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ABSTRACT 

 
The resource-constrained project scheduling problem (RCPSP) has been extensively investigated 
during the past decades. Due to its strongly NP-hard status and the need for solving large realistic 
project instances, the recent focus has shifted from exact optimisation procedures to (meta-) 
heuristic approaches. In this paper, we extend some existing state-of-the-art RCPSP procedures in 
two ways. First, we extensively test a decomposition approach that splits problem instances into 
smaller sub-problems to be solved with an (exact or heuristic) procedure, and re-incorporates the 
obtained solutions for the sub-problems into the solution of the main problem, possibly leading to 
an overall better solution. Second, we study the influence of an extended neighbourhood search on 
the performance of a meta-heuristic procedure. Computational results reveal that both techniques 
are valuable extensions and lead to improved results.  
 
Keywords:  Resource-constrained project scheduling; Problem decomposition; Meta-heuristics 

Introduction 

The RCPSP (problem m,1|cpm|Cmax using the classification scheme of Herroelen, Demeulemeester 

and De Reyck (1998)) can be stated as follows. In a project network in AoN format G(N,A), we have 

a set of nodes N, and a set of pairs A, representing the direct precedence relations. The set N contains 

n activities, numbered from 1 to n (|N| = n). Furthermore, we have a set of resources R, and for each 

resource type k ∈ R, there is a constant availability ak throughout the project horizon. Each activity i 

∈ N has a deterministic duration di ∈ IN and requires rik ∈ IN units of resource type k. We assume that 

rik ≤ ak for i ∈ N and k ∈ R. The dummy start and end activities 1 and n have zero duration and zero 

resource usage. A schedule S is defined by an n-vector of starting times s(S) = (s0, ..., sn), which 

implies an n-vector of finishing times f(S) where fi = si + di, ∀i ∈ N. A schedule is said to be feasible if 

it is non-pre-emptive and if the precedence and resource constraints are satisfied. The objective of the 

RCPSP is to find a feasible schedule that minimizes the schedule makespan fn. 

 

The research on the RCPSP has been investigated extensively over the last few decades, and reviews 

can be found in Brucker et al. (1999), Herroelen, De Reyck and Demeulemeester (1998), Icmeli, 

Erenguc and Zappe (1993), Kolisch and Padman (2001) and Özdamar and Ulusoy (1995). Due to the 

need for solving larger project instances, the recent research focus has shifted to the development of 

meta-heuristics. Kolisch and Hartmann (1999) present a classification and performance evaluation of 

existing heuristic procedures. An excellent review paper by Kolisch and Hartmann (2004) discusses 

the different meta-heuristics for the RCPSP and is an update of the previously published paper of 

Hartmann and Kolisch (2000). This research revealed that very diverse meta-heuristic techniques have 

been applied to the RCPSP, but the best performing procedures all have some characteristics in 

common. They often make use of a population-based meta-heuristic framework, flavoured with some 
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problem-specific components such as the incorporation of the topological order condition (schedule 

representation) and the iterative forward/backward scheduling technique (local search method) (Li 

and Willis, 1992; Valls, Ballestin and Quintanilla, 2005).  

 

In this paper, we extend three population-based meta-heuristics for the resource-constrained project 

scheduling problem as follows: 

  

- The decomposition of a problem instance to gain efficiency in the search process: Splitting 

problem instances into smaller sub-problems in order to restrict the search process has been 

investigated by various authors (Mausser and Lawrence (1997), Sprecher (2002), Palpant, 

Artigues and Michelon (2004), Debels and Vanhoucke (2006b)). In the current manuscript, we 

rely on the principles of the decomposition approach of Debels and Vanhoucke (2006b) who 

have developed a decomposition-based genetic algorithm for the RCPSP. We investigate the 

incorporation of an exact tree search procedure to solve sub-problems and test its impact on the 

solution quality of the project schedule. 

- The investigation of different cross-over operators to improve the neighbourhood search: We 

investigate the impact of a combination of three well-known neighbourhood search principles 

into an extended neighbourhood search on the solution quality of the meta-heuristic. 

 

We believe that our two extensions provide insights to develop procedures that report high-quality 

solutions under a wide range of test design assumptions (various data instances, stop criteria, etc…). 

The three selected population based meta-heuristics, a genetic algorithm (GA), a scatter search (SS) 

and an electromagnetism (EM) procedure, have been successfully implemented for the RCPSP and 

have been proven to outperform many other state-of-the-art procedures (Debels and Vanhoucke, 

2006b). In this paper, we show that the incorporation of our two extensions leads to better results than 

the use of the individual procedures, and therefore seems to be a promising area for future research in 

project scheduling.  

