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ABSTRACT 
 
In this paper, we present a meta-heuristic algorithm for the resource-constrained project scheduling 
problem with discounted cash flows. We assume fixed payments associated with the execution of project 
activities and develop a heuristic optimization procedure to maximize the net present value of a project 
subject to the precedence and renewable resource constraints.  
 
We investigate the use of a bi-directional generation scheme and a recursive forward/backward 
improvement method from literature and embed them in a meta-heuristic scatter search framework. We 
generate a large dataset of project instances under a controlled design and report detailed computational 
results. The solutions and project instances can be downloaded from a website in order to facilitate 
comparison with future research attempts. 
 
Keywords: Resource-constrained project scheduling; Net present value; Scatter search 

 

1 Introduction and problem formulation 

 

Project scheduling has been a research topic for many decades, resulting in a wide variety of optimization 

procedures. The main focus on the project duration minimization has led to the development of various 

exact and (meta-)heuristic procedures for resource-constrained project scheduling problems (RCPSP) under 

a wide variety of assumptions. For an overview of resource-constrained project scheduling in general, we 

refer to excellent overview papers of Brücker et al. (1999), Herroelen et al. (1998), Icmeli et al. (1993), 

Kolisch and Padman (2001) and Özdamar and Ulusoy (1995). Less, but not little, attention has been spent 

on the presence of financial aspects in project scheduling, leading to various optimization models where the 

net present value of the project, rather than the project duration, is the major objective. This problem 

formulation appears when a series of cash flows occur over time during project execution. The increasing 

attention on net present value maximization has led to the development of financial model formulations 

under various assumptions (positive and negative cash flows/time-dependent and –independent cash 

flows/single-mode versus multi-mode formulations/etc.). Mika et al. (2005) give an extensive literature 

overview of net present value maximization in project scheduling, and hence, it does not need to be 

repeated here. Despite the growing financial attention in project scheduling, little effort has been made to 

facilitate comparison between procedures as is the case in other domains (see e.g. the competitive nature of 

research on the basic resource-constrained project scheduling problem (see e.g. Hartmann and Kolisch 

(2000) and Kolisch and Hartmann (2006)). 

 

In this paper, the single-mode resource-constrained project scheduling problem with discounted cash flows 

(RCPSPDC) is studied. This problem formulation is an extension of the basic RCPSP to the presence of 

activity cash flows, and assumes renewable resources with a constant availability and no activity pre-

emption. We assume that all activity cash flows occur at predefined time points during execution of the 

corresponding activity, and hence, exclude more general problem formulations with, for example, progress 
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payments, time-dependent cash flows or payments associated with events. We present a scatter search 

algorithm and present a large set of data instances under a controlled design. Computational results are 

reported and detailed information is uploaded on a website accessible by other researchers.  

 

A project is represented by an activity-on-the-node network G = (N, A), where the nodes in the set N 

represent the project activities and the arcs of set A the finish-start precedence relations with a time-lag of 

zero. The activities are numbered from a dummy start node 0 to a dummy end node n + 1. Each activity i 

has a duration di and its performance involves a series of cash flow payments and receipts throughout this 

duration. When cfit denotes the pre-specified cash flow of activity i in period t of its execution, a terminal 

value ci upon completion can be calculated by compounding cfit to the end of the activity as 

� =
−= i i

d
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1
)(α with α the discount rate. If the non-negative integer variable si represents the starting 

time activity i, its discounted value at the beginning of the project is )( ii ds
iec +−α . Each activity requires rik 

units of renewable resource k which has a constant availability of ak units. Each project must be finished 

before a pre-specified project deadline δn+1. The problem can be represented as m,1|cpm,δn,cj|npv following 

the classification scheme of Herroelen et al. (1999) or as PS|prec|�
jCF

jC β  following the classification 

scheme of Brücker et al. (1999) and is known to be NP-hard (Blazewicz et al. (1983)). A conceptual 

formulation for the RCPSPDC can be given as follows: 
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where S(t) denotes the set of activities in progress in period ]t - 1, t]. 

 

Eq. [1] maximizes the net present value of the project. Eq. [2] takes the finish-start precedence relations 

with a time-lag of zero into account. The renewable resource constraints are satisfied thanks to eq. [3]. Eq. 

[4] imposes a hard pre-specified deadline to the project. Alternatively, we could have considered a problem 

formulation without any pre-specified project deadline. However, in order to prevent that negative cash 

flows are never executed, a huge lump sum payment (positive cash flow) would then be necessary. Our 

solution approach does not exclude this alternative problem formulation. 
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The foundation for the current research paper has been laid by Selle and Zimmermann (2003) who have 

developed a so-called bi-directional schedule generation scheme for large-scaled RCPSPDC instances with 

generalized precedence constraints (problem m,1|gpr,δn,cj|npv or PS|temp|�
jCF

jC β ). In our paper, we 

rely on a slightly modified version of this bi-directional generation scheme (BDGS) extended with a 

recursive forward/backward improvement method (FBIM) (Vanhoucke et al. (2001)) to increase the net 

present value. We test various priority rules implemented in the bi-directional generation scheme and 

develop a scatter search (SS) algorithm to solve the RCPSPDC. The outline of our paper is as follows. In 

the next section, we briefly give an overview of various generation schemes to solve the RCPSPDC. 

Furthermore, we discuss our specific implementation of the BDGS and its extension to the FBIM. We 

illustrate the beneficial effect on a problem example. In section 3, we outline the building blocks of our 

scatter search algorithm. In section 4, we discuss detailed computational results for the BDGS with and 

without the FBIM and the SS algorithm. We end with conclusions and ideas for future research avenues in 

section 5.  

 

2 Schedule generation scheme 

 

The resource-constrained project scheduling problem with discounted cash flows belongs to the class of 

NP-hard problems, and hence, many heuristic solution procedures have been developed and described in 

the literature. Many research papers, however, focus on the development of single-pass algorithms in which 

activities are ranked by a priority vector determining the order of resource allocation during a schedule 

generation process. Since these methods can only generate a single solution, they are often extended by 

improvement methods and/or backward scheduling schemes. 

