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Abstract

In financial market risk measurement, Value-at-Risk (VaR) techniques have proven to be a very
useful and popular tool. Unfortunately, most VaR estimation models suffer from major drawbacks:
the lognormal (Gaussian) modeling of the returns does not take into account the observed fat tail
distribution and the non-stationarity of the financial instruments severely limits the efficiency of the
VaR predictions. In this paper, we present a new approach to VaR estimation which is based on
ideas from the field of information theory and lossless data compression. More specifically, the
technique of context modeling is applied to estimate the VaR by conditioning the probability
density function on the present context. Tree-structured vector quantization is applied to partition
the multi-dimensional state space of both macroeconomic and microeconomic priors into an
increasing but limited number of context classes. Each class can be interpreted as a state of
aggregation with its own statistical and dynamic behavior, or as a random walk with its own drift
and step size. Results on the US S&P500 index, obtained using several evaluation methods,
show the strong potential of this approach and prove that it can be applied successfully for,
amongst other useful applications, VaR and volatility prediction. The October 1997 crash is
indicated in time.
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1 Introduction

Faced with volatile financial markets, both banks and non-financial companies are
investing considerable resources in risk management systems. As a result, risk
management is increasingly becoming a quantitative discipline. According to
international standards elaborated by multinational organizations, most notably the Bank
for International Settlements, banks and other financial intermediaries have to maintain
capital against a number of potential risks, of which counterparty risk, market risk and
interest rate risk are the most important ones. Most countries and financial supervisors
have translated these guidelines into their financial legislation and their regulatory
practice. The ultimate goal is to guarantee a sufficient degree of financial stability, in
view of the potential contagion effects of situations of financial distress in parts of the
financial sector and their negative spill-overs to the real sector. The approach adopted
for the calculation of capital adequacy standards has traditionally been rule-based. In
such a framework, the types of risks are identified and quantified within each institution
according to established methods of computation, and a predetermined level of capital
has to be allocated. Increasingly, however, it has become clear that this framework may
induce regulatory arbitrage whereby innovative financial contracts are used to migrate
certain risks to the risk category with the lowest capital adequacy requirements [1,2].
Moreover, regulators and supervisors are confronted with a rapidly changing competitive
financial environment in which both the organization of financial intermediaries (e.g.,
local commercial banks versus internationally diversified financial conglomerates) and
the types of risk (e.g., operational risk versus market risk) are shifting. In this setting,
international regulators and supervisors are gradually moving from a purely rule-based
approach of capital adequacy to a more market-based approach in which eligible banks
are allowed to use good-practice internal risk management systems to calculate the
optimal level of capital coverage.

In the area of market risk, value-at-Risk (VaR) models are widely used by financial
institutions and non-financial companies [3]. Market risk are the losses arising from
adverse movements in market prices (e.g. equity prices) or market rates (e.g. interest
and exchange rates). Value-at-Risk is a summary statistical measure of possible
portfolio losses under normal market conditions. Losses greater than the VaR are
suffered only with a pre-specified probability, assuming a specific distribution of the
relevant market variables. The intuitive appeal of VaR estimates arises from the fact that
it provides a consistent measure of risk across different positions and risk factors, taking
into account the correlation structure between the risk factors. Since the VaR
methodology yields the maximum amount that can be lost with a particular confidence
level over a specific time period, the VaR forecast can be used to determine capital
requirements at the firm level. The accuracy of the VaR estimates under different
methodologies is ofcrucial importance since there is a cost associated with holding both
too low and too high levels of capital. This paper presents some results of using context
modeling, a state-of-the-art statistical data compression technique, for increasing the



accuracy of the VaR forecast. Data compression is the science that aims at finding the
shortest equivalent representation of a given data stream. Both in text and image
compression, context models are statistical models that have shown to be very efficient
[4,5]. Instead of estimating one comprehensive probability distribution function for the
whole text of image, it builds multiple distributions in parallel based upon the value of the
context. The probability associated with each new data sample is then determined from
the distribution of the samples corresponding with the same context class. Typically, in
text compression, the context is the combination of a limited number of nearby
characters.

The use of context modeling is intuitively appealing. By defining a set of priors that are
theoretically or empirically found to be informative in forecasting future market
movements, different context classes can be defined. The set of priors should reflect the
different forms in which market risk can occur. Examples are changes in interest rates,
exchange rates and business cycle conditions. Every context is designed to describe a
combination of priors and implies a possible state of the world, or, in physical terms, a
state of aggregation. Past market data is used to define a relevant set of contexts. New
observations of the priors automatically lead to the identification of a specific context
class and a specific return distribution for that class. A simple example is that when the
yield curve flattened in the past period of observation, and this is the only prior, the
forecasted VaR will depend on the past observations of returns in the cases where the
yield curve also flattened in the preceding period.

In this paper, context modeling is applied to capture the dynamics of the market risk
associated with movements in the US stock market. A past window of several thousand
daily stock market return observations is used as a data-training frame to form the
contexts and delimit the distributions. Once the contexts are defined, the present state of
the world can be identified and the VaR forecast can be estimated from the
accompanying distribution that is derived from the training period. The analysis is
performed on a daily basis. The choice of a forecast horizon is somewhat arbitrary, but a
daily frequency is a reasonable choice because it can be assumed that the rebalancing
of equity portfolios by market participants follows a similar pattern [6]. Moreover,
financial supervisors also require banks to calculate VaRs on a daily basis since the high
degree of liquidity of the US stock and derivatives markets allow investors to close risky
positions rapidly. A second part of the paper deals with the evaluation of the accuracy of
VaR estimates. Often, the supervisory authorities require that the estimated VaR
produced by the internal risk management system of banks is multiplied by a factor to
determine the minimum required capital [7]. The standard method prescribed for banks
is to count the number of exceptional observations given the VaR forecasts over a
horizon of 250 trading days. Other methods have been developed, including the
minimization of complicated loss functions. This paper also evaluates the forecasting
capabilities of the VaRs obtained through context modeling. An important question in
finance is whether forecasting models are able to predict periods of higher and lower



volatility. In the case of VaR, periods of higher volatility indicate that the required capital
should be increased.

