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Many theories of consumer demand impose specific properties on the prefer-
ence relations, e.g. convexity, monotonicity or homotheticity. Existing non-
parametric tests which allow us to single out the preference relations that do
not satisfy these properties are only valid in very specific contexts. This paper
is an attempt to address this lacuna in the literature. We provide a theorem on
the existence of complete binary extensions that satisfy properties which are
closed under intersection. From this theorem we derive necessary and sufficient
conditions for the existence of convex, homothetic and monotonic orderings on
general domains.

1 Introduction

Many theories of consumer demand impose specific properties on the preference relations,
like convexity, monotonicity and homotheticity. As these properties have strong implica-
tions for the results of the models for which they are used, it is important to know whether
actual preferences satisfy them. In reality, however, instead of observing preferences, one
has observations on choices. By noticing that the chosen alternatives from a set are the
most preferred alternatives in this set, we may test restrictions on the preference relation
via tests on the observed choices. Deriving such test procedures, the so called rationaliz-
ability problem, is the subject of revealed preference theory.

Existing revealed preference tests which allow to single out the preference relations that
do not satisfy above mentioned properties are only valid in very specific contexts. Varian
(1983) develops tests to verify for the properties of convexity and homotheticity. These
results assume that the opportunity sets take the form of budget sets. Liu and Wong (2000)
extend these results but keep the assumption on the form of the opportunity sets. Richter
and Wong (2004) develop a test for the existence of convex preferences, but they assume
that the observed preferences are finite, complete and transitive. Richter (1966) provides a
condition that characterizes the existence of a transitive and complete preference relation
on general domains. His condition, however, says nothing about the existence of convex,
monotonic or homothetic preference orderings. To our knowledge, the only research that
provides a characterization of (strict) convex and monotonic preferences on general domains
is Bossert and Sprumont (2001). Their result applies to a framework of non-deteriorating
choice, but it is easy to see that it can also be applied to the revealed preference framework
under the condition that the revealed preference relation is finite. Besides the assumption
that the observed relation is finite, their work distinguishes from ours by using different
concepts and different methods of proof, and consequentially can not be directly compared.

Consider following simple example: an individual has a preference relation over a convex
subset of 3-dimensional real space. Consider six consumption bundles in this set:
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x1 = (10, 9, 3)
x2 = (9, 7, 8)
x3 = (12, 4, 8)
x4 = (4, 8, 12)
x5 = (8, 9, 7)
x6 = (8, 12, 4)

Assume that we observe that x1 is preferred to x2 and x5, x3 is preferred to x4, x6 is
preferred to x4 and x4 is strictly preferred to x1. Is it possible that the preference relation
of this individual is a convex ordering? Current non-parametric tests are unable to answer
this question since the required domain conditions are not met1. In section 3, we will
reconsider this example and argue that the individual preferences are not convex.

The use of general domains requires a general approach. For instance, it implies that a
priori there are no restrictions on the observed revealed preference relation. In this per-
spective, we may drop the concept of choice function and work directly on the revealed
preference relation, which can be any relation defined on the set of alternatives. This view
leads us to the theory of binary extensions: an extension of a (revealed preference) relation
is a binary relation that conserves the symmetric and asymmetric parts. The true prefer-
ence relation is now viewed as a binary extension of the revealed preference relation and
the demand for rationalizability is replaced by the demand for the existence of a binary
extension satisfying a certain list of properties. The theory on binary extensions was initi-
ated by Szpilrajn (1930) and was consecutively elaborated by, among others, Dushnik and
Miller (1941), Suzumura (1976), Donaldson and Weymark (1998) and Duggan (1999). This
research topic focussed almost entirely on the properties of transitivity and completeness2.

By developing characterizations for the existence of binary extensions which satisfy –besides
transitivity and completeness– the properties of convexity, homotheticity and monotonicity
on general domains, our paper meets the call by Bossert et al. (2002) for a characterization
of ordering extensions which satisfy properties such as convexity or monotonicity.

The main results of this paper are summarized below.

A property k of a binary relation is closed under intersection if the intersection of any set
of relations satisfying k also satisfies k. Examples are transitivity, convexity, monotonicity
and homotheticity. The set of properties which are closed under intersection is in a one
to one relationship with the set of closure operators. A closure operator is an increasing,
monotonic and idempotent function from the set of binary relations to itself. The set of
relations which satisfy property k is then equal to the set of fixed points of the associated
closure operator K. For a given relation R, the closure of R, K (R), is the smallest relation
which includes R and satisfies property k. This leads to the following, almost tautological,

1The opportunity sets do not have the form of budget sets as required by Varian (1983) and the observed
preferences are not complete (e.g. x1 vs x3) nor transitive as is required in by Richter and Wong (2004)

2Duggan (1999) is an exception. On the other hand, his properties have no direct relevance to preference
relations.
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result on the existence of binary extensions that satisfy property k: a binary relation has an
extension which satisfies k if the closure of R, K (R), does not conflict with its asymmetric
part.

So far, everything works out very nice. However, there is a catch: the property of com-
pleteness is not closed under intersection and has therefore, no representation as a closure
operator. In order to solve this issue, we impose restrictions on the closure operator such
that the characterization result holds even if we impose the additional property of com-
pleteness on the binary extension. A first restriction requires the closure operator to be
algebraic. This means that the closure of a binary relation can be recovered from the
closures of its finite subsets. The second restriction is called non-comparable extendibil-
ity and requires that for a closed relation, the closure of the union of this relation with
an element of its non-comparable part is an extension of this closed relation. Our result
then reads: if property k is closed under intersection and its associated closure operator
K is algebraic and non-comparable extendible, then a binary relation R has a complete
extension that satisfies property k if and only if its closure K (R) does not conflict with its
asymmetric part. For each of the properties of transitivity, convexity, monotonicity and
homotheticity, we define suitable closure operators and we show that they are algebraic and
non-comparable extendible. As such, we are able to characterize the existence of complete
and transitive relations which satisfies convexity, monotonicity or homotheticity. Further,
we state and prove the corresponding rationalizability results.

In section 2 we introduce notation and basic definitions and derive the main theorem of
the paper. It also presents a generalization of the result of Donaldson and Weymark (1998)
that every transitive and reflexive relation can be recovered from its ordering extensions.
Section 3 applies the main theorem to specific closure operators, in which we focus on the
properties of convexity, homotheticity and monotonicity. In section 4 we build a bridge
between the revealed preference literature and our results. This allows us to construct
non-parametric tests that can be taken to the data. Section 5 presents conclusions.

2 The general extension result

As usual R denotes the set of real numbers, R+
0 is the set of all strict positive real numbers

and Rn is the n-fold cartesian product of R. The set N is the set of strict positive integers.
For two elements x and y in Rn, we write x ≥ y if every element of x is larger or equal
than every corresponding element in y and we write x > y if x ≥ y and x 6= y. For a
universal set X, we say that R is a binary relation on X if R is a subset of X ×X. The
inverse relation of R, denoted by R−1 is defined as: (x, y) ∈ R−1 if and only if (x, y) /∈ R.
The symmetric part R∩R−1 is denoted by I (R), the asymmetric part R− I (R) by P (R)
and the non-comparable part X ×X − (R ∪R−1) by N (R).

