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Abstract 

 
The original Panjer recursion of the CreditRisk+ model is said to be unstable and 
therefore to yield inaccurate results of the tail distribution of credit portfolios. A 
much-hailed solution for the flaws of the Panjer recursion is the saddlepoint 
approximation method. In this paper we show that the saddlepoint approximation 
is an accurate and robust tool only for relatively homogenous credit portfolios 
with low skewness and kurtosis of the loss distribution. However, often credit 
portfolios are heterogeneous with large skewness and kurtosis. We show that for 
such portfolios the commonly applied saddlepoint approximations (the 
Lugannani-Rice and the Barndorff-Nielsen formulas) are not reliable. Moreover, 
when applied to such credit portfolios, the Lugannani-Rice formula is fragile. We 
explain it by the dependence of the high-order standardized cumulants and the 
relative error on the saddlepoints. The more the cumulants and the relative error 
vary, the less accurate the saddlepoint approximation is. Hence, the saddlepoint 
approximation is not a universal substitute to the Panjer recursion algorithm. 

 
 
JEL. 
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1. Introduction 

The CreditRisk+ (CR+) model of Credit Suisse First Boston (CSFB) has several advantages over 

its rival credit risk models such as KMV and CreditMetrics. The CR+ model offers a full analytic 

description of the portfolio loss of a credit portfolio, allowing a quick calculation of the loss 

distribution thereby avoiding time-consuming Monte Carlo simulations. The model also requires 

a relatively limited dataset (Kurth, et al., 2002). However, Wilde (2000), Gordy (2002), and Haaf, 

Reiß and Schoenmakers (2003) draw attention to the numerical fragility and therefore inaccuracy 

of the Panjer recursion algorithm of CR+. Its numerical instability arises from an accumulation of 

numerical round-off errors due to the summation of numbers of similar magnitude but opposite 

sign. The larger the number of independent risk factors, the larger the number of obligors and the 

smaller the standardized loss unit, the longer the polynomials in the recurrence equation and, 

hence, the larger the possibility for round-off errors to accumulate. As an alternative to the Panjer 

recursion algorithm, Gordy (2002) introduces a saddlepoint approximation (SPA) for fast and 

accurate computation of tail percentiles of the loss distribution in CR+. He finds that the SPA is 

extremely fast, accurate and robust for large portfolios with complex risk factor structures,  

exactly in the situations for which the Panjer recursion algorithm fails. Nevertheless, the SPA is 

less accurate in situations where the Panjer recursion is fast and reliable such as small portfolios 

with only one risk factor. Feuerverger and Wong (2000) test the accuracy of the Lugannani-Rice 

SPA introduced by Gordy (2002) as well as the alternative Barndorff-Nielsen SPA (Jensen, 1995) 

for large complex portfolios whose payoff functions contain linear (direct holdings in the 

underlying risk factor assets) and nonlinear (due to derivative securities) terms. They conclude 

that both SPAs are fast and accurate for any portfolio for which the risk factors are normally 

distributed with correctly specified covariance and for which a delta-gamma approximation of the 

nonlinear terms is appropriate.  

 

Although SPA is said to be extremely accurate in the tails and even exact for normal, gamma and 

inverse Gaussian distributions (Daniels, 1980), some notes of caution are expressed in the 

literature on their reliability in other cases. Booth and Wood (1995), Beran and Ocker (2003), 

Studer (2001), and Maryno and Nyfeler (2003) warn that the standard normal SPA should be 

applied cautiously as it produces large errors for some distributions. 
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Our purpose is to provide users of CR+ with a set of diagnostics to identify beforehand when the 

SPA is prone to failure. We test the accuracy and robustness of the Lugannani-Rice (LR) and the 

Barndorff-Nielsen (BN) formulas on a set of real-life credit portfolios. In contrast to Gordy 

(2002), we find that there exists a class of credit portfolios for which both SPAs perform poorly, 

even in a simple one risk factor setting. Both formulas yield accurate approximations of the credit 

loss distributions for homogenous portfolios only, where homogenous portfolios are understood 

to be portfolios in which the maximum exposure to a single obligor is less than 1% of total book 

value. Their credit loss distributions exhibit low skewness and kurtosis. However, in practice 

credit portfolios are often heterogeneous and characterized by large skewness and kurtosis. We 

show that applying the LR and BN formulas to such credit portfolios yields totally unreliable 

approximations in the tails of the loss distribution. Moreover, the LR formula fails in the sense 

that sometimes negative probabilities are generated. Large relative errors of SPA are explained 

by the dependency on the saddlepoint, q, of the third z3(q) and the fourth z4(q) standardized 

cumulants and the relative error (see section 3). We find that the larger z3(q), z4(q) and hence the 

relative error are at q = 0, the less accurate the SPA is. Therefore, we warn against applying SPA 

on credit portfolios without first checking the third and the fourth moments of the loss 

distribution. At the same time we corroborate Gordy’s (2002) results that under a simple one risk 

factor specification of the CR+ the Panjer recursion algorithm gives accurate results for both 

homo- and heterogeneous portfolios, regardless of the third and the fourth moments of the credit 

loss distributions.   

 

The plan of the paper is as follows. The next section gives a short explanation of SPA. In the 

third section we present an overview of the literature that documents the inaccuracy and even 

failure of SPA in some cases. In the fourth section we test the accuracy of the Panjer recursion 

algorithm, the LR and the BN formulas on five real-life credit portfolios with loss distributions 

exhibiting varying degrees of skewness and kurtosis. The fifth section concludes. 