Section 2 outlines the basic concepts of information theory and context modeling. It also
shows the analogy between the goals of financial modeling and data compression. In
section 3, the tree-structured vector quantization algorithm, which is needed for
partitioning the space of priors, is described. Section 4 deals with the different evaluation
criteria used in this research and section 5 describes the data and reports the test
results. Section 6 concludes.

2 Context Modeling Basics

2.1 Risk analysis and data compression

The series of daily returns {y;} of a financial instrument can be regarded as a realization
of an underlying stochastic process {Y{}. Precise knowledge of this process is of
fundamental importance to predict future evolution and to quantify future risk.
Unfortunately, because only one realization of the process is known, properties such as
stationarity (or quasi-stationarity) and ergodicity need to be assumed in order to allow
significant predictions.

The purpose of risk analysis of financial instruments is to determine the maximal amount
of money that can be lost under a certain specified probability p. This amount is usually
called the Value-at-Risk. One way to achieve the goal is to efficiently estimate the
underlying probability density function (pdf) of the return Y., on day t + h based on all
financial and other information accessible on day t. Typically, the probability p will be 1%
or 5% and the horizon h will be 1, 5 or 25 days, corresponding with a day, a week and a
month respectively.

This kind of statistical prediction, where a complete pdf is estimated rather than the most
likely or expected value, is exactly the same goal of data compression. The state-of-the-
art techniques in data compression are statistical by nature. Based on an environment
called the context, a pdf of the upcoming new symbol is constructed and used to drive
an entropy coder, which actually generates the compressed bitstream [4, 5]. In the case
of text compression, this context can be the combination of the previous two characters,
while in the case of image compression, it can be a combination of the rounded
difference and sum of the upper and left pixel.

Though the fundamental goal in risk analysis and data compression may be identical,
there are significant differences too. In data compression, millions or even billions of
data samples (characters for data compression of pixels for image compression) are
available, while in financial modeling the number of daily samples is limited to



thousands. Therefore, the risk of data snooping, negligible in data or image
compression, is of fundamental importance in financial modeling [8]. Another difference
is that in data compression, the overall correctness of the entire pdf is important, while
for risk analysis only the tail distribution is taken into account. Also, the only predictive
factors in text compression are the neighboring text characters, while in financial
modeling, there exists a multitude of factors, both microeconomic and macroeconomic,
which may have predictive power. Finally, in data compression, in order to be useful, the
compression algorithms must satisfy certain speed and memory consumption criteria,
which are almost non-existent for financial modeling.

2.2 Information theory
2.2.1 Entropy of a random variable

The “entropy” H of a discrete random variable Y is defined as

vy

, Where Y is the set of all possible values Y can take, and Pr[y] is the probability that Y
takes the value y [9]. The entropy cannot be negative and is always smaller than or
equal to log(l( Y )), where I( . ) indicates the number of elements of a set. It is a measure
of the randomness or unpredictability of the random variable. It is also a lower bound for
the achievable expected length per symbol when some type of entropy coding is applied.
The joint entropy of two random variables Y and Z is defined as
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Furthermore, the conditional entropy H(Y | Z) is defined as S, Pr[z]JH(Y | Z = z). It can be

shown that H(Y | Z) £ H(Y), with equality if and only if Y and Z are independent. This
property is often referred to as conditioning reduces entropy: the randomness or
unpredictability can only decrease if information about other random variables is used.

2.2.2 Entropy rate of a stochastic process

For a stochastic process {Y;}, the “entropy rate” is defined as H(Y)=limeyH(Y1;Y,;... ;
Yy)/t, when the limit exists. This definition is based upon the observation that, for
independently and identically distributed random variables {Y.}, the joint entropy H(Yj;
Yo;....; Yy) grows linearly with t. The entropy rate is a measure of the average amount of
uncertainty about each random variable Y;, when all {Y; } are considered simultaneously.
A related quantity for the entropy rate is defined as H'(Y) = limey H(Y¢| Yt 1; Yt 2;...; Y1),
when the limit exists. It can be shown that, for a stationary stochastic process, the limits
for both H(Y) and H'(Y) exist and are equal.



2.2.3 Entropy in physics and other fields

This probabilistic notion of entropy is also known as Shannon's “source entropy" and it
was defined and used successfully in the fields of information theory, communication
theory, and coding theory.

The actual roots of entropy lie in the field of thermodynamics through the notion of
thermodynamical entropy. This concept was later elaborated in statistical mechanics,
which connected the macroscopic property of physical entropy and the number of
microscopic states of a system through Boltzmann's formula S=k*InW . The relationship
between information theory and thermodynamics has been discussed extensively by
Brillouin [11] and Jaynes [12].

Later on, Shannon's probabilistic notion of entropy was imported by Kolmogorov into the
field of dynamical systems where the metric or Kolmogorov entropy is defined [10].

Kolmogorov, Solomonoff and Chaitin independently further elaborated this concept to
the field of logic and the theory of algorithms by defining the algorithmic or descriptional
entropy (also known as the Kolmogorov complexity). Algebra uses the notion of galois
entropy.

All notions of entropy are similar in that they all aim at quantifying the amount of
randomness, unpredictability or incompressibility of the system under investigation.
Though they are all defined in different fields, some kind of numerical equivalence can
be shown.