A binary relation, R, is reflexive if for all x in X, (x, x) ∈ R, it is transitive if for all x, y
and z in X, (x, y) ∈ R and (y, z) ∈ R, implies (x, z) ∈ R and it is complete if for all x and
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y in X either (x, y) ∈ R or (y, x) ∈ R. Notice that a complete relation is always reflexive.
A transitive and complete relation is called an ordering.

The set of binary relations on X is given by R = {R |R ⊆ X ×X }.

Definition 1 A property of a binary relation is a function k from the set R to the set
{0, 1}.

Given a binary relation R ∈ R, we say that R satisfies the property k if and only if
k (R) = 1. On the other hand, R violates k if and only if k (R) = 0.

Definition 2 A property k is closed under intersection if for an index set A and for all
i ∈ A: k (Ri) = 1 implies that

k

(⋂
i∈A

Ri

)
= 1.

Evaluating the properties mentioned above, we see that transitivity and reflexivity are
both closed under intersection. On the other hand, next example shows that completeness
is not closed under intersection.

Example 1.

Let X be any subset of R, R = {(x, y) ∈ X ×X |x ≤ y} and let Q = R−1. Then both R
and Q are complete bur R ∩Q = ∅ is not.

Definition 3 A closure operator K is a function from R to R for which:

1. R ⊆ K (R),

2. if R ⊆ R′, then K (R) ⊆ K (R′),

3. K (K (R)) = K (R),

The first property states that the closure operator is increasing, the second property states
that it is monotonic and the third property states that it is idempotent.

Following Lemma (which we proof for completeness) shows that there is a one to one
mapping between the set of properties which are closed under intersection and the set of
closure operators.

Lemma 1 Given a property k which is closed under intersection, the function K : R→ R
defined by:

K (R) =
⋂
{Q ⊇ R |k (Q) = 1}

is a closure operator

Given a closure operator K, the function k : R→ {0, 1} defined by:

k (R) = 1 ↔ K (R) = R

is a property which is closed under intersection.
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Proof: Let k be a property which is closed under intersection. It is easy to verify that the
first and second property of Definition 3 are satisfied. To show that K is idempotent, notice
that, as k is closed under intersection, for all R: k (K (R)) = 1. As such, K (R) satisfies
property k. Further for every R with k (R) = 1, K (R) = R. Therefore K (K (R)) = K (R)
for all R ∈ R.

Given a closure operator K, let us show that k is closed under intersection. Consider an
index set A and for all i ∈ A a relation Ri = K (Ri). As for each i ∈ A:

⋂
j∈A

Rj ⊆ Ri,

we have by property 2 of the closure operator: K

( ⋂
j∈A

Rj

)
⊆
⋂

j∈A

K (Rj). From the first

property of the closure operator, we have that
⋂

j∈A

Rj ⊆ K

( ⋂
j∈A

Rj

)
. This implies that

K

( ⋂
j∈A

Rj

)
=
⋂

j∈A

Rj. �

From now on properties will be denoted by small letters (e.g. k, t, h) and the corresponding
closure operators will be denoted by capital letters (e.g. K, T,H).

In theory it should be easy to verify whether a binary relation (preference relation) satisfies
a certain list of properties. To often, however, one observes only a subset of the true
preference relation. In this case, it is no longer possible to verify the properties directly
from the true preferences. At best we can show the existence of a binary relation with the
required properties and state that it is possible for the true preference relation to be equal
to this relation.

Definition 4 A binary relation R∗ is an extension of R if and only if R ⊆ R∗ and P (R) ⊆
P (R∗).

We identify R∗ with the true preference relation and we identify R with the observed
preference relation. The requirement for the existence a preference relation satisfying
certain properties is now translated to the requirement of the existence of a binary extension
of R satisfying this list of properties. Let us first consider properties which are closed under
intersection.

Definition 5 Given a property k which is closed under intersection, a binary relation is
k-consistent if its K-closure does not conflict with its asymmetric part, i.e.

K (R) ∩ P−1 (R) = ∅.

The next lemma gives the characterization for the existence of a binary extension which
satisfies property k.
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Lemma 2 A relation R is k-consistent if and only if it has a binary extension satisfying
property k.

Proof. Let R be k-consistent. We show that K (R), which satisfies property k by definition,
is an extension of R. From the first property of the closure operator, R ⊆ K (R). If on
the contrary (x, y) ∈ P (R) and (x, y) /∈ P (K (R)), we have that (y, x) ∈ K (R) and
(x, y) ∈ P (R), in contradiction with K-consistency of R.

Let R∗ be an extension of R satisfying property k. If on the contrary R is not k-consistent,
we have an element (x, y) ∈ K (R) such that (y, x) ∈ P (R). As R∗ is an extension of R
and from the definition of the K-closure we have that K (R) ⊆ K (R∗) = R∗. This implies
that (x, y) ∈ R∗ and (y, x) ∈ P (R∗), a contradiction. �

As seen in Example 1, the property of completeness is not preserved under intersection.
Therefore it can not be represented by a closure operator. On the other hand, completeness
is a very essential property in economic theory and we would like to include it into the
list of required properties. The remaining part of this section shows that for some closure
operator, the additional requirement of completeness does not impose any new restrictions
upon the observed preference relation.

Definition 6 A closure operator K is algebraic if and only if for all R ∈ R: (x, y) ∈ K (R)
implies that there is a finite subset of R, lets say R′ such that (x, y) = K (R′).

An algebraic closure of a binary relation can be recovered from the closures of its finite
subsets. If the universal set X is finite, every closure operator is by definition algebraic.
Therefore, algebraic closure operators only impose restrictions in case the domain is infinite.

Before we give the main result of this section, we impose one last restriction on the class
of admissible closure operators.

Definition 7 A closure operator K is non-comparable extendible if for all R in R:

R = K (R) implies that for all (x0, y0) ∈ N (R): K (R ∪ {x0, y0})∩P−1 (R ∪ {x0, y0}) = ∅.

At this point, we can state our main result.

Theorem 1 Given a property k with can by represented by a non-comparable extendible,
algebraic closure operator;

a binary relation has a complete extension satisfying property k if and only if it is k-
consistent

Proof. Let K be a non-comparable extendible algebraic closure operator representing
property k and assume that R has a complete extension R∗ such that K (R∗) = R∗. If on
the contrary R is not k-consistent, there exist x, y ∈ X such that (x, y) ∈ K (R)∩P−1 (R).
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As K (R) ⊆ K (R∗) = R∗ and P (R) ⊆ P (R∗), we obtain (x, y) ∈ R∗ and (y, x) ∈ P (R∗),
a contradiction. Conclude that R is k-consistent.

The reverse is a bit more involved. Let K be a non-comparable extendible, algebraic
closure operator and assume that R is k-consistent. Consider the set Ω of all k-consistent
extensions of R. This set is non-empty as it contains R. Consider a chain, Ω′, in the set
Ω, i.e. for all R′ and R′′ in Ω′, either R′ ⊆ R′′ or R′′ ⊆ R′. We will apply Zorn’s lemma on
the set Ω and show that all maximal elements of Ω are complete and closed.

