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Abstract

Given two linear regression models y1 = X1β1+u1 and y2 = X2β2+u2 where the
reponse vectors y1 and y2 are unobserved but the sum y = y1 + y2 is observed,
we study the problem of decomposing y into components ŷ1 and ŷ2, intended to
be close to y1 and y2, respectively. We develop a theory of best affine unbiased
decomposition in this setting. A necessary and sufficient condition for the ex-
istence of an affine unbiased decomposition is given. Under this condition, we
establish the existence and uniqueness of the best affine unbiased decomposition
and provide an explicit expression for it.
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1 Introduction

The idea of best linear unbiasedness in parameter estimation, response prediction, and
estimation of disturbances has a long history in statistics. The theory of best linear
unbiased estimation by the method of least squares originated with Gauss (1821—1823).
See Plackett (1949) for historical details. Subsequent contributions were made by Aitken
(1934) and Rao (1971), inter alia. Goldberger (1962) developed a theory of best linear
unbiased prediction in the linear model. Theil (1965) and subsequent authors consid-
ered best linear unbiased estimation of the disturbances, subject to constraints on the
covariance matrix of the estimators.
This paper applies the idea of best linear, or affine, unbiasedness to the decomposi-

tion of the response vector in a linear model into two (or more) additive components.
Each of these components is attributed to a specific set of regressors and a specific
disturbance term. Another way of looking at the same formal problem is as follows.
Suppose we have two linear models with unobserved response vectors, but where the
sum of the two response vectors is observed. The question is then, how to retrieve the
original response vectors.
We have in mind applications in the social sciences like, for example, the decom-

position of school results of pupils into an environmental component on the one hand,
and a component determined by innate characteristics of the pupil on the other hand.
For an application in health economics, see Schokkaert, Dhaene and Van de Voorde
(1998). Individual medical expenditures are decomposed into a component related to
the health condition of the individual, and a component consisting of cultural factors
and wealth. Potential applications are not limited to the social sciences, however.
The paper is organized as follows. A formal statement of the problem is given in

Section 2, along with definitions of unbiased decomposition, decomposability, and best
affine unbiased decomposition. Section 3 gives a necessary and sufficient condition for
the existence of an affine unbiased decomposition. Section 4 establishes that, if an affine
unbiased decomposition exists, there exists a unique best affine unbiased decomposi-
tion. The extension to the decomposition into p components is also given in Section 4.
Section 5 concludes.

2 Statement of the problem

In the standard linear regression models

y1 = X1β1 + u1, y2 = X2β2 + u2,

with disturbance vectors u1 and u2 satisfying E(ui) = 0 and E(uiu
0
j) = Vij (i, j = 1, 2),

suppose that one only observes the n× k1 and n× k2 non-stochastic regressor matrices
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X1 and X2, and the sum of the response vectors

y = y1 + y2 = Xβ + u, (1)

where X = (X1 : X2), β = (β
0
1 : β

0
2)

0 and u = u1+u2. Let k = k1+ k2. We assume that
the matrices Vij (i, j = 1, 2) are known. On the other hand, β is unknown, although
extraneous information may be present in the form

Rβ = r, (2)

where the m× k matrix R and the m× 1 vector r are known and non-stochastic. Thus
the parameter space of β, denoted B, is the Euclidean space IRk, or the affine subspace
of IRk determined by (2). When no extraneous information is present, R = 0 and r = 0.
The problem that we address consists of finding a decomposition of y, that is, a pair

(ŷ1, ŷ2) such that ŷ1+ ŷ2 = y. The obvious interest lies in finding a decomposition such
that ŷ1 and ŷ2 are close to y1 and y2, respectively. We seek an affine decomposition,
that is, one of the form

ŷ1 = a+Ay, ŷ2 = y − ŷ1,

where a and A are non-stochastic. Further, we shall say that a decomposition (ŷ1, ŷ2)
of y is unbiased if

E(ŷ1 − y1) = 0, E(ŷ2 − y2) = 0, for all β ∈ B.
If there exists an affine unbiased decomposition of y, we say that y is decomposable. A
necessary and sufficient condition for y to be decomposable is given in the next section.
If y is decomposable, it is natural to look for the best affine unbiased decomposition,
say (ŷ1, ŷ2), defined by the property that

Var

Ã
ỹ1 − y1

ỹ2 − y2

!
−Var

Ã
ŷ1 − y1

ŷ2 − y2

!

is positive semidefinite for all affine unbiased decompositions (ỹ1, ỹ2) of y. Note that an
equivalent condition is that

tr Var(ỹ1 − y1) ≥ trVar(ŷ1 − y1)

for all affine unbiased decompositions (ỹ1, ỹ2) of y. It will be shown that, if y is decom-
posable, there exists a unique best affine unbiased decomposition of it.
We have not imposed rank conditions on R, X nor Vij (i, j = 1, 2). Nevertheless,

the constraints (2) have to be consistent with the model specification (1). It is therefore
necessary (and sufficient) to require thatÃ

y
r

!
∈ S

Ã
X V
R 0

!
a.s., (3)
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where V = V11 + V12 + V21 + V22 = E(uu
0) and S(A) denotes the column space of the

matrix A. For conciseness, we shall use the triplet (y,X1β1+X2β2, V11+V12+V21+V22)
to denote the composite linear regression model (1) together with the observability
assumptions, and say that it is consistent with the linear constraints Rβ = r if (3)
holds. In the absence of linear constraints, the linear regression model (1) is consistent
if y ∈ S(X : V ) a.s.

