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Abstract

The incorporation of small mutation rates has significantly improved the predic-
tive capacity of evolutionary models. Bergin and Lipman [1996], however, demon-
strate that this improvement depends entirely on the nature of the mutation process.
We provide a constructive corroboration of their result: we derive matching mutation
rates for each desired set of stochastic stable states.
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1 Introduction

In evolutionary game theory, ‘finite memory’ is a standard assumption: players’ actions
are based on a limited sample of past actions. Therefore, Markov processes naturally suit
the analysis. The limiting distribution of such a Markov process defines the distribution
over the steady states of the evolutionary model. The steady states with strict positive
limiting distribution are called ‘stable’ states.

The inherent path dependence of these evolutionary models is viewed as a serious
weakness but is overcome by introducing, besides the deterministic evolution, ‘mutation’ as
a second equilibrium–selection driving force, where states are ‘stochastically stable’ if they
have a positive limiting distribution as the mutation rates converge to zero (Kandori et al.
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[1993], Young [1993]). Interestingly, stochastic stability is a refinement of the deterministic
evolutionary process: each stochastic stable state is also a stable state in the model without
mutation.

As Bergin and Lipman [1996] (henceforth BL) convincingly prove, however, the pre-
dictive power of the latter models crucially depends on the assumption that mutation
rates are constant across states and agents and over time. In a non-constructive manner,
by using the Kakutani fixed point theorem, BL show that once this assumption is (par-
tially) dropped, “with state-dependent [but time-invariant] mutation rates, any invariant
distribution of the mutationless process is achievable with any mutation model” (p. 951).

Evidently, this landmark result has spurred an interesting debate on modeling the
mutation process. By endogenizing the mutation process, Blume [2003], van Damme and
Weibull [2002], Baron et al. [2003], to name but a few, have certainly contributed to
understanding the restrictions on mutation models. We believe, however, that more work
needs to be done. For instance, although BL show that the function, which maps the
mutation rates to the corresponding stable states, is surjective on the set of deterministic
stable states, the general shape of this function remains vague: e.g. what is the range
of mutation rates that leads to a same set of stable states? Therefore, our constructive
corroboration of the BL result not only stresses its pertinence, it will also, we hope, allow
us to see more transparently how specifics of the mutation process select outcomes.

By allowing mutation rates to differ between absorbing sets (we keep mutation rates
constant within absorbing sets), we show that, for suitably adjusted mutation rates, any
set of stable states of a deterministic evolutionary process can also be reached as the set
of stochastic stable states. Our proof is constructive in the sense that for each desired set
of stochastic stable states, we derive matching mutation rates.

2 The Model

An extensive but necessary section on notation, definitions and assumptions precedes the
central theorem of the paper, which is elaborated in section 2.2.

2.1 Definitions and Assumptions

Let S = {1, 2, . . . , n} be a finite set of states. A Markov process P on the set S is a
set of elements {P (x, y)}x,y∈S such that for all x, y ∈ S, P (x, y) ≥ 0 and for all x ∈ S,∑

y∈S P (x, y) = 1. The element P (x, y) is the transition probability from state x to state
y. We denote by P the set of all Markov processes on the set S. Henceforth, P denotes a
Markov process on the set S: P ∈ P .
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An invariant distribution of P is a real vector q = (q(1), . . . , q(n)) such that for all
x ∈ S, q (x) ≥ 0,

∑
x∈S q (x) = 1 and

∑
y∈S q (y) P (y, x) = q (x).

For each P we can define a binary relation, RP , on the set S:

(x, y) ∈ RP if P (x, y) > 0.

The transitive closure of RP is denoted by T (RP ) and is defined as (x, y) ∈ RP if there
is a finite sequence s = x1, . . . , xm of elements in S such that x = x1, y = xm and for all
t = 1, . . . ,m− 1, (xt, xt+1) ∈ RP .

A Markov process is irreducible if for all x, y ∈ S, (x, y) ∈ T (RP ). Moreover, a subset
A of S is absorbing in P if for all x, y ∈ A, (x, y) ∈ T (RP ) and for all x ∈ A, y /∈ A,
(x, y) /∈ RP .