Consider the relation B =
⋃

R′∈Ω′ R′. As B is the union of extensions of R, it is also an
extension of R. To show that B is k-consistent, assume on the contrary that (x, y) ∈
K (B) ∩ P−1 (B). The closure K is algebraic, so there must be a finite subset of B, lets
say B′, such that (x, y) ∈ K (B′) and by definition of B, there must be a relation R′ in Ω′

containing B′. Also, there is at least one relation R′′ in Ω′ such that (y, x) ∈ P (R′′) and
for all relations R′′′ in Ω′, (x, y) /∈ R′′′. If R′ contains R′′, we have that (x, y) ∈ K (R′) and
(y, x) ∈ P (R′). If R′′ contains R′ we have that (x, y) ∈ K (R′′) and (y, x) ∈ P (R′′). In
both cases, we have a contradiction with k-consistency of R′ and R′′. Conclude that B is
k-consistent. Application of Zorn’s lemma results in the existence of a maximal element
in the set Ω.

Let R∗ be a maximal element of Ω. We will show that R∗ satisfies property k and complete-
ness. To show the first, notice that K (R∗) is an extension of R∗. As R∗ is an extension
of R, K (R∗) is also an extension of R. Together with k-consistency of K (R∗), we must
conclude that K (R∗) ∈ Ω. By the first property of the closure operator, R∗ ⊆ K (R∗)
and by maximality of R∗, K (R∗) = R∗. Conclude that R∗ satisfies property k. To show
completeness of R∗ assume on the contrary that there exist elements x0, y0 ∈ X such that
(x0, y0) ∈ N (R∗). The relation R0 = R ∪ {x0, y0} has by non-comparable extendability
of K an extension K (R0). This relation is also an extension of R∗ and as such, also an
extension of R. Furthermore, K (R0) is k-consistent, hence it is in the set Ω. As K (R0)
strictly contains R∗, we have a contradiction with maximality of R∗. Conclude that R∗ is
complete. �

A relation satisfying k is also k-consistent. Hence, by Theorem 1, it has a complete
extension satisfying property k. Let E (R) be the non-empty set of all complete extensions
satisfying property k of a relation R = K (R) (i.e. R also satisfies property k). The
following corollary gives a result similar to the result of Donaldson and Weymark (1998).

Corollary 1 If a property k corresponds to a closure operator K which is algebraic and
non-comparable extendible, then for any reflexive relation R satisfying property k:

R =
⋂

R′∈E(R)

R′.

Proof. The relation R is contained in every element of the set E (R), hence it is also in
their intersection.
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To see the converse, assume on the contrary that (x, y) is contained in every element E (R)
and that (x, y) /∈ R. If (y, x) ∈ P (R), we have a contradiction with the assumption that
E (R) contains the extensions of R, hence we must have that (x, y) ∈ N (R). The relation
R0 = R∪{y, x} has by non-comparable extendibility of K, as extension the relation K (R0).
This relation is also an extension of R. As K (R0) is k-consistent it has by Theorem 1 a
complete extension satisfying property k, lets say R∗. The relation R∗ is also an extension
of R, hence it is in E (R). The contradiction follows from the fact that (y, x) ∈ P (R∗). �

3 Transitive, convex, homothetic and monotonic ex-

tensions

This section applies Theorem 1 to specific properties. We focus on the properties of
transitivity, convexity, homotheticity and monotonicity, as these are, in our opinion, the
most frequently imposed properties on binary relations in economic theory.

3.1 Complete and transitive extensions

To start, we reproduce the result of Suzumura (1976) that every relation has a complet
and transitive extension if and only if it is transitive-consistent. Additionally, we obtain
the result of Donaldson and Weymark (1998) that every reflexive and transitive relation
equals the intersection of its ordering extensions.

Let R be a binary relation on our universal space X. Recall the definition of transitivity:

Definition 8 The relation R is transitive (property t) if for all x, y and z in X,

(x, y) ∈ R and (y, z) ∈ R implies that (x, z) ∈ R.

The transitive closure of R is denoted by T (R) and is defined in the following way:

Definition 9 (x, y) ∈ T (R) if x = y or there is a sequence s = x1, x2, ..., xn of elements
in X such that x = x1, xn = y and for each i = 1, ..., n− 1:

(xi, xi+1) ∈ R.

Let us start by showing that indeed T is the closure operator corresponding to property t.

Lemma 3
T (R) =

⋂
{Q ⊇ R |t (Q) = 1}
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Proof: Assume that (x, y) ∈ T (R) and there is a transitive relation Q ⊇ R. From the
definition, we have a sequence x1, ..., xn such that x1 = x, xn = y and for all i = 1, ..., n−1:
(xi, xi+1) ∈ R. From R ⊆ Q, we have that (xi, xi+1) ∈ Q for all i = 1, ..., n. By repeated
application of transitivity we have that (x, y) ∈ Q.

By Definition 3: R ⊆ T (R). It is also easy to see that T (R) is transitive. Therefore we
have that when (x, y) ∈ Q for all transitive relations containing R, (x, y) ∈ T (R). �

In order to apply Theorem 1 to the transitive closure, we need to show that it is algebraic
and non-comparable extendible. We do this in following lemma.

Lemma 4 The closure T is algebraic and non-comparable extendible.

Proof. To see that T is algebraic, let (x, y) ∈ T (R). Then, either x = y or there is a
number n ∈ N and a sequence s = x1, ..., xn of elements in X such that for all i = 1, ..., n−1:

(xi, xi+1) ∈ R.

Let the set A collect all elements of the sequence s. By finiteness of the sequence s,
R ∩ A × A is a finite subset of R. The conclusion follows from the observation that
(x, y) ∈ T (R ∩ A× A). �

Let us now show that T is non-comparable extendible. Let R = T (R), (x0, y0) ∈ N (R)
and R0 = R ∪ {(x0, y0)}. From Definition 3, we have that R0 ⊆ T (R0). Assume on the
contrary that (x, y) ∈ T (R0) ∩ P−1 (R).

From (x, y) ∈ T (R0), we know that there is a number n ∈ N and a sequence s = x1, ..., xn

such that x = x1, y = xn and for all i = 1, 2, ...n − 1: (xi, xi+1) ∈ R0. If for all i =
1, 2, ..., n − 1 also (xi, xi+1) ∈ R, we have that (x, y) ∈ T (R) a contradiction with the
assumption that (y, x) ∈ P (R0).

We conclude that there must at least be one i ≤ n such that (xi, xi+1) = (x0, y0). Let xl be
the last instance of such an y0 and let xf be the first instance of such an x0 in the sequence
s. As R0 − R = (x0, y0) and (y, x) ∈ R0 we have that (xl, xf ) ∈ T (R), or equivalently
(y0, x0) ∈ R, a contradiction. �

The following theorem reproduces the result of Suzumura (1976).

Theorem 2 R has an ordering (transitive and complete) extension if and only if R is
t-consistent, i.e. T (R) ∩ P−1 (R) = ∅.