 

In the literature, various variants on a single-pass forward algorithm have been proposed. Russell (1986) 

relies on a single-pass forward algorithm and compares several heuristics using information from the 

network flow model solution of Russell (1970). Padman and Smith-Daniels (1993) solve the RCPSPDC 

with a single-pass forward algorithm and 8 greedy heuristics. Pinder and Marucheck (1996) also rely on a 

single-pass forward algorithm using 17 different priority rules. Sepil and Ortac (1997) present an earliest 

start schedule (ESS) generation scheme with three new and three existing priority rules for the RCPSPDC 

with progress payments. Padman et al. (1997) present optimization-based heuristics and solve the 

RCPSPDC with a single-pass greedy forward algorithm using 9 priority rules using information on 

tardiness penalties, target schedule times, opportunity costs and cash flow weights. To that purpose, they 

rely on revised dual prices obtained by iteratively optimizing the network flow formulation of Russell 

(1970). 
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As mentioned before, other authors extend the single-pass algorithm with improvement techniques in order 

to increase the net present value. Smith-Daniels and Aquilano (1987) initially solve an enhanced version of 

the RCPSPDC (including material handling cost) with a single-pass forward step, followed by a right-shift 

step based on a series of three priority rules. Baroum and Patterson (1996) extend their single-pass cash 

flow weight-based procedure with a multi-pass shifting improvement algorithm. The cooperative, multi-

agent system presented by Zhu and Padman (1997) generates initial solutions based on single-pass 

construction heuristics and improves these schedules by the method of iterative repair. These so-called 

modification agents include pairwise swaps of adjacent activities, forward and backward shifts and positive 

left insertion techniques.  

 

Inspired by the basic principle of the net present value where positive cash flows should be scheduled early 

and negative cash flows should be scheduled late, many authors rely on a combination of forward and 

backward scheduling. Ulusoy and Özdamar (1995) propose an iterative forward/backward scheduling 

algorithm based on the principle proposed by Li and Willis (1992) and simultaneously optimize the project 

duration and the net present value. Özdamar and Ulusoy (1996) extend this iterative forward/backward 

generation scheme with a local constraint based analysis which evaluates the resource and precedence 

constraints in determining the necessary sequence of conflicting activities fighting for the same resources. 

Likewise, Özdamar et al. (1998) use an iterative forward/backward scheduling algorithm while optimizing 

a project’s net present value and tardiness. Kimms (2001) presents a four phased heuristic that consist of a 

single-pass construction heuristic (phase 1) followed by three improvement phases. During the 

improvement phases, the algorithm takes information contained in a schedule derived by langrangian 

relaxation into account. Selle and Zimmermann (2003) have proposed a bi-directional generation scheme 

which combines forward and backward scheduling in order to fully exploit the cash flow information.  

 

During the recent decade, increasing computer power has led to the development of various multi-pass 

algorithms, leading to resource-constrained project scheduling problem formulations under a wide variety 

of cash flows assumptions (for an overview, see Mika et al. (2005)). In this paper, we present a multi-pass 

scatter search heuristic (section 3) for the RCPSPDC under the fixed activity cash flow assumptions 

described earlier, which relies on a bi-directional generation scheme (next sub-section) and a recursive 

forward/backward improvement step (sub-section 2.2). 

 

2.1 The bi-directional generation scheme 

 

The bi-directional priority-rule based method of Selle and Zimmermann (2003) consists of a 

simultaneously forward and backward approach and schedules at each iteration all eligible activities as 

soon (forward) or as late (backward) as possible with the precedence and renewable resource constraints. 

Hence, in each iteration an eligible activity is scheduled at its earliest or at its latest possible starting time 
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given the partial schedule, based on a priority value represented by a random key vector element. The 

general idea is that an activity i is forward eligible when all its predecessors have been scheduled (denoted 

by eligible activity i(f)) or backward eligible when all its successors have been scheduled (eligible activity 

i(b)). Since the generation scheme aims at scheduling eligible activities with positive cash flows as soon as 

possible and activities with negative cash flows as late as possible, the generation method considers the 

three following cases: 

 

• If cfi(f) ≥ 0 : schedule i(f) as soon as possible, 

• If cfi(b) ≤ 0 : schedule i(b) as late as possible, 

• If cfi(f) < 0 and cfi(b) > 0 : schedule i(f) as soon as possible when hi(f) ≤ hi(b) (defined hereunder) and 

schedule i(b) as late as possible otherwise. 

 

While the first two options are intuitively clear and directly contribute to the maximization of the net 

present value, the last option is counterintuitive. The last option either schedules an activity with negative 

cash flow as soon as possible or an activity with positive cash flow as late as possible, which is against the 

general philosophy of maximizing the net present value. Therefore, Selle and Zimmermann (2003) aim at 

minimizing the damage and calculate the hi(f) and hi(b) values as the financial loss arising when an activity is 

not scheduled at its earliest start time (positive cash flow activity i(b)) or at its latest start time (negative 

cash flow activity i(f)). To that purpose, they calculate the difference between the net present values when 

scheduling activity i(f) at its latest possible starting time and scheduling it at its earliest starting time. 

Similarly, they calculate the difference between the net present value when scheduling activity i(b) at its 

earliest and latest possible start time. The activity with the lowest difference will be selected and scheduled 

according to option 3.  

 

The bi-directional schedule generation scheme does not guarantee the construction of a schedule which 

ends within the pre-specified project deadline. Tight resource constraints and/or a low project deadline 

often result in an infeasible schedule (Selle and Zimmermann (2003)). In order to overcome this 

infeasibility problem, we test simple and straightforward extensions of the third option of the bi-directional 

generation scheme by implementing various other intuitive heuristic selection methods. More precisely, the 

third option is extended with two activity duration based, two resource based, two cash flows based and a 

random selection method, as follows: 

• Activity Duration (AD): Assign the activity durations di(f) and di(b) to hi(f) and hi(b), respectively. 