Fact 1. If A and A′ are two absorbing sets of P , then A 6= A′ implies C ∩ C ′ = ∅.

Fact 1. states that two absorbing sets are either equal or disjoint. Let A1, . . . , Ak be
the finite number of disjoint absorbing sets of P . The following facts concern invariant
distributions:

Fact 2. If P is irreducible, it has a unique invariant distribution.

Fact 3. If P has absorbing sets A1, ..., Ak, and if q is an invariant distribution of P , then
q (x) > 0 only if for some i, x ∈ Ai. Further if y ∈ Ai, then also q (y) > 0.

Consider a function Σ from the set [0, 1]n to the set P (where n is the cardinality of
the set S). The function Σ is a perturbation of P if:

(i) Σ (0) = P ;

(ii) Σ (ε) is irreducible for all ε � 0;

(iii) Σ (ε) is continuous in ε; and

(iv) ∀x, y ∈ S, the transition rate from x to y in the Markov process Σ (ε) only depends
on εx.

Here, εx is the x-th element of the vector ε.

The element in row x and column y of Σ (ε) is denoted by P (εx, x, y). The x-th element
of the invariant distribution of Σ (ε), which is unique by Fact 2, is denoted by q (ε, x).

We say that the state x is a stochastic stable state if:

lim
ε→0

q (ε, x) > 0.
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As the Markov process Σ (ε) is continuous, the set of stochastic stable states is necessar-
ily the support of some invariant distribution of P . By Fact 3, this invariant distribution
has positive support for some x ∈ S only if x is in some absorbing set of P .

Our aim is to show the reverse: given an element x ∈ S from an absorbing set Ai of P ,
and a state dependent mutation process Σ (ε), there exist mutation rates such that x is a
stochastic stable state of this mutation process.

In order to compute the stochastic stable states of a given mutation process, we use
the Markov chain tree theorem of Freidlin and Weitzell. For x ∈ S, and Markov chain P
and a mutation process Σ (ε), an x-tree is a subset tx of RΣ(ε) such that:

(i) ∀y ∈ S and y 6= x, (y, x) ∈ T (tx).

(ii) ∀y ∈ S, (x, y) /∈ tx

(iii) ∀y, z, w ∈ S, (y, z) ∈ tx and (y, w) ∈ tx implies w = z

Let Tx be the set of all x-trees. For an x-tree tx, we denote the value v (tx, ε) as:

v (tx, ε) =
∏

(z,w)∈tx

P (εz, z, w) .

Theorem 1. Given a Markov chain P , a mutation process Σ (ε) and a mutation rate
ε � 0:

q (ε, x)

q (ε, y)
=

∑
tx∈Tx

v (ε, tx)∑
ty∈Ty

v (ε, ty)
.

In order to show that x is stochastic stable, we have to show that for all y ∈ S

lim
ε→0

q (ε, x)

q (ε, y)
> 0.

2.2 Result

Theorem 2. Consider a Markov chain P , a mutation process Σ (.) and an element x ∈ S
in a stable state Ai of P . Then there exist mutation rates ε such that x is a stochastic
stable state of Σ (ε).

Proof. To begin we first provide two lemmas on properties of x-trees.
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Lemma 1. For all y ∈ S, there is an y-tree ty ∈ Ty such that for all t′x ∈ Ty

lim
ε→0

v
(
ε, t′y

)
v (ε, ty)

< ∞.

Proof. Assume on the contrary that for all ty ∈ Ty, there exist a t′y ∈ Ty such that

limε→0
v(ε,t′y)
v(ε,ty)

= ∞. As such, from finiteness of the set Ty, there exist a sequence of y-

trees t1y, ..., t
m
y such that limε→0

v(ε,tiy)
v(ε,ti+1

y )
= ∞ for all i = 1, ..., n− 1 and limε→0

v(ε,tny)
v(ε,t1y)

= ∞.