Proof. By Lemma 4, the closure T closure is algebraic and non-comparable extendible.
Further, by Lemma 3, T , is the closure operator corresponding to property t. Application
of Theorem 1 implies that a relation has a complete and transitive extension if and only if
it is t-consistent. �
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As additional result, we can reproduce the result of Donaldson and Weymark (1989).

Theorem 3 A reflexive and transitive relation is equal to the intersection of its ordering
extensions.

Proof. Follows immediately from Theorem 1, 2 and Corollary 1. �

3.2 Complete, transitive and convex extensions

In this part, we focus on the additional property of convexity. For this we take our universal
space to be a subset of Rm. Further, we assume that X is convex closed, i.e. every convex
combination of two elements of X is in X. It is possible to reproduce the results of
this section without this domain assumption. However, this would drastically expand the
notational difficulty without really adding something fundamental to the analysis.

The property of convexity has many forms, depending on the additional requirements
imposed on the relation under consideration. In its most fundamental form, it may be
stated as follow:

Definition 10 A relation R is convex if

(x, y) ∈ R (resp. P (R)) and 0 < α < 1 implies (αx + (1− α) y, y) ∈ R (resp. P (R)) .

Four our purpose this definition is not really adequate so we define our property in another
way. Consider a finite set A ⊆ X and let

V (A) =

{
x ∈ X

∣∣∣∣∣x =
∑
yi∈A

αiyi

}

where for all i, αi > 0 and
∑

i αi = 1. The set V (A) is the convex hull spanned by the
elements of A without its boundaries.

Consider a finite number n ∈ N of sequences s1, ..., sn of finite length. We denote the jth
element of sequence i by xi

j. The closure operator C of a relation R, denoted by C (R) is
defined as:

Definition 11 (x, y) ∈ C (R) if x = y or there is a number n ∈ N of sequences s1, ..., sn

of finite length, where:

• all initial values of all sequences are equal to x (i.e. for all i = 1, 2, ..., n, xi
1 = x),

• all terminal values of all sequences are equal to y (i.e. for the sequence si of length
ni: xi

ni
= y),

• all nonterminal elements xi
j of a sequence si (i = 1, 2, ..., n), are related to their

immediate successor in the sequence si, i.e. xi
j+1, by one of following two rules

10



1.
(
xi

j, x
i
j+1

)
∈ R or

2. xi
j ∈ V

(
Ai

j

)
, where Ai

j is a subset of the set which collects all the elements of
the sequences s1, ..., sn and Ai

j contains xi
j+1.

We remark that although two elements can be in a different sequence or in a different
position of the same sequence, it is possible that they represent the same element in the
set X.

In this section we define the property c by its corresponding closure C. This approach
is equivalent to the approach form previous section, as we can define the property c as
c (R) = 1 if and only if C (R) = R.

It is not immediately clear how this property c corresponds to the notion of convexity and
transitivity. However, we have following Lemma.

Lemma 5 If R is complete, then R is convex and transitive if and only if R = C (R) (i.e.
R satisfies property c).

Proof. It is easy to see that R = C (R) implies that R is transitive and convex. The
converse is a bit more complicated. We proceed by showing:

(i) If R is complete, transitive and convex, then for every finite subset A of X if

y ∈ V (A)

we have that either (y, yj) ∈ I (R) for all yj ∈ A or (y, yj) ∈ P (R) for at least one yj ∈ A.

(ii) If R is transitive and satisfies the condition under (i), then R = C (R).

To proof (i), let R be complete, transitive and convex. Let y ∈ V (A). We must show that
either (y, yj) ∈ I (R) for all j = 1, 2, ..., n or for at least one j = 1, 2, ..., n, (y, yj) ∈ P (R).

The proof is by induction on n. If n = 1, then we have y = y, and by completeness of

R : (y, y) ∈ I (R). Let (i) be satisfied for all n ≤ m. Now let y =
m+1∑
j=1

αjyj. Consider

y′ =
m∑

j=1

αj

1−αm+1
yj. This element y′ is in X, because X is a convex set. We have that

y = αm+1ym+1 + (1− αm+1) y′.

By the induction hypothesis either (y′, yj) ∈ I (R) for all j ≤ m or (y′, yj) ∈ P (R) for at
least one j ≤ m.

The relation R is complete, hence either (ym+1, y
′) ∈ R or (y′, ym+1) ∈ R.

If (ym+1, y
′) ∈ R, we have by convexity that (y, y′) ∈ R. If (y, y′) ∈ P (R), we have,

together with the induction hypothesis and transitivity, that (y, yj) ∈ P (R) for at least
one j ≤ m. If (y, y′) ∈ I (R), by convexity also (y, ym+1) ∈ I (R). By the induction
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hypothesis and transitivity either (y, yj) ∈ P (R) for at least one j ≤ m or (y, yj) ∈ I (R)
for all j ≤ m + 1.

If (y′, ym+1) ∈ R we have by convexity that (y, ym+1) ∈ R. If (y, ym+1) ∈ P (R), we are
done. If (ym+1, y) ∈ I (R) we also have by convexity (ym+1, y

′) ∈ I (R). From the induction
hypothesis and transitivity, either (y, yj) ∈ P (R) for at least one j ≤ m or (y, yj) ∈ I (R)
for all j ≤ m + 1.

(ii) Let R be transitive, convex and complete. That R ⊆ C (R) follows immediately
from the definition of the convex closure. Assume that (x, y) ∈ C (R). We show that
(x, y) ∈ R via the construction of a sequence y1, ..., ym such that y1 = x, ym = y and for
all j = 1, 2, ...,m− 1, (yj, yj+1) ∈ R. Consider following algorithm:

1. Put y1 = x1
1 and set m = 1.

2. If ym = y, we stop. Otherwise, we increase m by one (m := m + 1),

3. For ym−1 = xi
j, if

(
xi

j, x
i
j+1

)
∈ R, we put ym equal to xi

j+1 and return to step 2.

4. For ym−1 = xi
j, if xi

j ∈ V
(
Ai

j

)
, by step (i), there are two cases to consider.

(a) If
(
xi

j, x
i
j+1

)
∈ R, we put ym = xi

j+1 and return to step 2.

(b) If
(
xi

j, x
v
w

)
∈ P (R) for some element xv

w in a sequence sv, we put ym = xv
w and

return to step 2.

To get an idea how this algorithm works, assume that we have arrived at an element xi
j.

First the algorithm looks at the element xi
j+1. If

(
xi

j, x
i
j+1

)
∈ R, the algorithm considers

xi
j+1 as the following element. If xi

j ∈ V
(
Ai

j

)
, by step (i) of the proof, there are two cases.

Either
(
xi

j, x
i
j+1

)
∈ R, in which case the algorithm considers xi

j+1 as the following element

or there is an element xv
w in a sequence sv, such that

(
xi

j, x
v
w

)
∈ P (R). In this case, the

algorithm considers xv
w as the following element.