• Cumulative Activity Duration (CAD): Assign the activity duration di(f) (di(b)) plus the durations of all 

its unscheduled successors (predecessors) to the value hi(f) (value hi(b)). This heuristic in known in 

literature as the greatest ranked positional weight heuristic. 
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to hi(f) and hi(b), respectively. 

• Cumulative Resource Demand (CRD): Assign the activity work content Wi(f) (Wi(b)) plus the work 

content of all its unscheduled successors (predecessors) to the value hi(f) (value hi(b)). 

• Cash Flow (CF): Assign the cash flow values -cfi(f) and cfi(b) to hi(f) and hi(b), respectively. Note that this 

is a simplified version of Selle and Zimmermann (2003) since it ignores the time value of the activity 

cash flows and the time-span between their earliest and latest start time. 

• Cumulative Cash Flow (CCF): Assign the cash flow values of activity i(f) (activity i(b)) plus the cash 

flows of all its successors (predecessors) to the value hi(f) (value hi(b)). This measure has been used by 

Baroum and Patterson (1996) under the name Cash Flow Weight in their single-pass cash flow weight-

based procedure extended by a multi-pass shifting improvement algorithm.  

• Random (RAN): Randomly generate a value for hi(f) and hi(b) from the interval [0, 1]. This method 

boils down to the random selection of either i(f) or i(b) to be scheduled as soon as possible or as late as 

possible, respectively. 

 

In the remainder of this paper, we distinguish between D-feasible (within the project deadline) and D-

infeasible (project duration larger than the deadline) schedules for which the D has been added to avoid 

confusion with resource infeasibilities. Although our scatter search algorithm calculates net present values 

for both D-feasible and D-infeasible solutions during its search process, it obviously only reports the net 

present value of a D-feasible solution as the best found solution at the end of the search. In section 3.1, the 

D-infeasibility problem is tackled by extending the subset generation method of the scatter search. 

 

Moreover, D-feasible schedules can often be improved rather easily by shifting activities forwards or 

backwards. Baroum and Patterson (1996), for example, rely on a multi-pass forward/backward shifting 

algorithm which simply shifts activities with a positive (negative) cash flows to the project start (deadline) 

within their available slack. This shifting procedure is also implemented as an improvement technique in 

the generation scheme of Selle and Zimmermann (2003). Our improvement method to increase the net 

present value of D-feasible schedules relies on a recursive search method, which is discussed in the next 

sub-section. 

 

2.2 The recursive forward/backward improvement method 

 

Our improvement method is based on a recursive forward/backward method which is an extended version 

of the recursive method of Vanhoucke et al. (2001). The original method is developed to maximize the net 

present value of a resource-unconstrained project scheduling problem and aims at detecting sets of 



8 

activities that can be shifted to increase the total project net present value. The method has been hybridized 

by principles and ideas from other research papers (such as Schwindt and Zimmermann (2001)) and has 

been proven to be very efficient by Vanhoucke (2006). The extended recursive forward/backward 

improvement method differs from the original recursive search method in two ways: 

 

1. The recursive search takes the renewable resource constraints into account: The original recursive 

search procedure of Vanhoucke et al. (2001) has been developed for maximizing the net present value 

of a project without the presence of renewable resource constraints (the so-called max-npv problem). 

The algorithm exploits the ideas of Grinold (1972) who stated that a solution for the max-npv problem 

can be represented by a sub-part of the project network representing a tree. The algorithm builds an 

earliest start schedule (with a corresponding tree) and aims at repetitively detecting sets of activities 

within the tree with a total negative net present value. Hence, shifting these activities towards the project 

deadline within the technological precedence relation results in an improved solution. This recursive 

search has been used to calculate lower bounds on the RCPSPDC at each node of a branch-and-bound 

algorithm of De Reyck and Herroelen (1998) and Vanhoucke et al. (2001). The forward/backward 

recursive search of the current manuscript relies on a similar logic but also takes the limited renewable 

resource availabilities into account. Both the construction of the initial tree and the shifts of sets of 

activities need to take these renewable resource constraints into account, which is illustrated in section 

2.3. 

2. The recursive search alternates between a forward and backward step until no improvements can be 

found: The original recursive search procedure of Vanhoucke et al. (2001) relies on a forward approach 

which only allows shifts of sets of activities towards the project deadline. Hence, this approach requires 

an initial start tree where all activities (both with positive and negative cash flows) are scheduled as 

soon as possible. In our current manuscript, activity starting and finishing times are the result of the bi-

directional schedule generation scheme, and are not necessarily earliest start schedules nor latest start 

schedules. Consequently, the modified recursive search of the current manuscript needs to be enhanced 

by a backward step in which the algorithm searches for sets of activities with a total positive net present 

value to shift towards the project start. The forward/backward recursive search algorithm of the current 

manuscript alternates between a forward step and a backward step until no further improvement (shifts) 

can be found.  

 

Note that the recursive forward/backward improvement method can be applied using any generation 

scheme and is therefore not restricted to the use in combination with the bi-directional generation scheme. 

In the computational results section, we compare the bi-directional generation scheme with a forward and 

backward generation scheme, with and without the forward/backward improvement method. 
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2.3 An illustrative example 

 

In this section, we illustrate the different versions of the bi-directional generation scheme on a project 

network example displayed in figure 1 with a pre-specified project duration of δn = 29, an interest rate α = 

0.01 and a fixed resource availability (a1, a2, a3, a4) = (10, 10, 10, 10). We illustrate the various methods of 

section 2.1 in the generation scheme (the bi-directional generation scheme BDGS) and the contribution of 

the multi-pass forward/backward shifting algorithm (MPSA) of Baroum and Patterson (1996) and the 

recursive forward/backward improvement method (FBIM) of section 2.2. 
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Figure 1. An example project network 

 

Figure 2 displays five different schedules obtained by using the procedures mentioned earlier (activities 

with positive (negative) cash flows are painted in black (gray)). The schedules are the best schedules (with 

the highest net present value) obtained by enumerating all possible random key vectors and transforming 

them to a schedule using the bi-directional generation method under the different rules of section 2.1. 

