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ABSTRACT 

 
Resource-constrained project scheduling with activity pre-emption assumes that activities are 
allowed to be interrupted and restarted later in the schedule at no extra cost. In the current paper, 
we extend this pre-emptive scheduling problem with setup times between activity interruptions 
and the possibility to fast track pre-emptive subparts of activities.  
 
The contribution of the paper is twofold. First, we present an optimal branch-and-bound procedure 
for the pre-emptive resource-constrained project scheduling problem with setup times and fast 
tracking options. Second, we test the impact of these pre-emptive extensions to the quality of the 
schedule from a lead-time point-of-view.  

 

1 Introduction 

 

The well-known resource-constrained project scheduling problem (RCPSP) is one of the most widely 

studied problems in project scheduling and can be stated as follows. In a project network G(N,A) in 

activity-on-the-node (AoN) format, we have a set of nodes N representing the n activities (numbered 

from 1 to n, i.e. |N| = n) and a set of pairs of activities A representing the precedence relations between 

the activities. Furthermore, project execution requires a set of resources R with a constant availability 

ak for each resource type k ∈ R throughout the project horizon. Each activity i ∈ N is assumed to have 

a deterministic duration di ∈ IN and requires rik ∈ IN units of resource type k. The dummy start and end 

activities 1 and n have zero duration and zero resource usage. A schedule can be defined by an n-

vector of finish times (f1, ..., fn), and implies an n-vector of start times (s1, ..., sn) such that si + di 

equals fi. A schedule is said to be feasible if it is non-pre-emptive and if both the precedence and 

renewable resource constraints are satisfied, and optimal if the project makespan fn is minimized. 

Figure 1 displays an example project network that will be used throughout the remainder of this 

manuscript. Each activity has a fixed duration di shown above and a single resource requirement ri1 

shown below the node. The resource availability a1 equals 6 units. The optimal schedule is displayed 

at the right of the figure, and has a minimal makespan of 11 time units. 
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Figure 1. An example project with a corresponding optimal RCPSP schedule 
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The research on the RCPSP has widely expanded over the last few decades, and reviews can be found 

in Icmeli et al. (1993), Özdamar and Ulusoy (1995), Herroelen, et al. (1998), Brucker et al. (1999) and 

Kolisch and Padman (2001). In literature, various RCPSP extensions have been proposed. In this 

paper, we extend the RCPSP by relaxing two strict activity assumptions, as follows. 

 

1) Activity pre-emption: the activities are allowed to be interrupted during execution  

2) Activity fast tracking: The pre-emptive sub-parts of an activity can be executed in parallel 

 

The pre-emptive resource-constrained project scheduling problem (PRCPSP) includes the first 

relaxation and assumes that activities can be pre-empted at any integer time instant and restarted later 

on at no additional cost. This problem type has been investigated in literature as an option to reduce 

the total RCPSP project lead-time. Kaplan (1988, 1991) was the first to study the PRCPSP and 

presented a solution procedure. However, Demeulemeester and Herroelen (1996a) have found an 

error in one of her theorems, and presented a correct optimal algorithm for the PRCPSP. Their 

computational results revealed that activity pre-emption has only a small positive effect on the lead-

time of a project schedule. However, Ballestin et al. (2006) show that their heuristic procedure is able 

to produce high-quality solutions more easily for the PRCPSP than for the RCPSP. 

 

The pre-emptive resource-constrained project scheduling problem with fast tracking (PRCPSP-FT) 

includes both relaxations and has been proposed by Debels and Vanhoucke (2006). When projects are 

fast-tracked, it usually indicates the compression of a project schedule by doing certain activities in 

parallel that would normally be done in a sequence. Hence, fast-tracking violates the precedence 

relations between activities and implies activity execution at incomplete information. Debels and 

Vanhoucke (2006) have investigated the impact of within-activity fast tracking, which allows the 

execution of pre-emptive sub-parts of an activity in parallel. This fast tracking option removes 

precedence relations between sub-parts of pre-empted activities and increases the number of 

execution scenarios.  

 

Demeulemeester and Herroelen (1996a) have shown that the PRCPSP can be transformed into an 

RCPSP network by constructing a sub-activity network that splits each activity i into di sub-activities 

is with a duration 
sid  = 1 and a resource requirement kis

r = rik. Debels and Vanhoucke (2006) have 

taken a similar approach for the PRCPSP-FT where all precedence relations between sub-activities is 

of a similar activity i have been removed. Hence, the PRCPSP-FT assumes pre-emptive activities with 

fixed durations, which results in di non-related sub-activities with a duration 
sid  = 1 and a resource 

requirement kis
r = rik. 
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Demeulemeester and Herroelen (1996a) state that activity-pre-emption seldom has a huge impact on 

the total project lead-time compared to the RCPSP lead-time. However, Debels and Vanhoucke, 

(2006) has shown that activity pre-emption and activity fast-tracking of pre-empted sub-parts of 

activities can lead to large lead-time reductions. In the current manuscript, we study the PRCPSP-FT 

where we only allow activity pre-emption and within-activity fast tracking at an extra setup cost. 

