

infeasible solutions, and the beneficial effect of the bi-directional generation scheme and the recursive

improvement method is highlighted by the increasing number of solutions that are equal (better) than the

solutions obtained by the truncated branch-and-bound procedure. While the run1 version still has 36.57% +

20

32.94% = 69.51% solutions that are worse that the B&B solutions, the run4 version has decreased that

number to 13.89%. 6.74% (12.55%) of the solutions are equal to (better than) the truncated B&B solution

for the run1 version, and this number increases to 37.09% (37.82%) for the run4 version. Last, note that the

results are obtained after an average CPU time of 2.19 seconds, while the B&B solutions have an average

run time of 65.21 seconds (truncated after 100 seconds).

Table 6 displays the solutions found by our scatter search algorithm truncated after 1,000, 5,000 and 50,000

schedules and acts as comparative heuristic solutions which can be used to compare newly found solutions

in the future. The solution quality has been displayed as the average relative deviation (RDev) from the

optimal net present value of the corresponding project scheduling problem instance ignoring the resource

constraints. This so-called max-npv problem has been solved by the efficient recursive search method

described in Vanhoucke (2006). We advice future researchers to test their procedures on the same

benchmark set and to report their results in a similar way as in table 6. Note that we were not able to

compare these results with other state-of-the-art procedures available in the open literature for two main

reasons. First, none of the existing research papers uses a standard benchmark dataset and hence, we were

not able to compare our results with best known solutions and secondly, many research papers use a

slightly different activity and/or event cash flow assumption or payment structure, which makes the

comparison of solutions irrelevant and/or impossible. However, we hope that comparison will be made

more easy in to future with the help of table 6 and the benchmark set proposed in the paper. Therefore, all

detailed results, executables, test instances and detailed information can be downloaded from our website

www.projectmanagement.ugent.be/npv.php.

Table 6. Computational experience for 1,000, 5,000 and 50,000 schedules

RDev CPU RDev CPU RDev CPU
Overall 234.57 1.28 224.94 2.19 215.86 13.08

25 193.93 0.36 191.69 0.55 190.49 2.58
50 305.93 0.84 295.14 1.42 286.26 8.14
75 185.91 1.50 173.38 2.57 162.27 15.38
100 252.50 2.42 239.56 4.24 224.42 26.21
0.25 208.12 1.40 193.05 2.31 179.51 12.96
0.50 228.46 1.21 222.17 2.08 213.69 12.66
0.75 267.13 1.23 259.60 2.19 254.38 13.61
0.25 100.27 1.58 92.93 2.71 84.90 16.34

RC 0.50 368.58 1.11 353.94 1.91 342.64 11.50
0.75 234.85 1.15 227.96 1.96 220.05 11.39

2 273.78 1.32 262.48 2.34 252.64 14.56
4 195.35 1.24 187.40 2.05 179.09 11.60
5 272.15 0.85 265.37 1.55 257.34 9.97
10 160.74 1.10 152.35 1.94 143.72 11.95
15 344.38 1.47 332.34 2.47 321.41 14.32
20 160.996 1.697 149.713 2.815 140.975 16.07
0 31.78 0.86 31.42 1.40 30.93 7.68
20 30.08 0.94 29.56 1.50 28.78 8.00
40 72.69 1.14 70.35 1.85 67.59 10.00
60 494.29 1.35 478.38 2.32 463.79 13.77
80 483.82 1.56 454.59 2.77 429.57 17.20
100 294.74 1.83 285.35 3.34 274.50 21.81

%Neg

SS (50,000)

RU

SS (5,000)

OS

Act

SS (1,000)

Deadline

21

Note that the b1 and b2 values depend on the stop criterion and have been set to 10 and 5 for 1,000

schedules, 25 and 10 for 5,000 schedules and 50 and 30 for 50,000 schedules. Other parameters are stop

criterion independent: the number of initial solution elements in the diversification generation method is

always equal 500 and the minimum number of activities subject to a change in the subset combination

method equals cmin = n / 5. These observations are in line with earlier scatter search results for the RCPSP

described in Debels et al. (2006).

5 Conclusions

In this paper, we presented a scatter search algorithm to solve the resource-constrained project scheduling

problem with discounted cash flows. This meta-heuristic procedure makes use of a bi-directional

generation scheme and a recursive forward/backward improvement method.

We have tested various variants of our algorithm on a self generated dataset containing 17,280 problem

instances. We have illustrated the contribution of the bi-directional generation scheme and the beneficial

effect of the recursive forward/backward improvement method. In order to facilitate comparison for future

research developments, we have reported best known solutions under three different stop criteria and

created a website where all detailed information can be downloaded.