3 Existence of an affine unbiased decomposition

The following proposition gives a necessary and sufficient condition for y to be decom-
posable. The proof of this and the following propositions are to a large extent inspired
by the constructive methods of proof of Magnus and Neudecker (1999, Chapter 13).

Proposition 1 Let the composite linear regression model (y,X1β1 +X2β2, V11 + V12 +
V21 + V22) be consistent with the linear constraints Rβ = r. Then, y is decomposable if
and only if

S
Ã
X 0

1

0

!
⊂ S(X 0 : R0), (4)

where the matrix of zeroes has the same order as X 0
2.

Proof. The unbiasedness requirement for the affine decomposition

ŷ1 = a+Ay, ŷ2 = y − ŷ1,

is E(ŷ1 − y1) = 0 or, equivalently,

a+AXβ −X1β1 = 0 for all β such that Rβ = r. (5)

Solving β from Rβ = r yields β = R+r + (I − R+R)q where q is an arbitrary k × 1
vector. Hence (5) is equivalent to

a+ [AX − (X1 : 0)][R
+r + (I −R+R)q] = 0 for all q,

and, in turn, to

a+ [AX − (X1 : 0)]R
+r = 0, [AX − (X1 : 0)](I −R+R) = 0.

This pair of equations has a solution in a and A if and only if the latter equation has a
solution in A. This will be the case if and only if we can ensure that, for some matrix
B,

AX − (X1 : 0) = BR.
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Thus, a necessary and sufficient condition for y to be decomposable is that the rows of
(X1 : 0) are linear combinations of the rows of X and R. (Q.E.D.)
The condition for y to be decomposable is equivalent to the condition that X1β1 be

estimable, in the sense that an affine unbiased estimator of X1β1 has to exist. Note that
rank(X) = rank(X1) + rank(X2) is a sufficient condition for y to be decomposable. It
is, moreover, a necessary condition if R = 0 and r = 0. Finally, note that the properties
of the matrices Vij (i, j = 1, 2) do not matter for the existence of an affine unbiased
decomposition.

4 Uniqueness of the best affine unbiased decompo-

sition

The following propositions show that, if y is decomposable, the best affine unbiased
decomposition of y exists and is unique. We first prove a lemma that will be needed.

Lemma 1 Let u1 and u2 be n × 1 vectors satisfying E(ui) = 0 and E(uiu
0
j) = Vij

(i, j = 1, 2). Then
S(V11 + V21) ⊂ S(V11 + V22 + V21 + V12).

Proof. We can always write u1 = Ax and u2 = Bx for some vector x with properties
E(x) = 0 and E(xx0) = I, and some matrices A and B satisfying AA0 = V11 and
BB0 = V22. Then,

V11 + V22 + V21 + V12 = (A+B)(A+B)
0,

(V11 + V21)(V11 + V21)
0 = (A+B)A0A(A+B)0.

We see that, if (V11+V22+V21+V12)z = 0 for some vector z, then also (V11+V21)(V11+
V21)

0z = 0. Hence

S(V11 + V21)(V11 + V21)
0 ⊂ S(V11 + V22 + V21 + V12).

The proof is complete by noting that S(V11+ V21) = S(V11+V21)(V11+ V21)
0. (Q.E.D.)

We now establish the uniqueness of the best affine unbiased response decomposition
of y in the special case where no linear constraints on β are given.

Proposition 2 Let the composite linear regression model (y,X1β1 +X2β2, V11 + V12 +
V21 + V22) be consistent, and let W = V +XX 0, where V = V11 + V12 + V21 + V22 and
X = (X1 : X2). Then, if y is decomposable, the best affine unbiased decomposition of y
exists and is given by

ŷ1 = Ay, ŷ2 = y − ŷ1,

where

A = (X1 : 0)(X
0W+X)+X 0W+ + (V11 + V12)W

+[I −X(X 0W+X)+X 0W+].
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Proof. From the proof of Proposition 1 we retain that, in the case where R = 0 and
r = 0, the affine decomposition (ŷ1, ŷ2) = (a+ Ay, y − a− Ay) is unbiased if and only
if a = 0 and AX = (X1 : 0). The best affine unbiased decomposition of y is found by
minimizing 1

2
tr Var(ŷ1 − y1) subject to AX = (X1 : 0). Now,

Var(ŷ1 − y1) = Var[A(u1 + u2)− u1]

= AV A0 − A(V11 + V21)− (V11 + V12)A
0 + V11.