 

The outline of this paper is as follows. In section 1 we briefly review the building blocks of the three 

population-based meta-heuristics under study, i.e. an electromagnetism approach, a scatter search 

approach and a genetic algorithm. In section 2 we rely on these three techniques to investigate the 

impact of the decomposition based approach on the solution quality. Section 3 investigates the 

influence of the variable neighbourhood search on the quality of the meta-heuristic procedure. Finally, 

we draw conclusions and report areas for future research in section 4. 
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1 Three population-based heuristics for the RCPSP  

In this section, we review the building blocks of our three meta-heuristics under study. These heuristic 

procedures are among the best performing heuristic procedures for the RCPSP, thanks to the unique 

representation of a schedule and the use of a very efficient and effective local search procedure 

(Debels et al., 2006). These components are described shortly in section 1.1. Afterwards, we outline 

the main characteristics of each individual procedure in section 1.2. 

1.1 Common characteristics of the three meta-heuristics 

The representation and evaluation of a schedule determine the backbone of a meta-heuristic for the 

RCPSP. The schedule representation serves as an encoding of a schedule, which needs to be 

transformed into a schedule by means of a schedule generation scheme (SGS). For both the 

representation and generation of a schedule, various approaches exist, as described in section 1.1.1. 

The local search procedure that has been implemented in all the heuristics relies on forward and 

backward calculations of Li and Willis (1992), and is the topic of section 1.1.2. 

 

1.1.1 Representation and generation of a schedule 

Kolisch and Hartmann (1999) distinguish five different schedule representations, but the activity-list 

(AL) representation and the random-key (RK) representation are the most widely-spread. In both 

representations, a priority structure between the activities is embedded. The AL representation obtains 

this structure by making use of a sequence of the activities. The position of an activity in this 

sequence determines its relative priority versus the other activities. The RK representation that is 

utilized in our procedures uses a vector x ∈ IRn such that xi denotes the priority value of activity i. 

Ideally, a solution (i.e. a schedule) representation should meet the following five conditions (Palmer 

and Kershenbaum, 1994): 

 

(i) The transformation between solutions should be computationally fast 

(ii) For each solution in the original space, there is a solution in the encoded space 

(iii) Each encoded solution corresponds to one feasible solution in the original space 

(iv) All solutions in the original space should be represented by the same number of encoded 

solutions 

(v) Small changes in the encoded solution should result in small changes in the solution itself 
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Neither the AL nor the RK fulfil these requirements as they can both have many different 

representations for one single schedule. The so-called topological order (TO) condition of Valls, 

Quintanilla and Ballestin (2003) overcomes this problem and uses a unique, standardized form of the 

RK representation. The TO condition implies that for all activities i and j for which si(S) < sj(S), 

activity i should have a higher priority than activity j. In order to incorporate the TO condition, we use 

the so-called SRK representation of Debels et al. (2006). More precisely, we first rank the activities 

according to their start times in the schedule, and then replace their priority values by the place in the 

ranking. By using the SRK representation, each schedule is uniquely associated with an RK-vector. 

However, after a move during the neighbourhood search, the newly generated priority vectors are no 

longer in SRK format. Hence, each new priority vector will be transformed into the SRK-form, while 

at the same time evaluating the associated objective function value. Debels and Vanhoucke (2006a) 

have explicitly shown the beneficial effect of introducing the SRK representation. 

1.1.2 Local search method 

The local search procedure that we have implemented in all our heuristics makes use of the iterative 

forward/backward scheduling technique (Li and Willis, 1992) in which both left-justified and right-

justified schedules are used. A left-justified schedule is obtained by iteratively scheduling precedence-

feasible activities forwards. To get a right-justified schedule, the precedence-relations should be 

reversed such that precedence-feasible activities can be scheduled backwards. The iterative 

forward/backward scheduling technique iteratively transforms a left-justified schedule into a right-

justified schedule and a right-justified schedule into a left-justified schedule. We use the iterative 

forward/backward technique as a local search method by using starting times (finishing times) of a 

right-justified (left-justified) schedule as a priority-rule to build a left-justified (right-justified) 

schedule. Debels et al. (2006) have shown that this local search method can only lead to schedule-

improvements.  
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1.2 Description of the three meta-heuristics 

In this section, we review the building blocks of the three meta-heuristics under study: an EM 

algorithm (Debels and Vanhoucke, 2006a), a SS algorithm (Debels et al., 2006) and a genetic 

algorithm (Debels and Vanhoucke, 2006b).   