Our future intentions are as follows: First, we want to develop more advanced meta-heuristic search

procedures to extend the basic problem type to, for example, multi-mode scheduling problems, pre-emptive

activity execution, variable cash flows and many more. We believe that the bi-directional generation

scheme and the recursive forward/backward improvement method can still be used for more advanced

problem formulations. Second, we want to test our procedure on real-life instances. As an example,

Vanhoucke and Demeulemeester (2003) have shown the beneficial effect of net present value

maximization on a real-life capacity expansion project at a Flemish company that purifies water. Last, we

want to compare the scatter search framework with the building blocks of other meta-heuristics, such as

genetic algorithms, particle swarm optimization, ant colony optimization, etc… and compare their

performance on our proposed dataset.

6 References

Baroum, S.M. and Patterson, J.H., 1996, “The development of cash flow weight procedures for maximizing

the net present value of a project”, Journal of Operations Management, 14, 209-227.

Blazewicz, J., Lenstra, J.K. and Rinnooy Kan, A.H.G., 1983, “Scheduling subject to resource constraints:

classification and complexity”, Discrete Applied Mathematics, 5, 11-24.

22

Brucker, P., Drexl, A., Möhring, R., Neumann, K. and Pesch, E., 1999, “Resource-constrained project

scheduling: notation, classification, models and methods”, European Journal of Operational Research,

112, 3-41.

Debels, D. and Vanhoucke, M., 2007, “A decomposition-based genetic algorithm for the resource-

constrained project scheduling problem”, to appear in Operations Research.

Debels, D., De Reyck, B., Leus, R. and Vanhoucke, M., 2006, “A hybrid scatter search/electromagnetism

meta-heuristic for project scheduling”, European Journal of Operational Research, 169, 638-653.

Demeulemeester, E. and Herroelen, W., 1992, “A branch-and-bound procedure for the multiple resource-

constrained project scheduling problem”, Management Science, 38, 1803-1818.

Demeulemeester, E., Vanhoucke, M., and Herroelen, W., 2003, “A random network generator for activity-

on-the-node networks”, Journal of Scheduling, 6, 13-34.

De Reyck, B. and Herroelen, W., 1998, “Optimal procedure for the resource-constrained project scheduling

problem with discounted cash flows and generalized precedence relations”, Computers and Operations

Research, 25, 1-17.

Glover, F, 1998, “A template for scatter search and path relinking”, Lecture Notes in Computer Science,

1363, 13-54

Glover, F. and Laguna, M., 2000, “Fundamentals of scatter search and path relinking”, Control and

Cybernetics, 3, 653-684.

Grinold, R.C., 1972, “The payment scheduling problem”, Naval Research Logistics Quarterly, 19, 123-136.

Hartmann, S. and Kolisch, R., 2000, “Experimental evaluation of state-of-the-art heuristics for the

resource-constrained project scheduling problem”, European Journal of Operational Research, 127, 394-

407.

Herroelen, W. and De Reyck, B., 1999, “Phase transitions in project scheduling”, Journal of the

Operational Research Quarterly, 50, 148-156.

Herroelen, W., Demeulemeester, E. and De Reyck, B., 1999, “A classification scheme for project

scheduling. In: Weglarz, J. (Ed.), Project Scheduling – Recent Models, Algorithms and Applications”,

International Series in Operations Research and Management Science, Kluwer Academic Publishers,

Boston, 14, 77-106.

Herroelen, W., De Reyck, B. and Demeulemeester, E., 1998, “Resource-constrained project scheduling: a

survey of recent developments”, Computers and Operations Research, 25, 279-302.

Icmeli, O., Erenguc, S.S. and Zappe, C.J., 1993, “Project scheduling problems: a survey”, International

Journal of Operations and Productions Management, 13, 80-91.

Icmeli, O., Erenguc, S.S., 1994, “A tabu search procedure for the resource constrained project scheduling

problem with discounted cash flows”, Computers and Operations Research, 21, 841-853.

Kimms, A., 2001, “Maximizing the net present value of a project using a lagrangian relaxation based

heuristic with tight upper bounds”, Annals of Operations Research, 102, 221-236.

23

Kolisch, R. and Hartmann, S., 2006, “Experimental investigation of Heuristics for resource-constrained

project scheduling: an update”, European Journal of Operational Research, 174, 23-37.

Kolisch, R. and Padman, R., 2001, “An integrated survey of deterministic project scheduling”, Omega, 49,

249-272.