This gives:

1 = lim
ε→0

v
(
ε, t1y

)
v

(
ε, t2y

) v
(
ε, t2y

)
v

(
ε, t3y

) ...
v

(
ε, tny

)
v

(
ε, t1y

) = lim
ε→0

v
(
ε, t1y

)
v

(
ε, t2y

) lim
ε→0

v
(
ε, t2y

)
v

(
ε, t3y

) ... lim
ε→0

v
(
ε, tny

)
v

(
ε, t1y

) = ∞

. . . a contradiction

An y-tree for which the above holds is called a minimal tree for y. Now let ty be a
minimal tree for y and let tx be a minimal tree for x. We have,

lim
ε→0

q (ε, x)

q (ε, y)
= lim

ε→0

v (ε, tx)

v (ε, ty)
lim
ε→0

∑
t′x∈Tx−{tx}

v(ε,t′x)
v(ε,tx)

+ 1

∑
t′y∈Ty−{ty}

v(ε,t′y)
v(ε,ty)

+ 1︸ ︷︷ ︸
B(ε)

The second limiting term on the rhs, B (ε), converges to a strict positive number.
Therefore, for stochastic stability, we only have to look at the ratios of the values of the
minimal trees.

Lemma 2. If ty is a minimal tree for y ∈ Aj, then:

• (z, w) ∈ ty −RP implies that z /∈ Aj.

• (z, w) and (k, l) ∈ tx −RP implies that z and k are not in the same absorbing set.

Proof. Assume that (z, w) ∈ tx − RP and z ∈ Aj. Assume without loss of generality that
there are no other elements k ∈ Aj such that there is a v ∈ S for which (k, v) ∈ ty−RP and
(k, z) ∈ T (tx). Consider an element l in Aj for which (z, l) ∈ RP . (such an element exist
due to the definition of absorbing sets and the assumption that y ∈ Aj). Now consider the
tree t′x = tx − {(z, w)} ∪ {z, l}. This is also an x-tree and has value:

v′ (ε, t′x) = v (ε, tx)
P (ε, z, l)

P (ε, z, w)
.
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Now,

lim
ε→0

v (ε, t′x)

v (ε, tx)
= P (z, l) lim

ε→0

1

P (ε, z, w)
= ∞.

The second part of the proof is analogous.

For all y ∈ S, we consider two continuous and strictly increasing functions fm (εy, y) and
fM (εy, y), such that fm (0, y) = fM (0, y) = 0 and for all z ∈ S for which (y, z) ∈ RΣ(ε)−RP

for all ε � 0:
fm (εy, y) ≤ P (εy, y, z) ≤ fM (εy, y) .

The existence of such functions is shown in appendix A. For each y ∈ S − Ai and
βy ∈ R+

0 , we define the function εy (σ, βy) as:

fm (εy (σ, βy) , y) = fm (1, y) σβy .

For all x ∈ Ai and βx ∈ R+
0 , we define the function εx (σ, βx) as:

fM (εx (σ, βx) , x) = fM (1, x) σβx .

For all y ∈ S, the functions εy (., βy) are functions from [0, 1] to [0, 1] which are contin-
uous and strictly increasing. By choosing the values of βy, we fix the mutation rates εy.
We do this in the following way:

• For all absorbing sets Aj we construct a number βAj
> 0 and put for all y ∈ Aj, βy =

βAj
.

• For Ai, set βAi
>

∑
Aj ,j 6=i βAj

+
∑

y/∈Aj ,j=1,...,k βy.

Consider a minimal x-tree tx. From Lemma 2 and the definition of fm, we have that
there exist a function a (ε) for which limε→0 a (ε) ∈ R+

0 such that for ε � 0 small enough:

v (ε, tx) ≥ a (ε)
∏

Aj ,j 6=i

σβAj

∏
y/∈Aj ,j=1,...,k

σβy .

For a minimal y-tree, we have from Lemma 2 and the definition of fM that there exist
a function b (ε) such that limε→0 b (ε) ∈ R+

0 and for ε � 0 small enough:

v (ε, ty) ≤ b (ε) σβAi .
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From this, we have that

limε→0
q (ε, x)

q (ε, y)
≥ c lim

σ→0

(
σ
P

Aj,j 6=i βAj
+
P

y /∈Aj,j=1,...,k βy−βAi

)
> 0.