The algorithm is well behaved, because it stops at the value y. We show that the algorithm
stops in finite time. If it does not, by finiteness of the sequences, we must have a loop in the
sequence x = y1, y2, ..., yf , ..., yl, .... Lets say yf and yl correspond to the same element in
the same sequence. This can only occur if the algorithm suddenly jumps from one sequence
to another, i.e. it passes step 4.(b). Therefore, there must be a strict preference involved,
lets say (yv, yv+1) ∈ P (R) (f ≤ v ≤ l). Also, as yv is in the loop,we must have that
(yv+1, yv) ∈ T (R). This contradicts with the assumption that R is transitive. Therefore,
the algorithm must stop in finite time at step 2, i.e. at y. By transitivity of R, we get
(x, y) ∈ R, as desired. �

In order to use Theorem 1, we still need to show that C is an algebraic closure operator
and that it is non-comparable extendible. This is shown in the following lemmata.
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Lemma 6 The operator T is an algebraic closure operator.

Proof. Property 1 and 2 of the closure operator are easily verified. To see property 3,
let (x, y) ∈ C (C (R)). By definition either x = y or there exist a number n ∈ N and
sequences s1, ..., sn of finite length where all sequences start with x, end with y and for
each nonterminal element xi

j in a sequence si and its immediate successor xi
j+1 either(

xi
j, x

i
j+1

)
∈ C (R) or xi

j ∈ V
(
Ai

j

)
, where Ai

j is a set containing xi
j+1 and a number of

elements of all the sequences.

If x = y, we immediately have that (x, y) ∈ C (R). If x 6= y, we see that for each jth
element in a sequence si, i.e. xi

j, for which
(
xi

j, x
i
j+1

)
∈ C (R) there is a finite number,

n (i, j) ∈ N, of sequences s (i, j)1 , ...., s (i, j)n(i,j), such that all sequences start with xi
j,

end with xi
j+1 and for each nonterminal element x (i, j)v

w in a sequence s (i, j)v, either(
x (i, j)v

w , x (i, j)v
w+1

)
∈ R or x (i, j)v

w ∈ V (A (i, j)v
w), where A (i, j)v

w contains x (i, j)v
w+1

and a number of elements of the sequences s (i, j)1 , ..., s (i, j)n(i,j).

For an element xi
j in sequence si for which xi

j ∈ V
(
Ai

j

)
, we consider the sequence s (i, j)1 =

x (i, j)1
1 , x (i, j)1

2, where the first element equals xi
j and the second element equals xi

j+1.
Now, let s′ (i, j)v be the sequence s (i, j)v without the last element. Let sequence si have
ni elements. Construct the (finite number) of sequences of the form

s (i, j, v) = s′ (i, 1)1 , s′ (i, 2)1 , ..., s′ (i, j − 1)1 , s′ (i, j)v , s′ (i, j + 1)1 , ..., s (i, ni − 1)1

All these sequences, start with the value x and end with the value y. Further, each
nonterminal element in this sequence and its immediate successor is linked in a way such
that (x, y) ∈ C (R).

To show that C is algebraic, let (x, y) ∈ C (R). We have a finite number of sequences
s1, ..., sn where each sequence begins with x, ends with y and for each nonterminal element
xi

j in a sequence si and its immediate successor xi
j+1, either

(
xi

j, x
i
j+1

)
∈ R or xi

j ∈ V
(
Ai

j

)
.

Let A collect all the elements of the sequences s1, ..., sn.The proof follows from the fact
that (x, y) ∈ C (R ∩ A× A) and that R ∩ A× A is a finite subset of R. �

Lemma 7 The closure C is non-comparable extendible.

Proof. Let R = C (R) and (x0, y0) ∈ N (R). As C (R) is reflexive x 6= y. Assume on the
contrary that for R0 = R ∪ {(x0, y0)}: (x, y) ∈ C (R0) ∩ P−1 (R0). There are two cases to
consider.

1. (y, x) ∈ P (R).

From the definition of C, there exist sequences s1, ..., sn where each sequence starts
with x, ends with y and for each nonterminal element xi

j in a sequence si and its

immediate successor xi
j+1 either

(
xi

j, x
i
j+1

)
∈ R0 or xi

j ∈ V
(
Ai

j

)
, where Ai

j contains
xi

j+1 and a number of elements from the sequences s1, ..., sn.
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If for all xi
j, where

(
xi

j, x
i
j+1

)
∈ R0 also

(
xi

j, x
i
j+1

)
∈ R, then (x, y) ∈ C (R),

a contradiction. Therefore, there is at least one xi
j for which xi

j /∈ V
(
Ai

j

)
and(

xi
j, x

i
j+1

)
= (x0, y0).

Take any sequence si and denote its length by ni. If there is an element xi
j in si so

that
(
xi

j, x
i
j+1

)
= (x0, y0), there are at most a finite number of such elements. Let

l−1 be the last such value of j and let f be the first such value of j (we have xi
l = y0

and xi
f = x0). For each instance of j for which

(
xi

j, x
i
j+1

)
= (x0, y0) either j + 1 = l

in which case we consider the sequence

y0 = xi
l+1, ...x

i
ni−1, y, x, xi

2, ..., x
i
f = x0

. . . or there must be a value of x0 further in the sequence (i.e. there is an element xi
v

in sequence si, with v > j so that
(
xi

v, x
i
v+1

)
= (x0, y0)). In this case, we take the

sequence
y0 = xi

j+1, ..., x
i
v = x0.

If in the sequence si, there is no element xi
j for which

(
xi

j, x
i
j+1

)
= (x0, y0), we consider

the sequence

x0 = xv
l , ..., x

v
nv−1, y, x, xi

2, ..., x
i
ni−1, y, x, xv

2, ..., x
v
f = x0

for some sequence sv of length nv, containing an element xv
j for which

(
xv

j , x
v
j+1

)
=

(x0, y0).

In this way, we construct a finite number of sequences, running over all the elements of
all the former sequences. These new sequences obey all the conditions upon (y0, x0) ∈
C (R), a contradiction. Conclude that C (R0) ∩ P−1 (R0) = ∅.

2. (y, x) = (x0, y0)

The proof of this case is similar to the previous one, and is left to the reader.

�

Now we can state the result which characterizes the existence of a complete, transitive and
convex extension.

Theorem 4 A binary relation R has a complete, transitive and convex extension if and
only if it is c-consistent, i.e. C (R) ∩ P−1 (R) = ∅.

Proof. From Lemma 6 and 7 together with Theorem 1 we know that a relation has a
complete extension satisfying property c if and only if it is c-consistent. From Lemma 5 we
know that this complete relation satisfies property c if and only if it is a complete transitive
and convex relation. �
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If one desires to test wether a relation is c-consistent, the construction of the closure C may
be to cumbersome, i.e. too many sequences have to be checked. We now develop a result
that eliminates a large number of these sequences. We establish this in two steps. First
we show that c-consistency is equivalent to the condition of c′-consistency (defined below)
and next we show that c′-consistency is equivalent to the condition of c′′- consistency (also
defined below).

We define the closure C ′ (R) as:

Definition 12 (x, y) ∈ C ′ (R) if x = y or there is a finite sequence s = x1, ..., xn of
elements in X such that x1 = x, xn = y and for all i = 1, ..., n− 1 either

(xi, xi+1) ∈ R

or
xi ∈ V (Ai)

where Ai contains xi+1 and a collection of elements of the sequence s.