2.3 Context modeling

The goal of both data compression and financial modeling is to estimate, given only one
data sample series, a pdf that allows to predict the upcoming values. The efficiency of
the modeling can be quantified by the achieved entropy (or compression rate). If a good
probability model is applied, then the entropy will be lower. The fact that conditioning
reduces entropy is the fundamental principle of context modeling: conditioning the
random variable on other random variables, which are not independent, can be an
efficient way to achieve a reduction in entropy. The other random variables are called
the priors and a specific combination of priors is called a context. Usually, the contexts
are grouped into context classes to avoid the (almost) continuous nature of the context
space.

Of course, in lossless data compression, the context class must be known to both
encoder and decoder, so only priors from the past may be used. Moreover, those priors
are limited to the values of the already encoded characters or pixels. In financial
modeling, only the first condition remains: it is obvious that no priors from the future can



be used. However, among the priors, not only the past values of Y but also other
microeconomic and macroeconomic values Z may be used. Hence, the key idea of
context modeling is to substitute the probabilities Pr[y...] by, typically, the probabilities
Prlywn | €. The context class ct is derived from the prior vector z, through the context
mapping function C. Hence, the context mapping function maps a context z1 Z, which is
a vector of priors, onto a context class c1  Z . The set of all context classes is denoted
as C.

2.4 Practical implementation

In practice, only one data sample series {y;} of a particular asset or index {Y, } is given
and a multitude of dependent priors Z\ are available for building the context classes.
Assumptions such as stationarity and ergodicity are made to estimate the probabilities of
the underlying model. Specifically in financial modeling, the way the contexts are
constructed and adapted is of great importance. A context model can be regarded as a
collection of a number of separate probability models without contexts running in
parallel, where one probability model is associated with every context class.

2.4.1 Probability model without contexts

In the case of non-parametric probability models, observed counts of samples are used
to estimate the probabilities. For every value y° T Y , the probability Prly., = y° is
approximated by n(y°)/S,i v ni(y), where ni(y) represents the number of times the value y
has occurred in the time interval [0; . Therefore, a practical implementation will count
the occurrences of every symbol yl Y and use these to estimate the probabilities.
Initially, these counts are initialized to zero and after a sufficient number of samples has
been parsed, the array of counts will reflect the true pdf. This approach is often called
the historical approach.

If the probability model is parametric, a class of distributions is assumed and only the
parameters discerning these distributions are estimated. Very often, a lognormal
distribution is presupposed and the mean mand the variance s2? are estimated from the
samples.

The cumulative density function is constructed from the derived pdf and used to predict
the VaR. Often, the samples will be weighted by a time-varying factor so that older
samples have less importance.

2.4.2 Probability model with contexts

If context modeling is used, instead of one pdf, multiple pdf's are estimated in parallel,
and, based upon the value of z;, each event is associated with one of these pdf's.



In the case of non-parametric modeling, for each value ¢ T C , the probabilities Prly., =
y°|c] are approximated by n.n(C;y%)/S,i v Nu(C; y), where ne.y(c; y) is defined as the number
of times in the interval [0; t] where a context z, at time k, belonging to class c, was
followed by a sample y at time k + h. In the case of parametric modeling, for each value
c 1 C , parameters are estimated based on the samples corresponding with that
particular context class.

2.5 Limitations

The application of probability models to real-life data samples suffers from severe
shortcomings. First of all, for some types of financial data, the assumed stationarity does
not always hold. Based on Timmermann [13], who explores the relationship between
volatility clustering and regime switches in time-series models, it can be argued that part
of the non-stationarity may be caused by volatility clustering. In the finance literature,
conditional volatility models and change-point models, among others, have been used to
remedy this shortcoming. It has become standard practice to model asset returns as a
mixture of distributions and to assume that they are conditionally normal [8].

A first step to solve this intricate problem is to transform the price series {Y;} into a set of
equivalent values with approximately time-invarying support. For simplifying the
calculation of consecutive price differences, usually the “continuously compounded
returns” (also called “log returns”) R; = log(Y/Y.1) are used. However, statistical analysis
has shown that this series still is non-stationary. Therefore, each referenced data sample
associated with a context is multiplied by a weight w(d;), which is a monotonically
decreasing function of the time difference d; of the referenced sample and the current
time.

The time difference d, can be measured in an absolute way or in a relative way. If
measured in an absolute way, the arithmetic difference between the two time indices is
used. If measured in a relative way, the samples within the corresponding context class
are sorted by time index and the difference in order index is taken. For example, if the
referenced sample happened 10 days ago, but it was the previous sample within that
particular context class, then d, takes the value of 10 in the case of absolute weighting
and 1 in the case of relative weighting. Typically, the weighting function w(d;) =l * with 0
<| £1is used.

Moreover, in our application, the context-dependent distributions are conditioned on a
parameter which is itself random and which is modeled by the state of the priors defining
the context. Consequently, rather than identifying whether the stock return series are
stationary in the mean or in the variance, the states of the world (context classes) in
which the expected return and the volatility can reasonably be assumed to be constant
are generated endogenously.



As such, removing the non-stationarity is achieved by introducing adaptivity into the
context model in multiple ways: by using an alternative representation {R;} , by weighting
the data samples according to their age, by separating the samples into distinct context
classes, and, by introducing new context classes which are to be trained with recent
data.

Another severe shortcoming of the model is that, since the model is trained on previous
samples, it is only able to recognize situations that have already happened once before.
This aspect is twofold: firstly, highly unlikely situations will be considered as impossible,
so they will not be predicted and secondly, if such a highly unlikely event has occurred
and it is used for training, it will be regarded as

a typical situation. Especially in the case of risk analysis, this puts heavy constraints on
the efficiency of the VaR estimation. For this reason, we have omitted the 1987 crash in
most of our experiments.