Li, K.Y. and Willis, R.J., 1992, “An iterative scheduling technique for resource-constrained project

scheduling”, European Journal of Operational Research, 56, 370-379.

Marti, R., Laguna, M. and Glover, F., 2006, “Principles of scatter search”, European Journal of Operational

Research, 169, 359-372.

Mastor, A.A., 1970, “An experimental and comparative evaluation of production line balancing

techniques”, Management Science, 16, 728-746.

Mika, M., Waligora, G. and Weglarz, J., 2005, “Simulated annealing and tabu search for multi-mode

resource-constrained project scheduling with positive discounted cash flows and different payment

models”, European Journal of Operational Research, 164, 639-668.

Özdamar, L. and Ulusoy, G., 1995, “A survey on the resource-constrained project scheduling problem”, IIE

Transactions, 27, 574-586.

Özdamar, L. and Ulusoy, G., 1996, “An iterative local constraint based analysis for solving the resource-

constrained project scheduling problem”, Journal of Operations Management, 1996, 193-208.

Özdamar, L., Ulusoy, G. and Bayyigit, M., 1998, “A heuristic treatment of tardiness and net present value

criteria in resource-constrained project scheduling”, International Journal of Physical Distribution and

Logistics, 28, 805-824.

Padman, R. and Smith-Daniels, D.E., 1993, “Early-tardy cost trade-offs in resource constrained projects

with cash flows: An optimization-guided heuristic approach”, European Journal of Operational

Research, 64, 295-311.

Padman, R., Smith-Daniels, D.E. and Smith-Daniels, V.L., 1997, “Heuristic scheduling of resource-

constrained projects with cash flows”, Naval Research Logistics, 44, 365-381.

Patterson, J.H., 1976, “Project scheduling: the effects of problem structure on heuristic scheduling”, Naval

Research Logistics, 23, 95-123.

Pinder, J.P. and Marucheck, A.S., 1996, “Using discounted cash flow heuristics to improve project net

present value”, Journal of Operations Management, 14, 229-240.

Russell, A.H., 1970, “Cash flows in networks”, Management Science, 20, 767-784

Russell, R.A., 1986, “A comparison of heuristics for scheduling projects with cash flows and resource

restrictions”, Management Science, 32, 1291-1300.

Schwindt, C. and Zimmermann, J., 2001, “A steepest ascent approach to maximizing the net present value

of projects”, Mathematical Methods of Operations Research, 53, 435-450.

Selle, T. and Zimmermann, J., 2003, “A bidirectional heuristic for maximizing the net present value of

large-scale projects subject to limited resources”, Naval Research Logistics, 50, 130-148.

24

Sepil, C. and Ortaç, N., 1997, “Performance of the heuristic procedures for constrained projects with

progress payments”, Journal of the Operational Research Society, 48, 1123-1130.

Smith-Daniels, D.E. and Aquilano, N.J., 1987, “Using a late-start resource-constrained project schedule to

improve project net present value”, Decision Sciences, 18, 617-630.

Ulusoy, G. and Özdamar, L., 1995, “A heuristic scheduling algorithm for improving the duration and net

present value of a project”, International Journal of Operations and Production Management, 15, 89-98.

Valls, V., Quintanilla, S., Ballestín, F., 2003. Resource-constrained project scheduling: a critical activity

reordering heuristic, European Journal of Operational Research, 149, 282-301.

Vanhoucke, M., 2006, “An efficient hybrid search procedure for various optimization problems”, Lecture

Notes on Computer Science, 3906, 272-283.

Vanhoucke, M. and Demeulemeester, E., 2003, “The Application of Project Scheduling Techniques in a

Real-Life Environment”, Project Management Journal, 34, 30-42.

Vanhoucke, M., Demeulemeester, E. and Herroelen, W., 2001, “On maximizing the net present value of a

project under renewable resource constraints”, Management Science, 47, 1113-1121.

Yang, K.K., Tay, L.C. and Sum, C.C., 1995, “A comparison of stochastic scheduling rules for maximizing

project net present value”, European Journal of Operational Research, 85, 327-339.

Zhu, D. and Padman, R. A cooperative multi-agent approach to constrained project scheduling. Interfaces

in Computer Science and Operations Research: Advances in Metaheuristics, Optimization, and

Stochastic Modeling Technologies eds. R.S. Barr, R.V. Helgason, and J.L. Kennington, Kluwer

Academic Publishers, Norwell, MA, 367-381, 1997.

Zhu, D. and Padman, R., 1999, “A metaheuristic scheduling procedure for resource-constrained projects

with cash flows”, Naval Research Logistics, 46, 912-927.