1.2.1 The EM algorithm 

Electromagnetism has been introduced by Birbil and Fang (2003) as an optimization heuristic for 

global optimization problems, i.e. the minimization of non-linear functions. In this technique, each 

solution point (i.e. an SRK vector representing a schedule) is considered as a point in a multi-

dimensional solution space with a certain charge. This charge is related to the objective function 

values associated with all the solution points. An initial population is created, in which each solution 

point will exert attraction or repulsion on other points by computing the forces of each point. The 

magnitude of the forces is related to the product of the charges and inversely related to the distance 

between the points and obeys the well-known law of Coulomb. The application of the forces results in 

new solution points, such that inferior solution points will prevent a move in their direction by 

repelling other solution points in the population, and attractive points will facilitate moves in their 

direction. Consequently, the main difference with existing methods is that the moves are governed by 

forces that obey the rules of electromagnetism. Birbil and Fang (2003) provide the following generic 

pseudo-code for the EM algorithm: 

 
 Algorithm EM 
  1. Construct a pool of arbitrary solutions 
  While (stop criterion not met) do 
   2. Local search 
   3. Compute forces 
   4. Apply forces 
  Endwhile 
 

This EM technique has been successfully implemented by Debels and Vanhoucke (2006a) for the 

RCPSP. They show that the procedure performs reasonably well compared to the best state-of-the-art 

heuristics in the literature. More precisely, the solution quality of this procedure lies close to the best 

performing meta-heuristics in literature but cannot outperform them. However, hybridising other 

meta-heuristic techniques with ideas borrowed from EM might certainly lead to new improved 

solution procedures.   
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1.2.2 The SS algorithm 

Scatter search is a population-based method that has been applied successfully to various optimisation 

problems. Scatter search contrasts with other evolutionary procedures by providing strategic designs 

where other approaches resort to randomisation. For a general introduction to scatter search, we refer 

to Glover, Laguna and Marti (2000) and Martí, Laguna and Glover (2004). The pseudo code of SS 

can be displayed as follows: 

 

 Algorithm SS 
  1. Construct a pool of arbitrary solutions 
  2. Construct an initial reference set from the pool 
  While (stop criterion not met) do 
   3. Generate subsets 
   4. Create a pool of new trial solutions by applying a 
      solution combination method to each subset 
   5. Update the reference set 
  Endwhile 
 

After the construction of a large pool of randomly generated solutions, the algorithm relies on a ‘two-

tier’ design to construct the reference set. This set contains a set with high-quality solutions (Set1) and 

a set with diverse solutions (Set2). The subsets are generated by combining solutions of Set1 and by 

combining solutions of Set1 and Set2. 

 

1. All pairs in Set1: From each pair, two children are produced using a standard two-point 

crossover and are added to the pool. This crossover operator is similar to the one taken by 

Debels et al. (2006). 

2. Elements from Set1 × Set2: In Debels et al. (2006), the children produced from one element 

of Set1 and one element of Set2 are generated by means of EM.  

 

We rely on a static update of the reference set, by adding elements to Set1 and Set2 after the complete 

generation of each new pool. Comparative computational results indicated that this RCPSP-heuristic 

belongs to the top-ranked procedures from literature. 

1.2.3 The GA algorithm 

The GA technique simulates the evolution of living beings and incorporates the ‘survival of the fittest’ 

principle to solve complex optimization problems (Holland, 1975). In a GA, processes loosely based 

on natural selection, crossover and mutation are repeatedly applied to a population that represents 

potential solutions. In recent decades, operations research literature has been overwhelmed with 
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genetic algorithms for different project scheduling problems. The GA used in this paper deviates 

somewhat from a classical GA approach, as shown in the pseudo-code below:  

 

 Algorithm GA 
  1. Construct a pool of arbitrary left-justified solutions (LJ)  
  While (stop criterion not met) do 
   2. Select parents from LJ set 
   3. Generate children by the cross-over operator 
   4. Update the RJ set 
   5. Select parents from RJ set 
   6. Generate children by the cross-over operator 
   7. Update the LJ set 
  Endwhile 
 

Contrarily to a conventional GA, this meta-heuristic uses two separate populations containing left-

justified (LJ) and right-justified (RJ) schedules. The procedure starts with the generation of an initial 

left population, followed by an iterative process that continues until the stop criterion is met. The 

iterative process consecutively adapts the left-justified (right-justified) population elements in a 

sequence. The right (left) population is updated by feeding it with combinations of population 

elements taken from the left (right) population. In doing so, the left (right) population-elements are 

transformed in right-justified (left-justified) schedules. This unique approach allows to fully exploit 

the advantages of the local search procedure described in section 1.1.2. To combine population 

elements, we use a two-point cross-over operation that relies on the calculation of the Total Resource 

Utilization (TRU) (Debels and Vanhoucke, 2006b) and is an extended idea of the multi-point peak 

crossover operator of Valls et al. (2002). Basically, the TRU aims at replacing (weak) sub-schedules 

with a low resource utilization of the father by better corresponding sub-schedules of the mother. As 

computational results have shown, this GA procedure outperforms all other RCPSP-heuristics from 

literature. 