2. Saddlepoint approximations 

SPAs, or saddlepoint expansions, were derived in the 1930s and were fully developed in the 

1980s. The application of SPAs historically began with risk theory for calculating risk premiums 
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in insurance. Nowadays SPAs are applied to credit risk modelling (Feuerverger and Wong 

(2000), Martin et al. (2001), Gordy (2002 and 2004) and Glasserman (2003)), catastrophe 

insurance and operational risk management (Schimiddi and  Barndorff-Nielsen (1995)).  

 

The intuition behind the SPA is as follows. The Edgeworth expansion gives an approximation of 

the density of a centered random variable for which the closed-form solution is not known. In 

general, Edgeworth expansions are found to work well at the center of a distribution but not at the 

tails of a distribution. The trick of the SPA is to use the Edgeworth expansion precisely where it 

works well, in the center of a distribution. The density of the original distribution f(x) is estimated 

by ‘tilting’ f(x) to a new distribution f(θ;x) which is centered around x. This new tilted 

distribution is then approximated by the Edgeworth expansion and finally the mapping is inverted 

to obtain the approximation of f(x).2

 

Let fn be the density of ( 1 ... /nX X X= + + ) n , where the iX  are i.i.d. random variables.  The low-

order SPA of fn has the following form 

( )( )( ) ( ) ( )( )2( ) exp 2 1nf x n K x n O nθ θ πσ θ −= − ⋅ ⋅ + 1 , (1) 

where n denotes the number of random variables, ( )2σ θ  the variance of the tilted distribution, 

( )K θ the cumulant generating function (cgf) and O the relative error term. The saddlepoint θ is 

chosen in such a way that the first cumulant (i.e. the mean) equals x – the point for which we 

want to know the density. The standard high-order SPA formula is as follows: 

( )( )( ) ( ) ( )
2

2 234 5 ( )1 ( )( ) exp 2 1
8 24nf x n K x n O n

n
ζ θζ θθ θ πσ θ −⎛ ⎞⎛ ⎞

= − ⋅ ⋅ + − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, (2) 

where ζi are the ith standardized cumulants defined as / 2
2( ) ( ) / ( )i

i iζ θ κ θ κ θ= , with iκ  the ith 

cumulant. Tail probabilities are given by the following formula 

                                                 
2 In this paper only final formulas for SPA which are useful for the further discussion are presented. An extensive 
discussion of SPA can be found in the textbook by Jensen (1995). 
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( ) ( )( )( )
( )

( )
2

3 23 34
0 3 4 6 0

exp
Pr

( ) ( )1 ( )( ) ( ) ( ) ( ) ( ) ,
8 726

n K x
X x

n

B B B B O B n
nn

θ θ

θσ θ

ζ θ ζ θζ θλ λ λ λ λ −

−
≥ = ×

⎛ ⎞⎛ ⎞
+ + − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 (3) 

where Bi(l) are the Esscher functions (see Jensen, 1995).  

 

The SPA (3) for tail probabilities is cumbersome and does not have a simple relation to other 

well-known quantiles in statistics. Practitioners often need simple formulas expressed in 

interpretable quantiles, such as the LR approximation (Jensen, 1995):  

( ) 1 1Pr 1 ( ) 1 ( ) ( )X x G x ω φ ω
υ ω

⎛≥ = − ≈ − Φ + −⎜
⎝ ⎠

⎞
⎟ , (4) 

where G(x) is the cumulative density function (cdf) of random variable X ,  F and f denote resp. 

the cdf and density of the standard normal distribution, ( ) ( )sign 2n x Kω θ θ θ= −⎡ ⎤⎣ ⎦  and 

''( )nKυ θ= θ . In the last expression ''( )K θ  is the second derivative of K w.r.t. θ. 

 

An alternative to the LR formula is the BN formula (Jensen, 1995): 

( ) 1Pr 1 ( ) 1 logX x G x υω
ω ω

⎛ ⎞≥ = − ≈ − Φ +⎜ ⎟
⎝ ⎠

 . (5) 

 

In order to avoid root-solving for q, a strategy based on interpolation is applied (Gordy, 2002). 

This strategy is efficient when it is required to calculate VaRs for several probabilities. At first, 

the upper bound θ̂  is computed3 and then a fine grid of 1,000 values in the open interval (0, θ̂ ) is 

formed. At each point in the grid we calculate the pairs of losses and corresponding probabilities 

and then interpolate to find the loss corresponding to a concrete target solvency probability. 

 

SPAs are of interest in many different applications as they give good approximations to tail 

probabilities. However, they cannot be used to approximate any distribution. First, the cgf of the 

                                                 
3 The procedure of computing θ̂  for CR+ is described in Gordy (2002). 
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distribution must have a tractable form (Jensen (1995), Studer (2001), Gordy (2002)). Second, for 

many distributions its accuracy can be questioned. This issue is discussed in the next section. 

3. Cases where saddlepoint approximations fail 

Wood, et al. (1993), and Booth and Wood (1995) study the reliability of the standard  LR and BN 

formulas. Booth and Wood apply both approximations to a first passage time of a random walk 

with drift to a fixed boundary, which is characterized by the inverse Gaussian distribution, and 

find that for specific parameter values both approximation formulas give extremely inaccurate 

tail probability estimates. Moreover, they find that the LR approximation sometimes yields 

negative densities. 

 

Studer (2001) examines the performance of the standard low-order SPA (1) on an example of the 

Normal Inverse Gaussian (NIG) Lévy process and also finds that it is not able to accurately 

approximate the distribution. The higher order saddlepoint approximation (2) works better, but 

the relative errors are still large over an interval capturing 99.8% of the mass of the distribution. 