Schedule 5 has the highest net present value and is equal to the optimal schedule for the project network of 

figure 1.  
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Figure 2. Five different schedules obtained by different procedures 

 

Table 1 displays illustrative results. The BDGS column shows the results for the bi-directional generation 

scheme of section 2.1 under the different priority rules. The table shows that none of the rules is able to 

find the optimal solution, although the RAN approach results in the best solution. The multi-pass shifting 

algorithm is able to improve schedule 1 by shifting activity 4 with a positive cash flows towards the project 

start within its available slack, resulting in schedule 3. The recursive forward/backward improvement 

method further optimizes schedule 3 and schedule 4 to the optimal schedule 5. Note that the AD and CF 

approaches are not able to find the optimal solution, since schedule 2 can never be improved by shifting 

(sets of) activities. 

 

Table 1. The results for the BDGS and the contribution of MPSA and FBIM 

BDGS: Bi-Directional Generation Scheme (section 2.1)
MPSA: Multi-Pass Shifting Algorithm (Baroum and Patterson (1996))
FBIM: Forward/Backward Improvement Method (section 2.2)

RAN

Schedule 1 Schedule 3 Schedule 5

Schedule 2
Schedule 4

Schedule 2
Schedule 4

Schedule 2
Schedule 5

CAD, RD
CRD, CCF

AD, CF

BDGS MPSA FBIM
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Figure 3 illustrates the beneficial effect of the recursive forward/backward improvement method on 

schedule 1 to obtain schedule 5. Figure 3 (a) shows the initial tree taking both the precedence and resource 

relations of schedule 1 into account. A backward recursion search detects a first set of activities {4} with a 

total positive net present value of 323*e-0.01*25. This set is shifted towards the project start within its 

available slack, tacking both the precedence relations and resource constraints into account, resulting in the 

modified tree of figure 3 (b). A second backward run detects and shifts a second set {3, 4} with a total 

positive net present value of -127*e-0.01*16 + 323*e-0.01*22 = 150.99, resulting in schedule 4 (figure 3(c)). A 

last backward search detects {5, 6, 7} to be shifted, resulting in the tree of figure 3 (d). The backward 

search is followed by a forward search. Since no sets of activities with a negative net present value could be 

found, the recursive algorithm stops and returns schedule 5. 
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Figure 3. The recursive forward/backward (backward part) search on schedule 1 

(straight lines represent precedence relations and dotted lines represent resource relations) 

 

Note that the MPSA is only able to transform schedule 1 of figure 3(a) to schedule 3 of figure 3(b) and then 

terminates. The extra arc between the dummy end activity and the dummy start activity is necessary to 

connect two sub-trees in order to construct one tree. In doing so, the recursive search can investigate all 

project activities during its search, both for the forward step (starting from dummy start node 0) and the 

backward step (starting from dummy end node 8). 

 

3 Scatter search procedure 

 

Scatter search is an evolutionary population-based method in which solutions are combined to yield better 

solutions using convex or non-convex linear combinations. Interesting references which describe the basic 

(a) Schedule 1              (b) Schedule 3 
 

(c) Schedule 4              (d) Schedule 5 
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as well as more advanced features of the scatter search meta-heuristic have been presented in Glover 

(1998), Glover and Laguna (2000) and Marti et al. (2006). The pseudo-code for any general scatter search 

algorithm can be described as follows: 

 Algorithm Scatter Search 
  Diversification Generation Method 
  While Stop Criterion not met 
   Improvement Method 
   Reference Set Update Method 
   Subset Generation Method 
   Subset Combination Method 
  End While 

 

In the following sub-section, we describe our implementation of the scatter search approach to solve the 

RCPSPDC taking the various principles of section 2 into account. In section 3.2, we briefly discuss the 

dynamic update of three parameter values. 

 

3.1 Our scatter search implementation 

 

The Diversification Generation Method: In this initialization step, an initial pool of solutions is 

generated by randomly generating random key (RK) vectors and constructing the corresponding schedule 

using the bi-directional forward/backward generation scheme or the well-known serial schedule generation 

scheme. If the former generation scheme fails in constructing a schedule within the pre-defined deadline, 

the serial generation scheme is applied to generate a resource feasible schedule ignoring the pre-specified 

project deadline. As a result, this obtained schedule might end before, on or behind the pre-specified 

project deadline. After the schedule generation, information from the obtained schedule will be used to 

transform the random key RK into a standardized random key (SRK) which fulfil the topological order 

condition of Valls et al. (2003). The implementation of the SRK value follows the four guidelines described 

in Debels and Vanhoucke (2007) and its use is based on the detected positive influence on the solution 

quality for the resource-constrained project scheduling problem. 

 

The Improvement Method: This local search step aims at improving all elements from the pool of 

solutions, as follows: 

• D-feasible solutions: these schedules are subject to the recursive forward/backward improvement 

method of section 2.2 in order to improve the total net present value of the schedules. 

• D-infeasible solutions: these schedules with a project duration larger than the pre-defined project 

deadline are subject to the iterative forward/backward scheduling technique of Li and Willis (1992). In 

doing so, the algorithm tries to transform D-infeasible schedules into D-feasible schedules. If the 

resulting project duration is smaller than or equal to the pre-specified project duration, the obtained 

schedules are treated as D-feasible schedules, and hence, are the subject to the recursive 

forward/backward improvement procedure as mentioned above. 



13 

 

The Reference Update Method: A reference set is created containing high-quality (set B1) and diverse (set 

B2) solutions, with B1 ∩ B2 = ∅, as follows: 

• The quality subset B1: contains the best solutions found since the start of the procedure. This set only 

contains D-feasible schedules and has maximum b1 solution elements. In order to guarantee that the best 

known solutions are diverse, a new schedule enters the subset B1 only if the minimal distance to any 

existing element in the subset exceeds the threshold value v1 or when the new candidate solution is 

better than any generated solution so far. The distance between two solutions x and y represented by 

their corresponding vectors SRKx and SRKy is measured as the sum of the absolute values of the 

component-wise difference between all vector elements of SRKx and SRKy. 