3 Tree-Structured Vector Quantization

The patrtitioning of the context space imposes some additional training problems. Since
the whole set of available data samples is to be divided over a number of context
classes, less samples are available for each context class. But to be statistically
significant, the occupation of every context class should be high enough. This is even
more so for risk analysis, because then, the focus of the modeling is on extreme value
analysis, which is described by the less populated tails of the distribution. The problem
of having context classes with a level of occupation that is too small, is often referred to
as the context dilution problem. While thousands or even millions of context classes can
be applied successfully in image compression [14], only about tens or maybe hundreds
are to be used in financial modeling.

On the other hand, the dimensionality of the space of priors tends to be high. A simple
context mapping function, such as the value of the previous character in text
compression, cannot be used: a simple division of each prior into a limited number of
distinct intervals gives rise to an exponentially growing number of context classes. This
curse of dimensionality is a problem that calls for an intelligent partitioning algorithm of
the space of the priors.

While processing the first few samples, the model has absolutely no statistically
significant information for making predictions. Therefore, a training phase processing a
first part of the samples is started. During this first phase, no predictions are made and
initial statistics are gathered exclusively for training. After this phase, the model enters
the evaluation phase, where training is combined with accurately predicting and



evaluating the VaR. During this second phase, a VaR prediction is made for each
sample and all data up to the previous day are used for training.

3.1 Context tree partitioning

Typically, if the model is trained using daily samples covering a period of about 30 years,
between 2000 and 8000 samples are available. To provide statistically significant tails of
the pdf, at least about 100 to 200 samples are needed for each context class. In total, at
most about 10 to 40 context classes are to be created. If about 10 priors were used,
even a simple division of each prior into two intervals would give rise to more than 1000
different context classes.

This problem is solved in two steps. Firstly, the prior space is partitioned into context
classes c T C and each context z is mapped onto one context class C(z) based on a
minimum distance criterion. This context mapping function C is a type of vector
guantization [15]. Secondly, the context classes are organized into a growing tree
structure, which can change on a daily basis. If new context classes are created in such
a way that they take into account the corresponding returns, the advantage is that, after
sufficient training, the structure of the classes may reveal hidden information about the
predictability of the returns.

The processing of an individual sample consists of two steps. Firstly, its context is
determined and mapped onto a context class, and the risk for the future sample is
estimated using the corresponding pdf. Secondly, the information contained in the co-
occurrence of the context and the sample is fed back into the probability model.

3.1.1 Context mapping and VaR estimation

Let Z be the prior space. For each context classc 1 C , a center of mass z. = Sj.i «(z;
/I(c)) can be determined. To make predictions about the future return Ry, the context z,
1 Z is first determined. Of course, only information available at time t can be used, not
only for making predictions, but also during the training stage. The context z; is then
mapped onto the context class ¢ for which ||z. - z]| is minimal. The pdf corresponding to
that context class is used to estimate the VaR. The pdf can either be parametric or non-
parametric.

3.1.2 Observation feedback
At time t + h, the combined observation of the return r.,, with the context z, is the sort of

information the context model is trained with, so this observation must be entered back
into the model. For this purpose, the context z; is added to the associated context classc
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and a new center of massz. is calculated. The pdf corresponding to that context class is
adapted. In parametric modeling, new parameters are calculated for the enlarged set of
contexts. In historical modeling, the observation is added to the list of observations. This
implies that the state in the prior space corresponding to a particular context class is not
constant in time. After incorporating the observation into the model, the model checks if
the context tree structure needs being adapted, which is achieved by splitting nodes.

3.2 Splitting algorithm

In the beginning, the context tree consists of a single root node and all samples are
mapped onto the same context class. When a specified splitting condition (the maturity
criterion) is met, a context node splits into a number of child nodes (typically two).
Usually a node is split whenever a certain level of occupation (i.e. a specified number n,
of associated samples) is reached. The old node becomes a parent node and its
associated samples are distributed over the two child nodes. After a parent node has
split, it is no longer functional. Children nodes can be created from a given parent node
in a few distinct ways: random node creation, fast min-max node creation and full min-
max node creation.

3.2.1 Random node creation

Associated with a parent node c, there is a center of mass Z and a list of associated
context samples g}. In the case of random node creation, the two child nodes are
created by adding and subtracting a randomly generated small disturbance vector e 1 Z
to the parent center of mass. Two new initial attractors, Z+ e , have thus been created
and each of the samples {z}} is classified into the child node with the closest center of
mass. Since the Euclidean distance measure is applied, the different dimensions of the
prior space need to be normalized. After distributing the samples over the child nodes,
the initial attractor of each child node is replaced by the effective center of mass, which
can now easily be determined.

3.2.2 Fast min-max node creation

Using the random node creation splitting technique, the values of the returns r., are not
taken into account and vector quantization is performed only in the prior domain.
However, the combination of the observed returns together with the observed contexts
of a specific context class, might also carry useful information. Therefore, in the case of
fast min-max node creation, the observed returns are also taken into account. Moreover,
in this case the final context tree might reveal information about the significance of the
distinct priors. From all contexts {z;} belonging to samples of the parent context class, the
ones with the extreme corresponding returns r., are determined and used to create two
child nodes. Let r" and r be the maximal and minimal return respectively and let z* and
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Z" be the corresponding contexts. These are then used as the two initial attractors of the
two child nodes. As in the case of random node creation, each context is classified into
one of the child nodes depending on the smallest distance criterion. After classification,
each initial attractor is replaced by a new center of mass and the parent node is no
longer used.