 

Another example of the standard SPA’s inaccuracy is given by Beran and Ocker (2003). They 

consider credit portfolios with a few exceptionally high potential loss values and thus exhibiting 

bimodality in credit loss distribution. They find that, although the standard SPA captures the 

overall shape of the loss distribution of such portfolios, it totally ignores the fat and humped 

shape of the tail and, hence, significantly underestimates the credit risk.  

 

These cases all have in common that the distributions for which the SPA yields inaccurate results 

have large third and fourth standardized cumulants. In fact, Studer (2001) concludes that the 

standard SPA can give very good results only for well-behaved distributions, i.e. distributions 

whose fourth cumulant is not too large. For distributions with large higher cumulants, the 

Edgeworth expansion is found to yield imprecise probability estimates in the center of its 

distribution (exactly where it should work well) (Jensen, 1995). Therefore, the large higher 

standardized cumulants result in a large relative error for the probability estimate of the SPA. 

Moreover, a less documented but elementary condition for the SPA to give accurate estimates is 
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for the relative error to be independent of the saddlepoint (q ). The rest of this section elaborates 

on this condition and analyses whether it is fulfilled for the SPA of the CR+ specification.  

Thus, a crucial condition for the SPA to give accurate results is for the relative error (A(θ) = 
2

34 5 ( )1 ( )
8 24n

ζ θζ θ⎛ ⎞
−⎜

⎝ ⎠
⎟ +…) to be independent of the saddlepoint approximation θ (or A(θ) = A) 

(Barndorff-Nielsen and Cox (1979), Daniels (1954, 1980), and Jensen (1995)). Daniels (1980) 

proves that for only three distributions – the normal, the gamma and the inverse-normal 

distribution – the SPA is exact, i.e. SPA estimates give for all n exactly the densities of the 

distributions. For the normal distribution the higher standardized cumulants (and thus the relative 

error) equal zero, hence the relative error and the standardized cumulants are independent of the 

saddlepoint. The relative error for the gamma distribution remains constant (but not zero) for all 

possible values of θ.4 A special case is the inverse Gaussian distribution, Jensen (1995) shows 

that although the standardized cumulants ζj(q) depend on the saddlepoint q and can even increase 

without bound, the SPA is exact, because the relative error is identical to zero for varying q. 

 

The condition of independence of the relative error on the saddlepoint does not hold for the one 

risk factor CR+ specification.5 Limiting us to the leading term of the asymptotic expansion for 

the relative error 

( 2
4 3( ) 8 5 ( ) 24ζ θ ζ θ− ) , (6) 

we show in the appendix that the error term (6) depends on the saddlepoint q.6 Moreover, the 

error term (6) has the limit 2 12σ− , where s2 is the variance of the risk factor and θ̂  is the upper 

bound of the valid range of saddlepoints, calculated according to the inequality derived by Gordy 

(2002). In the appendix we also show that for the CR+ specification the higher order standardized 

cumulants ζ3(q), ζ4(q) depend on q  and have the following limits: 

                                                 
4 Strictly speaking, the fact that the relative error is not zero implies that the renormalized SPA, i.e. the SPA 
multiplied by a constant such that it integrates to one, is exact. 
5 The conclusions derived here are also valid for the multifactor CR+, though the limits for the multifactor model 
differ from those derived for the one factor model. In this paper we do not derive the limits of the standardized 
cumulants and correction terms for the multifactor CR+ as the proof is messy and without additional insight. 
6 As the relative error is an asymptotic expansion specification (6) is not sufficient to prove the independence as the 
remaining part of the asymptotic expansion may eliminate any dependency. However, we restrict ourselves to the 
specification in (6) as in empirical applications this term will dominate.   
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2
ˆ ˆ3 4lim ( ) 2 lim ( ) 6

θ θ θ θ
ζ θ σ ζ θ σ

→ →
= = . (7) 

In practice we are interested in distributions for which the SPA will not give exact results. 

Accuracy is the best thing to exactness. Daniels (1954) shows that several density specifications 

obey the already mentioned independence condition and for which the SPA yields accurate 

estimates (as those specifications approximate the normal or the gamma distributions for the 

saddlepoint ).  More recent results from Daniels (1980) and Jensen (1995) suggest that 

investigating the behaviour of the third and the fourth cumulants and the leading correction term 

in the asymptotic expansion (6) across the valid range of θ may provide a useful diagnostic tool 

to ascertain the accuracy of the SPA.  

θθ ˆ→

 

In the next section we show empirically that the SPAs (LR and BN) for CR+ yield highly 

accurate estimates for these credit loss distributions of which the variation of the third and fourth 

standardized cumulants (ζ3(q), ζ4(q)) remains limited across the valid range of θ. In these cases 

the standardized cumulants of the loss distributions are seen to be relatively small and to 

converge relatively fast towards their limits (7). However, in the cases where the standardized 

cumulants and the error term (6) vary strongly with the saddlepoint, the slower they converge to 

their limits and therefore the much less accurate the SPA is found to be. The credit loss 

distributions in these cases are characterized by large skewness and kurtosis. 

 

The rule of thumb is as follows. First, compute the third and the fourth standardized cumulants at 

θ = 0, i.e. for the original credit loss distribution. If the standardized cumulants and the correction 

term diverge significantly from their limits, then the SPA is likely to produce large relative errors 

and therefore should be substituted by another method (as for example the Panjer recursion).  