2 Restricting the solution space 

In this section, we investigate the impact of a solution space restriction by iteratively solving 

decomposed sub-problems of the main problem under study. A decomposition approach for the 

RCPSP has been proposed by Mausser and Lawrence (1997), Sprecher (2002), Palpant, Artigues and 

Michelon (2004) and Debels and Vanhoucke (2006b). In the current manuscript, we rely on the 

decomposition approach of Debels and Vanhoucke (2006b), who developed a decomposition-based 

genetic algorithm for the RCPSP. Their algorithm initially searches for a feasible start solution for the 

RCPSP problem instance under study, and iteratively splits each problem instance into smaller sub-

problems. The search is then continued on the sub-problems, and the resulting sub-schedules can be 

reincorporated in the schedule of the main problem, possibly leading to an overall better solution. 
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Although Debels and Vanhoucke (2006b) used a genetic algorithm for solving both the main problem 

(initial start solution) and the sub-problems, their general approach can be extended to any solution 

procedure for the RCPSP. The general pseudo-code of their decomposition approach, which will be 

used throughout the remainder of this paper, can be summarized as follows:  

 

 Algorithm decomposition_based_heuristic 
  1. Run an algorithm on the main-problem until a stop criterion is met 
  For i = 1 to iter 
   2. Construct the ith subproblem 
   3. Run an algorithm on the subproblem until  
     a stop criterion is met  
   4. Embed the subproblem into the main problem  
 

The algorithm iteratively solves a different subpart of the main problem (the number of iterations 

equals ‘iter’). More precisely, the decomposition based heuristic (DBH) iteratively focuses on a later 

part of the schedule such that it has a small overlap with the part of the sub-schedule considered at the 

previous iteration. In doing so, we guarantee that each part of the main schedule is the subject of an 

intensive search process in the DBH. We rely on a pre-specified number of decomposed sub-problems 

‘iter’ as an input-parameter, and calculate the size of the sub-problems inversely related to the value 

of ‘iter’.  

 

In order to investigate the overall performance of the DBH, we use the three previously described 

meta-heuristics (EM, GA and SS) to solve each main problem instance. In section 2.1, we solve each 

sub-problem with the same meta-heuristic used for the initial feasible start solution of the main 

problem. In section 2.2, we rely on an exact approach to find solutions for the sub-problems. 

Although the effectiveness of exact solution approaches is often restricted to relatively small 

instances, the decomposition approach allows a problem size reduction into manageable sub-

problems.   

 

We have coded all procedures in Visual C++ 6.0 and performed computational tests on an Acer 

Travelmate 634LC with a Pentium IV 1.8 GHz processor using two datasets. The first one is the well-

known PSPLIB testset (Kolisch and Sprecher, 1997), which we use to compare our procedure with 

other existing procedures from literature. The second dataset RG300 contains 480 large problem 

instances and has been generated by Debels and Vanhoucke (2006b) using RanGen (Demeulemeester, 

Vanhoucke and Herroelen, 2003). Each instance contains 300 activities and 4 resources. The order-

strength is set at 0.25, 0.50 or 0.75, resource usage at 1, 2, 3 or 4 and the resource-constrainedness at 

0.2, 0.4, 0.6 or 0.8. Using 10 instances for each problem class, we obtain a problem set with 480 

network instances.  
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2.1 The use of meta-heuristics for the DBH  

In table 1, we display the computational results for the DBH, using EM, SS and GA both for the main 

problems and the sub-problems. The last two columns compare results without (iter = 0) and with 

(iter ≥ 0) decomposition and measure the contribution of the DBH on the performance of the meta-

heuristic procedures. We tested all procedures without decomposition (iter = 0) under a strict stop 

condition of 1,000; 5,000 and 50,000 schedules, as proposed by Hartmann and Kolisch (2000). 