3.2.3 Full min-max node creation

The above technique has more potential than the random technique because the
information about the returns is fed back into the quantization process. Unfortunately, it
is very sensitive to outliers and it assumes a certain degree of monotonicity. These
problems can be avoided by using every associated return to classify the contexts. In the
case of “full min-max node creation” a threshold return r defined as (" + r)/2. Each
context z; originally corresponding with the parent node is classified into one of the child
nodes, depending on whether the corresponding return r;, > ror r, < . After
classification, a center of mass corresponding with each child node is calculated.

3.3 Additional improvements

Two additional improvements to the growing context tree algorithm are suggested in this
paper. One is the “reverse model restart” which aims at decreasing the consequences of
the non-stationarity of the data by enlarging the effect of the most recent data on the
growing of the context tree. The other improvement is the “feedback mechanism” which
aims at reducing training time and removing repetitive over- or underestimation.

3.3.1 Reverse model restart

Normally, the context tree is built starting from the first samples and adopts itself to the
most recent events. However, since the initial node splits have initiated the main
branches of the tree, the most important decisions with respect to the structure of the
tree are based upon the oldest samples. Therefore, the modeling might improve if more
recent events are used first. This goal is achieved if “reverse model restart” is
periodically applied with period t. After every period, the order of the samples is
reversed and the context tree is completely rebuilt. Most recent samples decide on the
inital branches and the oldest samples are used for the fine-tuning. It is clear that the
order of the processing of the samples is a tradeoff because ideally, the most recent
samples should be used for both initial training of the model and for fine-tuning.

3.3.2 Feedback mechanism

If the prediction efficiency is entered back into the model, the dynamics of the training
can be changed dramatically. Also, consistent misprediction due to changing statistical
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behavior can be intercepted and avoided. The “feedback mechanism” adds an artificial
prior to the list of economic priors. This additional prior can be regarded as a binary flag
which indicates whether the previous sample exceeded its prediction or not. Of course,
this variable too is normalized before it is incorporated into the context space.

3.4 Discussion: non-linear modeling

The predictability of the presented modeling technique differs from the one encountered
abundantly in non-linear science in multiple ways. Common non-linear models use a
system of non-linear differential equations that comprises a few parameters and a few
variables. The time variable is continuous by nature but is usually discretized to allow
numerical solutions. The input of the real world consists of parameters and boundary
values (usually the present state of the system). The solution to the system is
deterministic in theory but chaotic in practice. The system of differential equations itself
is time independent and explicitly describes the dynamics.

The proposed context modeling approach, which is a successful technique from the field
of data compression, is much more generic since more types of behavior can be
modeled. The main difference compared to the conventional model lies in its stochastic
approach: multiple outcomes are possible and the probability of each of these outcomes
is estimated on statistical grounds. The time variable is discrete and the real world input
is much greater since all the information of the system is obtained by training. Only a few
assumptions about stationarity and continuity of the probability density function are
made. The signal is described as a mixing of multiple stationary sources. The
parameters of the model are optimized by an exhaustive search. The model is time
dependent and describes the dynamics in an implicit way. Since so many types of
behavior can be modeled and so few assumptions are made, the system needs large
amounts of data in order to make adequate predictions. The training is similar to Markov
modeling, but the approach differs because the model does not estimate state
transitions but rather uses external information (the priors) to construct the states.

4 Evaluation Techniques

Though evaluating VaR estimates is difficult because most tests have limited power,
recently some improved methods have been proposed [7]. In this paper, we basically
use three types of evaluation measures: the average hit ratio, a c2-distance criterion with
respect to the binomial distribution and a cost and a loss function.

Firstly, the binary random process {X(t)} is defined as 1 if {¥ (t)} is smaller than the
predicted VaR, and 0 otherwise. It can be interpreted as an indicator whether the loss
exceeds the absolute value of the VaR, or similarly, as an “exception” flag. If the
statistical model captures all deviations from the ideal and perfectly matches the
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observed data, then for every t, {X(t)} is a random variable which takes the value 1 with
probability p, and 0 with probability 1- p.

Secondly, the entire evaluation period, covering L samples, is divided into q non-
overlapping windows of | samples each. For every window i, the random variable T, is
defined as

R €
k=0
and, if perfect modeling is achieved, its expected value equals p. Moreover, the set of
random variables {T;} is distributed independently and identically and for every i, the
random variable T; obeys the binomial distribution
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These values are used to construct three sets of evaluation criteria: (1) min-mean-max
statistics, (2) the c2 statistic and (3) cost and loss functions.

Min-mean-max statistics

The first set of criteria involves the observed values for T,. The observed minimum m’
=min; {T}, the observed mean, and the observed maximum m®* = max; {T} are three
interesting test statistics. Their distributions are given by:
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Ideally, if the heteroskedasticity is intercepted by the modeling, the mean should equal pl
and the maximum should not be too large. For low p, the observed minimum is a useless
statistic.

c2 statistic

The hypothesis that the observed variable T; obeys the binomial distribution, as given by
equation 2, can be tested using Pearson's c?2 statistic [16,17]. Since T can take values in
the interval [O;l], the c2 test statistic is given by

6
o k) ©

where n(k) and e(k) are the observed and expected number of windows where T, = k
respectively, according to equation 2. The statistic has n = | degrees of freedom.