• The diversity subset B2: contains D-feasible solutions that are sufficiently different from the D-feasible 

solutions in subset B1 and/or D-infeasible schedules. This set contains exactly b2 solution elements 

(since the B2 set also allows D-infeasible solutions, the number of elements is always equal to its 

maximal value). The divergence between D-feasible elements in B1 and B2 is guaranteed by a threshold 

value v2 which is the minimal required distance between the candidate solution and any element of B1. 

The parameter values v1 and v2 are dynamically updated throughout the search process, as explained in 

section 3.2. This two-tier design is maintained throughout the whole search of the procedure. While the B1 

subset contains the best known solutions so far, the B2 subset is re-constructed from scratch during each 

run. Hence, all original elements are removed before the reference set update method begins. 

 

The Subset Generation Method: The scatter search procedure operates on the reference set by combining 

pairs of solutions in a controlled way. The algorithm creates new solutions from all two-element subsets as 

follows: 

• B1 × B1: evaluation of all pairs of elements from B1 containing at least one new solution compared to the 

previous generation. This method stimulates intensification since it selects two reference solutions from 

the same cluster.  

• B1 × B2: evaluation of all pairs combining an element from B1 and an element from B2. This method 

stimulates diversification since it selects two reference solutions from a different cluster. 

• B2 × B2: evaluation of all pairs of elements from B2. This generation method is only executed when the 

number of solution elements in B1 is lower than a threshold value v3 (with v3 ≤ b1), and is particularly 

useful for project instances with a low deadline or tight resource constraints. In doing so, this method 

stimulates the generation of D-feasible solutions and aims at the increase of the number of solution 

elements in subset B1. Unlike the dynamic update of the parameter values v1 and v2, v3 is fixed 

throughout the search process (see section 3.2). 
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The Subset Combination Method: In order to combine solution elements from the different subsets, we 

have implemented two straightforward crossover operators, which are both used depending on the origin of 

the sets in the subset generation method.  

• Two reference solutions from the same cluster (B1 × B1 and B2 × B2): The two-point crossover randomly 

selects two crossover points from the interval c1 ∈ [0, n – cmin] and c2 ∈ [c1 + cmin, n] with cmin the 

minimal number of activities subject to a change. Two child solutions are constructed by exchanging all 

SRK values between c1 and c2 between the parents. Activities that are not subject to a change are 

modified in order to preserve the relative ranking of these activities. More precisely, they get an SRK 

value equal to its original SRK value plus (minus) a large constant when its original value is higher 

(lower) than c2 (c1).  

• Two reference solutions from a different cluster (B1 × B2): The cash flow crossover combines 

information from both parents into a single child solution as follows: the crossover operator scans all 

SRK values of the father and the mother and copies the lowest (largest) SRK value into the child 

solution when the cash flow of the corresponding activity is positive (negative). This approach aims at 

combining the best characteristics from two diverse solution elements, one from B1 and another from the 

B2 cluster with a minimal diversity of v2. 

 

3.2 Dynamic parameter settings 

 

In section 3.1, we have defined three different threshold parameters each with a different function. The v1 

and v2 parameters represent minimal distance values between two solutions while the v3 is a parameter to 

guide the subset generation method.  

 

The threshold parameter v1 represents the minimal required distance between a candidate solution for 

subset B1 and all existing solutions in B1. In the beginning of the search process, the number of D-feasible 

elements in B1 is low (initially equal to zero), and hence, the threshold needs to be set very low in order to 

allow the entrance of any D-feasible solution that is (sometimes only slightly) different from the current 

existing solutions. However, when the search process continues, the number of D-feasible elements in B1 

will likely to increase (up to its maximum of b1), and hence, the algorithm need to increase the threshold 

value v1 in order to guarantee more diverse high-quality schedules. However, the rate for which the number 

of solution elements in B1 increases depends on factors such as the project deadline (finding D-feasible 

schedules within tight project deadlines is extremely complex) and the resource constrainedness. Once the 

number of D-feasible elements in B1 is equal to its maximum value b1, the threshold value v1 can be 

decreased again depending on the number of new solution elements newb1  of B1 during the previous run of 

the reference update method. In doing so, the algorithm continually increases or decreases its threshold 
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value along its search. The threshold value can be calculated as newvv
b

b

distdist
v 1

1

minmax

1 *11
−

= . The values for 

min
1vdist  ( max

1vdist ) represent the minimal (maximal) threshold values between which v1 varies linearly and 

have been set to 1 and 2 * n, respectively. 

 

The threshold parameter v2 represents the minimal required distance between a candidate solution of B2 and 

any element of B1. The dynamic calculation of the threshold value v2 follows a similar reasoning as v1 and 

depends on the number of D-feasible new solution elements newb2  in B2 during the previous run of the 

reference update method. The threshold value can be calculated as newvv
b

b

distdist
v 2

2

minmax

2 *22
−

= . The values 

for min
2vdist  ( max

2vdist ) represent the minimal (maximal) threshold values between which v2 varies linearly and 

have been set to 1 and 10 * n, respectively. 

 

The threshold parameter v3 represents the minimal number of solution elements in B1 necessary to finish 

the B2 × B2 search in the subset generation method. In our implementation, we have set v3 to a fixed value 

equal to b1 / 3. 

  

4 Computational results 

 

In this section, we test the performance of the different solution procedures on two randomly generated test 

sets consisting of resource-constrained problem instances generated by RanGen (Demeulemeester et al. 

2003). Each project instance has been extended by activity cash flows and a project deadline. In section 

4.1, the different versions of the bi-directional generation scheme and the recursive improvement method 

are tested by enumerating all possible random key values on small project instances of a first dataset. Test 

results show that neither the original bi-directional generation scheme, nor its straightforward extensions 

are able to produce optimal results, and the random factor is necessary to produce the best results. Section 

4.2 reports results of the scatter search procedure, and compares the contribution of the generation 

scheme/improvement method on the solution quality.  