 

4. The importance of higher moments for saddlepoint 
approximations 

In this section we illustrate the importance of the third and the fourth moments on the accuracy of 

the VaR-estimates of the SPA for the CR+ model. The accuracy and robustness of the Panjer 

recursion and the SPA (both the LR and the BN formulas) are tested on a set of portfolios 
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randomly sampled from a real-life credit portfolio. The large real-life credit portfolio consists of 

3,000 exposures for which we know the exposure size and the unconditional probability of 

default, estimated by the bank’s experts. Each of the five sampled credit portfolios consists of 

1,000 obligors.  

 

To introduce heterogeneity in the portfolios we increase the size of maximum exposure to a 

single borrower from 0.94% of total book value in portfolio 1 to 4.35% and 4.29% in portfolios 4 

and 5 respectively. At the same time we gradually increase the difference between the first and 

the second largest exposures. For example, in the extreme cases of portfolios 4 and 5 the ratio 

between these two exposures is larger than 2, while in portfolio 1 it is about 0.5. Moreover, we 

keep the number of exceptionally high exposures restricted to no more than four.  By doing so, 

we are able to increase dramatically the skewness and the kurtosis of the exposure size and the 

loss distributions. Summary statistics of exposure size and credit loss distributions are reported in 

table 1.  

 

Insert table 1 around here. 

 

The difference between the five portfolios is situated in the skewness and kurtosis of the loss 

distribution with minimal values for portfolio 1 and maximal values for portfolio 5. All 

portfolios, except portfolio 1, have almost identical values of expected loss and standard 

deviation in relative terms, but differ remarkably in their skewness and kurtosis. Portfolios 3 and 

4 are built in such a way that they differ remarkably only in kurtosis. Checking only the skewness 

and the kurtosis of the exposure size distribution gives an incomplete picture of the riskiness of 

the portfolio. For example, although the skewness and the kurtosis of the exposure size 

distribution of portfolio 4 is larger than that of portfolio 5, the skewness and the kurtosis of the 

loss distribution show that portfolio 5 is likely to suffer larger losses. The histograms of the loss 

distributions are shown in figure 1. Due to the increase in heterogeneity, portfolios 4 and 5 have 

loss distributions with spikes far in the tails, marked by the circles.7  

 

Insert figure 1 around here 

                                                 
7 The distributions are estimated using a Monte Carlo simulation, cfr. infra. 
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Different levels of VaR are estimated on the one hand by the original Panjer recursion algorithm 

and on the other hand by the LR and the BN formulas. We restrict our analysis to a simple 

specification of the CR+ model, assuming exposure to only one systematic risk factor8 with 

variance σ2 = 1 and loss-given-default (LGD) equal to 0.3. Gordy (2002) shows that the larger the 

number of sectors, the larger the portfolio and the smaller the standardized loss unit, the longer 

the polynomials in the recurrence equation, so the greater the opportunity for round-off errors to 

accumulate and for the Panjer recursion algorithm to fail. However, for small and medium-sized 

portfolios (less than 5,000 obligors) and a simple one factor CR+ specification, the original 

Panjer recursion algorithm is stable and reliable. We specifically test the reliability of  the Panjer 

algorithm when applied to portfolios with large third and fourth cumulants.  

 

We will use as benchmark the loss distribution estimated using Monte Carlo simulation of the 

CR+ model with one systematic risk factor. This procedure has the advantage that we can also 

easily compute a 95% confidence interval around the VaR numbers. In the one factor 

specification the probability of default for obligor i conditional on the risk factor x is given by 

( )i ip x p= x , (9) 

where ip  is the unconditional default probability of obligor i (for example, given by rating 

agencies or bank experts).9 The risk factor x is assumed to be an independent gamma variable 

with mean one and variance one. CR+ assumes that defaults follow a Poisson distribution with 

intensities pi(x). We therefore perform the Monte Carlo simulations in four steps: 

1. Simulate the realization of the risk factor x from the gamma distribution G(1, 1); 

2. Compute the probability of default for each obligor from equation (9); 

3. Simulate default events for each obligor from the Poisson distribution and calculate total 

portfolio loss in the portfolio; 

4. Repeat this procedure N=100,000 times. 

 

                                                 
8 The idiosyncratic risk is not included in the model. It is the simplest and at the same time the most prudent 
specification of CR+, because it assumes the highest correlation between the default probabilities.   Inclusion of the 
idiosyncratic risk does not change the conclusions, but instead raises questions about the weights attached to the risk 
factors. 
9 The generalized K-factor specification of CR+ is given in Gordy (2002).  
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The error of a VaR estimate is calculated as a difference between the estimate and Monte Carlo 

estimate. Without confidence intervals the picture of the VaR error is incomplete. We derive 

explicit confidence intervals as described in Pritsker (1997). To construct a 95% confidence 

interval for the pth percentile of a distribution generated by the Monte Carlo simulation, we solve 

for L and H such that [ ]Pr L HV VaR V p≤ ≤ = , where Vi, for i = 1,…, N, are the portfolio values 

generated by the simulation and sorted in ascending order. VL and VH are the bounds for the 

confidence interval. These bounds are chosen such that: 
1

1

1

(1 ) 0.95

(1 ) 0.95.

H
i N i

i L

H
i N i

i L

N
p p

i

N
p p

i

−
−

=

−
−

= +

⎛ ⎞
− ≥⎜ ⎟

⎝ ⎠
⎛ ⎞

− ≤⎜ ⎟
⎝ ⎠

∑

∑
 (10) 

Moreover, H and L are chosen such that the confidence interval is as close to symmetric as 

possible. 