Hence, our defined activity durations consist of both a setup and a processing time. The setup time 

component includes activity preparations such as equipping, resetting, changing, positioning, cleaning 

and warming up (Mika et al., 2006). This setup time is added to the total duration each time activity 

pre-emption and/or fast tracking occurs. In our problem-statement we assume an activity-dependent 

setup time ti that needs to be added to the sub-activity duration at the initial start of the activity as well 

as for each time the activity is interrupted. The idea of setup time incorporation in project scheduling 

is not new. Kaplan (1991) has studied a similar approach for the PRCPSP. However, she assumes that 

a setup time is only required between activity interruptions and not for the initial start-up of an 

activity. To that purpose, she splits each activity i in di sub-activities and shows in a theorem that 

activity pre-emption is never beneficial for the first ti + 1 sub-activities of each activity i. In our 

problem formulation we include this theorem in our problem-definition by assuming that each activity 

automatically requires a setup time from the moment it is started. Note that Demeulemeester and 

Herroelen (1996b) argue that possibly setup times before the starting of an activity are allowed to 

overlap with the processing of predecessor activities. For simplicity reasons, we do not add such an 

overlap to our problem description, although this could be included rather easily by adding minimal 

(negative) time-lags to the finish-start precedence relations (i, j), corresponding to the setup time of 

the end node activity j. 
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Figure 2. The example sub-activity network  

and optimal schedule for the PRCPSP-FT with setup times 
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Figure 2 displays the sub-activity network for the PRCPSP-FT with a corresponding optimal schedule 

for the PRCPSP-FT with setup times. We assume the setup times t2 = t4 = t6 = 1 and t5 = 2 while all 

other activities can be pre-empted without extra setup. These setup times have been displayed above 

the node while resource requirements 1sir  are shown below the node. All sub-activity durations 
sid  

are equal to 1 and have not been displayed in the network. Note that we have carefully selected the 

number of sub-activities is for each activity i (denoted by nrsai), in order to allow a fair comparison 

with the RCPSP schedule of figure 1, as nrsai = di – ti. Consequently, the number of sub-activities of 

activity 2 equals 1. Hence, since the total duration of activity 2 is not pre-empted (and not fast 

tracked) there is no difference with the RCPSP (i.e. the total duration di is equal to 2). However, the 

number of sub-activities for activity 5 is equal to nrsa5 = 4. In doing so, the activity can be scheduled 

without pre-emption, resulting in a total duration of t5 + nrsa5 = 2 + 4 = 6 which is similar to the 

RCPSP duration d5 of figure 1. In figure 2, this activity is pre-empted resulting in a total duration of 8 

time units instead of 6, due to the extra setup time before subactivity 53. The activity labels have been 

shown in black, while the sub-activity numbers have been displayed in white. The shaded areas 

represent the use of resources due to setup times. Despite the pre-emptive setup times, the optimal 

lead-time could be decreased from 11 to 10 time units. 

 

The outline of the paper is as follows. In section 2, we propose a branch-and-bound approach for the 

PRCPSP-FT with set-up times, which relies on the branching scheme of Demeulemeester and 

Herroelen (1992). Section 3 presents some specific adaptations to our branch-and-bound algorithm to 

efficiently cope with setup times. In section 4, the problem example of figure 1 is solved as an 

illustration. In section 5, we report extensive computational results. We conclude in section 6 with 

some overall conclusions and suggestions for future research.  

 

2 The general branch-and-bound approach 

 

In this section, we explain the branching scheme of our branch-and-bound procedure, which is an 

adapted version of the depth-first procedure of Demeulemeester and Herroelen (1992) in order to cope 

with pre-emptive fast tracking of sub-activities with setup times. To that purpose, we rely on the 

following definitions: 

 

is = sub-activity s of activity i (s = 1, …, nrsai) 

dm = current time instant in our search tree (the decision moment) 

S = set of active sub-activities at time instant dm 

PS = partial schedule 
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pD = set of delaying alternatives at level p of the branch-and-bound tree 

p
qD = delaying alternative q at level p of the branch-and-bound tree ( p

qD  ⊂ pD ) 

E1 ∪ E2 = the eligible set of activities that can be scheduled at time instant dm. This eligible set is 

divided into two disjoint subsets E1 and E2, as follows:  

E1 = set of eligible sub-activities that can be scheduled without setup time at decision moment dm   

E2 = set of remaining sub-activities that can only be scheduled with an extra setup time 

 

Hence, the set E1 contains eligible sub-activities is that can be scheduled immediately after the finish 

of a sub-activity is’. If more than one sub-activity is can be scheduled after the finish of sub-activity is’, 

priority is given to the lowest numbered sub-activity of activity i. Figure 3 displays the sets PS, S, E1 

and E2 at decision moment dm = 3. Activity 53 can be scheduled after activity 51 without any setup 

time, and enters E1. Therefore, activity 54, which has a higher subscript, can not be scheduled after 51. 

All remaining sub-activities (41, 42 and 54) can only be scheduled with an extra setup time, and belong 

to the set E2. 
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Figure 3. The sets PS, S, E1 and E2 at decision moment dm 

 

The depth-first approach builds up partial schedules starting at time 0 and continuing systematically 

throughout the search process by iteratively adding sub-activities until a complete feasible schedule is 

obtained. A partial schedule at level p of the search tree will be continued by determining the next 

decision moment dm at which unscheduled activities might start. All unscheduled activities which are 

a candidate to start at time dm are calculated and collected in the set of eligible activities. In order to 

take the setup times into account, the eligible set is splitted into two disjoint subsets E1 and E2 as 

described earlier. The previously scheduled but at dm unfinished activities belong to the set S of 

activities in progress. If scheduling all activities from E1 ∪ E2 ∪ S at dm would cause a resource 

conflict, the procedure starts to branch to the next level p + 1 and delays subsets (delaying alternatives 
p
qD ) of E1 ∪ E2 ∪ S  to resolve resource conflicts. The selection of a delaying alternative involves 
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that only the unselected activities of E1 ∪ E2 ∪ S will be scheduled at dm while all previously 

scheduled activities of S and the activities of E1 ∪ E2 that belong to the alternative are postponed. This 

process is repeated until a feasible schedule is found, followed by a backtracking mechanism and the 

algorithm continues as a usual branch-and-bound procedure. 