Cost and Loss functions
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Previous criteria merely use counts of events where the VaR was exceeded and have no
guantitative power. An artificial 1% VaR defined as + on every first day and ¥ for
every other 99 days would achieve great score, but does not meet the requirement of a
financially useful VaR. Based on the idea of regulatory loss functions [7], both a loss and
a cost function are used as an evaluation criterion. The loss and the cost functions are
based on exceptional and regular observations respectively. The loss L is defined as

VSN S L VG ok S ¥ 'y
t=1

where H(x) is the Heaviside function, defined as 1 if x >0, 1/2 if x =0, and 0 if x<0. The
loss function by Lopez is similar, but adds the number of exceptions, so
gz s Both loss functions are based only on the exceptional
observations Where the loss exceeds the VaR, i.e. where r, < VaR;. The loss function is a
measure of the loss involved in underestimating the risk capital. The cost function C, is
defined as

~ [ EERRCE: veuor g Ut v gy \~/
t=1

so the quadratic form is replaced by a linear form and it only takes into account the
regular observations, i.e. where r, > VaR, It expresses the cost involved in
overestimating the risk capital. Neither the cost nor loss function can be interpreted as a
standalone criterion. They must be evaluated together, and in combination with the
previously introduced criteria. Also, a financial institution might decide to assign different
weights to cost and loss functions.

5 Experimental Results

The proposed statistical model was implemented in C++ and tested on both Microsoft
Windows NT and Linux platforms. Depending on the algorithm options and the choice of
the parameters, a typical run on about 8000 samples takes between 10 and 120
seconds. In the current implementation, about 2 megabytes of memory are needed.

5.1 Financial data

The data compression technique is applied to the daily return series of the Standard &
Poor's 500 US stock index from October 1969 until December 1999. Since this index
contains the largest stocks, and thus represents a major part of the total market
capitalization on the New York Stock Exchange, it can be assumed to capture the
associated market risk.

A total of 8089 samples were available for training and evaluation. The first 200 samples
were not used for training because of initialization conditions (e.g. for obtaining useful
values of long-term priors). Sample 201 to 2000 (covering the period October 7, 1969
until August 30, 1976) were used for training only. Samples 2001 to sample 8089
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(covering the period August 31, 1977 until December 31, 1999) were used for both
training and validation. Of course, only data from the past is used to make predictions.
Not all priors were available from the beginning of the training period; they are
substituted by zero in those cases. Hence, the total number of evaluation samplesis L =
6089. If windows of width | = 100 are used, a total of g = 60 windows is available for
evaluation.

To avoid the training problems that may arise from highly unlikely events, a volatile
period covering 100 returns around the 1987 crash was omitted from the data. In the last
paragraph, some numerical results are presented obtained by taking the crash into
account. Different priors are used to construct the contexts. The choice of the priors is
based on theoretical models and empirical findings reported in asset pricing research. A
number of influential asset pricing studies have concluded that stock returns are driven
both by fundamental and technical factors [18].

First there is evidence of persistence in daily returns, particularly in the short run, and
mean reversion over the medium term [8]. We use four technical variables to capture
these effects and define them as the momentum priors. The first three variables are
intended to reflect the short-run dynamics and include the one-day, one-week and one-
month past returns. The fourth technical factor is the degree of expected volatility at a
given date, measured as the dispersion of the stock market returns over the past 100
trading days. This conditioning variable is calculated as the ratio of the difference
between the maximum level of the index and the minimum level of the index in the 100-
day window relative to the minimum level of the index.

A second set of priors that is assumed to contain information about future returns are
macroeconomic factors. These variables have been widely used in multi-factor models
and were found to have predictive power [19, 20].

The first macroeconomic variable is the daily change in the US yield curve. This term
spread factor is measured as the difference between the long-term riskless interest rate
(benchmark US 10-year government bond) and the riskless short term interest rate (3-
month US treasury bill rate). Harvey finds that the slope of the term structure contains
information about future economic growth [21].

Campbell finds a direct link between the term structure of interest rates and excess
returns on financial markets [22]. As a consequence, changes in the vyield curve
influence expected stock returns, although the direction and the exact magnitude of this
effect depends on the source of the change in the term structure, i.e. whether the
change was caused by variations in the short or the long-term interest rate.

The second factor is the default spread, which is intended to capture the pervasive
influence of the economy wide default risk on financial markets. Theoretically, an
increase in the expected distress risk of corporations should increase the required return
on equities. We measure the default spread as the difference between a corporate bond
return series (the US benchmark BAA corporate bond yield) and a riskless interest rate
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(the US benchmark 10- year government bond yield)®. As in the calculation of the term
spread, we use the daily change of the default risk variable as a prior. This procedure
ensures that the relevant information is known to investors at the date of the VaR
measurement.

Finally, the third fundamental variable is the dividend yield [22, 8]. We compute the
changes in the daily dividend yield series to capture the investors' expectations about
the dividend payoff in the US stock market. Theoretically an increase in the dividend
yield should reflect improved earnings.

5.2 Model parameters

As indicated in previous sections, the tree-structured context model uses a lot of
parameters, for which an optimal combination must be empirically derived.

table 1. Summary of investigated priors and parameter. The lower-case letters
indicate real or integer values; the capitals indicate a limited number of choices.

Prior Symbol = Model parameter Symbol
1-day return Z; Maturity occupation level Nm
5-day cumulative return Z> Number of child nodes Nc
25-day cumulative return Z3 Node creation algorithm A
100-day volatility Zy Weighting type Tw

Differential term structure Zs Weighting factor I

Differential default spread Zs Model type Tm
Differential dividend yield Z7 Reverse model restart interval tr
Feedback mechanism flag F

Table 1 gives an overview of the priors available for training and the parameters used.
The maturity occupation level describes the maturity criterion: a context class node splits
whenever the number of associated samples exceeds this level. The number of child
nodes indicates how many new nodes are created when a node has reached the
maturity level. The node creation algorithm can be any of the three algorithms described
in section 3.2 (random, fast min-max and full min-max). The weighting type can be either
absolute or relative, as described in section 2.5. The weighting factor corresponds to the
base | of the weighting function w(d,) =1 * . The model type can be either parametric
(Gaussian) or non-parametric (historical). The reverse model restart interval indicates
the period after which the model is completely rebuilt, by training using the observed
samples in reversed order; a value of ¥ indicates that this never happens. Finally, the
feedback mechanism flag describes whether the feedback mechanism is applied (see
section 3.3).