 

In table 2 we report Monte Carlo, Panjer, LR and BN VaRs for all five portfolios and the 

probability that Monte Carlo loss will exceed these estimates.  We show the results only for VaRa 

at 90%, 95%, 97.5%, 99% and 99.5% levels, which are the most relevant quantiles in practice. To 

ease the comparison of the portfolios, we express VaR as a percentage of total book value. In 

portfolio 2 Monte Carlo losses exceed VaR90% calculated by the Panjer recursion algorithm in 

10.36% times. Ideally it should be 10%. We also test whether deviations from the Monte Carlo 

simulations are statistically significant.  

 

We conclude that under the simple one factor specification the Panjer recursion algorithm indeed 

performs better than the LR and the BN formulas although its accuracy decreases for higher 

skewness and kurtosis of the loss distribution. This finding is consistent with Gordy (2002) who 

finds that the potential for errors (of the Panjer recursion) increases as the skewness of the loss 

exposure distribution is increased. Indeed, the Panjer recursion algorithm gives correct 

approximations in the tail of Portfolio 1, but in case of Portfolios 4 and 5 the approximations are 

correct only starting from α = 97.5%. As concerns the LR and the BN formulas, their accuracy 

deteriorates significantly when the skewness and the kurtosis of the loss distributions increase. 

For example, in portfolio 1, with minimum skewness and kurtosis, the deviations of VaR 
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calculated by means of LR and BN formulas from Monte Carlo VaR are statistically 

insignificant. Starting from portfolio 3 both SPAs produce wrong estimates with statistically 

significant deviations over the whole tail of the loss distribution. There is no systematic pattern in 

the behavior of the LR and the BN formulas. In some cases the VaRs are significantly 

overestimated (portfolios 2 and 3), in others significantly underestimated (portfolios 4 and 5 for a 

= 90%). Hence, the users of the SPA are not always on the safe side, especially for heterogeneous 

portfolios highly inaccurate results are obtained. 

 

Insert Table 2 around here 

 

As a robustness check we test how close, or how far, the estimated distributions are from the 

distribution calculated via the Monte Carlo simulation. We estimate the goodness-of-fit by the 

Kolmogorov-Smirnov test. The results are summarized in the last column of table 2. For each 

portfolio we compare the tail distribution produced by the Panjer algorithm and the SPA against 

the Monte Carlo simulation. In not a single case can we reject the null hypothesis about the 

equality of distributions produced by the Panjer algorithm and Monte Carlo simulations. On the 

contrary, we reject the null hypothesis of equality of the distributions produced by the LR 

formula and Monte Carlo simulation for portfolios 4 and 5.  

 

Our results are presented as Q-Q plots in figure 2 where the probabilities of exceeding Panjer, LR 

and BN VaRs are plotted against the probabilities according to Monte Carlo simulations for all 

five portfolios. The values of both axes decrease as we move from the origin, which indicates that 

we move further into the tail of the distribution. A good fit is indicated by values plotted on the 

diagonal (the full straight line), which means that the estimated probability of having a loss 

higher than VaR and the ‘true’ probability calculated via Monte Carlo simulations are equal. If 

the values plot below the diagonal, then the Monte Carlo probability exceeds the estimated and 

VaR is underestimated; if it is above, then it is overestimated. We see that probabilities calculated 

by the Panjer recursion algorithm are slightly underestimated but do not deviate much from the 

Monte Carlo probabilities. In fact, the accuracy increases as we move further into the tails. The 

probabilities calculated via the LR and the BN formulas deviate strongly from the diagonal. 

Moreover, in the case of LR the dots are scattered almost randomly in the Q-Q plot. This 
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indicates that the LR approximation is fragile and cannot approximate the tails of the loss 

distributions of portfolios 4 and 510.  In fact, both SPA formulas are able to approximate correctly 

only the loss distribution of portfolio 1.  

 

Insert Figure 2 around here 

 

As we already mentioned in section 3, the accuracy of the SPA depends on how strongly the third 

and the fourth standardized cumulants vary when q changes. In Figure 3 we plot the values of the 

cumulants and the relative error versus q for the one systematic risk factor CR+ model with 

variance one. Under such assumptions the limits of ζ3(q) and ζ4(q) are 2 and 6 respectively.11 The 

limit of the relative error is -0.083.12 At q = 0 the third standardized cumulant of portfolio 1 is 

2.026, the fourth is 6.117 and the relative error is -0.09.13 They are initially very close to the 

limits, and converge fast as ˆθ θ→ . In fact, they are almost stable, therefore it is not surprising 

that the LR and the BN formulas work well in this case. In contrast to portfolio 1, the third and 

the fourth standardized cumulants of portfolios 4 and 5 are initially far from the limits14 and vary 

a lot with q, causing huge variation in the relative error. Therefore they converge to the limits 

very slowly causing large errors in the SPA.  