 

The basic algorithmic steps of the branch-and-bound branching scheme can be summarized along the 

following 5 steps. In section 3, we explain the bold indicated sub-steps 3.2, 3.4 and 4.4 into detail.  

 

Step 1. Initialisation 
1.1 Set the upper bound UB on the project duration at ∞ 
1.2 Set the level p of the branch-and-bound tree at 0 
1.3 Initialise the decision moment dm at -1 
1.4 Schedule the dummy start sub-activity: f1 = 0, PS = {1} and S = {1} 

 
Step 2. Increase the decision moment dm 

2.1 If the dummy end sub-activity has been scheduled, update the upper bound UB and go to Step 
5 (Backtracking) 

2.2 Update the decision moment: dm = 
s

s
iSi

f
∈

min  

2.3 Update the set of sub-activities in progress S and the set of eligible sub-activities E1 and E2, as 
follows: ∀is∈ S|

sif  = dm 
- Update S = S \ { is} 
- Update E1 and E2 by including all successor sub-activities of is for which all 

predecessor sub-activities are element of PS \ S 
- E1 contains these sub-activities which can be scheduled immediately 

after a sub-activity without pre-emptive setup time at dm. If there are 
more possibilities, the lowest indexed sub-activities are put in E1. 

- E2 contains the remaining sub-activities 
2.4 Store the decision moment dm, the sets PS, E1, E2 and S and the finishing times 

sif  of each 
sub-activity is ∈ S at level p of the search tree. 

 
Step 3. Determine the minimal delaying alternatives 

3.1 Calculate the excessive resource use ck for each resource k ∈ R when all sub-activities of S ∪ 
E1 ∪ E2 are scheduled at dm: ck = k

EESi
ki ar

s

s
−∑

∪∪∈ 21

 

3.2 Theorems 1/2/3/5 and property 1: Define the set of minimal delaying alternatives Dp = 
{ p

qD ⊂ (S ∪ E1 ∪ E2) | k
Di

ki cr
p
qs

s
≥∑

∈

 for each k ∈R and there exists no other p
qD ' ∈Dp for 

which p
qD ' ⊂

p
qD } 

3.3 Fathom all minimal delaying alternatives p
qD  that satisfy the conditions of theorem 4 

3.4 ∀ p
qD ∈ Dp: if LB( p

qD ) ≥ UB, Dp = Dp \{ p
qD } 

3.5 If Dp = ∅: go to step 5 
 
Step 4. Select the next minimal delaying alternative 

4.1 Select the minimal delaying alternative p
bD  ∈ Dp with the lowest lower bound LB( p

bD ) and 

update Dp = Dp \{ p
bD } 
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4.2 If LB( p
bD ) ≥ UB: Set Dp = ∅ and go to step 5 

4.3 Schedule the sub-activities is ∉ p
bD  as follows: 

- ∀ is  ∈ ((E1 ∪ E2) \ p
bD ) 

- PS = PS ∪ { is }, S = S ∪ { is } 
- If is ∈ E1: sif  = dm + 1 and E1 = E1 \ { is } 

- If is ∈ E2: sif  = dm + ti + 1 and E2 = E2 \ { is } 

- ∀ is  ∈ (S  ∪ p
bD ) 

- Remove is from S and PS: PS = PS \ { is }, S = S \ { is }  
- Add is to the eligible set E1 ∪ E2  

4.4 Property 2: Check whether there are sub-activities in progress at dm that have been 
scheduled with a pre-emptive setup time before time instant dm: if this sub-activity can be 
scheduled with pre-emptive setup time at time instant dm, remove its setup time and change 
its finishing time to dm + 1 

4.5 Update the branching level of the search tree: p = p +1 
4.6 Go to step 2 

 
Step 5. Backtracking 

5.1 Update the branching level of the search tree: p = p – 1 
5.2 If the branching level p < 0, then STOP 
5.3 If Dp = ∅: repeat Step 5 
5.4 Restore the decision moment dm, the sets PS, E1, E2 and S and the finishing times 

sif  of each 
sub-activity is ∈ S at level p of the search tree 

5.5 Go to step 4  
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3. Specific adaptations to the PRCPSP-FT with set-up times 

 

In this section, we discuss all dominance rules and lower bound calculations used in the branch-and-

bound procedure. Most of them are modified versions of dominance rules and lower bounds presented 

in Demeulemeester and Herroelen (1992) (further abbreviated as DH92), to cope with setup-times. In 

section 3.1, we discuss two properties that will be used throughout the remainder of this section. In 

section 3.2, the various dominance rules are explained in detail. Section 3.3 discusses the calculations 

of the lower bounds.  

 

3.1 Dominance and lower bound properties 

 

In this section, we briefly explain two algorithmic details that will be used throughout the remainder 

of our manuscript. They avoid conflicts between dominance rules of section 3.2 and simplify the 

lower bound descriptions of section 3.3.  