% Since the US government has a AAA-rating, this difference effectively captures expected default
risk.
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5.3 Results

A global optimization of all parameters for every combination of h T {1,525} , p 1
{0:01;0:05} , and for every combination of priors is not achievable in acceptable time
using an exhaustive search algorithm. Therefore, in a first stage, a limited set of
parameter combinations was derived using trial and error. This set is summarized in
table 2 and is used for an exhaustive search in the second stage. During the parameter
optimization stage, all seven priors are included for building the contexts. The table
already shows that using more than 2 child nodes in the splitting stage produced no
significant improvement, that relative weighting consistently outperforms absolute
weighting, and that only high weights are interesting compared to the RiskMetrics
approach.

Table 2. Exhaustive parameter optimization space.

Parameter | Values

h 1,5,25

p .01,.05

nm 100,200,300,500,1000
nc 2

A random, fast min-max, full min-max
Tw Relative

I 1,.9995,.999,.995,.99
Tm Gaussian, Historical

tr 100,200,500,1000,¥

F yes, no

A fundamental problem in interpreting the numerical results is the joint evaluation of the
five numerical criteria ™,m",c *,LandC. For the first three criteria, confidence
intervals can be numerically derived based on the assumption that the results are
modeled correctly. The two-sided 92% confidence for M is given by [0.783; 1.22] and
[4.52; 5.47] for the case where p = 0.01 and p = 0.05 respectively. Furthermore, Prim” £
5] = 96.84% and Pr[m’E 14] = 91.58% for p = 0.01 and p = 0.05 respectively. Finally, the
one-sided 95% confidence interval for c2is given by [0; 124.34]. The other two criteria, L
and C, should both be as low as possible. All criteria influence each other, so they
should be evaluated simultaneously. This discussion questions the fundamental goal of
the VaR.

Optimizing a set of parameters in this way is very sensitive to data snooping, since it is
not clear how robust the optimal combination of parameters will be for modeling the
values of other financial instruments or other periods.

5.3.1 Parameter optimization
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For each combination of p and h, figure 1 plots the loss L versus mean MM using the
parameter combinations from table 2, except that only historical modeling is used.
Different marks are used for each splitting algorithm and the simulated RiskMetrics result
is also shown on each plot. For each of the six cases, a combination of parameters is
available producing acceptable results, i.e. Mis close to the expected value and L is
relatively low. On average, better results are obtained for a 1% VaR than for a 5% VaR,
so historical context modeling is better for solving the fat tail problem. Also, better results
are obtained for shorter horizons; this is mainly due to the fact that most priors represent
short-term dynamics so they do not carry long-term information. Comparing context
modeling to RiskMetrics, significantly better results are obtained for the (h = 1; p = 0.01)
and the (h = 5; p = 0.01) case, whereas significantly worse results are obtained for the (h
= 25; p= 0.05) case. However, remember that the primary goal of this research was to
improve the modeling of extreme events on a short-time horizon. Surprisingly, the fast
min-max splitting algorithm performs always optimal or close-to-optimal. In some cases,
the full min-max algorithm achieves slightly better results.

Probably, the full min-max approach has more potential but adapts slower to the
presented data. Especially for long horizons, the differences between the splitting
algorithms become larger.

Table 3 presents numerical results using the optimal parameter combination for each of
the six cases. The best M for each case is printed in boldface. If no context modeling is
applied, weights based on the RiskMetrics method are used, i.e., | =0.94 if h=1, | = 0.95
if h=5and | = 0.97 if h = 25. If optimal parameters are used for every case, historical
context modeling achieves the best results with respect to the mean M. However, the
maximum m* and c2 statistic are also often higher. The greatest improvements are to be
expected for short horizons and low probabilities. This is because the priors reflect short-
term behavior and because the non-parametric approach is a good solution for the fat
tail problem. For a 1% VaR, Gaussian context modeling or historical modeling without
contexts does not improve the results compared to the RiskMetrics based approach, but
the real improvement lies in the simultaneous application of both context and historical
modeling.

Figure 2 shows the typical behavior of the log return and two VaR estimates for sample
7000 to 7500 for the case p = 0.01 and h = 1 and using the optimal parameters from the
previous table. The expected number T of returns exceeding the VaR is 5. The plot
shows a big qualitative difference between the two VaR estimates. The RiskMetrics
based VaR achieves a bad number of VaR excess returns (17 times) and is
characterized by its slow decay in periods of low volatility, its consequent misses of
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Figure 1. For each combination of h T {1,5,25} and p T {.01,.05}, a plot shows
the loss L(.10-3) versus the mean mfor every combination (only historical
modeling). The dotted lines represent the 92% confidence interval for m. The
RiskMetrics-based approach is marked with a “= ”. All priors are included.
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Table 3. Numerical results on S&P500 (without 1987 crash) using Gaussian and
Historical modeling and optimal parameters. Key: CM=context modeling, NC=
no context modeling (using RiskMetrics weights), C = context modeling, Tm=
model type, G= Gaussian, H= Historical. For every combination of h and p, the

best M results are marked in boldface.