The definition of the C ′-closure only uses one sequence, in stark contrast to the definition
of C-consistency which uses a finite number of sequences. However, we have the following
result.

Lemma 8 A relation is c-consistent if and only if it is c′ consistent, i.e. C (R)∩P−1 (R) =
∅ ↔ C ′ (R) ∩ P−1 (R) = ∅

Proof. It is easy to see that c-consistency implies c′-consistency. To see the reverse,
assume that R is not c-consistent, i.e. (x, y) ∈ C (R) ∩ P−1 (R). From (x, y) ∈ C (R),
we get that there exist a number n ∈ N of finite sequences s1, ...., sn of elements in X
where each sequence begins with x, ends with y and for each nonterminal element xi

j of a

sequence si and its immediate successor xi
j+1 either

(
xi

j, x
i
j+1

)
∈ R or xi

j ∈ V
(
Ai

j

)
, where

Ai
j contains xi

j+1 and a finite number of elements of the sequences s1, ..., sn.

Consider the compound sequence

s = s1, s2, ..., sn

As (y, x) ∈ R, this compound sequence satisfies the conditions upon (x, y) ∈ C ′ (R).
However, (y, x) ∈ P (R), a contradiction with c′-consistency. �

We can further simplify the condition of c′-consistency by the concept of c′′-consistency.

Let SR be the subset of X defined as

SR = {x ∈ X | there is an y ∈ X for which (x, y) ∈ R or (y, x) ∈ R} .

We define the closure C ′′ (R) as:
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Definition 13 (x, y) ∈ C ′ (R) if x = y or there is a sequence s = x1, ..., xn of elements in
SR with x1 = x, xn = y and for all i = 1, ..., n− 1 either

(xi, xi+1) ∈ R

or
xi ∈ V (Ai)

where A contains xi+1 and a number of elements of the sequence s.

As the sequence in the definition of the closure C ′′ uses a considerable smaller domain for
its elements compared to the sequence in the definition of the closure C ′, it is a lot easier
to verify if (x, y) ∈ C ′′ (R), then to verify if (x, y) ∈ C ′ (R). We have the following nice
result.

Lemma 9 A relation R is c′-consistent if and only if it is c′′-consistent

Proof. It is easy to see that c′-consistency implies c′′-consistency. To see the reverse let R
be c′′-consistent and assume on the contrary that (x, y) ∈ C ′ (R) ∩ P−1 (R) (this implies
that x, y ∈ SR). From the definition, there is a sequence s = x1, ..., xn of elements in X,
where x1 = x, xn = y and for each i = 1, ..., n − 1 either (xi, xi+1) ∈ R or xi ∈ V (Ai),
where Ai contains xi+1 and a number of elements from the sequence s.

Let A be the set consisting of all the elements in the sequence s. Consider the set A−SR.
If this set is empty, then immediately (x, y) ∈ C ′′ (R) contradicting c′′-consistency. Hence,
A− SR is non-empty. For each element xi ∈ A− SR, we have that xi ∈ V (Ai). If A− SR

has q elements, we have q equations, hence each element of A− SR can be expressed as a
convex combination of elements in A∩SR. To see this, notice that each element x ∈ A−SR

can be expressed as a convex combination of elements of A− {x}. In this way, the convex
set spanned by the set A is equal to the convex set spanned by A−{x}. Consider a second
element of A− SR, e.g. x′. Let

x =
∑
i

αixi + αx′,
∑
i

αi + α = 1, xi ∈ A− {x, x′} ,

x′ =
∑
i

βixi + βx,
∑
i

αi + α = 1, xi ∈ A− {x, x′} .

Substitution gives us

x =
∑

i

(αi + αβi)

(1− αβ)
xi.

And as
∑
i

(αi+αβi)
(1−αβ)

=

P
i

αi+
P
i

αβi

1−αβ
= 1 and (αi+αβi)

(1−αβ)
> 0, we have that x can be expressed as

a linear combination of elements in A− {x, x′} and similarly for x′. Hence, the convex set
spanned by the elements in A equals the convex set spanned by the elements in A−{x, x′}.
Iteration over all elements in A−SR, gives us that each element of A−SR is in the convex
set spanned by the elements in A ∩ SR.

Consider following algorithm,
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1. Set j = 0.

2. Set y1 = x1.

3. If yj+1 = xn stop, else increase j by one, i.e. j := j + 1.

4. For yj = xi, if (xi, xi+1) ∈ R, we set yj+1 = xi+1 and we go back to step 3.

5. For yj = xi, if xi ∈ V (Ai) and xi+1 ∈ SR, we set yj+1 = xi+1. As every element in
A−SR can be expressed as a linear combination of elements in A∩SR, by substitution
yj ∈ V (A′

i), where A′
i ⊆ A ∩ SR and contains yj+1. Go back to step 3.

6. For yj = xi, if xi ∈ V (Ai) and xi+1 ∈ A − SR, we have that xi+1 ∈ V (Ai+1). By
substitution xi ∈ V (A′

i), where A′
i contains xi+2. As y ∈ SR ∩ A, continuing this

way, there must be a smallest v such that xi ∈ V (Av
i ), where Av

i contains xi+v and
xi+v ∈ SR ∩ A. We set yj+1 = xi+v. As every element in A − SR can be expressed
as a linear combination of elements in A ∩ SR, by substitution yj ∈ V

(
Av+1

i

)
, where

Av+1
i contains xi+v and Av+1

i ⊆ A ∩ SR. Go back to step 3.

As A is finite, this algorithm must stop in finite time. Every element in A∩SR corresponds
to an element yj for a certain j. Notice that the finite sequence s′ = y1, y2, ... satisfies the
requirements upon (x, y) ∈ C ′′ (R), a contradiction with c′′-consistency of R. �

A straightforward result of Lemma 8 and 9 is that R has a complete, transitive and convex
extension if and only if it is c′′-consistent. This last condition is a lot easier to verify than
the condition of c-consistency.

It would have saved us a lot of work if we would have started this section with the closures
C ′ or C ′′ instead of the technical cumbersome definition of closure C. However, it turns out
that the closures C ′ and C ′′ are not non-comparable extendible. As such, we are unable to
use Theorem 1 directly on these closures. This indicates that, at least for the property of
convexity, the requirement of non-comparable extendibility is stronger than necessary for
Theorem 1 to be valid.

Let us return to the example in the introduction. We have that x2 = 0.5x3+0.25x4+0.25x6

and that x5 = 0.5x6+0.25x4+0.25x3. Consider the sequence x1, x2, x3, x4, x1, x5, x6, x4. We
see that this sequence contradicts c′′-consistency. Therefore, we must reject the hypothesis
that there exist a convex ordering extension of the observed preferences relation.

3.3 Homothetic ordering extensions

Again, let our universal set X be a subset of Rm. Further assume that X is homothetic
closed, i.e. if x ∈ X, then for each α ∈ R+

0 , αx ∈ X. Again this domain is stronger than
necessary, but we retain the assumption because the increase in generality does not weigh
up against the increase in notational complexity.
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Definition 14 A binary relation R on X is homothetic (property h) if

(x, y) ∈ R (resp. P (R)) and α ∈ R+
0 implies (αx, αy) ∈ R (resp. P (R)) .