However, the decomposition-based procedures (iter ≥ 0) are tested differently. Using a strict schedule 

limit stop condition would be unfair since the construction of sub-schedules requires less CPU-time 

than the construction of a complete schedule. Therefore, we use a time-equivalent approach of Debels 

and Vanhoucke (2006b) which truncated the procedures after a pre-specified time limit that is equal to 

the CPU-time needed to solve each corresponding problem instance without decomposition. Hence, 

the rows labelled with “Avg.CPU” display the average CPU-time to solve the problem instances, and 

are equal for the procedures with (iter ≥ 0) and without decomposition (iter = 0). The rows labelled 

with “Avg.Dev.Lb” display the average deviation from the optimal solution (for J30) or from the 

critical path based lower bound (for J60, J90, J120 and RG300). The rows labelled with “opt_iter” 

display the optimal value of iter or the number of sub-problems during decomposition. Finally, the 

rows “b1 / b2” (for SS) and “popsize” (for EM and GA) report the best-found values for the population 

size parameters. 

 

The results of table 1 can be summarized as follows. First, the table reveals that the GA outperforms 

SS and SS outperforms EM, both in terms of computation time and schedule quality. As an example, 

the GA results for the J90 instances with 5,000 schedules (10.35% within 0.173s) already outperform 

the EM results with 50,000 schedules (10.45% within 2.45s). Second, the decomposition of problem 

instances is beneficial for all meta-heuristic procedures and its positive impact increases for large 

problem instances and small stop conditions. Indeed, the optimal number of iterations increases when 

problem size increases, and the largest values can be found for the RG300 instances under a stop 

criterion of 1,000 generated schedules. Consequently, problem decomposition allows to find better 

solutions for large-sized problem instances in a very quick way. Finally, the results reveal that the 

optimal population size decreases as the value for opt_iter goes up. Indeed, larger iter values result in 

more sub-problems that need to be solved within the same total stop criterion, and hence, the number 

of schedules in each iteration needs to be decreased. 
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iter = 0 iter  ≥ 0
1,000 5,000 50,000 1,000 5,000 50,000

Avg.CPU 0.01s 0.06s 0.86s 0.01s 0.06s 0.86s
Avg.Dev.Lb 0.24% 0.12% 0.02% 0.24% 0.12% 0.02%
opt_iter 0 0 0 0 0 0
popsize 14 25 100 14 25 100
Avg.CPU 0.01s 0.07s 0.69s 0.01s 0.07s 0.69s
Avg.Dev.Lb 0.23% 0.07% 0.01% 0.23% 0.07% 0.01%
opt_iter 0 0 0 0 0 0
b 1 / b 2 6 / 4 10 / 3 28 / 3 6 / 4 10 / 3 28 / 3
Avg.CPU 0.01s 0.06s 0.52s 0.012s 0.06s 0.52s
Avg.Dev.Lb 0.15% 0.05% 0.02% 0.12% 0.05% 0.02%
opt_iter 0 0 0 2 0 0
popsize 45 100 480 42 100 480
Avg.CPU 0.03s 0.13s 1.52s 0.03s 0.13s 1.52s
Avg.Dev.Lb 11.89% 11.29% 10.98% 11.77% 11.21% 10.96%
opt_iter 0 0 0 2 2 2
popsize 8 25 40 8 18 25
Avg.CPU 0.03s 0.12s 1.28s 0.03s 0.12s 1.28s
Avg.Dev.Lb 11.68% 11.08% 10.68% 11.62% 11.08% 10.68%
opt_iter 0 0 0 2 0 0
b 1 / b 2 4 / 4 10 / 7 26 / 16 3 / 4 10 / 7 26 / 16
Avg.CPU 0.02s 0.11s 1.11s 0.02s 0.11s 1.11s
Avg.Dev.Lb 11.45% 10.95% 10.68% 11.31% 10.95% 10.68%
opt_iter 0 0 0 2 0 0
popsize 30 90 480 25 90 480
Avg.CPU 0.05s 0.19s 2.45s 0.05s 0.19s 2.45s
Avg.Dev.Lb 11.52% 10.89% 10.45% 11.28% 10.68% 10.36%
opt_iter 0 0 0 3 3 3
popsize 12 25 40 12 20 35
Avg.CPU 0.04s 0.19s 2.00s 0.04s 0.19s 2.00s
Avg.Dev.Lb 11.27% 10.57% 10.05% 11.17% 10.54% 10.05%
opt_iter 0 0 0 2 2 0
b 1 / b 2 5 / 2 8 / 5 20 / 14 5 / 2 6 / 4 20 / 14
Avg.CPU 0.04s 0.17s 1.82s 0.04s 0.17s 1.82s
Avg.Dev.Lb 10.99% 10.35% 9.90% 10.80% 10.35% 9.90%
opt_iter 0 0 0 2 0 0
popsize 20 75 440 15 75 440
Avg.CPU 0.07s 0.34s 3.85s 0.07s 0.34s 3.85s
Avg.Dev.Lb 35.91% 33.54% 32.67% 35.19% 33.33% 32.35%
opt_iter 0 0 0 3 3 3
popsize 10 20 40 9 20 40
Avg.CPU 0.06s 0.31s 3.29s 0.06s 0.31s 3.29s
Avg.Dev.Lb 34.90% 32.91% 31.45% 34.71% 32.79% 31.44%
opt_iter 0 0 0 3 3 2
b 1 / b 2 4 / 2 8 / 5 26 / 12 4 / 2 7 / 5 22 / 12
Avg.CPU 0.06s 0.27s 3.00s 0.06s 0.27s 3.00s
Avg.Dev.Lb 34.19% 32.34% 30.82% 33.55% 32.18% 30.69%
opt_iter 0 0 0 3 3 3
popsize 20 75 360 18 45 240
Avg.CPU 0.53s 2.68s 28.83s 0.53s 2.68s 28.83s
Avg.Dev.Lb 835.55% 828.46% 821.87% 830.34% 822.86% 818.90%
opt_iter 0 0 0 6 4 4
popsize 12 14 40 12 12 25
Avg.CPU 0.47s 2.36s 23.51s 0.47s 2.36s 23.51s
Avg.Dev.Lb 832.20% 824.85% 817.75% 828.35% 820.69% 815.83%
opt_iter 0 0 0 5 5 5
b 1 / b 2 4 / 2 7 / 5 26 / 12 4 / 2 7 / 5 26 / 12
Avg.CPU 0.34s 1.63s 16.36s 0.34s 1.63s 16.36s
Avg.Dev.Lb 830.02% 821.80% 812.97% 824.60% 817.36% 809.93%
opt_iter 0 0 0 8 7 5
popsize 16 45 280 16 40 260