 

Property 1. Sub-activities is of each set (S, E1 or E2) can only be evaluated as potential candidates for 

a minimal delaying alternative if all other sub-activities is’ from these sets with a higher numbered 

subscript s’ > s have been evaluated first. 

 

Note that we previously mentioned that entrance of sub-activities in the sets E1 or E2 is done 

according to the lowest numbered subscripts. Possible entrance of these sub-activities into the 

minimal delaying alternatives is done according to the highest numbered subscripts. In doing so, the 

algorithm guarantees that only sub-activities are added to the partial set PS when all lower numbered 

sub-activities already belong to that set. 

 

Property 2. When a sub-activity is moved from the set E2 to the set S at decision moment dm, the 

corresponding setup time can still be removed from that sub-activity at a later decision moment dm’ > 

dm.  

 

Property 2 removes setup times when a sub-activity is ∈ S, that has been scheduled pre-emptively at 

decision moment dm, can be rescheduled at dm’ > dm without pre-emptive setup time immediately 

after another sub-activity is’ of the set PS. In this case, the initial setup time of sub-activity is has 

become superfluous and can be removed. Both properties will be used throughout the remained of our 

manuscript, and will be illustrated during the description of the dominance rules and lower bound 

calculations. 
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3.2 Dominance rules 

 

In this section, we review all dominance rules of DH92 and adapt them to cope with the PRCPSP-FT 

with setup times (note that we number these dominance rules from 1 to 4 to be in line with the 

original paper). Moreover, we extended the branching scheme with a new theorem 5 to further reduce 

the number of nodes in the branch-and-bound tree.  

 

Demeulemeester and Herroelen (1992) have described two special cases in order to put eligible 

activities in progress, which have been adapted in the theorems 1 and 2 to cope with setup times, as 

follows:  

 

Theorem 1 (Put eligible sub-activity is in progress): If no activities are in progress at decision 

moment dm of the current branching node and an eligible sub-activity is cannot be scheduled together 

with any other unscheduled sub-activity at any time instant dm’ ≥ dm, then there exists an optimal 

continuation of the partial schedule with the eligible sub-activity is started at dm. However, when 

there exists a non-empty set of sub-activities K ⊂ (E1 \ { is}) that contains sub-activities k’ with tk’ > 0, 

then the algorithm also needs to consider all minimal delaying alternatives which do not contain all 

sub-activities of K. 

 

Theorem 2 (Put eligible sub-activities is and js in progress): If no activities are in progress at 

decision moment dm of the current branching node and an eligible sub-activity is can only be 

scheduled concurrently with one other unscheduled sub-activity js ∈ (E1 ∪ E2) at any time instant dm’ 

≥ dm such that js would not finish later than is if both are started at dm, then there exists an optimal 

continuation of the partial schedule in which both sub-activities is and js are put in progress at time 

dm. However, when there exists a non-empty set of sub-activities K ⊂ (E1 \ {is, js}) that contains sub-

activities k’ with tk’ > 0, then the algorithm also needs to consider all minimal delaying alternatives 

which do not contain all sub-activities of K. 

 

Theorems 1 and 2 do not differ much from the original versions of DH92. However, the incorporation 

of setup times has resulted in an adaptation of the theorems when the set E1 contains sub-activities 

different from is (theorem 1) or {is, js} (theorem 2). These sub-activities can be scheduled without a 

setup time at time instant dm (element of E1), while delaying these sub-activities will lead to the 

scheduling at a later time instant with an extra setup time. However, if the algorithm schedules at least 

one of these sub-activities of E1, we might prevent a setup time of the remaining sub-activities of E1 at 

a later time instant. 
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Figure 4 displays an illustrative schedule for theorem 1, where the resource availability has been 

decreased to 5 units. In this schedule, sub-activity 71 cannot be scheduled together with any other 

unscheduled sub-activity. However, there exists a non-empty set of sub-activities K ⊂ (E1 \ {71}) that 

contains sub-activity 53 with t5 = 2. The algorithm also needs to consider all minimal delaying 

alternatives (see theorem 3) which do not contain all sub-activities of K and hence the set of minimal 

delaying alternatives is equal to {(71, 72), (53, 54, 72)} instead of only {(53, 54, 72)}.  

1 2 3
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7*53*

42 54

6 7

71

72PS= {21,31,41,42,51,52}
S  = ∅
E1 = {53}
E2 = {54,71,72}

 
Figure 4. An illustrative partial schedule for theorem 1 

(Note that – for illustrative purposes – the resource availability has been changed to 5) 

The partial schedule of figure 5 illustrates theorem 2. Sub-activity 71 can only be scheduled in parallel 

with sub-activity 81 at any time instant dm’ ≥ 8. Moreover, both sub-activities would finish at time 

instant 9 if started at dm = 8. Since E1 = ∅ there is no non-empty set of sub-activities K. Hence, it is 

sufficient to consider only the minimal delaying alternative 6
qD  = {72, 91} such that sub-activities 71 

and 81 are both scheduled at dm = 8.  
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Figure 5. The partial schedule at node 7 of level 6 of the branch-and-bound tree 
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Theorem 3 (Minimal Delaying Alternatives): In order to define the set of minimal delaying 

alternatives p
qD  for the PRCPSP-FT with setup times, it is sufficient to define the number of sub-

activities ei for each activity i that should be chosen from the eligible set E1 ∪ E2 ∪ S 
 