It turns out that homotheticity is a lot easier to analyze in accordance with monotonicity.

Definition 15 A relation R is monotonic (property m) if

x ≥ y implies (x, y) ∈ R.

In this section, we will join the properties of homotheticity, monotonicity and transitivity.
As most economic relations are required to be monotonic, this is not a very stringent
condition. Property h, m and t together are for notational simplicity written as property
h̄. We then write h̄ (R) = 1 if and only if h (R) = 1, m (R) = 1 and t (R) = 1. As all three
properties are closed under intersection, the joint property is also closed under intersection.

The homothetic, transitive and monotonic closure of a relation R, H̄ (R), is defined as:

Definition 16 (x, y) ∈ H̄ (R) if there is a sequence s = x1, x2, ..., xn of elements in X
such that x = x1, y = xn and for all i = 1, 2, ..., n− 1 either

xi ≥ xi+1,

or there is an αi ∈ R+
0 , such that

(αixi, αixi+1) ∈ R.

Notice that H̄ (R) is reflexive. We begin by observing that the closure H̄ indeed corresponds
to the property h̄.

Lemma 10
H̄ (R) =

{
Q ⊇ R

∣∣h̄ (Q) = 1
}

Proof: straightforward. �

We are still left to show that H̄ is algebraic and non-comparable extendible.

Lemma 11 H̄ is an algebraic, non-comparable closure operator.

Proof. To see that H̄ is algebraic, let (x, y) ∈ H̄ (R). This means that either x = y or
there is a sequence s = x1, ..., xn of elements in X such that x = x1,xn = y and for all
i = 1, 2, ..., n− 1: either xi ≥ xi+1 or there is an αi ∈ R+

0 such that (αixi, αixi+1) ∈ R. For
xi ≥ xi+1, define αi = 1 and let A collect all the elements αixi and αixi+1. We have that
(x, y) ∈ H (R ∩ A× A) and R ∩ A× A is a finite subset of R.
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To see that H̄ is non-comparable extendible, let R = H̄ (R) and let (x0, y0) ∈ N (R). Set
R0 = R ∪ {(x0, y0)} and assume on the contrary that (x, y) ∈ H̄ (R0) ∩ P−1 (R0).

This means that there is a finite sequence s = x1, ..., xn of elements in X for which x = x1,
y = xn and for all i = 1, 2, ..., n− 1, xi ≥ xi+1 or (αixi, αixi+1) ∈ R0 for some αi ∈ R+

0 . If
for all i = 1, 2, ..., n − 1, where (αixi, αixi+1) ∈ R0, also (αixi, αixi+1) ∈ R, then (x, y) ∈
H̄ (R) = R, in contradiction with (y, x) ∈ P (R0). Conclude that there is at least one xi

such that (αixi, αixi+1) = (x0, y0).

Therefore, there is a finite set S = {β1, ..., βq} of elements in R+
0 such that for all i =

1, ..., q − 1,
(

1
βi

y0,
1

βi+1
x0

)
∈ H (R), and

(
1
βq

y0,
1
β1

x0

)
∈ H̄ (R). Take the smallest value

from the set S, say βj. For j > 1, by homotheticity of R:
(
y0,

βj−1

βj
x0

)
∈ R and by

monotonicity
(

βj−1

βj
x0, x0

)
∈ R. By transitivity of R, we get that (y0, x0) ∈ R. This

is in contradiction with (x0, y0) ∈ N (R). If j = 1, we have that
(
y0,

βq

β1
x0

)
∈ R and(

βq

β1
x0, x0

)
∈ R and again by transitivity of R: (y0, x0) ∈ R. �

Our characterization result for complete, transitive, homothetic and monotonic extensions
reads as follows.

Theorem 5 A binary relation has a extension satisfying property h̄ if and only if it is
h̄-consistent, i.e. H̄ (R) ∩ P−1 (R) = ∅.

Proof. Using Lemma 10 and 11 together with Theorem 1, we have that a relation has a
complete extension satisfying property h̄ if and only if it is h̄-consistent. �

3.4 Complete and monotonic extensions

The last part of this section focusses on the properties of monotonicity and strict mono-
tonicity. Again, we assume that X is a subset of Rn.

We recall that a relation R on X is monotonic (property m) if

x ≥ y implies (x, y) ∈ R.

Definition 17 A relation R on X is strict monotonic (property s) if in addition to mono-
tonicity also

x > y implies (x, y) ∈ P (R) .
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Let us first focus on the property of monotonicity. Let

R̄ = R ∪ {(x, y) |x ≥ y} .

and for a closure K, let the operator K̄ be defined as

K̄ (R) = K
(
R̄
)
.

Immediately, we have the following result on the operator K̄.

Lemma 12 If K is a non-comparable extendible, algebraic closure operator, then the op-
erator K̄ is also a non-comparable extendible, algebraic closure operator.

Proof. To show that K̄ is a closure operator, we show that it satisfies all four properties.
Property 1 follows from R ⊆ R̄ ⊆ K

(
R̄
)

= K̄ (R). Property 2 follows from the fact
that R ⊆ Q, implies R̄ ⊆ Q̄. Property 3 is a consequence of K̄

(
K̄ (R)

)
= K

(
K̄ (R)

)
=

K
(
K
(
R̄
))

= K
(
R̄
)

= K̄ (R) and property 4 follows from K̄ (R) = K
(
R̄
)

= K (S) =
K̄ (V ), with S a finite subset of R̄ and V = S −

(
R̄−R

)
.

We are left to show that K̄ is non-comparable extendible. Let R = K̄ (R) and (x0, y0) ∈
N (R). We have that R̄ ⊆ K

(
R̄
)

= R, hence R is monotonic and by definition R0 = R̄0.
We know that R0 = R ∪ {(x0, y0)} ⊆ K̄ (R0), so let (x, y) ∈ P (R0) = P

(
R̄0

)
. The closure

K is non-comparable extendible, hence (x, y) ∈ P (K (R0)) = P
(
K
(
R̄0

))
= P

(
K̄ (R0)

)
.

�

From this lemma we have that with every property k which is closed under intersection,
we can associate a property k̄ which is also closed under intersection and represents both
properties k and m. We have the following result on the existence of a complete extension
satisfying k̄.

Theorem 6 If K is a non-comparable extendible closure operator, then a binary relation
has a complete extension satisfying properties k and m if and only if it is k̄-consistent, i.e.
K̄ (R) ⊆ P−1 (R) = ∅.

Proof. We know from Lemma 12 that K̄ is an algebraic, non-comparable extendible closure
operator. Hence, from Theorem 1, k̄-consistency is necessary and sufficient for the existence
of a complete and k̄-closed extension. It follows from the definition that this extension
satisfies both properties k and m. To see the converse, assume on the contrary that
R∗ satisfies both k and m, and is a complete extension of R, and assume that (x, y) ∈
K̄ (R) ∩ P−1 (R). As R̄ ⊆ R̄∗, we have that K̄ (R) ⊆ K̄ (R∗) = R∗. Therefore, we have
that (x, y) ∈ R∗ and (y, x) ∈ P (R∗), a contradiction. �

Let us now focus on the property s.
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Theorem 7 A binary relation has a complete extension that satisfies properties s and k
if and only if, (x, y) ∈ K̄ (R) implies (y, x) /∈ P (R) and y 6> x.