 

Insert Figure 3 around here 

 

In order to check whether these conclusions hold in a multifactor model, we increased the 

number of risk factors to 2 and 5. We came to exactly the same conclusions as in the one factor 

model.15  

 

                                                 
10 The fragility of the LR approximation has also been reported by Booth and Wood (1995). 
11 According to eq. (7). 
12 According to eq. (6). 
13 Before calculating the standardized cumulants all exposures are grouped in 100 exposure bands. Therefore the 
standardized cumulants at  q = 0 differ from the skewness and kurtosis reported in table 1, where the results are 
obtained without preliminary dividing portfolios into exposure bands. 
14 The third standardized cumulants of portfolios 4 and 5 are 3.9 and 4.9 respectively. The fourth standardized 
cumulants are 38.2 and 59.4 respectively. 
15In order to save space, we do not report the figures of ζ3(q) and ζ4(q) and the relative error for multifactor CR+. 
These figures are available on request. 
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The instability of the LR formula can be completely understood when looking at the loss 

exceedance curve that shows for each loss value the probability of exceeding this loss. For a loss 

distribution to be a reliable approximation of the true loss distribution at least two properties of 

the loss exceedance curve have to hold. The first property is that the loss exceedance curve must 

be a non-increasing function of the loss value. It may be flat on some intervals implying that 

probability of loss occurring in those intervals is zero, but an increasing function would imply 

negative probabilities for some losses. If the first property does not hold then the interpolation to 

find the loss value x corresponding to 1-G(x) is impossible and the LR formula fails. The second 

property is of course that the loss exceedance curve can never have negative values, i.e. loss 

probabilities cannot be negative.  

 

Insert Figure 4 around here 

 

Figure 4 shows the loss exceedance curves of the first and the fifth credit portfolios produced by 

the LR formula.16 The loss exceedance curve of the first portfolio obeys the above mentioned 

properties. However as for portfolio 5, the loss distribution given by the LR formula can never be 

a close approximation of the true loss distribution. The loss exceedance curve of the fifth 

portfolio is not continuously decreasing signaling that the credit loss distribution given by the LR 

formula is totally unreliable. 

 

Several solutions have been brought up to increase the accuracy of the SPA. First, Studer (2001) 

points at higher-order SPA (2) as a partial solution for the large relative error given by the 

standard low-order SPA. Although this solution leads to a decrease in the relative error it does not 

solve the inaccuracy problem as often this error remains quite large. Including fifth and sixth 

standardized cumulants into (2) probably would add little in terms of accuracy. Instead, the 

formula will be more complicated and the practical intuition behind the formula will be lost. 

Second, to capture the bimodal shape of the loss distribution for their credit portfolio composed 

of a few large exposures Beran and Ocker (2003) introduce a ‘recursive’ SPA. This 

approximation consists of applying the standard SPA on a sample of the credit portfolio for 

                                                 
16 For portfolios 2 and 3 we obtain similar results as for portfolio 1 whereas the results for portfolio 4 confirm those 
of portfolio 5. We refrain from reporting them to save space. 
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which the extreme exposures are excluded and afterwards adjusting the preliminary estimated 

distribution for the extreme exposures. However, although, the recursive approximation 

considerably improves the accuracy of the distribution estimates, the error often remains 

important. These two proposed solutions still use the normal distribution as the underlying 

distribution for the SPA. The third solution, proposed by Wood et al (1993), and Booth and 

Wood (1995) is to replace the normal distribution in the LR and the BN formulas by another 

distribution. For the approximation of tail probabilities of the first passage time of a random walk 

with drift process they propose the Inverse Gaussian as an alternative distribution. The modified 

(inverse Gaussian based) LR and BN SPAs prove to give highly accurate estimation results in the 

tails when the distribution is characterized by large higher moments. However, the modified 

(inverse Gaussian based) SPA can never totally replace the normal based SPA as the distribution 

estimates show to be less accurate when the higher standardized cumulants are low. Hence, one 

‘standard-to-fit-all’ SPA does not exist. 

 

5. Conclusions 

CR+ is an influential model for portfolio credit risk, which provides analytical tools to derive a 

credit loss distribution. The model attracted a lot attention from the practitioners and scholars due 

to its analytical tractability which eliminates the need for Monte Carlo simulation. However, the 

original Panjer recursion of the CR+ model is unstable and therefore often yields inaccurate 

results for the tail of the loss distribution of credit portfolios. To overcome this problem several 

alternative solutions were proposed among which the SPA, which is shown to be extremely fast, 

more robust in practical applications and accurate for large portfolios regardless the complexity 

of the risk factor structure. However, it was argued in the literature that SPAs are not always 

exact and reliable and that sometimes its relative errors are quite large. In this paper we find that 

the accuracy of the SPA for CR+ strongly depends on how much the higher order standardized 

cumulants and the relative error (6) vary with q. On the example of five real-life credit portfolios 

we show that the commonly applied SPAs (the LR and the BN formulas) are bad substitutes to 

the original Panjer recursion when the third and the fourth standardized cumulants of the loss 

distribution of the credit portfolio and the relative error calculated at  q = 0 deviate significantly 

from their limits and vary strongly with  q.  
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We conclude that the accuracy and reliability of the LR and the BN formulas deteriorate when 

the third and the fourth moments of the loss distribution increase. Indeed, both formulas give 

accurate VaR estimates for portfolios with low third and fourth standardized cumulants, such as 

portfolio 1. For all other portfolios they produced VaR estimates beyond the 95% confidence 

interval. Moreover, larger skewness and kurtosis of credit loss distribution cause numerically 

instability of the LR formula. Therefore we warn against applying SPA without preliminary 

checking the higher standardized cumulants of the loss distribution.  

 

At the same time we corroborate the results by Gordy (2002) that for the simple one risk factor 

CR+ specification, the original Panjer recursion algorithm is accurate and robust, even for highly 

heterogeneous credit portfolios with big skewness and kurtosis of the loss distribution. 
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Appendix.  The third and the fourth standardized cumulants in 
CR+. 

 

In this section we show that the third and fourth standardized cumulants are dependent on q. This 

proof is based on the derivations of cgf for CR+ made by Gordy (2002). In order to make the 

proof simpler we make the following assumptions: 

1. There is only one systematic risk factor;  

2. The credit portfolio is absolutely homogeneous, i.e. all default exposures are of equal size. 

In such simple portfolio only one exposure band is possible;  

3. The standardized loss unit is equal to the size of the default exposure and thus in the event 

of default by obligor i, there is a fixed loss ni = 1. 