 

4.1 Full enumeration 

 

In this section, we compare the performance of the various generation schemes on the first test set by 

enumerating all possible random keys that fulfil the topological order condition. Due to the huge amount of 

different possible keys, this experiment is restricted to project instances with 10 activities. The test 

instances have been generated by RanGen (Demeulemeester et al., 2003) as follows: each instance contains 
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10 non-dummy activities with each duration randomly generated between 1 and 10. Each project instance 

has an order strength OS (Mastor (1970)) and a resource-constrainedness RC (Patterson (1976)) fixed at 

0.25, 0.50, or 0.75. All project instances have 4 different resource types with availabilities of 10 units and 

have a resource use equal to two (each activity needs exact two of the four resources). The project deadline 

has been set to the minimal resource-constrained project deadline (obtained by the procedure of 

Demeulemeester and Herroelen (1992)) or to this minimal deadline exceeded by 5 time units. The cash 

flows have been generated between [-500, 500] such that the percentage of negative cash flows varies 

between 0% and 100% in steps of 10%. Using 10 instances for each problem setting, we obtain a problem 

set of 3 * 3 * 2 * 11 * 10 = 1920 problem instances. 

 

In order to measure the quality of the generation scheme under study, we calculate the average relative 

deviation between the resulting heuristic solutions npvheur and the optimal solution npvopt obtained by the 

procedure of Vanhoucke et al. (2001), as 
opt

heuropt

npv
npv

npvnpv −=∆ . Table 2 reports the results for the 

generation schemes (forward (FOR), backward (BAC) or bi-directional (all remaining columns)) with (yes) 

or without (no) the recursive improvement method of section 2.2. The bi-directional generation scheme has 

been implemented using the different third option rules of section 2.1. The table reveals that the simple 

forward and backward schedule generation scheme perform poor and generate heuristic solutions that 

deviate from the optimal solution with approximately 5% (without the recursive improvement method) and 

3% (with the recursive improvement method). Moreover, the results show that the use of the bi-directional 

scheme improves the results dramatically, although some versions are still not able to generate the optimal 

solution under full enumeration. The resource-based approach (RS and CRS) perform worse than the 

activity duration based approach (AD and CAD) which is, on its turn, outperformed by the cash flow based 

approach (CF and CCF). The results for the original bi-directional generation scheme of Selle and 

Zimmermann (2003, column SZ) are very similar to the CF approach. Unfortunately, none of the 

straightforward extensions to the original SZ approach is able to always produce optimal results. This 

means that for some network instances, the third option will systematically select the wrong activity to be 

scheduled (similar to the AD and CF approach of our example in section 2.3) for any RK value, always 

leading to sub-optimal results. The results show that a simple modification to a random third option rule 

followed by a recursive improvement method leads to the best results. Finally, the table clearly shows that 

the use of the recursive improvement method leads to improved results for all approaches in the table. 
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Table 2. Relative deviation npv∆  from the optimal solution (in %) 

SZ
no yes no yes no yes no yes no yes no yes no yes no yes no yes

Overall 0.133 0.005 0.310 0.036 0.766 0.065 0.321 0.020 0.036 0.020 0.123 0.023 0.005 0.000 4.668 2.247 5.763 3.159 0.035

0.25 0.108 0.008 0.251 0.061 0.709 0.105 0.369 0.020 0.013 0.000 0.118 0.046 0.000 0.000 5.359 2.361 6.826 3.552 0.012

0.50 0.081 0.005 0.345 0.029 0.695 0.074 0.289 0.010 0.062 0.037 0.128 0.018 0.013 0.000 4.920 1.936 5.243 2.941 0.063

0.75 0.209 0.003 0.334 0.019 0.895 0.015 0.303 0.028 0.034 0.024 0.123 0.006 0.002 0.000 3.725 2.445 5.221 2.985 0.034

0.25 0.194 0.000 0.382 0.001 1.035 0.004 0.551 0.001 0.017 0.000 0.149 0.000 0.004 0.000 6.975 1.954 8.754 3.219 0.016

RC 0.50 0.124 0.011 0.324 0.085 0.734 0.155 0.246 0.045 0.015 0.001 0.130 0.052 0.000 0.000 4.390 2.863 5.666 3.748 0.014

0.75 0.080 0.004 0.224 0.023 0.530 0.034 0.166 0.013 0.078 0.061 0.090 0.018 0.010 0.000 2.639 1.926 2.870 2.511 0.077

0 0.010 0.003 0.039 0.014 0.153 0.037 0.083 0.001 0.029 0.025 0.033 0.022 0.001 0.000 2.988 0.566 3.320 0.922 0.028

5 0.256 0.008 0.581 0.058 1.379 0.093 0.559 0.039 0.044 0.016 0.213 0.024 0.009 0.000 6.348 3.929 8.207 5.396 0.043

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.957 1.956 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.592 0.847 4.554 2.591 0.000

20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.592 0.847 4.554 2.591 0.000

30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.592 0.847 4.554 2.591 0.000

40 0.125 0.004 0.171 0.011 0.658 0.048 0.293 0.021 0.035 0.026 0.091 0.018 0.004 0.000 4.075 1.962 6.214 3.554 0.034

50 0.125 0.004 0.171 0.011 0.658 0.048 0.293 0.021 0.035 0.026 0.091 0.018 0.004 0.000 4.075 1.962 6.214 3.554 0.034

60 0.125 0.004 0.171 0.011 0.658 0.048 0.293 0.021 0.035 0.026 0.091 0.018 0.004 0.000 4.075 1.962 6.214 3.554 0.035

70 0.446 0.018 1.244 0.166 2.945 0.262 1.158 0.055 0.128 0.070 0.449 0.090 0.020 0.000 10.705 4.900 11.943 6.221 0.128

80 0.446 0.018 1.244 0.166 2.945 0.262 1.158 0.055 0.128 0.070 0.449 0.090 0.020 0.000 10.705 4.900 11.943 6.221 0.127

90 0.193 0.007 0.407 0.032 0.565 0.044 0.333 0.042 0.038 0.007 0.183 0.022 0.004 0.000 8.432 4.262 3.248 1.920 0.037

100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.503 2.232 0.000 0.000 0.000

OS

Deadline

%Neg

AD CAD RD CRD BACCF CCF RAN FOR

 
 

Table 3 displays the average percentage of D-feasible solutions found per problem instance as the total 

number of feasible solutions found divided by the total number of evaluated priority vectors. Since we have 

found that the percentage negative cash flows has no significant influence on the number of D-feasible 

solutions, it is not included in table 3.  