Theorem 2 states the main result of the paper: given a Markov chain P and a mutation
process Σ (ε), any element in an absorbing set can be a stochastic stable states of the
mutation process by suitable adjustment of the mutation rates.

3 Conclusion

Bergin and Lipman [1996] showed that the predictive power of evolutionary models which
incorporate mutation as an equilibrium selection device, crucially depends on the nature
of the mutation process, i.e. they prove that a suitably defined mutation process allows
to achieve any stable distribution of the process without mutation with a model that
incorporates mutation.

By allowing mutation rates to differ between absorbing sets, we show that, any element
in an absorbing set of a deterministic evolutionary process can also be reached as the set of
stochastic stable states for any mutation process. Our result is an intuitive and constructive
corroboration of their – non-constructive – result, which stresses its pertinence: the nature
of the mutation process matters, and “must be analyzed more carefully to derive some
economically justifiable restrictions” (Bergin and Lipman [1996], p. 956).

We hope that the constructive argument in this note adds some transparency to, and
spurs further research into, the modeling of mutation processes.

4 Appendix

Construction of fm and fM

Construction of fM (εx, x). Let δ > 0 and construct following functions.

i PM (εy, y) = arg max
z

{
P (εy, y, z)

∣∣z ∈ S, (y, z) ∈ RΣ(ε) −RP

}
ii P ′

M (εy, y) = arg max
ε∈[0,εy ]

PM (εy, y)
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iii fM (εy, y) = P ′
M (εy, y) + δεy

The function PM (εy, y) is a continuous function such that for all z ∈ S: (y, z) ∈
RΣ(ε) − RP : PM (εy, y) ≥ P (εy, y, z). The function P ′ (εy, y) is a continuous increasing
function with P ′

M (εy, y) ≥ PM (εy, y). The function fM is a continuous strictly increasing
function such that fM (εy, y) ≥ P ′

M (εy, y).

Construction of fm (εx, x).

i Pm (εy, y) = arg min
z

{
P (εy, y, z)

∣∣z ∈ S, (y, z) ∈ RΣ(ε) −RP

}
ii P ′

m (εy, y) = arg min
ε∈[εy ,1]

PM (εy, y)

The function Pm (εy, y) is such that for all z ∈ S, (y, z) ∈ RΣ(ε) − RP : Pm (εy, y) ≤
P (εy, y, z). The function P ′

m is an increasing function such that P ′
m (εy, y) ≤ Pm (εy, y).

Consider the set:

Cy =

(P, θ) ∈ R× [0, 1]

∣∣∣∣∣∣
∃α ∈ [0, 1] , ε1, ε2 ∈ [0, 1] :
θ = αε1 + (1− α) ε2

P = αP ′
m (ε1, y) + (1− α) P ′

m (ε2, y)

 .

This set collects the convex combinations of all elements (P ′
m (εy, y) , ε). Now define the

function:

iii fm (εy, y) = arg min
(P,εy)∈Cy

P

This function selects the lower contour of the set Cy. It is continuous and fm (εy, y) ≤
P ′

m (εy, y). To see that it is strictly increasing, we show that every slope of the lower
contour of Cy is strictly positive. The slope is positive there

P ′
m (ε1, y)− P ′

m (ε2, y)

(ε1 − ε2)
≥ 0

for all ε1 and ε2. Now assume that there is a part of the lower contour set which has
slope 0, which implies that there are two elements ε1, ε2 such that:P ′

m(ε1,y)−P ′
m(ε2,y)

(ε1−ε2)
= 0

and an element αε2+(1− α) ε1 which is at the lower part of Cy with value αP ′
m (ε2, y)+

(1− α) P ′
m (ε1, y).

Notice that P ′
m (ε1, y) = P ′

m (ε2, y). Now let αε2 + (1− α) ε1 = βε2. We have that:
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αP ′
m (ε2, y) + (1− α) P ′

m (ε1, y) = P ′
m (ε2, y) > βP ′

m (ε2, y) + (1− β) P ′
m (0, y)

Therefore, (P ′
m (ε2, y) , αε2 + (1− α) ε1) is not part of the lower contour of Cy.
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