J120

RG300

SS

SSJ90

GA

GA

GA

SS

SS

J30

GA

J60

EM

SS

EM

EM

EM

GA

EM

  
Table 1. The impact of the DBH on GA, SS and EM 
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2.2 The use of an exact procedure for the DBH 

The use of exact algorithms to solve the RCPSP is often limited to relatively small problem instances. 

The DBH, however, splits problem instances in smaller sized sub-problems, which suit better to be 

solved by exact algorithms. In our approach, we rely on a modified version of the branch-and-bound 

algorithm of Demeulemeester and Herroelen (1992), since this procedure is among the best 

performing procedures in literature and capable to solve the J30 instance set to optimality in a limited 

time. We performed experiments on the J120 dataset and results can be found in table 2. 

 

In order to get insights in the performance of the exact solution procedure to solve the sub-problems 

of the DBH, we compare this solution approach (further referred to as DBH-exact) with the 

decomposition approach of section 2.1 (further referred to as DBH-heur). However, due to the 

incorporation of exact code, we are no longer able to use exact time limits as a stop condition for the 

DBH-exact approach. Indeed, it is only possible to impose a strict stop condition on the first step of 

the DBH (the initial start solution of the main problem which is solved heuristically), but we have no 

control on the CPU-time needed to solve the sub-problems to optimality. Therefore, we run our 

experiments as follows. We run the GA, SS or EM within a stop criterion of 0.1 seconds to generate 

an initial start solution for the main problem. Afterwards, the exact algorithm is used to solve the sub-

problems and we truncate this procedure after 0.15 seconds if no optimal solution has been found. In 

order to allow a fair comparison, we run the DBH-heur algorithm within the same computational time 

needed to solve the instances with the DBH-exact approach. The results for both approaches are 

summarized in table 2. The column labelled with “Avg.CPU” reports the average CPU-time needed to 

solve an instance by both decomposition approaches. We tested different sub-problem decompositions 

for the DBH-exact approach, as given in the column labelled with “iter” (i.e. 6, 8, 10, 12 and 14). For 

the DBH-heur approach, we have fine-tuned the value of iter as shown in the column labelled with 

“opt_iter”. Similar to table 1, we use the average deviation from the critical path based lower bound in 

the columns “Avg.Dev.Lb” as a measure of solution quality. 

 

The results confirm the previously found results that the GA outperforms both other procedures. 

Moreover, the table clearly illustrates that the computational effort of the exact procedure restricts the 

DBH-exact approach to focus on small sub-problems. Hence, the optimal number of iterations 

(opt_iter) for the DBH-heur approach is always lower than the value of iter for the DBH-exact 

approach. The results reveal a U-shaped relation between iter and the average deviation from the 

lower bound, with the best performance obtained at 8 iterations for EM and SS, and 10 iterations for 

GA. On the one hand, large values for iter lead to inferior results due to the restrictive character of the 

search process (in this case, only small sub-problems have been solved to optimality). On the other 

hand, small iter values result in large sub-problems which can not be solved to optimality within an 
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acceptable time, and hence, the exact search process needs to be truncated in an early stage, leading to 

a low solution quality. Consequently, the average CPU-time is also inversely related to the number of 

iterations. In general, the table reveals that the incorporation of exact code does not lead to 

improvements compared to the DBH-heur approach. 