This theorem has been proposed by Debels and Vanhoucke (2006) for the PRCPSP-FT without setup 

times as an extension of the minimal delaying alternatives principle of DH92. However, in order to 

cope with setup times, we implemented a specific ranking between activities of sets E1, E2 and S in 

order to standardize the selection of activities for each set. More precisely, if ei sub-activities of 

activity i need to be chosen for a delaying alternative, the algorithm always give priority to sub-

activities of set E2, then to sub-activities of E1 and finally to sub-activities of S. Hence, the algorithm 

prefers to delay sub-activities that need to be scheduled with an extra setup time at the decision 

moment dm, followed by sub-activities that start at the decision moment dm without setup. The sub-

activities of set S have the lowest priority to be delayed since these sub-activities start earlier than the 

decision moment dm, and hence, delaying these sub-activities would release resources at time units 

earlier than dm, which can not be re-filled by other unscheduled activities at a later point in time. Note 

that within each set, priority has been given to the sub-activities with the highest sub-activity number 

(see property 1). 
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Figure 6. The partial schedule at node 3 of level 2 of the branch-and-bound tree  

and the corresponding minimal delaying alternatives 

 

In Figure 6 we display the partial schedule of node 3 of the branch-and-bound tree of figure 10. The 

decision moment dm is equal to 3 and the candidate sets to build the delaying alternatives are equal to 

S = {52}, E1 = {53} and E2 = {54, 41, 42}. Thanks to theorem 3, the algorithm only needs to determine 

the number of sub-activities e4 and e5 to be selected in the delaying alternatives. Each (e4, e5) 
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combination can be transformed into a minimal delaying set following the priority rules described 

above. As an example, when e4 = 2 and e5 = 0, the minimal delaying alternative is equal to 2
1D  = {41, 

42}. The minimal delaying alternative for e4 = 1 and e5 = 2 is equal to 2
2D  = {42, 53, 54} and hence no 

other alternatives (e.g. {41, 53, 54}) need to be considered.  

 

Figure 7 displays the resulting partial schedule under the assumption that the minimal delaying 

alternative 2
2D  has been chosen. This means that sub-activities 41 and 52 have been scheduled at 

decision moment dm = 3 while sub-activities 53 and 54 have been delayed. However, note that the 

setup time of sub-activity 52 needs to removed (property 2) since this sub-activity has been originally 

scheduled at time instant 2 with a setup time of 1, but can now also be considered as a non-pre-

emptive successor of sub-activity 51 and hence, no setup time is required.  
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Figure 7. The partial schedule at node 4 of level 3 of the branch-and-bound tree  

 

The fourth theorem is based on the well-known cutset dominance rule of DH92. A cutset Cx at node x 

of the branch-and-bound tree with a corresponding decision moment dmx is defined as the set of 

unscheduled sub-activities for which all predecessor sub-activities belong to the partial schedule PSx. 

Furthermore, we refer to xE1 , xE2  and PSx as the eligible sets E1 and E2 and the partial set PS at node x 

of the branch-and-bound tree. 

 

Theorem 4 (Cutset Dominance Rule): Consider a cutset Cy which contains the same sub-activities 

as a cutset Cx, which was previously saved during the search of another path in the search tree.  

If  

• dmx ≤ dmy 
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• All sub-activities in progress at time dmx do not finish later than the maximum of dmy and the 

finish time of the corresponding sub-activities in PSy 

• All sub-activities is ∈ ( xE2  ∩ yE1 )  do not finish earlier if scheduled at dmy in node y then if 

scheduled at dmx in node x 

then the current partial schedule PSy is dominated. 

 

This dominance rule differs from the DH92 cutset dominance rule in the third condition. All sub-

activities is ∈ yE1  can be scheduled without setup time at dmy in node y while all sub-activities is ∈ 

xE2  can only be scheduled with an extra setup time at dmx in node x. Hence, since dmx ≤ dmy, the xE2  

∩ yE1  sub-activities might finish later at node x (since a setup time is required) than when scheduled 

at node y (without a setup time) such that PSy can not be dominated by PSx. Hence, the extra 

restriction that these sub-activities xE2  ∩ yE1  may not finish earlier when scheduled at dmy (node y) 

than when scheduled at dmx (node x) is necessary to conclude that the set PSy can be dominated. 

 

  (a)      (b) 
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Figure 8. An illustrative partial schedule for theorem 4 

(Note that – for illustrative purposes – the resource availability has been changed to 5) 
 

Figure 8 displays two illustrative schedules where the resource availability has been decreased to 5 

units. If we ignore the third condition, schedule (a) is dominated by schedule (b) and vice versa. 

However, the third condition clearly illustrates that schedule (b) is no longer dominated by schedule 

(a) since the sub-activities aE2  ∩ bE1  = {53, 54} finish earlier in schedule (b) than in schedule (a).  

 

In order to improve performance, we have added one extra dominance rule to cope with the PRCPSP-

FT with setup times. To that purpose, we define the earliest finishing moment efmi of each activity i as 

the minimum of the finishing times of all its sub-activities is that belong to the sets E1 ∪ E2 ∪ S. This 

theorem automatically selects sub-activities from E2 that must belong to each minimal delaying 

alternative, as follows:  
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Theorem 5 (Deviation from the minimal delaying alternatives principle): If there is a sub-activity 

is ∈ E2 for which iii tdmdefms 2−−+≥  then all sub-activities (is, is+1,…, 
ii tdi − ) should belong to 

each minimal delaying alternative.  