oM | T, | m m"* c | L0y | C
Case: h=1, p=.01

NC G 1.73 5 52.1 0.18 1.96
NC H 2.59 5 222.6 0.23 1.93
C G 1.53 6 95.81 0.20 1.97
C H 1.08 6 42.82 0.12 2.37
Case: h=1, p=.05

NC G 5.44 9 20.9 0.37 141
NC H 6.37 10 40.5 0.38 1.40
C G 4.64 13 83.85 0.38 1.43
C H 5.03 14 115.84 0.38 1.42
Case: h=5, p=.01

NC G 1.53 5 54.7 0.23 4.34
NC H 2.80 6 384 0.44 4.10
C G 1.44 13 571 10° 0.40 4.78
C H 1.00 8 2.32 10° 0.23 5.62
Case: h=5, p=.05

NC G 5.83 13 31.9 0.85 3.11
NC H 6.51 11 57.9 0.92 3.09
C G 5.71 21 1.04 10° 1.40 3.29
C H 4.92 16 956.02 1.13 3.52
Case: h=25, p=.01

NC G 0.73 5 55.9 0.11 8.03
NC H 2.83 9 393 10° 0.45 7.32
C G 1.22 13 2.29 10° 0.78 10.14
C H 0.98 12 39.3 10° 0.54 11.17
Case: h=25, p=.05

NC G 5.47 17 22.0 10° 1.28 5.74
NC H 7.15 19 47.8 10° 1.34 5.64
C G 5.02 26 7.42 10° 3.92 7.18
C H 5.00 19 261 10° 3.51 7.46

extreme negative returns and its sudden raise immediately after those extreme
situations. The context modeling approach achieves a better number of VaR excess
returns (8 times), a better non-stationarity reduction with respect to the VaR excess, but
also a very irregular behavior, caused by the constant change of context class. This VaR
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course is counterintuitive to the notion of slowly varying risk and might be interpreted as
a sign of bad modeling. It is an inherent consequence of the modeling approach, though
it could be improved if more data were available for training. The October 1997 crash is
not predicted at all by the RiskMetrics approach: the VaR slowly decays before the crash
and rises immediately after it. The context modeling VaR on the other hand repeatedly
predicts more and more returns of high risk as time continues towards the crash.
Immediately after the crash, a low VaR is predicted, indicating the danger of high loss is
over. This indicates that the context model senses an upcoming period of higher risk and
falls back to safe behavior shortly after it. Table 4 gives the optimal parameters and the
sensitivity to that parameter for the (h = 1, p = 0.01) case. It is important to note that
because of the context modeling, higher weights can be used. Also, the fast min-max
performs best, though the difference with full min-max and random splitting is small.

Figure 2. A typical course of the log return, the RiskMetrics based VaR and the
VaR based on context modeling for the case p = 0:01 and h = 1. Note the
difference between the two VaRs, especially before and after sample 7421
(October 1997 crash).
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5.3.2 Importance of priors

During the parameter optimization stage, all priors were available to build the contexts.
However, not all of them are equally important so every possible combination of seven or
less priors is investigated. For the (h = 1; p =0.01) case, table 5 presents which priors
produce the best results if only a limited number of priors n, were to be used. The
differential dividend yield, the differential default spread, the differential term structure
and the 5-day cumulative return show to have the most predictive power. However, as
the number of priors n, increases, not always the same priors are selected. This
indicates that there is a lot of mutual information between the priors, but this is difficult to
guantify and analyze.

5.3.3 Parameter robustness

Many parameters are used in the model and they need to be optimized using only one
data series. The presented optimal results are sensitive to the problem of data snooping.
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The question remains whether parameter values, optimized from the past, will remain
good parameters in the future.

To investigate this problem, we performed a limited experiment by independently
optimizing the parameters on two separate time intervals: the first 6000 samples and the
last 2000 samples. Though the data series clearly show to be non-stationary when
comparing these periods, the results of the experiment show that the optimal values are
almost identical and that only the splitting algorithm differs. This is an indication that the
parameter optimization procedure is reasonably robust.

5.3.4 The 1987 crash test

Some numerical results for the (h = 1; p = 0.01) case including the 1987 crash data is
shown in table 6. The parameters for the context modeling were not optimized but
chosen based on previous experiments; if no context modeling is applied, | = 0:94. When
comparing the historical context modeling with the classical approach, we see an
improvement in the mean M and the loss L, but the maximum m*, the ¢ and the cost C
deteriorate. Several of these measures, especially m* and c?, are non-linear and their
values depend mainly on the extreme values. The extremal behavior is mainly
concentrated in the period around the 1987 crash. The averaging criterium m , which is
improved by context modeling, does not suffer from this aspect.

6 Conclusion

This paper presents some results of applying context modeling, a state-of-the-art
technique in data compression, to the field of financial modeling and risk analysis. The
goals of both data compression and financial modeling are shown to be similar, but
because of the limited number of data samples and the large presence of useful priors,
some adaptations must be added to the modeling. The partitioning of the state space of
priors into separate context classes is achieved by a growing tree-structured vector
guantization algorithm. An optimal combination of parameters is exhaustively searched
for the S&P500 US stock index, covering more than 30 years of data, but omitting the
1987 crash. Multiple evaluation criteria are used for this purpose. Though the approach
is very universal, the task of VaR prediction was used to show one possible application.
The results show that, for low probability VaRs and short horizons, significantly better
predictions are obtained using historical context modeling compared to the RiskMetrics
approach. The strength of the approach lies in the combination of introducing contexts
and non-parametric modeling. In contrast with the RiskMetrics approach, the October
1997 crash was anticipated in time, and the model recovered from the crash much
faster.

We are grateful to Wilfried Philips from Ghent University (Belgium), for his encouraging ideas,
and Jeroen Van Overloop, for introducing this interesting subject.
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