 

iter Avg.Dev.Lb opt_iter Avg.Dev.Lb
0.160s 14 33.03% 4 32.71%
0.236s 12 32.97% 4 32.43%
0.354s 10 32.95% 4 32.11%
0.456s 8 33.00% 3 31.94%
0.510s 6 33.04% 3 31.95%
0.167s 14 33.35% 3 33.27%
0.243s 12 33.26% 3 33.03%
0.352s 10 33.19% 3 32.70%
0.446s 8 33.18% 3 32.56%
0.503s 6 33.31% 2 32.49%
0.147s 14 33.98% 3 34.25%
0.225s 12 33.87% 3 33.69%
0.312s 10 33.78% 3 33.29%
0.371s 8 33.78% 3 33.20%
0.378s 6 33.94% 3 33.16%

Avg.CPU DBH-exact DBH-heur

GA

SS

EM

 
Table 2. Results for the DBH with an exact solution procedure 

 

To improve the performance of the DBH-exact approach, we have also performed experiments in 

which network information has been incorporated in the sub-problem generation. More precisely, we 

rely on the research of Herroelen and De Reyck (1999) who have investigated the complexity of the 

RCPSP and tested the impact of two indicators, the order strength (OS) (Mastor, 1970), and the 

resource-constrainedness (RC) (Patterson, 1976), on the problem complexity. For RCPSP-instances 

they have shown a hard-easy phase transition for the OS and an easy-hard-easy phase transition for 

the RC. We have used this information to control our search process and influenced the size of the 

sub-problem to networks with low values for OS (OS ≤ 0.19) and values for RC between 0.14 and 

0.35. In doing so, sub-problems can be optimally solved in a very small amount of computational 

time. As a result, table 3 reveals that the DBH-exact approach under a controlled sub-problem 

generation has a better performance than the results of table 2. The controlled DBH-exact approach 

outperforms the DBH-heur approach for EM, and leads to improved results for the SS and GA 

algorithms when the number of sub-problems is large enough (i.e. for iter ≥ 10 (SS) and iter = 14 

(GA)). Consequently, the controlled DBH-exact approach might be a good approach to solve large-

sized problem instances that need to be decomposed in small and controlled sub-problems. 
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iter Avg.Dev.Lb opt_iter Avg.Dev.Lb
0.122s 14 33.05% 4 33.17%
0.132s 12 33.04% 4 32.88%
0.142s 10 33.03% 4 32.81%
0.148s 8 33.03% 4 32.82%
0.159s 6 33.08% 4 32.76%
0.126s 14 33.39% 3 33.57%
0.134s 12 33.33% 3 33.51%
0.142s 10 33.32% 3 33.54%
0.156s 8 33.36% 3 33.32%
0.161s 6 33.41% 3 33.26%
0.120s 14 34.04% 3 34.29%
0.151s 12 34.02% 3 34.02%
0.164s 10 33.98% 3 33.99%
0.145s 8 34.01% 3 34.23%
0.144s 6 34.04% 3 34.23%

DBH-exact DBH-heur

GA

SS

EM

Avg.CPU

 
Table 3. Results for the DBH with an exact solution procedure and our control mechanism 

3 Extending the neighbourhood search  

In this section, we investigate the potential of combining different cross-over operators into a variable 

neighbourhood search on the solution quality of the meta-heuristic procedures. Population-based 

meta-heuristics are solution procedures that make use of a set of individuals (i.e. the population) that 

evolves during the search process. During this transformation process, exchange of information 

between two or more individuals is a matter of degree. The way this information exchange is done 

depends on the particular features of the meta-heuristic technique. The EM heuristic relies on the use 

of forces to generate new solutions, the SS technique relies on a solution combination method to 

combine different schedules and the GA technique makes use of so-called cross-over operators to 

generate children from a father and a mother solution. In the remainder of this paper, we use the 

general term ‘cross-over operator’ to refer to the exchange of information between two or more 

individuals to generate new solutions. In this section, we study the impact of the choice of an 

individual crossover operator on the performance of the GA that has been proven to outperform all 

other procedures (see table 1), and investigate the impact of the combination of multiple crossovers. 