 

The formula iii tdmdefms 2−−+≥  is a simplification of the form iiii efmtdmstd −++≤+−− 11  

and reads as follows: 1+−− std ii  is equal to the number of sub-activities of activity i with a 

subscript higher than or equal to s (i.e. is, is+1,…, 
ii tdi − ). 1++ itdm  is equal to the finishing time of 

sub-activity is when scheduled at decision moment dm. Consequently, ii efmtdm −++ 1  is the 

difference between the finishing time of sub-activity is when scheduled at dm and the next time instant 

efmi at which sub-activity is can be scheduled without pre-emptive setup time. When this difference is 

larger than the number of unscheduled sub-activities 1+−− std ii , then scheduling all these sub-

activities in series at decision moment efmi will result in a finishing time smaller than 1++ itdm  and 

hence, these sub-activities should be delayed. 

 

Theorem 5 can be illustrated on sub-activity 54 of the partial schedule of figure 6. Since 

555 2tdmdefms −−+≥  (4 ≥ 5 + 6 – 4 – 2 * 2), it is beneficial to delay sub-activity 54 such that it can 

be scheduled later without pre-emptive setup time (immediately after sub-activity 53). Consequently, 

sub-activity 9 needs to be added in every delaying alternative, and 2
1D  is extended to {41, 42, 54}. 

 

3.3 Lower bound calculations 

 

In this section, we propose two lower bounds that are calculated for each delaying alternative at every 

node in the tree. When the current best solution is lower than the calculated lower bound, the minimal 

delaying alternative can be pruned from the set of delaying alternatives. 

 

Critical path based lower bound: LB0( p
qD ): This lower bound is calculated as next decision 

moment if p
qD is selected, increased by the maximum remaining critical path length 

siL  of all sub-

activities is ∈ p
qD , i.e. LB0( p

qD ) = dmnext( p
qD ) +

p
qs Di ∈

max (
siL ). The first term dmnext( p

qD ) is equal to the 

earliest finishing time of all sub-activities is ∉ p
qD in progress at dm while the 

siL  is calculated by 

straightforward forward calculations where each unscheduled sub-activity i1 is increased by its setup 

time ti. 
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Resource based lower bound: LBr( p
qD ): The presence of fast tracking in resource-constrained 

project scheduling leads to an efficient use of resources, as illustrated by Debels and Vanhoucke 

(2006). Hence, the use of efficient resource-based lower bounds could dramatically improve the 

performance of our branch-and-bound algorithm. Therefore, the algorithm calculates a lower bound 

for each minimal delaying alternative 
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The first and second terms calculate the minimal setup time of all initial sub-activities i1. The 

first term incorporates the complete setup time for these sub-activities that are neither in progress 

nor in the partial set. The second term incorporates the minimal remaining setup time dmfi −−1
1

 

at dm of all initial sub-activities that are in progress at dm (only part of the setup time after dm 

needs to be taken into account). 

F1 is used to denote the set of unscheduled sub-activities is ∈ E1 ∪ E2 ∪ p
qD for which all lower 

labelled sub-activities are already finished at (if is ∈ E1 ∪ p
qD ) or before (if is ∈ E2) decision 

moment dm. These sub-activities can only be scheduled with a pre-emptive setup time. Note that, 

thanks to property 1, the higher labelled sub-activities can be left out of consideration.  

The set F2 (⊂ S) contains the sub-activities that are in progress at dm and for which all lower 

labelled sub-activities of the same activity finish before dm. These sub-activities can only be 

scheduled with a pre-emptive setup time at dm or later (and hence, the minimal remaining setup 

time at dm, i.e. dmf
si −−1 , needs to be incorporated) 

 

Assume a project schedule for our example project as displayed in figure 9. The resource based lower 

bound 
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Figure 9. The resource based lower bound for the example project at time instant 5 

 

4 An example branch-and-bound tree 

 

Figure 10 displays the branch-and-bound tree for the example project of figure 2 consisting of 21 

nodes. The algorithm starts at level 0 with an empty partial set at dm = 0 and calculates D0 that 

consists of four minimal delaying alternatives 0
1D  = {31, 52, 53, 54}, 0

2D  = {51, 52, 53, 54}, 0
3D  = {21, 53, 

54} and 0
4D  = {21, 31, 54}. The algorithm first selects the alternative 0

1D  = {31, 52, 53, 54} with the 

lowest lower bound LB( 0
1D ) = 9, and schedules sub-activities 21 and 51 resulting in the partial 

schedule of node 1. The algorithm continues this way and finds the first complete schedule at node 10. 

This solution is saved and the upper bound is updated to 11, followed by a backtracking step towards 

level 2 of the tree. The algorithm then selects 2
2D  from the two remaining delaying alternatives 2

2D  = 

{41, 42, 54} and 2
3D  = {52, 53, 54} and continues. The optimal solution can be found at node 16 with a 

total project lead-time of 10.  
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Figure 10. The branch-and-bound tree for the example project of figure 2 
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5 Computational results 

 

In order to test the performance of our branch-and-bound procedure as well as the impact of  pre-

emptive fast tracking with setup times on the lead-time, we test the algorithm on the 1,920 problem 

instances generated by RanGen (Demeulemeester et al., 2003) and presented by Debels and 

Vanhoucke (2006). The number of non-dummy activities (n – 2) has been set at 10, 12, 14, 16, 18 and 

20 with an order strength OS (Mastor, 1970) and a resource-constrainedness RC (Patterson, 1976) 

fixed at 0.2, 0.4, 0.6 and 0.8. All project instances require a single resource type with an availability of 

10 units. The activity durations have been chosen randomly between 1 and 5. Since each setting 

contains 20 problem instances, the problem set contains 6 * 4 * 4 * 5 * 20 = 1920 network instances. 