In this case the cgf for CR+ is  

(1 )( ) log
( )

K µ δθ τ
µ δ θ

⎛ ⎞−
= ⎜ ⎟− Ω⎝ ⎠

,       

where ( ) exp( )i i i
i

w pθ ν θΩ = ∑ , i i
i

w pµ = ∑   /( )δ µ τ µ= + and t = 1/s. 

As in Gordy (2002) we denote D the differential operator, which means that Djf(x) is the jth 

derivative of f with respect to x. The jth derivative of W(q) is given by the following equation: 

( ) exp( ) 0j j
i i i i

i

D w p jθ ν ν θΩ = ∀ ≥∑  

The first derivative of y(q) is: 

( )'( )
( )

DK δ θθ τ
µ δ θ

⎛ ⎞Ω
= ⎜ ⎟− Ω⎝ ⎠

 

The expression in the parenthesis is generalised as 

( )( )
( )

j

j
DV δ θθ

µ δ θ
Ω

=
− Ω

  

The derivatives of K(q) can be generated recursively by 
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If ni = 1, then all derivatives DiW(q) are equal to W(q), therefore  

1
( )( ) ( ) ( )

( )j jV V Vδ θθ θ θ
µ δ θ +

Ω
= = =

− Ω
. 

Then in one risk factor case the third standardized cumulant is  
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The fourth standardized cumulant is 

( )
( )
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4 2 2 2 2 3 4
2

2
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4
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The relative error is 

( )
2

34
2

5 ( )( ) 1 1
8 24 112 ( ) ( )V V

ζ θζ θ
2ττ θ θ

⎛ ⎞
− = − −⎜ ⎟ +⎝ ⎠

 

Let θ̂  be the value at which the denominator in V(q) is equal to zero. Therefore the denominator 

in V(q) is positive and decreasing for all ˆθ θ<  and equal to zero at θ̂ . The numerator in V(q) is 

positive and increasing, so V(q) is positive and increasing for all ˆθ θ< .  As ˆθ θ<  then 
2

34
3 4

5 ( )( ) 1( ) ( ) 2 , ( ) 6 ,
8 24 1

V ζ θζ θθ ζ θ τ ζ θ τ
2τ

⎛ ⎞
→ ∞ → → − → −⎜ ⎟

⎝ ⎠
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In case when ni > 1, the dependency of the standardized cumulants and the correction term on q  

is more complex, but as we show empirically the standardized cumulants and the correction term 

have the limits derived above.  
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Table 1. Summary statistics. 

 
This table provides summary statistics for the five real-life credit portfolios randomly sampled from a large real-life 
credit portfolio. Each of the sampled portfolios consists of 1,000 obligors. The difference between the five portfolios 
is situated in the skewness and kurtosis of the loss distribution with minimal values for portfolio 1 and maximal for 
portfolio 5. We increase skewness and kurtosis by increasing maximum exposure to a single borrower, increasing the 
difference between the first and second largest exposures and keeping the number of exceptionally high exposures 
restricted to no more than four. In the first part of the table we report statistics of the exposure size distributions. 
Summary statistics of the credit loss distributions are reported in the second part of the table. The summary statistics 
of the credit loss distributions were calculated for one systematic risk factor CR+ specification with LGD=0.3 and 
s2=1. 

  
  Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 

 
Exposure size distribution 

Maximal exposure* 0.94% 1.50% 1.73% 4.35% 4.29% 
Minimal exposure*  0.00% 0.00% 0.00% 0.00% 0.00% 
Skewness 3.59 5.07 5.86 12.46 12.23 
Kurtosis 19.34 37.02 50.30 248.28 198.98 

 
Credit loss distribution 

Expected Loss* 0.33% 0.04% 0.03% 0.03% 0.03% 
St Deviation* 0.35% 0.06% 0.05% 0.05% 0.06% 
Skewness** 2.03 3.14 4.37 4.71 5.68 
Kurtosis** 9.11 18.15 36.34 60.66 81.27 

* expressed in percentage to book value 
** skewness and kurtosis were calculated without preliminary dividing portfolio into exposure bands and therefore 
differ from results reported in figure 3.
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Table 2. Risk estimates and distribution characteristics of the credit portfolios. 
 

In this table we report Monte Carlo, Panjer, LR and BN VaRs for the five portfolios and the probability that Monte 
Carlo loss will exceed these estimates. We show results only for VaRa at 90%, 95%, 97.5%, 99% and 99.5% levels. 
VaR is expressed as a percentage of the total book value. The goodness-of-fit is estimated by the Kolmogorov-
Smirnov test. 