 

Table 3. Average percentage of D-feasible solutions per problem instance 

0.25 0.50 0.75 0.25 0.50 0.75
Deadline

0.25 85.26 38.12 22.71 99.78 82.77 70.98
0.50 95.38 49.37 37.12 100.00 90.45 73.44
0.75 100.00 66.98 72.85 100.00 93.46 94.19

RC

OS

0 5

 

 

First, the table clearly reveals that infeasibilities occur more often when the order strength is low and the 

resource-constrainedness is high. Selle and Zimmermann (2003) have shown that their bi-directional 

generation scheme is not always able to generate D-feasible instances and the likelihood for infeasibilities 

increases with tight resource constraints. The decreasing complexity for the order strength has been noted 

by various authors (see e.g. Herroelen and De Reyck (1999) and Demeulemeester et al. (2003), amongst 

others). Second, the table shows that finding feasible solutions is harder for a project scheduling problem 

with a tight deadline. It is intuitively clear that a project instance with a strict deadline leads to more D-

infeasible schedules than a similar instance with more scheduling freedom. Finally, we note that the results 

differ only slightly between the different versions of all generation schemes.  The minimal overall value is 
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equal to 75.88% (the AD approach) while the maximal value equals 78.99% (the FOR approach). This is, 

however, not shown in table 3. 

 

4.2 Scatter search 

 

In this section, we present detailed computational results to test the performance of the scatter search 

algorithm and compare the obtained results with optimal or best known feasible solutions. Moreover, we 

present a randomly generated dataset containing 17,280 RCPSPDC instances that can be downloaded from 

our website for future research purposes. 

 

The test instances has been generated by RanGen (Demeulemeester et al. 2003) under the settings 

displayed in table 4. The project deadline has been set to the minimal resource-constrained project deadline 

exceeded by a certain percentage of this project duration (see table). In order to find the minimal project 

deadline, we have used the branch-and-bound procedure of Demeulemeester and Herroelen (1992) for the 

25-activity instances and the decomposition-based genetic algorithm of Debels and Vanhoucke (2007) for 

all other instances truncated after 100,000 generated schedules. Hence, the minimal project deadlines for 

the 50, 75 and 100-activity instances are not necessarily optimal. Using 10 instances for each problem 

setting, we obtain a problem set of 4 * 3 * 3 * 2 * 4 * 6 * 10 = 17,280 problem instances. 

 

Table 4. Parameter settings used to generate the test instances for the RCPSPDC 

Numer of activities 25, 50, 75 or 100 
Activity durations Randomly selected from the interval [1, 10] 
Order strength OS 0.25, 0.50 or 0.75 
Number of resource types 4 
Resource constrainedness RC 0.25, 0.50 or 0.75 
Resource use RU 2 or 4 
Project deadline 5, 10, 15 or 20 

Discount rate α 0.01 
Percentage negative cash flows 0, 20, 40, 60, 80 or 100 

 

Table 5 displays the results for the 25-activity instances and compares the solutions obtained by the branch-

and-bound procedure of Vanhoucke et al. (2001) with the heuristic solutions obtained by our scatter search 

procedures truncated after 5,000 generated schedules and by a random start heuristic. The branch-and-

bound procedure has been truncated after a pre-specified time limit of 100 seconds, which results in three 

classes of solutions: optimal, feasible and infeasible solutions. The optimal solutions have been found 

within the pre-specified time limit. The feasible solutions have been reported after truncation and cannot be 

proven to be optimal. If after the time limit no feasible solution can be found, this solution enters the class 

of infeasible solutions. The random start heuristic randomly generates 5,000 random key vectors that are 
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transformed into a schedule by the bi-directional generation scheme and improved by the recursive 

forward/backward improvement method. The heuristic solutions obtained by the scatter search procedure  

and the multi-start heuristic are compared with all solutions from these three classes. Furthermore, we 

report whether the heuristic solution is worse (lower net present value, denoted by “–“), equal (“=”) or 

better (higher net present value, or “+”) than the corresponding solution obtained by the BB procedure. The 

different runs correspond with different versions of the scatter search procedure, as follows: 

 

• Run 1: Scatter search with iterative forward/backward algorithm of Li and Willis (1992) 

• Run 2: Scatter search with iterative forward/backward algorithm of Li and Willis (1992) followed by 

the recursive forward/backward improvement method of section 2.2 

• Run 3: Scatter search with the bi-directional generation scheme (with a random choice for the third 

option) 

• Run 4: Scatter search with the bi-directional generation scheme (random choice) followed by the 

recursive forward/backward improvement method of section 2.2. 