We selected three different crossover operators from the three best-performing procedures from the 

literature, namely the random 2-point crossover operator (rnd_2-pt, Debels et al. (2006)), the peak 

multi-point crossover operator (multi-pt, of Valls, Ballestin and Quintanilla (2002)) and the peak 2-

point crossover operator (peak_2-pt, of Debels and Vanhoucke (2006b)).  

 

Table 4 displays the results for the J30, J60 and J120 instances under a stop condition of 1,000, 5,000 

and 50,000 generated schedules. The rows labelled with “Avg.Dev.Lb” report the average deviation 

from the optimal solution (J30) or from the critical path based lower bound (J60 and J120). We tested 
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various settings for the population size, for which the best value has been reported in the rows labelled 

with “popsize”. We have tested the three previously mentioned crossover operators (i.e. rnd_2-pt, 

peak_2-pt and multi-pt) and combined them into the “combined crossover”. The relative importance 

of each crossover operator that leads to the best results has been displayed for the combined crossover 

operator in “% rnd_2-pt”, “% peak_2-pt” and “% multi-pt”.  

 

The results clearly illustrate the beneficial effect of combining the various crossover operators into 

one algorithm. In all cases, the combined crossover operator outperforms the individual operators. As 

an example, the average deviation decreases from 32.34% to 32.28% for J120 and 5,000 schedules 

when combining the three crossover operators of our study. The results also reveal that the relative 

importance of the multi-pt crossover is rather low (always less than 10%). This crossover operator has 

a weak performance on the solution quality, and performs worse than the two other operators.  

 

J30 J60 J120
Avg.Dev.Lb 0.17% 11.45% 34.29%
popsize 46 30 20
Avg.Dev.Lb 0.15% 11.45% 34.19%
popsize 45 30 20
Avg.Dev.Lb 0.28% 11.82% 36.15%
popsize 44 36 20
Avg.Dev.Lb 0.11% 11.44% 34.16%
popsize 46 30 18
% rnd_2-pt 40% 60% 40%
% peak_2-pt 50% 40% 60%
% multi-pt 10% 0% 0%
Avg.Dev.Lb 0.06% 11.00% 32.34%
popsize 120 71 60
Avg.Dev.Lb 0.04% 10.95% 32.34%
popsize 100 90 75
Avg.Dev.Lb 0.12% 11.19% 33.76%
popsize 140 110 60
Avg.Dev.Lb 0.04% 10.94% 32.28%
popsize 120 80 50
% rnd_2-pt 0% 40% 50%
% peak_2-pt 100% 50% 40%
% multi-pt 0% 10% 10%
Avg.Dev.Lb 0.02% 10.69% 30.75%
popsize 370 390 290
Avg.Dev.Lb 0.02% 10.68% 30.82%
popsize 480 480 360
Avg.Dev.Lb 0.03% 10.84% 32.64%
popsize 410 350 220
Avg.Dev.Lb 0.02% 10.64% 30.74%
popsize 400 380 260
% rnd_2-pt 50% 30% 60%
% peak_2-pt 50% 60% 40%
% multi-pt 0% 10% 0%

combined crossover

rnd_2-pt

peak_2-pt

multi-pt

combined crossover

1,000

5,000

50,000

rnd_2-pt

peak_2-pt

peak multi-point

combined crossover

rnd_2-pt

peak_2-pt

peak multi-point

 
Table 4. Computational results with three crossover operators on the GA 
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4 Conclusions 

In this paper, we relied on state-of-the-art meta-heuristic procedures to solve the resource-constrained 

project scheduling problem and investigated two general extensions, as follows:  

 

First, the decomposition of a problem instance to smaller sub-problems based on the principles of the 

decomposition-based heuristic proposed by Debels and Vanhoucke (2006b) has been extensively 

investigated. We have extended this approach by using three meta-heuristic procedures and an 

efficient exact procedure from literature. The results obtained from extensive computational tests are 

promising. Test designs with large problem instances and low stop conditions show that traditional 

meta-heuristics have insufficient time to efficiently explore the entire solution space. Hence, 

embedding these procedures into the decomposition based heuristic overcomes this problem, and 

leads to improved results. Moreover, the incorporation of exact search algorithms to solve the sub-

problems leads to improvements, but the size of the sub-problems needs to be carefully controlled 

based on well-known complexity indicators from literature. This control mechanism is needed to 

select sub-problems that are large enough to find improvements for the schedule of the main problem, 

and small enough to avoid excessive computation times to solve to optimality.  

 

Second, the detailed investigation of different cross-over operators to enlarge the neighbourhood 

search leads to improved results. To that purpose, we combined three well-known crossover operators 

from literature in the genetic algorithm. Computational results show that this neighbourhood 

extension leads to improvements for problem instances truncated after a large amount of time. 
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