Portfolio 1    90 95 97.5 99 99.5 KS value 
MC VaR‡  0.782 1.022 1.271 1.589 1.836  
Panjer VaR‡  0.783 1.027 1.271 1.593 1.837 0.026 

   Pr[MC loss > Panjer VaR]   (%) 9.959 4.917 2.495 0.989 0.499  
LR VaR‡  0.779 1.022 1.264 1.586 1.828 0.026 
       Pr[MC loss > LR VaR]   (%) 10.077 5.007 2.549 1.013 0.509  
BN VaR‡  0.782 1.025 1.268 1.590 1.833 0.026 
       Pr[MC loss > BN VaR]   (%) 9.989 4.954 2.523 0.999 0.505  
Portfolio 2            
MC VaR‡  0.115 0.167 0.224 0.311 0.374  
Panjer VaR‡  0.112 0.166 0.223 0.308 0.374 0.051 

   Pr[MC loss > Panjer VaR]   (%) 10.360*** 5.100 2.527 1.038 0.500  
LR VaR‡  0.126 0.185 0.245 0.324 0.385 0.179 
       Pr[MC loss > LR VaR]   (%) 8.498*** 4.020*** 1.999*** 0.858*** 0.460  
BN VaR‡  0.128 0.187 0.247 0.326 0.387 0.205 
       Pr[MC loss > BN VaR]   (%) 8.244*** 3.949*** 1.958*** 0.845*** 0.454**  
Portfolio 3            
MC VaR‡  0.075 0.113 0.152 0.210 0.258  
Panjer VaR‡  0.072 0.112 0.152 0.211 0.264 0.051 

   Pr[MC loss > Panjer VaR]   (%) 10.499*** 5.088 2.514 0.987 0.462  
LR VaR‡  0.080 0.141 0.200 0.278 0.337 0.231 
       Pr[MC loss > LR VaR]   (%) 9.065*** 2.957*** 1.173*** 0.393*** 0.224***  
BN VaR‡  0.086 0.144 0.202 0.280 0.339 0.256 
       Pr[MC loss > BN VaR]   (%) 8.062*** 2.800*** 1.128*** 0.389*** 0.221***  
Portfolio 4            
MC VaR‡  0.087 0.127 0.173 0.257 0.305  
Panjer VaR‡  0.084 0.125 0.173 0.255 0.306 0.051 

   Pr[MC loss > Panjer VaR]   (%) 10.479*** 5.163** 2.501 1.023 0.485  
LR VaR‡  0.049 0.054 0.062 0.409 0.514 0.667*** 
       Pr[MC loss > LR VaR]   (%) 20.973*** 18.952*** 15.913*** 0.114*** 0.031***  
BN VaR‡  0.055 0.165 0.277 0.417 0.520 0.308*** 
       Pr[MC loss > BN VaR]   (%) 18.426*** 2.760*** 0.778*** 0.104*** 0.030***  
Portfolio 5            
MC VaR‡  0.089 0.129 0.181 0.262 0.320  
Panjer VaR‡  0.086 0.127 0.179 0.259 0.317 0.077 

   Pr[MC loss > Panjer VaR]   (%) 10.630*** 5.176** 2.555 1.045 0.509  
LR VaR‡  0.044 0.051 0.062 0.087 0.556 0.769*** 
       Pr[MC loss > LR VaR]   (%) 24.908*** 21.507*** 16.967*** 10.425*** 0.062***  
BN VaR‡  0.050 0.185 0.303 0.451 0.562 0.282* 
       Pr[MC loss > BN VaR]   (%) 21.798*** 2.387*** 0.599*** 0.184*** 0.059***  

 
Asterisks indicate the level of significance as follows: (*) 0.10, (**) 0.05, (***) 0.01.  
We use the following abbreviations: MC – Monte Carlo simulations; LR – the Lugannani-Rice formula; BN – the 
Barndorff-Nielsen formula; KS – Kolmogorov-Smirnov test. 
‡ - reported as a percentage of the total book value. 
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Figure 1. Credit loss distributions 
 
The histograms present simulated loss distributions of the five credit portfolios under the following assumptions: one 
systematic risk factor, LGD=0.3 and s2=1. In order to ease the comparison between the portfolios, loss is calculated 
as a percentage to the total book value.  
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Figure 1. (continued) 
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Figure 1. (continued) 
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Figure 1. (continued) 
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Figure 1. (continued) 
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 Figure 2. Q-Q plots. 
 
This figure presents Q-Q plots where the probabilities of exceeding Panjer, LR and BN VaRs are plotted against the 
probabilities according to Monte Carlo simulations for all five portfolios. A good fit is indicated by values plotted on 
the diagonal (the full straight line), which means that the estimated probability of having a loss higher than VaR and 
the ‘true’ probability calculated via the Monte Carlo simulations are equal. If the values plot below the diagonal, then 
the Monte Carlo probability exceeds the estimated and VaR is underestimated; if it is above, then it is overestimated.
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Figure 2. (continued) 
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 Figure 3. Dependence of ζ3(q) and ζ4(q) and the relative error 
2

34 5 ( )( )
8 24

ζ θζ θ⎛ ⎞
−⎜ ⎟

⎝ ⎠
on q.  

In this figure the values of the third, the fourth standardized cumulants and the relative error are plotted against q for 
one systematic risk factor CR+ model with LGD=0.3 and s2=1. At first, all exposures were divided in 100 exposure 
bands and then the standardized cumulants and the relative error were calculated.  
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Figure 3. (continued) 
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Figure 3. (continued) 
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Figure 4. Loss exceedance curves. 
 
This figure shows the loss exceedance curves produced by the LR formula for the first and the fifth credit portfolios, 

which are the extreme cases. In order to apply the LR formula a fine grid of 1,000 values in the open interval (0, θ̂ ) 
is formed and then at each point in the grid the pairs of losses and corresponding probabilities are computed. In order 
to ease the comparison between the portfolios, we do not report loss in pecuniary terms. Instead the probabilities are 
plotted against the points in the grids. 
 
Increasing loss exceedance curve of portfolio 5 implies negative probability of losses. Loss exceeding curve of 
portfolio 4 was not reported here, although it also increases in some intervals.  The loss exceeding curves of 
portfolios 2 and 3 are non-increasing functions of the loss value. 
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