Proof. Let R be k̄-consistent. By Lemma 2, we have that K̄ (R) is an extension of R. First
we show that K̄ (R) is strict monotonic. We have that x > y implies (x, y) ∈ R̄, and so
(x, y) ∈ K̄ (R). If also (y, x) ∈ K̄ (R), we have a contradiction with the requirement that
x 6> y. Conclude that K̄ (R) is strict monotonic. The relation K̄ (R) satisfies property k̄,
hence it is k̄-consistent. From Theorem 6 it has a monotonic, complete extension satisfying
property k, lets say R∗. If x > y, we have (x, y) ∈ P

(
K̄ (R)

)
giving (x, y) ∈ P (R∗).

Conclude that R∗ is strict monotonic.

To see the converse, let R∗ be a strict monotonic, complete extension of R satisfying
property k . From this, R is k̄-consistent. Now assume on the contrary that (x, y) ∈ K̄ (R)
and y > x. Then we have (x, y) ∈ K (R∗) = R∗, contradicting strict monotonicity of R∗.
�

The last two theorems can be used in combination with the previous results. For example;
a relation has a strict monotonic and convex ordering extension if and only if (x, y) ∈ C̄ (R)
implies (y, x) /∈ P (R) and y 6> x. Another example is: a relation has a strict monotonic
and homothetic ordering extension if and only if (x, y) ∈ H̄ (R) implies (y, x) /∈ P (R) and
y 6> x.

4 Closure rationalizability

This section, applies the results to the rationalizability problem.

Let X be a universal set of alternatives and let Σ be a set of nonempty subsets of X. A
choice function F is a correspondence

F : Σ → X : S → F (S) ⊆ S,

such that for all S ∈ Σ, F (S) is nonempty. Let k be a property, closed under intersection.
We assume that property k includes transitivity, i.e. for all R ∈ R, if t (R) = 1, then
k (R) = 1.

Definition 18 A choice function is said to be k-rationalizable if there exist a complete
binary relation R that satisfies property k, so that for all S ∈ Σ,

F (S) = {x ∈ S |(x, y) ∈ R for all y ∈ S } ,

i.e. the elements chosen from S, are top ranked according to R.

Definition 19 The revealed preference relation Rv is given by (x, y) ∈ Rv if there is a set
S ∈ Σ, so that x ∈ F (S) and y ∈ S. If also y /∈ F (S) we say that x is strictly revealed
preferred to y and write (x, y) ∈ Pv.

21



The next result gives a characterization for k-rationalizability.

Theorem 8 If the closure operator K is non-comparable extendible, then a choice function
is k-rationalizable if and only if K (Rv) ∩ P−1

v = ∅.

Proof. Let F be k-rationalizable, with a rationalization R∗. It is easy to see that Rv ⊆ R∗

and that Pv ⊆ P (R∗) (notice that R∗ is transitive). If (x, y) ∈ K (R∗), we must have
that (y, x) /∈ Pv. Indeed, otherwise we would have that (x, y) ∈ R∗ and (y, x) ∈ P (R∗), a
contradiction.

To see the reverse, let K (Rv) ∩ P−1
v = ∅. It is easy to see that Pv = P (Rv), hence Rv is

k-consistent. By Theorem 1, Rv has a complete extension that satisfies property k, lets
say R∗. We show that R∗ rationalizes F . If x ∈ F (S), then by definition (x, y) ∈ Rv for
all y ∈ S, hence (x, y) ∈ R∗ for all y ∈ S. If x /∈ F (S) then either x /∈ S, or there is an
y ∈ S so that (y, x) ∈ Pv. In either case x /∈ {z ∈ S |(z, y) ∈ R∗ for all y ∈ S }. �

Theorem 8 is immediately applicable to the properties t, c and h̄ (notice that all properties
imply transitivity). For this, let the universal set X be a convex and homothetic subset of
Rn. We have the following result, which we give without proof.

Theorem 9 A choice function F is rationalizable by:

• an complete and transitive relation if and only if (x, y) ∈ T (Rv) implies (y, x) /∈ Pv,

• a complete, transitive, monotonic and homothetic relation if and only if (x, y) ∈
H (Rv) implies (y, x) /∈ Pv,

• a complete, transitive and convex relation if and only if (x, y) ∈ C (Rv) implies
(y, x) /∈ Pv,

• a complete, transitive, convex and monotonic relation if and only if (x, y) ∈ C̄ (Rv)
implies (y, x) /∈ Pv,

• a complete, transitive,convex and strict monotonic relation if and only if (x, y) ∈
C̄ (Rv) implies (y, x) /∈ Pv and y 6> x,

• a complete, transitive, homothetic an strict monotonic relation if and only if (x, y) ∈
H (Rv) implies (y, x) /∈ Pv and y 6> x.

Naturally, we can replace c-consistency with c′ or c′′-consistency

If a choice function is determined by real data, Theorem 9 provides an exact test for the
following hypothesis.

H0 : the individual has a complete, transitive, (strict monotonic, monotonic) and

(convex, homothetic) preference relation.

The test is exact in the sense that the probability of rejecting H0, when it is true, is zero.
This in contrast to other, statistical, test procedures.
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5 Conclusion

In this paper, we discussed the existence of closed and complete extensions. Our main
result, Theorem 1, states that, given an algebraic, non-comparable extendible closure op-
erator K, a binary relation has a complete relation satisfying property k if and only if it
is k-consistent.

We used this theorem to characterize the existence of complete, transitive, convex, (strict)
monotonic and homothetic extensions. Our result is an extension to the literature since
we only impose domain restrictions insofar they are necessary for the properties to be well
defined. We used our results to characterize the choice functions which are rationalizable
by a complete relation satisfying properties which can be represented by an algebraic,
non-comparable extendible closure operator.

Theorem 1 provides a general framework for the existence of complete binary extensions
which satisfies additional properties which are closed under intersection. The properties
discussed in this research are not the only ones that fit this framework (e.g. separability).
On the other hand, it should be mentioned that not all interesting economic properties can
be fitted into our framework. As an example we briefly present two such properties.

Consider a binary relation R. This relation is defined to be of dimension n if there exist

n complete and transitive relations, R1, ..., Rn such that R =
n⋂

i=1

Ri. A binary relation of

dimension n can be seen as the Pareto relation from a group of n people. Recently, there
has been some research on the testable implications of this property in case n = 2 (see
Bossert and Sprumont (2002), Sprumont (2001)). The property of being of dimension n is
not closed under intersection, and therefore can not be dealt with in our framework.

A binary relation R is continuous if the sets L (y) = {x ∈ X |(y, x) ∈ R} and U (y) =
{x ∈ X |(x, y) ∈ R} are closed for all y ∈ X. This property is closed under intersection (as
the intersection of any set of closed sets is also closed) but it is not algebraic. Therefore,
the property of continuity cannot be dealt with in our framework3.
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