Define the Lagrangian function Λ by

Λ(A) = 1
2
tr[AV A0 −A(V11 + V21)− (V11 + V12)A

0 + V11]− trL0[AX − (X1 : 0)],

where L is a matrix of Lagrange multipliers. Differentiating Λ with respect to A gives

dΛ = trV A0(dA)− tr(V11 + V21)(dA)− trXL0(dA).

The first order conditions for a constrained minimum are

V A0 − (V11 + V21)−XL0 = 0

AX − (X1 : 0) = 0,

or, in matrix form, Ã
V X
X 0 0

! Ã
A0

−L0

!
=

Ã
V11 + V21

(X1 : 0)
0

!
.

According to Magnus and Neudecker (1999, Theorem 3.23), this matrix equation has a
solution in A and L if and only if

S(V11 + V21) ⊂ S(V : X) and S
Ã
X 0

1

0

!
⊂ S(X 0).

By Lemma 1, the first of these conditions is always satisfied, and the second one is
satisfied by the assumption that y is decomposable. The general solution for A is

A = (X1 : 0)(X
0W+X)+X 0W++(V11+V12)W

+[I−X(X 0W+X)+X 0W+]+Q(I−WW+),

where Q is an arbitrary matrix of appropriate order. The proof is complete by noting
that WW+y = y a.s. (Q.E.D.)
The following proposition considers the general case.

Proposition 3 Let the composite linear regression model (y,X1β1 +X2β2, V11 + V12 +
V21 + V22) be consistent with the linear constraints Rβ = r, and let

Z =

Ã
X
R

!
, v =

Ã
y
r

!
, W =

Ã
V 0
0 0

!
+ ZZ 0,
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where V = V11 + V12 + V21 + V22 and X = (X1 : X2). Then, if y is decomposable, the
best affine unbiased decomposition of y exists and is given by

ŷ1 = Av, ŷ2 = y − ŷ1,

where

A = (X1 : 0)(Z
0W+Z)+Z 0W+ + (V11 + V12 : 0)W

+[I − Z(Z 0W+Z)+Z 0W+].

Proof. Partition R into (R1 : R2) conformably with X = (X1 : X2), and let ri = Riβi

and

Zi =

Ã
Xi

Ri

!
, vi =

Ã
yi

ri

!
, Uij =

Ã
Vij 0
0 0

!
.

Then, (y,X1β1 + X2β2, V11 + V12 + V21 + V22), together with Rβ = r, is equivalent to
(v, Z1β1 + Z2β2, U11 + U12 + U21 + U22). Moreover, the first model is consistent with
the constraints if and only if the latter model is consistent, and y is decomposable if
and only if v is decomposable. Proposition 2 yields the unique best affine unbiased
decomposition of v and, as appropriate subvectors thereof, that of y. (Q.E.D.)
The best affine unbiased decomposition of y can also be written as

ŷ1 = dX1β1 + (V11 + V12)W
+û, ŷ2 = dX2β2 + (V22 + V21)W

+û,

where dX1β1 and dX2β2 are the best affine unbiased estimators of X1β1 and X2β2, re-
spectively, and û = y − dX1β1 − dX2β2. Finally, we note that

Var

Ã
ŷ1 − y1

ŷ2 − y2

!
=

Ã
X1 0
0 X2

!
[(Z 0W+Z)+ − I]

Ã
X 0

1 0
0 X 0

2

!
+QW+[I − Z(Z 0W+Z)+Z 0]W+Q0,

where

Q =

Ã
V11 + V12 0

0 V22 + V21

!
.

The extension to the p-components decomposition of y is straightforward. In obvious
notation, y is decomposable if and only if X1β1, . . . , Xpβp are all estimable. Further-
more, the unique best affine unbiased decomposition (ŷ1, . . . , ŷp) can be obtained, for
example, from the first components of the 2-component best affine unbiased decompo-
sitions (ŷi, y − ŷi), i = 1, . . . , p.
Note that applying the best affine unbiased decomposition hinges on knowledge of

the covariance matrices of the disturbances. Such a knowledge cannot be extracted from
the available observations, and hence should come from extraneous sources.1 When no

1This problem is, of course, similar to the problem faced by best affine unbiased parameter esti-
mation, i.e. by the method of generalized least squares, which requires knowledge of the covariance
matrix of the vector of disturbances.

6



such sources are available and we are completely ignorant, we might opt to assume that
all disturbances are uncorrelated and have equal variances, yielding the p-component
decomposition Ã dX1β1 +

1

p
û, . . . , dXpβp +

1

p
û

!
,

which is affine unbiased anyway, but not necessarily best affine unbiased.

5 Conclusion

We have proposed a method for decomposing the response vector in a linear model into
two or more additive components, each of which is related to a specific set of regres-
sors and a specific disturbance term. We accounted for arbitrary regressor matrices,
covariance matrices of the disturbance terms, and linear constraints on the parameters.
In this setting, a necessary and sufficient condition for the existence of a sensible, i.e.
unbiased, decomposition was given. Furthermore, the existence and uniqueness of the
best affine unbiased decomposition was proven, and an explicit expression to calculate
it was given.
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