To compare the resulting schedules with the optimal RCPSP schedules, we have assumed that part of 

the activity durations can be considered as the unavoidable setup time before the initial subactivity. 

We consider, without loss of generality, activity-independent setup times (i.e. the setup times ti are the 

same for each activity) under 5 settings ti = 0, 1, 2, 3 or 4. Consequently, the activity setup times and 

remaining activity durations have been calculated as follows: we subtract the generated setup time (0, 

1, 2, 3 or 4) from the original activity duration to calculate the remaining activity duration. In case that 

the generated setup time setting is larger than the original activity duration, we reduce the setup time 

for that activity to the original duration - 1, such that the remaining duration equals 1. Hence, the sum 

of the activity setup time and its remaining duration is always equal to the original duration of the 

project network instance. This approach allows us to measure the impact of pre-emptive fast tracking 

with setup times on the schedule quality and leads to 3 different scenario’s, as follows:  

 

1) If the setup time of each activity is set at t = 0, then the remaining duration for each activity is 

equal to the duration of the RCPSP instances. Since there are no setup times, the problem 

boils down to the PRCPSP-FT described in Debels and Vanhoucke (2006). 

2) If the setup times for the activities are set at a value t between 0 and 4, then the remaining 

durations of the activities lie between 1 and 5 – t. The minimal lead-time will lie between the 

RCPSP and the PRCPSP-FT minimal lead-time. 

3) If the setup time of each activity is set at t = 4, then each remaining activity duration is equal 

to 1. In this case, activity pre-emption can never lead to a lead-time reduction, and hence, the 

problem boils down to the basic RCPSP. 
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1+2 4 5
Avg.CPU 13.89 5.06 2.92 1.53 0.67
%Opt 87% 96% 98% 99% 99%
Avg.CPU 11.24 4.47 2.56 1.30 0.35
%Opt 90% 97% 98% 99% 100%
Avg.CPU 3.35 2.45 0.97 0.24 0.08
%Opt 97% 98% 99% 100% 100%
Avg.CPU 14.01 4.84 2.63 1.36 0.68
%Opt 87% 96% 98% 99% 99%
Avg.CPU 2.70 2.11 0.92 0.24 0.08
%Opt 98% 98% 99% 100% 100%
Avg.CPU 11.24 4.25 2.33 1.15 0.36
%Opt 90% 97% 98% 99% 100%
Avg.CPU 3.35 2.43 0.89 0.22 0.08
%Opt 97% 98% 99% 100% 100%
Avg.CPU 2.67 1.95 0.87 0.20 0.08
%Opt 98% 98% 99% 100% 100%

3 x
2 x

t  = 2 t  = 3 t  = 4

1

Scenario t  = 0 t  = 1

4 x
5 x x

7 xx
6 x x

8 x xx
 

Table 1. Performance of the dominance rules of section 3.2 

 

Table 1 displays the impact of each theorem on the performance of our branch-and-bound algorithm. 

To that purpose, we have tested 8 different scenarios, corresponding to various combinations of 

dominance rules. Note that we never excluded the minimal delaying alternative theorem (theorem 3) 

since it has a major beneficial effect on the performance of the solution procedure. Moreover, we have 

combined theorems 1 and 2 into one scenario since they can be considered as two versions of the 

same dominance principle. The columns of the table represent the different setup time settings, 

varying from 0 to 4. The row labeled “Avg. CPU” displays the average time (in seconds) needed to 

solve the problem instances and the row labeled “% Opt” displays the percentage of problem 

instances that have been optimally solved within a pre-specified time limit of 100 seconds.  

 

The table reveals that all dominance rules have a positive effect on the performance of the algorithm. 

For setup times equal to 1, 2 or 3, the inclusion of a dominance rule always improves the 

performance, both in terms of computational effort and percentage of problems solved to optimality. 

The cutset dominance rule (theorem 4) seems to have the most beneficial effect on the performance, 

which is completely in line with literature. The size of the setup times has a clear and positive effect 

on the problem complexity. An increasing setup time results in a lower remaining activity duration 

and hence in a lower number of sub-activities. This results in a smaller search and reduces complexity 

of the problem instance.  

 

Table 2 reports results for experiments on the performance of the lower bounds. The critical path 

based lower bound LB0 and the resource based lower bound LBr have been tested individually 

(scenarios 1 and 2) and in combination (scenario 3). Scenario 3 outperforms scenarios 1 and 2, 
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showing that both dominance rules have a positive effect on the performance of the algorithm. LBr is 

more effective than LB0, which confirms the results of Debels and Vanhoucke (2006) that fast 

tracking leads to schedules in which the available resources are used efficiently. This increases the 

importance of resource-based lower bounds.  