 

Table 5. Computational results for the 25 activity networks 

infeasible feasible optimal
11.20% 49.86% 38.94%

– 60.30% × 36.97% 23.33%
= 15.95% 0.23% 0.12% 15.60%
+ 23.75% 10.97% 12.78% ×
– 69.51% × 36.57% 32.94%
= 6.74% 0.00% 0.74% 6.00%
+ 23.75% 11.20% 12.55% ×
– 67.36% × 35.21% 32.15%
= 7.52% 0.00% 0.74% 6.78%
+ 25.12% 11.20% 13.91% ×
– 21.23% × 7.66% 13.56%
= 30.23% 0.00% 4.86% 25.37%
+ 48.54% 11.20% 37.34% ×
– 13.89% × 5.95% 7.94%
= 37.08% 0.00% 6.09% 31.00%
+ 49.03% 11.20% 37.82% ×
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The table reveals the following encouraging results. First, the comparison between the random start rows 

and the scatter search – run4 reveals that the scatter search procedure outperforms the random start 

heuristic (both procedures work with the bi-directional generation scheme (random choice) followed by the 

recursive forward/backward improvement method). Second, the scatter search procedure never leads to 

infeasible solutions, and the beneficial effect of the bi-directional generation scheme and the recursive 

improvement method is highlighted by the increasing number of solutions that are equal (better) than the 

solutions obtained by the truncated branch-and-bound procedure. While the run1 version still has 36.57% + 
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32.94% = 69.51% solutions that are worse that the B&B solutions, the run4 version has decreased that 

number to 13.89%. 6.74% (12.55%) of the solutions are equal to (better than) the truncated B&B solution 

for the run1 version, and this number increases to 37.09% (37.82%) for the run4 version. Last, note that the 

results are obtained after an average CPU time of 2.19 seconds, while the B&B solutions have an average 

run time of 65.21 seconds (truncated after 100 seconds). 

 

Table 6 displays the solutions found by our scatter search algorithm truncated after 1,000, 5,000 and 50,000 

schedules and acts as comparative heuristic solutions which can be used to compare newly found solutions 

in the future. The solution quality has been displayed as the average relative deviation (RDev) from the 

optimal net present value of the corresponding project scheduling problem instance ignoring the resource 

constraints. This so-called max-npv problem has been solved by the efficient recursive search method 

described in Vanhoucke (2006). We advice future researchers to test their procedures on the same 

benchmark set and to report their results in a similar way as in table 6. Note that we were not able to 

compare these results with other state-of-the-art procedures available in the open literature for two main 

reasons. First, none of the existing research papers uses a standard benchmark dataset and hence, we were 

not able to compare our results with best known solutions and secondly, many research papers use a 

slightly different activity and/or event cash flow assumption or payment structure, which makes the 

comparison of solutions irrelevant and/or impossible. However, we hope that comparison will be made 

more easy in to future with the help of table 6 and the benchmark set proposed in the paper. Therefore, all 

detailed results, executables, test instances and detailed information can be downloaded from our website 

www.projectmanagement.ugent.be/npv.php. 

 

Table 6. Computational experience for 1,000, 5,000 and 50,000 schedules 

RDev CPU RDev CPU RDev CPU
Overall 234.57 1.28 224.94 2.19 215.86 13.08

25 193.93 0.36 191.69 0.55 190.49 2.58
50 305.93 0.84 295.14 1.42 286.26 8.14
75 185.91 1.50 173.38 2.57 162.27 15.38
100 252.50 2.42 239.56 4.24 224.42 26.21
0.25 208.12 1.40 193.05 2.31 179.51 12.96
0.50 228.46 1.21 222.17 2.08 213.69 12.66
0.75 267.13 1.23 259.60 2.19 254.38 13.61
0.25 100.27 1.58 92.93 2.71 84.90 16.34

RC 0.50 368.58 1.11 353.94 1.91 342.64 11.50
0.75 234.85 1.15 227.96 1.96 220.05 11.39

2 273.78 1.32 262.48 2.34 252.64 14.56
4 195.35 1.24 187.40 2.05 179.09 11.60
5 272.15 0.85 265.37 1.55 257.34 9.97
10 160.74 1.10 152.35 1.94 143.72 11.95
15 344.38 1.47 332.34 2.47 321.41 14.32
20 160.996 1.697 149.713 2.815 140.975 16.07
0 31.78 0.86 31.42 1.40 30.93 7.68
20 30.08 0.94 29.56 1.50 28.78 8.00
40 72.69 1.14 70.35 1.85 67.59 10.00
60 494.29 1.35 478.38 2.32 463.79 13.77
80 483.82 1.56 454.59 2.77 429.57 17.20
100 294.74 1.83 285.35 3.34 274.50 21.81

%Neg

SS (50,000)

RU

SS (5,000)

OS

Act

SS (1,000)

Deadline
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Note that the b1 and b2 values depend on the stop criterion and have been set to 10 and 5 for 1,000 

schedules, 25 and 10 for 5,000 schedules and 50 and 30 for 50,000 schedules. Other parameters are stop 

criterion independent: the number of initial solution elements in the diversification generation method is 

always equal 500 and the minimum number of activities subject to a change in the subset combination 

method equals cmin = n / 5. These observations are in line with earlier scatter search results for the RCPSP 

described in Debels et al. (2006). 

 

5 Conclusions 

 

In this paper, we presented a scatter search algorithm to solve the resource-constrained project scheduling 

problem with discounted cash flows. This meta-heuristic procedure makes use of a bi-directional 

generation scheme and a recursive forward/backward improvement method.  

 

We have tested various variants of our algorithm on a self generated dataset containing 17,280 problem 

instances. We have illustrated the contribution of the bi-directional generation scheme and the beneficial 

effect of the recursive forward/backward improvement method. In order to facilitate comparison for future 

research developments, we have reported best known solutions under three different stop criteria and 

created a website where all detailed information can be downloaded. 

 

Our future intentions are as follows: First, we want to develop more advanced meta-heuristic search 

procedures to extend the basic problem type to, for example, multi-mode scheduling problems, pre-emptive 

activity execution, variable cash flows and many more. We believe that the bi-directional generation 

scheme and the recursive forward/backward improvement method can still be used for more advanced 

problem formulations. Second, we want to test our procedure on real-life instances. As an example, 

Vanhoucke and Demeulemeester (2003) have shown the beneficial effect of net present value 

maximization on a real-life capacity expansion project at a Flemish company that purifies water. Last, we 

want to compare the scatter search framework with the building blocks of other meta-heuristics, such as 

genetic algorithms, particle swarm optimization, ant colony optimization, etc… and compare their 

performance on our proposed dataset. 
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