 

LB 0 LB r

Avg.CPU 3.88 17.13 9.55 2.95 1.17
%Opt 96% 85% 92% 98% 99%
Avg.CPU 2.69 2.46 2.00 0.87 0.44
%Opt 98% 98% 98% 99% 100%
Avg.CPU 2.67 1.95 0.87 0.20 0.08
%Opt 98% 98% 99% 100% 100%

t  = 2 t  = 3 t  = 4Scenario t  = 0 t  = 1
Lower bounds

X

1

2

3 X

X

X

 
Table 2. Performance of the lower bounds of section 3.3 

 

Table 3 displays more detailed results for all problem instances with the different settings for the 

setup time and the number of project activities. Moreover, the solutions have been compared with the 

results obtained by the dedicated algorithms for the RCPSP (Demeulemeester and Herroelen, 1992), 

the PRCPSP (Demeulemeester and Herroelen, 1996a) and the PRCPSP-FT (Debels and Vanhoucke, 

2006). The row labeled “Avg.improvement” measures the average decrease of the total project lead-

time compared to the minimal RCPSP lead-time. 
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10 12 14 16 18 20 Global
PRCPSP-FT with t  = 0

Avg.CPU 0.01 0.02 1.34 2.29 2.78 9.57 2.67
%Opt 100% 100% 99% 98% 98% 91% 98%
Avg.improvement 19% 17% 15% 14% 13% 11% 15%

PRCPSP-FT with t  = 1
Avg.CPU 0.00 0.03 0.07 1.93 1.66 7.98 1.95
%Opt 100% 100% 100% 98% 99% 93% 98%
Avg.improvement 12% 11% 9% 9% 8% 7% 9%

PRCPSP-FT with t  = 2
Avg.CPU 0.00 0.02 0.04 0.41 0.50 3.88 0.87
%Opt 100% 100% 100% 100% 100% 97% 99%
Avg.improvement 6% 6% 5% 5% 5% 4% 5%

PRCPSP-FT with t  = 3
Avg.CPU 0.00 0.00 0.01 0.02 0.03 1.13 0.20
%Opt 100% 100% 100% 100% 100% 99% 100%
Avg.improvement 3% 2% 2% 2% 2% 2% 2%

PRCPSP-FT with t  = 4
Avg.CPU 0.00 0.00 0.00 0.01 0.01 0.45 0.08
%Opt 100% 100% 100% 100% 100% 100% 100%
Avg.improvement 0% 0% 0% 0% 0% 0% 0%

RCPSP
Avg.CPU 0.00 0.00 0.00 0.00 0.00 0.01 0.00
%Opt 100% 100% 100% 100% 100% 100% 100%
Avg.improvement 0% 0% 0% 0% 0% 0% 0%

PRCPSP
Avg.CPU 0.00 0.00 0.02 0.06 0.57 3.20 0.64
%Opt 100% 100% 100% 100% 100% 97% 99%
Avg.improvement 0% 0% 1% 1% 0% 0% 1%

PRCPSP-FT
Avg.CPU 0.00 0.00 0.05 0.22 1.22 3.96 0.91
%Opt 100% 100% 100% 100% 99% 97% 99%
Avg.improvement 19% 17% 15% 14% 13% 12% 15%

Non-dummy activities 

 
Table 3. Computational results for various problem types 

 

The results in the table can be summarized as follows. First, the table confirms the results of table 1 

that the size of the setup times has a positive effect on the problem complexity. The higher the value 

for the setup times, the less beneficial it is to pre-empt activities and hence, the closer the problem 

resembles to the basic RCPSP. Second, the table reveals that for t = 0 and t = 4, the dedicated 

procedures for the RCPSP and the PRCPSP-FT without setup times outperform our branch-and-bound 

procedure. If t = 0, the problem boils down to the PRCPSP-FT without setup times, that can be solved 

by the Debels and Vanhoucke (2006) procedure, leading to an average CPU-time reduction from 

2.333 to 0.911 seconds. Likewise, if t = 4, the RCPSP instances that can be solved faster by the DH92 

procedure, resulting in an average CPU-time decrease from 0.077 to 0.002 seconds. Last, it is worth 

mentioning that the option to fast track has a major effect on the project lead-time, even with high 

values for the setup times. As an example, the PRCPSP without setup times results only in an average 
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of 1% lead-time improvement, while the PRCPSP-FT with setup times of 3 still lead to an average 

improvement of 2%. This illustrates that setup times do not prevent the PRCPSP-FT to find schedule 

improvements. Hence, if technical restriction allow a within-activity fast tracking, even within the 

presence of relatively high setup costs, it is still beneficial to allow activity pre-emption as a technique 

to reduce the project lead-time. 
 

6 Conclusions 

 

The previous research of the preemptive resource-constrained project scheduling problem (PRCPSP) 

has shown that activity pre-emption drastically increases the problem complexity and might lead to 

only a small decrease in the total project lead-time. However, a recently studied pre-emptive 

extension, known as the pre-emptive resource-constrained project scheduling problem with fast 

tracking (PRCPSP-FT, Debels and Vanhoucke (2006)), allows that these pre-emptive sub-activities 

can be executed in parallel, and leads to a major decrease in the total project lead-time. 

 

In this paper, we have extended the pre-emptive resource-constrained project scheduling problem with 

setup times and a fast tracking option between pre-emptive sub-parts of activities. We have presented 

a branch-and-bound procedure, based on the principles of the RCPSP procedure of Demeulemeester 

and Herroelen (1992), to cope with the new problem type and reported detailed computational 

experience. 

 

Our experiments revealed that the incorporation of setup times further increases the complexity of the 

PRCPSP-FT. However, the improvement in the project lead-time, compared to the basic RCPSP, 

shows that the trade-off between problem complexity and the resulting schedule quality is worth 

investigating. Consequently, it lies in our future intensions to develop meta-heuristic procedures in 

order to solve more challenging and realistic problem instances where setup times can be incorporated 

when activities are pre-empted and these pre-emptive sub-activities can be fast tracked.  
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